
capture — Capture return code

Description Syntax Remarks and examples Reference Also see

Description
capture executes command, suppressing all its output (including error messages, if any) and issuing

a return code of zero. The actual return code generated by command is stored in the built-in scalar rc.

capture can be combined with {} to produce capture blocks, which suppress output for the block of

commands. See the technical note following example 6 for more information.

Syntax
capture [:] command

capture {
stata commands

}

Remarks and examples
capture is useful in do-files and programs because their execution terminates when a command

issues a nonzero return code. Preceding sensitive commands with the word capture allows the do-file

or program to continue despite errors. Also do-files and programs can be made to respond appropriately

to any situation by conditioning their remaining actions on the contents of the scalar rc.

Example 1
You will never have cause to use capture interactively, but an interactive experiment will demon-

strate what capture does:

. drop _all

. list myvar
no variables defined
r(111);
. capture list myvar
. display _rc
111

When we said list myvar, we were told that we had no variables defined and got a return code of 111.
When we said capture list myvar, we got no output and a zero return code. First, you should wonder
what happened to the message “no variables defined”. capture suppressed that message. It suppresses

all output produced by the command it is capturing. Next we see no return code message, so the return

code was zero. We already know that typing list myvar generates a return code of 111, so capture
suppressed that, too.

capture places the return code in the built-in scalar rc. When we display the value of this scalar,

we see that it is 111.

1

https://www.stata.com/manuals/pcapture.pdf#pcaptureRemarksandexamplestechnote6
https://www.stata.com/manuals/perror.pdf#perrorRemarksandexamplesr(111)

capture — Capture return code 2

Example 2
Now that we know what capture does, let’s put it to use. capture is used in programs and do-files.

Sometimes you will write programs that do not care about the outcome of a Stata command. You may

want to ensure, for instance, that some variable does not exist in the dataset. You could do so by including

capture drop result.

If result exists, it is now gone. If it did not exist, drop did nothing, and its nonzero return code

and the error message have been intercepted. The program (or do-file) continues in any case. If you

have written a program that creates a variable named result, it would be good practice to begin such a
program with capture drop result. This way, you could use the program repeatedly without having

to worry whether the result variable already exists.

Technical note
When combining capture and drop, never say something like capture drop var1 var2 var3.

Remember that Stata commands do either exactly what you say or nothing at all. We might think that

our command would be guaranteed to eliminate var1, var2, and var3 from the data if they exist. It is

not. Imagine that var3 did not exist in the data. drop would then do nothing. It would not drop var1
and var2. To achieve the desired result, we must give three commands:

capture drop var1
capture drop var2
capture drop var3

Example 3
Here is another example of using capture to dispose of nonzero return codes: When using do-files

to define programs, it is common to begin the definition with capture program drop progname and

then put program progname. This way, you can rerun the do-file to load or reload the program.

Example 4
Let’s consider programswhose behavior is contingent upon the outcome of some command. Youwrite

a program and want to ensure that the first argument (the macro ‘1’) is interpreted as a new variable. If

it is not, you want to issue an error message:

capture confirm new variable ‘1’
if _rc!=0 {

display ”‘1’ already exists”
exit _rc

}
(program continues. . .)

You use the confirm command to determine if the variable already exists and then condition your error

message on whether confirm thinks ‘1’ can be a new variable. We did not have to go to the trouble

here. confirm would have automatically issued the appropriate error message, and its nonzero return

code would have stopped the program anyway.

capture — Capture return code 3

Example 5
As before, you write a program and want to ensure that the first argument is interpreted as a new

variable. This time, however, if it is not, you want to use the name answer in place of the name

specified by the user:

capture confirm new variable ‘1’
if _rc!=0 {

local 1 _answer
confirm new variable ‘1’

}
(program continues. . .)

Example 6
There may be instances where you want to capture the return code but not the output. You do that by

combining capture with noisily. For instance, we might change our program to read

capture noisily confirm new variable ‘1’
if _rc!=0 {

local 1 _answer
display ”I’ll use _answer”

}
(program continues. . .)

confirm will generate some message such as “. . .already exists”, and then we will follow that message

with “I’ll use answer”.

Technical note
capture can be combined with {} to produce capture blocks. Consider the following:

capture {
confirm var ‘1’
confirm integer number ‘2’
confirm number ‘3’

}
if _rc!=0 {

display ”Syntax is variable integer number”
exit 198

}
(program continues. . .)

If any of the commands in the capture block fail, the subsequent commands in the block are aborted, but

the program continues with the if statement.

Capture blocks can be used to intercept the Break key, as in

capture {
stata commands

}
if _rc==1 {

Break key cleanup code
exit 1

}
(program continues. . .)

capture — Capture return code 4

Remember that Break always generates a return code of 1. There is no reason, however, to restrict the

execution of the cleanup code to Break only. Our program might fail for some other reason, such as

insufficient room to add a new variable, and we would still want to engage in the cleanup operations. A

better version would read

capture {
stata commands

}
if _rc!=0 {

local oldrc = _rc
Break key and error cleanup code
exit ‘oldrc’

}
(program continues. . .)

Technical note
If, in our program above, the stata commands included an exit or an exit 0, the program would

terminate and return 0. Neither the cleanup nor the program continues code would be executed. If

stata commands included an exit 198, or any other exit that sets a nonzero return code, however, the

program would not exit. capture would catch the nonzero return code, and execution would continue

with the cleanup code.

Reference
Newson, R. B. 2017. Stata tip 127: Use capture noisily groups. Stata Journal 17: 511–514.

Also see
[P] break — Suppress Break key

[P] confirm —Argument verification

[P] quietly — Quietly and noisily perform Stata command

[U] 18.2 Relationship between a program and a do-file

Stata, Stata Press, Mata, NetCourse, and NetCourseNow are registered trademarks of StataCorp
LLC. Stata and Stata Press are registered trademarks with the World Intellectual Property Or-
ganization of the United Nations. StataNow is a trademark of StataCorp LLC. Other brand and
product names are registered trademarks or trademarks of their respective companies. Copyright
© 1985–2025 StataCorp LLC, College Station, TX, USA. All rights reserved.

®

For suggested citations, see the FAQ on citing Stata documentation.

https://www.stata-journal.com/article.html?article=pr0066
https://www.stata.com/manuals/pbreak.pdf#pbreak
https://www.stata.com/manuals/pconfirm.pdf#pconfirm
https://www.stata.com/manuals/pquietly.pdf#pquietly
https://www.stata.com/manuals/u18.pdf#u18.2Relationshipbetweenaprogramandado-file
https://www.stata.com/support/faqs/resources/citing-software-documentation-faqs/

