
Title stata.com

capture — Capture return code

Description Syntax Remarks and examples Reference
Also see

Description

capture executes command, suppressing all its output (including error messages, if any) and
issuing a return code of zero. The actual return code generated by command is stored in the built-in
scalar rc.

capture can be combined with {} to produce capture blocks, which suppress output for the block
of commands. See the technical note following example 6 for more information.

Syntax

capture
[
:
]

command

capture {
stata commands

}

Remarks and examples stata.com

capture is useful in do-files and programs because their execution terminates when a command
issues a nonzero return code. Preceding sensitive commands with the word capture allows the
do-file or program to continue despite errors. Also do-files and programs can be made to respond
appropriately to any situation by conditioning their remaining actions on the contents of the scalar
rc.

Example 1

You will never have cause to use capture interactively, but an interactive experiment will
demonstrate what capture does:

. drop _all

. list myvar
no variables defined
r(111);

. capture list myvar

. display _rc
111

1

http://stata.com
http://stata.com
https://www.stata.com/manuals/perror.pdf#perrorRemarksandexamplesr(111)


2 capture — Capture return code

When we said list myvar, we were told that we had no variables defined and got a return code of
111. When we said capture list myvar, we got no output and a zero return code. First, you should
wonder what happened to the message “no variables defined”. capture suppressed that message. It
suppresses all output produced by the command it is capturing. Next we see no return code message,
so the return code was zero. We already know that typing list myvar generates a return code of
111, so capture suppressed that, too.

capture places the return code in the built-in scalar rc. When we display the value of this
scalar, we see that it is 111.

Example 2

Now that we know what capture does, let’s put it to use. capture is used in programs and
do-files. Sometimes you will write programs that do not care about the outcome of a Stata command.
You may want to ensure, for instance, that some variable does not exist in the dataset. You could do
so by including capture drop result.

If result exists, it is now gone. If it did not exist, drop did nothing, and its nonzero return
code and the error message have been intercepted. The program (or do-file) continues in any case.
If you have written a program that creates a variable named result, it would be good practice to
begin such a program with capture drop result. This way, you could use the program repeatedly
without having to worry whether the result variable already exists.

Technical note
When combining capture and drop, never say something like capture drop var1 var2 var3.

Remember that Stata commands do either exactly what you say or nothing at all. We might think
that our command would be guaranteed to eliminate var1, var2, and var3 from the data if they
exist. It is not. Imagine that var3 did not exist in the data. drop would then do nothing. It would
not drop var1 and var2. To achieve the desired result, we must give three commands:

capture drop var1
capture drop var2
capture drop var3

Example 3

Here is another example of using capture to dispose of nonzero return codes: When using do-files
to define programs, it is common to begin the definition with capture program drop progname and
then put program progname. This way, you can rerun the do-file to load or reload the program.

Example 4

Let’s consider programs whose behavior is contingent upon the outcome of some command. You
write a program and want to ensure that the first argument (the macro ‘1’) is interpreted as a new
variable. If it is not, you want to issue an error message:



capture — Capture return code 3

capture confirm new variable ‘1’
if _rc!=0 {

display "‘1’ already exists"
exit _rc

}
(program continues. . .)

You use the confirm command to determine if the variable already exists and then condition your
error message on whether confirm thinks ‘1’ can be a new variable. We did not have to go to
the trouble here. confirm would have automatically issued the appropriate error message, and its
nonzero return code would have stopped the program anyway.

Example 5

As before, you write a program and want to ensure that the first argument is interpreted as a new
variable. This time, however, if it is not, you want to use the name answer in place of the name
specified by the user:

capture confirm new variable ‘1’
if _rc!=0 {

local 1 _answer
confirm new variable ‘1’

}
(program continues. . .)

Example 6

There may be instances where you want to capture the return code but not the output. You do that
by combining capture with noisily. For instance, we might change our program to read

capture noisily confirm new variable ‘1’
if _rc!=0 {

local 1 _answer
display "I’ll use _answer"

}
(program continues. . .)

confirm will generate some message such as “. . . already exists”, and then we will follow that
message with “I’ll use answer”.

Technical note
capture can be combined with {} to produce capture blocks. Consider the following:

capture {
confirm var ‘1’
confirm integer number ‘2’
confirm number ‘3’

}
if _rc!=0 {

display "Syntax is variable integer number"
exit 198

}
(program continues. . .)



4 capture — Capture return code

If any of the commands in the capture block fail, the subsequent commands in the block are aborted,
but the program continues with the if statement.

Capture blocks can be used to intercept the Break key, as in
capture {

stata commands
}
if _rc==1 {

Break key cleanup code
exit 1

}
(program continues. . .)

Remember that Break always generates a return code of 1. There is no reason, however, to restrict
the execution of the cleanup code to Break only. Our program might fail for some other reason,
such as insufficient room to add a new variable, and we would still want to engage in the cleanup
operations. A better version would read

capture {
stata commands

}
if _rc!=0 {

local oldrc = _rc
Break key and error cleanup code
exit ‘oldrc’

}
(program continues. . .)

Technical note
If, in our program above, the stata commands included an exit or an exit 0, the program would

terminate and return 0. Neither the cleanup nor the program continues code would be executed. If
stata commands included an exit 198, or any other exit that sets a nonzero return code, however,
the program would not exit. capture would catch the nonzero return code, and execution would
continue with the cleanup code.

Reference
Newson, R. B. 2017. Stata tip 127: Use capture noisily groups. Stata Journal 17: 511–514.

Also see
[P] break — Suppress Break key

[P] confirm — Argument verification

[P] quietly — Quietly and noisily perform Stata command

[U] 18.2 Relationship between a program and a do-file
Stata, Stata Press, and Mata are registered trademarks of StataCorp LLC. Stata and
Stata Press are registered trademarks with the World Intellectual Property Organization
of the United Nations. Other brand and product names are registered trademarks or
trademarks of their respective companies. Copyright c© 1985–2023 StataCorp LLC,
College Station, TX, USA. All rights reserved.

®

http://www.stata-journal.com/article.html?article=pr0066
https://www.stata.com/manuals/pbreak.pdf#pbreak
https://www.stata.com/manuals/pconfirm.pdf#pconfirm
https://www.stata.com/manuals/pquietly.pdf#pquietly
https://www.stata.com/manuals/u18.pdf#u18.2Relationshipbetweenaprogramandado-file

