
robust — Robust variance estimates

Description Syntax Options Remarks and examples
Stored results Methods and formulas References Also see

Description
robust is a programmer’s command that computes a robust variance estimator based on varlist of

equation-level scores and a covariance matrix. It produces estimators for ordinary data (each observation

independent), clustered data (data not independent within groups, but independent across groups), and

complex survey data from one stage of stratified cluster sampling.

robust helps implement estimation commands and is rarely used. That is because other commands

are implemented in terms of it and are easier and more convenient to use. For instance, if all you want to

do is make your estimation command allow the vce(robust) and vce(cluster clustvar) options, see

[R] ml. If you want to make your estimation command work with survey data, it is easier to make your

command work with the svy prefix—see [P] program properties—rather than to use robust.

If you really want to understand what ml and svy are doing, however, this is the section for you. Or

if you have an estimation problem that does not fit with the ml or svy framework, then robust may be

able to help.

Syntax
robust varlist [ if ] [ in ] [weight ] [ , variance(matname) minus(#)

strata(varname) psu(varname) cluster(varname) fpc(varname)

subpop(varname) vsrs(matname) srssubpop zeroweight ]

robust works with models that have all types of varlists, including those with factor variables and time-series operators;
see [U] 11.4.3 Factor variables and [U] 11.4.4 Time-series varlists.

collect is allowed; see [U] 11.1.10 Prefix commands.

pweights, aweights, fweights, and iweights are allowed; see [U] 11.1.6 weight.

Options
variance(matname) specifies a matrix containing the unadjusted “covariance” matrix, that is, the D in

V = DMD. The matrix must have its rows and columns labeled with the appropriate corresponding

variable names, that is, the names of the 𝑥’s in xβ. If there aremultiple equations, thematrixmust have

equation names; see [P] matrix rownames. The D matrix is overwritten with the robust covariance

matrixV. If variance() is not specified, Stata assumes thatD has been posted using ereturn post;
robust will then automatically post the robust covariance matrix V and replace D.

minus(#) specifies 𝑘 = # for the multiplier 𝑛/(𝑛−𝑘) of the robust variance estimator. Stata’s maximum

likelihood commands use 𝑘 = 1, and so does the svy prefix. regress, vce(robust) uses, by

default, this multiplier with 𝑘 equal to the number of explanatory variables in the model, including

the constant. The default is minus(1). See Methods and formulas for details.

strata(varname) specifies the name of a variable (numeric or string) that contains stratum identifiers.
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psu(varname) specifies the name of a variable (numeric or string) that contains identifiers for the pri-

mary sampling unit (PSU). psu() and cluster() are synonyms; they both specify the same thing.

cluster(varname) is a synonym for psu().

fpc(varname) requests a finite population correction for the variance estimates. If the variable specified

has values less than or equal to 1, it is interpreted as a stratum sampling rate 𝑓ℎ = 𝑛ℎ/𝑁ℎ, where 𝑛ℎ
is the number of PSUs sampled from stratum ℎ and 𝑁ℎ is the total number of PSUs in the population

belonging to stratum ℎ. If the variable specified has values greater than 1, it is interpreted as containing
𝑁ℎ.

subpop(varname) specifies that estimates be computed for the single subpopulation defined by the

observations for which varname ≠ 0 (and is not missing). This option would typically be used only

with survey data; see [SVY] Subpopulation estimation.

vsrs(matname) creates a matrix containing ̂𝑉srswor, an estimate of the variance that would have been

observed had the data been collected using simple random sampling without replacement. This is

used to compute design effects for survey data; see [SVY] estat for details.

srssubpop can be specified only if vsrs() and subpop() are specified. srssubpop requests that

the estimate of simple-random-sampling variance, vsrs(), be computed assuming sampling within

a subpopulation. If srssubpop is not specified, it is computed assuming sampling from the entire

population.

zeroweight specifies whether observations with weights equal to zero should be omitted from the com-

putation. This option does not apply to frequency weights; observations with zero frequency weights

are always omitted. If zeroweight is specified, observations with zero weights are included in the

computation. If zeroweight is not specified (the default), observations with zero weights are omit-

ted. Including the observations with zero weights affects the computation in that it may change the

counts of PSUs (clusters) per stratum. Stata’s svy prefix command includes observations with zero

weights; all other commands exclude them. This option is typically used only with survey data.

Remarks and examples
Remarks are presented under the following headings:

Introduction
Formulas and simple examples
Clustered data
Survey data
Controlling the header display
Maximum likelihood estimators
Multiple-equation estimators

Introduction
Before reading this section, you should be familiar with [U] 20.22 Obtaining robust variance es-

timates and the Methods and formulas section of [R] regress. We assume that you have already pro-

grammed an estimator in Stata and now wish to have it compute robust variance estimates. If you have

not yet programmed your estimator, see [U] 18 Programming Stata, [R] ml, and [P] ereturn.

The robust variance estimator goes by many names: Huber/White/sandwich are typically used in the

context of robustness against heteroskedasticity. Survey statisticians often refer to this variance calcula-

tion as a first-order Taylor-series linearization method. Despite the different names, the estimator is the

same.

https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
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https://www.stata.com/manuals/svysubpopulationestimation.pdf#svySubpopulationestimation
https://www.stata.com/manuals/svyestat.pdf#svyestat
https://www.stata.com/manuals/u20.pdf#u20.22Obtainingrobustvarianceestimates
https://www.stata.com/manuals/u20.pdf#u20.22Obtainingrobustvarianceestimates
https://www.stata.com/manuals/rregress.pdf#rregressMethodsandformulas
https://www.stata.com/manuals/rregress.pdf#rregress
https://www.stata.com/manuals/u18.pdf#u18ProgrammingStata
https://www.stata.com/manuals/rml.pdf#rml
https://www.stata.com/manuals/pereturn.pdf#pereturn
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The equation-level score variables (varlist) consist of one variable for single-equation models or

multiple variables for multiple-equation models, one variable for each equation. The “covariance”

matrix before adjustment is either posted using ereturn post (see [P] ereturn) or specified with the

variance(matname) option. In the former case, robust replaces the covariance in the post with the

robust covariance matrix. In the latter case, the matrixmatname is overwritten with the robust covariance

matrix.

If you wish to program an estimator for survey data, then you should write the estimator for nonsurvey

data first and then use the instructions in [P] program properties (making programs svyable) to get

your estimation command to work properly with the svy prefix. See [SVY] Variance estimation for a

discussion of variance estimation for survey data.

Formulas and simple examples
This section explains the formulas behind the robust variance estimator and how to use robust

through an informal development with some simple examples. For an alternative discussion, see

[U] 20.22 Obtaining robust variance estimates. See the references cited at the end of this entry for

more formal expositions.

First, consider ordinary least-squares regression. The estimator for the coefficients is

β̂ = (X′X)−1X′y

where y is an 𝑛 × 1 vector representing the dependent variable and X is an 𝑛 × 𝑘 matrix of covariates.

Because everything is considered conditional on X, (X′X)−1 can be regarded as a constant matrix.

Hence, the variance of β̂ is

𝑉 (β̂) = (X′X)−1 𝑉 (X′y) (X′X)−1

What is the variance of X′y, a 𝑘 × 1 vector? Look at its first element; it is

X′
1y = 𝑥11𝑦1 + 𝑥21𝑦2 + · · · + 𝑥𝑛1𝑦𝑛

where X1 is the first column of X. Because X is treated as a constant, you can write the variance as

𝑉 (X′
1y) = 𝑥2

11𝑉 (𝑦1) + 𝑥2
21𝑉 (𝑦2) + · · · + 𝑥2

𝑛1𝑉 (𝑦𝑛)

The only assumption made here is that the 𝑦𝑗 are independent.

The obvious estimate for 𝑉 (𝑦𝑗) is ̂𝑒2
𝑗 , the square of the residual ̂𝑒𝑗 = 𝑦𝑗 − x𝑗β̂, where x𝑗 is the 𝑗th

row of X. You must estimate the off-diagonal terms of the covariance matrix for X′y, as well. Working

this out, you have

̂𝑉 (X′y) =
𝑛

∑
𝑗=1

̂𝑒2
𝑗 x

′
𝑗x𝑗

x𝑗 is defined as a row vector so that x′
𝑗x𝑗 is a 𝑘 × 𝑘 matrix.

You have just derived the robust variance estimator for linear regression coefficient estimates for

independent observations:

̂𝑉 (β̂) = (X′X)−1 (
𝑛

∑
𝑗=1

̂𝑒2
𝑗 x

′
𝑗x𝑗) (X′X)−1

You can see why it is called the sandwich estimator.

https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/pereturn.pdf#pereturn
https://www.stata.com/manuals/pprogramproperties.pdf#pprogramproperties
https://www.stata.com/manuals/svyvarianceestimation.pdf#svyVarianceestimation
https://www.stata.com/manuals/u20.pdf#u20.22Obtainingrobustvarianceestimates
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Technical note
The only detail not discussed is the multiplier. You will see later that survey statisticians like to view

the center of the sandwich as a variance estimator for totals. They use a multiplier of 𝑛/(𝑛 − 1), just as
1/(𝑛 −1) is used for the variance estimator of a mean. However, for survey data, 𝑛 is no longer the total

number of observations but is the number of clusters in a stratum. See Methods and formulas at the end

of this entry.

Linear regression is, however, special. Assuming homoskedasticity and normality, you can derive the

expectation of ̂𝑒2
𝑗 for finite 𝑛. This is discussed in [R] regress. Under the assumptions of homoskedas-

ticity and normality, 𝑛/(𝑛 − 𝑘) is a better multiplier than 𝑛/(𝑛 − 1).
If you specify the minus(#) option, robust will use 𝑛/(𝑛 − #) as the multiplier. regress,

vce(robust) also gives two other options for the multiplier: hc2 and hc3. Because these multipli-

ers are special to linear regression, robust does not compute them.

Example 1
Before we show how robust is used, let’s compute the robust variance estimator “by hand” for

linear regression for the case in which observations are independent (that is, no clusters).

We need to compute D = (X′X)−1 and the residuals ̂𝑒𝑗. regress with the mse1 option will allow us

to compute both easily; see [R] regress.

. use https://www.stata-press.com/data/r19/_robust
(1978 automobile data, modified)
. regress mpg weight gear_ratio foreign, mse1
(output omitted )

. matrix D = e(V)

. predict double e, residual

We can write the center of the sandwich as

M =
𝑛

∑
𝑗=1

̂𝑒2
𝑗 x

′
𝑗x𝑗 = X′WX

where W is a diagonal matrix with ̂𝑒2
𝑗 on the diagonal. matrix accum with iweights can be used to

calculate this (see [P] matrix accum):

. matrix accum M = weight gear_ratio foreign [iweight=e^2]
(obs=813.7814109)

We now assemble the sandwich. To match regress, vce(robust), we use a multiplier of 𝑛/(𝑛 − 𝑘).
. matrix V = 74/70 * D*M*D
. matrix list V
symmetric V[4,4]

weight gear_ratio foreign _cons
weight 3.788e-07

gear_ratio .00039798 1.9711317
foreign .00008463 -.55488334 1.4266939

_cons -.00236851 -6.9153285 1.2149035 27.536291

https://www.stata.com/manuals/p_robust.pdf#p_robustMethodsandformulas
https://www.stata.com/manuals/rregress.pdf#rregress
https://www.stata.com/manuals/rregress.pdf#rregress
https://www.stata.com/manuals/pmatrixaccum.pdf#pmatrixaccum
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The result is the same as that from regress, vce(robust):

. regress mpg weight gear_ratio foreign, vce(robust)
(output omitted )

. matrix Vreg = e(V)

. matrix list Vreg
symmetric Vreg[4,4]

weight gear_ratio foreign _cons
weight 3.788e-07

gear_ratio .00039798 1.9711317
foreign .00008463 -.55488334 1.4266939

_cons -.00236851 -6.9153285 1.2149035 27.536291

If we use robust, the initial steps are the same. We still need D, the “bread” of the sandwich,

and the residuals. The residuals e are the varlist for robust. D is passed via the variance() option

(abbreviation v()). D is overwritten and contains the robust variance estimate.

. drop e

. regress mpg weight gear_ratio foreign, mse1
(output omitted )

. matrix D = e(V)

. predict double e, residual

. _robust e, v(D) minus(4)

. matrix list D
symmetric D[4,4]

weight gear_ratio foreign _cons
weight 3.788e-07

gear_ratio .00039798 1.9711317
foreign .00008463 -.55488334 1.4266939

_cons -.00236851 -6.9153285 1.2149035 27.536291

Rather than specifying the variance() option, we can use ereturn post to post D and the point

estimates. robust alters the post, substituting the robust variance estimates.

. drop e

. regress mpg weight gear_ratio foreign, mse1
(output omitted )

. matrix D = e(V)

. matrix b = e(b)

. local n = e(N)

. local k = colsof(D)

. local dof = ‘n’ - ‘k’

. predict double e, residual

. ereturn post b D, dof(‘dof’)

. _robust e, minus(‘k’)

. ereturn display

Robust
Coefficient std. err. t P>|t| [95% conf. interval]

weight -.006139 .0006155 -9.97 0.000 -.0073666 -.0049115
gear_ratio 1.457113 1.40397 1.04 0.303 -1.343016 4.257243

foreign -2.221682 1.194443 -1.86 0.067 -4.603923 .1605598
_cons 36.10135 5.247503 6.88 0.000 25.63554 46.56717
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Again what we did matches regress, vce(robust):

. regress mpg weight gear_ratio foreign, vce(robust)
Linear regression Number of obs = 74

F(3, 70) = 48.30
Prob > F = 0.0000
R-squared = 0.6670
Root MSE = 3.4096

Robust
mpg Coefficient std. err. t P>|t| [95% conf. interval]

weight -.006139 .0006155 -9.97 0.000 -.0073666 -.0049115
gear_ratio 1.457113 1.40397 1.04 0.303 -1.343016 4.257243

foreign -2.221682 1.194443 -1.86 0.067 -4.603923 .1605598
_cons 36.10135 5.247503 6.88 0.000 25.63554 46.56717

Technical note
Note the simple ways in which robust was called. When we used the variance() option, we

called it by typing

. _robust e, v(D) minus(4)

As we described, robust computed

̂𝑉 (β̂) = D( 𝑛
𝑛 − 𝑘

𝑛
∑
𝑗=1

̂𝑒2
𝑗 x

′
𝑗x𝑗)D

We passed D to robust by using the v(D) option and specified ̂𝑒𝑗 as the variable e. So how did

robust know what variables to use for x𝑗? It got them from the row and column names of the matrix

D. Recall how we generated D initially:

. regress mpg weight gear_ratio foreign, mse1
(output omitted )

. matrix D = e(V)

. matrix list D
symmetric D[4,4]

weight gear_ratio foreign _cons
weight 5.436e-08

gear_ratio .00006295 .20434146
foreign .00001032 -.08016692 .1311889

_cons -.00035697 -.782292 .17154326 3.3988878

Stata’s estimation commands and the ml commands produce matrices with appropriately labeled rows

and columns. If that is howwe generate ourD, this will be taken care of automatically. But if we generate

D in another manner, we must be sure to label it appropriately; see [P] matrix rownames.

When robust is used after ereturn post, it gets the variable names from the row and column

names of the posted matrices. So again, the matrices must be labeled appropriately.

Let us make another rather obvious comment. robust uses the variables from the row and column

names of the Dmatrix at the time robust is called. It is the programmer’s responsibility to ensure that

the data in these variables have not changed and that robust selects the appropriate observations for

the computation, using an if restriction if necessary (for instance, if e(sample)).

https://www.stata.com/manuals/pmatrixrownames.pdf#pmatrixrownames
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Clustered data

Example 2
To get robust variance estimates for clustered data or for complex survey data, simply use the

cluster(), strata(), etc., options when you call robust.

The first steps are the same as before. For clustered data, the number of degrees of freedom of the 𝑡
statistic is the number of clusters minus one (we will discuss this later).

. drop e

. quietly regress mpg weight gear_ratio foreign, mse1

. generate byte samp = e(sample)

. matrix D = e(V)

. matrix b = e(b)

. predict double e, residual

. local k = colsof(D)

. tabulate rep78
Repair

record 1978 Freq. Percent Cum.

1 2 2.90 2.90
2 8 11.59 14.49
3 30 43.48 57.97
4 18 26.09 84.06
5 11 15.94 100.00

Total 69 100.00
. local nclust = r(r)
. display ‘nclust’
5
. local dof = ‘nclust’ - 1
. ereturn post b D, dof(‘dof’) esample(samp)
. _robust e, minus(‘k’) cluster(rep78)
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. ereturn display
(Std. err. adjusted for 5 clusters in rep78)

Robust
Coefficient std. err. t P>|t| [95% conf. interval]

weight -.006139 .0008399 -7.31 0.002 -.008471 -.0038071
gear_ratio 1.457113 1.801311 0.81 0.464 -3.544129 6.458355

foreign -2.221682 .8144207 -2.73 0.053 -4.482876 .0395129
_cons 36.10135 3.39887 10.62 0.000 26.66458 45.53813

What you get is, of course, the same as regress, vce(cluster rep78). Wait a minute. It is not the

same!

. regress mpg weight gear_ratio foreign, vce(cluster rep78)
Linear regression Number of obs = 69

F(3, 4) = 78.61
Prob > F = 0.0005
R-squared = 0.6631
Root MSE = 3.4827

(Std. err. adjusted for 5 clusters in rep78)

Robust
mpg Coefficient std. err. t P>|t| [95% conf. interval]

weight -.005893 .0008214 -7.17 0.002 -.0081735 -.0036126
gear_ratio 1.904503 2.18322 0.87 0.432 -4.157088 7.966093

foreign -2.149017 1.20489 -1.78 0.149 -5.49433 1.196295
_cons 34.09959 4.215275 8.09 0.001 22.39611 45.80307

Not even the point estimates are the same. This is the classic programmer’s mistake of not using the

same sample for the initial regress, mse1 call as done with robust. The cluster variable rep78 is

missing for 5 observations. robust omitted these observations, but regress, mse1 did not.

robust is best used only in programs for just this reason. Thus you can write a program and use

marksample and markout (see [P] mark) to determine the sample in advance of running regress and

robust.

https://www.stata.com/manuals/pmark.pdf#pmark
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begin myreg.ado
program myreg, eclass sortpreserve

version 19.5 // (or version 19 if you do not have StataNow)
syntax varlist [if] [in] [, CLuster(varname) ]
marksample touse
markout ‘touse’ ‘cluster’, strok
tempvar e count
tempname D b
quietly {

regress ‘varlist’ if ‘touse’, mse1
matrix ‘D’ = e(V)
matrix ‘b’ = e(b)
local n = e(N)
local k = colsof(‘D’)
predict double ‘e’ if ‘touse’, residual
if ”‘cluster’”!=”” {

sort ‘touse’ ‘cluster’
by ‘touse’ ‘cluster’: gen byte ‘count’ = 1 if _n==1 & ‘touse’
summarize ‘count’, meanonly
local nclust = r(sum)
local dof = ‘nclust’ - 1
local clopt ”cluster(‘cluster’)”

}
else local dof = ‘n’ - ‘k’
ereturn post ‘b’ ‘D’, dof(‘dof’) esample(‘touse’)
_robust ‘e’ if e(sample), minus(‘k’) ‘clopt’

}
ereturn display

end
end myreg.ado

Running this program produces the same results as regress, vce(cluster clustvar).

. myreg mpg weight gear_ratio foreign, cluster(rep78)
(Std. err. adjusted for 5 clusters in rep78)

Robust
Coefficient std. err. t P>|t| [95% conf. interval]

weight -.005893 .0008214 -7.17 0.002 -.0081735 -.0036126
gear_ratio 1.904503 2.18322 0.87 0.432 -4.157088 7.966093

foreign -2.149017 1.20489 -1.78 0.149 -5.49433 1.196295
_cons 34.09959 4.215275 8.09 0.001 22.39611 45.80307
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Survey data

Example 3
We will now modify our myreg command so that it handles complex survey data. Our new version

will allow pweights and iweights, stratification, and clustering.
begin myreg.ado

program myreg, eclass
version 19.5 // (or version 19 if you do not have StataNow)
syntax varlist [if] [in] [pweight iweight] [, /*

*/ STRata(varname) CLuster(varname) ]
marksample touse, zeroweight
markout ‘touse’ ‘cluster’ ‘strata’, strok
if ”‘weight’”!=”” {

tempvar w
quietly generate double ‘w’ ‘exp’ if ‘touse’
local iwexp ”[iw=‘w’]”
if ”‘weight’” == ”pweight” {

capture assert ‘w’ >= 0 if ‘touse’
if c(rc) error 402

}
}
if ”‘cluster’”!=”” {

local clopt ”cluster(‘cluster’)”
}
if ”‘strata’”!=”” {

local stopt ”strata(‘strata’)”
}
tempvar e
tempname D b
quietly {

regress ‘varlist’ ‘iwexp’ if ‘touse’, mse1
matrix ‘D’ = e(V)
matrix ‘b’ = e(b)
predict double ‘e’ if ‘touse’, residual
_robust ‘e’ ‘iwexp’ if ‘touse’, v(‘D’) ‘clopt’ ‘stopt’ zeroweight
local dof = r(N_clust) - r(N_strata)
local depn : word 1 of ‘varlist’
ereturn post ‘b’ ‘D’, depn(‘depn’) dof(‘dof’) esample(‘touse’)

}
display
ereturn display

end
end myreg.ado

Note the following details about our version of myreg for survey data:

• We called robust before we posted the matrices with ereturn post, whereas in our previous

version of myreg, we called ereturn post and then robust. Here we called robust first so that

we could use its r(N strata), containing the number of strata, and r(N clust), containing the

number of clusters; see Stored results at the end of this entry. We did this so that we could pass the

correct degrees of freedom (= number of clusters − number of strata) to ereturn post.

This works even if the strata() and cluster() options are not specified: r(N strata) = 1 if

strata() is not specified (there truly is one stratum); and r(N clust) = number of observations

if cluster() is not specified (each observation is a cluster).

https://www.stata.com/manuals/p_robust.pdf#p_robustStoredresults
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• The call to robust was made with iweights, whether myreg was called with pweights or

iweights. Computationally, robust treats pweights and iweights the same. The only difference

is that it puts out an error message if it encounters a negative pweight, whereas negative iweights
are allowed. As good programmers, we put out the error message early before any time-consuming

computations are done.

• We used the zeroweight option with the marksample command so that zero weights would not be

excluded from the sample. We gave the zeroweight option with robust so that it, too, would not

exclude zero weights.

Observations with zero weights affect results only by their effect (if any) on the counts of the clusters.

Setting some weights temporarily to zero will, for example, produce subpopulation estimates. If

subpopulation estimates are desired, however, it would be better to implement robust’s subpop()
option and restrict the call to regress, mse1 to this subpopulation.

• Stata’s svyset accepts a psu variable rather than having a cluster() option. This is only a matter

of style. They are synonyms, as far as robust is concerned.

Our program gives the same results as svy: regress. For our example, we add a strata variable

and a psu variable to auto.dta.

. use https://www.stata-press.com/data/r19/auto, clear
(1978 automobile data)
. set seed 1
. generate strata = int(3*runiform()) + 1
. generate psu = int(5*runiform()) + 1
. myreg mpg weight gear_ratio foreign [pw=displ], strata(strata) cluster(psu)

mpg Coefficient Std. err. t P>|t| [95% conf. interval]

weight -.0057248 .000388 -14.75 0.000 -.0065702 -.0048794
gear_ratio .7775839 1.20131 0.65 0.530 -1.839845 3.395013

foreign -1.86776 1.122833 -1.66 0.122 -4.314202 .5786828
_cons 36.64061 3.844625 9.53 0.000 28.26389 45.01733

. svyset psu [pw=displ], strata(strata)
Sampling weights: displacement

VCE: linearized
Single unit: missing

Strata 1: strata
Sampling unit 1: psu

FPC 1: <zero>
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. svy: regress mpg weight gear_ratio foreign
(running regress on estimation sample)
Survey: Linear regression
Number of strata = 3 Number of obs = 74
Number of PSUs = 15 Population size = 14,600

Design df = 12
F(3, 10) = 68.37
Prob > F = 0.0000
R-squared = 0.6900

Linearized
mpg Coefficient std. err. t P>|t| [95% conf. interval]

weight -.0057248 .000388 -14.75 0.000 -.0065702 -.0048794
gear_ratio .7775839 1.20131 0.65 0.530 -1.839845 3.395013

foreign -1.86776 1.122833 -1.66 0.122 -4.314202 .5786828
_cons 36.64061 3.844625 9.53 0.000 28.26389 45.01733

Controlling the header display

Example 4
Let’s compare the output for our survey version of myreg with the earlier version that handled only

clustering. The header for the earlier version was

(Std. err. adjusted for 5 clusters in rep78)

Robust
Coefficient std. err. t P>|t| [95% conf. interval]

The header for the survey version lacked the word “Robust” above standard error column, and it lacked

the banner “(Std. err. adjusted for # clusters in varname)”.

Both of these headers were produced by ereturn display, and programmers can control what it

produces. The word above “Std. err.” is controlled by setting e(vcetype). The banner “(Std. err. ad-
justed for # clusters in varname)” is controlled by setting e(clustvar) to the cluster variable name.

These can be set using the ereturn local command; see [P] ereturn.

When robust is called after ereturn post (as it was in the earlier version that produced the above

header), it automatically sets these macros. To not display the banner, the code should read

ereturn post ...
_robust ...
ereturn local clustvar ””

We can also change the phrase displayed above “Std. err.” by resetting e(vcetype). To display nothing
there, reset e(vcetype) to empty—ereturn local vcetype ””.

https://www.stata.com/manuals/pereturn.pdf#pereturn
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For our survey version of myreg, we called robust before calling ereturn post. Here robust
does not set these macros. Trying to do so would be futile because ereturn post clears all previous

estimation results, including all e() macros, but you can set them yourself after calling ereturn post.
We make this addition to our survey version of myreg:

robust ...
ereturn post ...
ereturn local vcetype ”Design-based”

The output is

. myreg mpg weight gear_ratio foreign [pw=displ], strata(strata) cluster(psu)

mpg Coefficient Std. err. t P>|t| [95% conf. interval]

weight -.0057248 .000388 -14.75 0.000 -.0065702 -.0048794
gear_ratio .7775839 1.20131 0.65 0.530 -1.839845 3.395013

foreign -1.86776 1.122833 -1.66 0.122 -4.314202 .5786828
_cons 36.64061 3.844625 9.53 0.000 28.26389 45.01733

Maximum likelihood estimators
Maximum likelihood estimators are basically no different from linear regression when it comes to the

use of robust. We will first do a little statistics and then give a simple example.

We can write our maximum-likelihood estimation equation as

G(β) =
𝑛

∑
𝑗=1

S(β; 𝑦𝑗, x𝑗) = 0

where S(β; 𝑦𝑗, x𝑗) = 𝜕 ln𝐿𝑗/𝜕β is the score and ln𝐿𝑗 is the log likelihood for the 𝑗th observation. Here
β represents all the parameters in the model, including any auxiliary parameters. We will discuss how to

use robust when there are auxiliary parameters or multiple equations in the next section. But for now,

all the theory works out fine for any set of parameters.

Using a first-order Taylor-series expansion (that is, the delta method), we can write the variance of

G(β) as

̂𝑉 {G(β)}∣
𝛽=𝛽

= 𝜕G(β)
𝜕β

∣
𝛽=𝛽

̂𝑉 (β̂) 𝜕G(β)
𝜕β′

∣
𝛽=𝛽

Solving for ̂𝑉 (β̂) gives

̂𝑉 (β̂) = [{𝜕G(β)
𝜕β

}
−1

̂𝑉 {G(β)} {𝜕G(β)
𝜕β′

}
−1

] ∣
𝛽=𝛽

but

H = 𝜕G(β)
𝜕β

is the Hessian (matrix of second derivatives) of the log likelihood. Thus we can write

̂𝑉 (β̂) = D ̂𝑉 {G(β)}∣
𝛽=𝛽

D

where D = −H−1 is the traditional covariance estimate.
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Now G(β) is simply a sum, and we can estimate its variance just as we would the sum of any other

variable—it is 𝑛2 times the standard estimator of the variance of a mean:

𝑛
𝑛 − 1

𝑛
∑
𝑗=1

(𝑧𝑗 − 𝑧)2

But here, the scores u𝑗 = S(β̂; 𝑦𝑗, x𝑗) are (row) vectors. Their sum, and thus their mean, is zero. So we

have

̂𝑉 {G(β)}∣
𝛽=𝛽

= 𝑛
𝑛 − 1

𝑛
∑
𝑗=1

u′
𝑗u𝑗

Thus our robust variance estimator is

̂𝑉 (β̂) = D( 𝑛
𝑛 − 1

𝑛
∑
𝑗=1

u′
𝑗u𝑗)D

so we see that the robust variance estimator is just the delta method combined with a simple estimator

for totals!

The above estimator for the variance of the total (the center of the sandwich) is appropriate only when

observations are independent. For clustered data and complex survey data, this estimator is replaced by

one appropriate for the independent units of the data. Clusters (or PSUs) are independent, so we can sum

the scores within a cluster to create a “superobservation” and then use the standard formula for a total on

these independent superobservations. Our robust variance estimator thus becomes

̂𝑉 (β̂) = D{ 𝑛c

𝑛c − 1

𝑛c

∑
𝑖=1

(∑
𝑗∈𝐶𝑖

u𝑗)
′
(∑

𝑗∈𝐶𝑖

u𝑗)}D

where 𝐶𝑖 contains the indices of the observations belonging to the 𝑖th cluster for 𝑖 = 1, 2, . . . , 𝑛c, with

𝑛c the total number of clusters.

See [SVY] Variance estimation for the variance estimator for a total that is appropriate for complex

survey data. Our development here has been heuristic. We have, for instance, purposefully omitted

sampling weights from our discussion; see [SVY] Variance estimation for a better treatment.

See Pitblado, Poi, and Gould (2024) for a discussion of maximum likelihood and of Stata’s ml com-

mand.

Technical note
It is easy to see where the appropriate degrees of freedom for the robust variance estimator come

from: the center of the sandwich is 𝑛2 times the standard estimator of the variance for the mean of 𝑛
observations. A mean divided by its standard error has exactly a Student’s 𝑡 distribution with 𝑛 − 1

degrees of freedom for normal i.i.d. variables but also has approximately this distribution under many

other conditions. Thus a point estimate divided by the square root of its robust variance estimate is

approximately distributed as a Student’s 𝑡 with 𝑛 − 1 degrees of freedom.

More importantly, this also applies to clusters, where each cluster is considered a “superobservation”.

Here the degrees of freedom is 𝑛c−1, where 𝑛c is the number of clusters (superobservations). If there are

only a few clusters, confidence intervals using 𝑡 statistics can become quite large. It is just like estimating

a mean with only a few observations.

When there are strata, the degrees of freedom is𝑛c−𝐿, where𝐿 is the number of strata; see [SVY]Vari-

ance estimation for details.

https://www.stata.com/manuals/svyvarianceestimation.pdf#svyVarianceestimation
https://www.stata.com/manuals/svyvarianceestimation.pdf#svyVarianceestimation
https://www.stata.com/manuals/svyvarianceestimation.pdf#svyVarianceestimation
https://www.stata.com/manuals/svyvarianceestimation.pdf#svyVarianceestimation
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Not all of Stata’s maximum likelihood estimators that produce robust variance estimators for clustered

data use 𝑡 statistics. Obviously, this matters only when the number of clusters is small. Users who want

to be rigorous in handling clustered data should use the svy prefix, which always uses 𝑡 statistics and
adjusted Wald tests (see [R] test). Programmers who want to impose similar rigor should do likewise.

We have not yet given any details about the functional form of our scores u𝑗 = 𝜕 ln𝐿𝑗/𝜕β. The log
likelihood ln𝐿𝑗 is a function of x𝑗β (the “index”). Logistic regression, probit regression, and Poisson

regression are examples. There are no auxiliary parameters, and there is only one equation.

We can then write u𝑗 = ̂𝑠𝑗x𝑗, where

̂𝑠𝑗 =
𝜕 ln𝐿𝑗

𝜕(x𝑗β)
∣
𝛽=𝛽

We refer to 𝑠𝑗 as the equation-level score. Our formula for the robust estimator when observations are

independent becomes

̂𝑉 (β̂) = D( 𝑛
𝑛 − 1

𝑛
∑
𝑗=1

̂𝑠2
𝑗 x

′
𝑗x𝑗)D

This is precisely the formula that we used for linear regression, with ̂𝑒𝑗 replaced by ̂𝑠𝑗 and 𝑘 = 1 in the

multiplier.

Before we discuss auxiliary parameters, let’s show how to implement robust for single-equation

models.

Example 5
The robust variance implementation for single-equation maximum-likelihood estimators with no aux-

iliary parameters is almost the same as it is for linear regression. The only differences are that D is now

the traditional covariance matrix (the negative of the inverse of the matrix of second derivatives) and that

the variable passed to robust is the equation-level score ̂𝑠𝑗 rather than the residuals ̂𝑒𝑗.

https://www.stata.com/manuals/rtest.pdf#rtest
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Let’s alter our last myreg program for survey data to make a program that does logistic regression for

survey data. We have to change only a few lines of the program.

begin mylogit.ado
program mylogit, eclass

version 19.5 // (or version 19 if you do not have StataNow)
syntax varlist [if] [in] [pweight] [, /*

*/ STRata(varname) CLuster(varname) ]
marksample touse, zeroweight
markout ‘touse’ ‘strata’ ‘cluster’, strok
if ”‘weight’”!=”” {

tempvar w
quietly generate double ‘w’ ‘exp’ if ‘touse’
local iwexp ”[iw=‘w’]”
capture assert ‘w’ >= 0 if ‘touse’
if c(rc) error 402

}
if ”‘cluster’”!=”” {

local clopt ”cluster(‘cluster’)”
}
if ”‘strata’”!=”” {

local stopt ”strata(‘strata’)”
}
tempvar s
tempname D b
quietly {

logit ‘varlist’ ‘iwexp’ if ‘touse’
matrix ‘D’ = e(V)
matrix ‘b’ = e(b)
predict double ‘s’ if e(sample), score
_robust ‘s’ ‘iwexp’ if e(sample), v(‘D’) ‘clopt’ ‘stopt’ zeroweight
local dof = r(N_clust) - r(N_strata)
local depn : word 1 of ‘varlist’
replace ‘touse’ = e(sample)
ereturn post ‘b’ ‘D’, depn(‘depn’) dof(‘dof’) esample(‘touse’)
ereturn local vcetype ”Design-based”

}
display
ereturn display

end
end mylogit.ado

Note the following about our program:

• We use the score option of predict after logit to obtain the equation-level scores. If predict
does not have a score option, then we must generate the equation-level score variable some other

way.

• logit is a unique command in that it will sometimes drop observations for reasons other than missing

values (for example, when success or failure is predicted perfectly), so our ‘touse’ variable may not

represent the true estimation sample. That is why we used the if e(sample) condition with the

predict and robust commands. Then, to provide ereturn post with an appropriate esample()
option, we set the ‘touse’ variable equal to the e(sample) from the logit command and then use

this ‘touse’ variable in the esample() option.
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Our mylogit program gives the same results as svy: logit:

. mylogit foreign mpg weight gear_ratio [pw=displ], strata(strata) cluster(psu)

Design-based
foreign Coefficient std. err. t P>|t| [95% conf. interval]

foreign
mpg -.3489011 .1258802 -2.77 0.017 -.6231705 -.0746317

weight -.0040789 .0012508 -3.26 0.007 -.0068042 -.0013536
gear_ratio 6.324169 1.729436 3.66 0.003 2.556051 10.09229

_cons -2.189748 7.75427 -0.28 0.782 -19.08485 14.70536

. svyset psu [pw=displ], strata(strata)
Sampling weights: displacement

VCE: linearized
Single unit: missing

Strata 1: strata
Sampling unit 1: psu

FPC 1: <zero>
. svy: logit foreign mpg weight gear_ratio
(running logit on estimation sample)
Survey: Logistic regression
Number of strata = 3 Number of obs = 74
Number of PSUs = 15 Population size = 14,600

Design df = 12
F(3, 10) = 6.89
Prob > F = 0.0085

Linearized
foreign Coefficient std. err. t P>|t| [95% conf. interval]

mpg -.3489011 .1258802 -2.77 0.017 -.6231705 -.0746317
weight -.0040789 .0012508 -3.26 0.007 -.0068042 -.0013536

gear_ratio 6.324169 1.729436 3.66 0.003 2.556051 10.09229
_cons -2.189748 7.75427 -0.28 0.782 -19.08485 14.70536

Technical note
The theory developed here applies to full-information maximum-likelihood estimators. Conditional

likelihoods, such as conditional (fixed-effects) logistic regression (clogit) and Cox regression (stcox),
use variants on this theme. The vce(robust) option on stcox uses a similar, but not identical, formula;

see [ST] stcox and Lin and Wei (1989) for details.

On the other hand, the theory developed here applies not only to maximum likelihood estimators but

also to general estimating equations:

G(β) =
𝑛

∑
𝑗=1

g(β; 𝑦𝑗, x𝑗) = 0

See Binder (1983) for a formal development of the theory.

Programmers: You are responsible for the theory behind your implementation.

https://www.stata.com/manuals/ststcox.pdf#ststcox
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Multiple-equation estimators
The theory for auxiliary parameters and multiple-equation models is no different from that described

earlier. For independent observations, just as before, the robust variance estimator is

̂𝑉 (β̂) = D( 𝑛
𝑛 − 1

𝑛
∑
𝑗=1

u′
𝑗u𝑗)D

where u𝑗 = 𝜕 ln𝐿𝑗/𝜕β is the score (row) vector andD is the traditional covariance estimate (the negative

of the inverse of the matrix of second derivatives).

With auxiliary parameters and multiple equations, β can be viewed as the vector of all the parameters

in the model. Without loss of generality, you can write the log likelihood as

ln𝐿𝑗 = ln𝐿𝑗(x
(1)
𝑗 β(1), x(2)

𝑗 β(2), . . . , x(𝑝)
𝑗 β(𝑝))

An auxiliary parameter is regarded as x
(𝑖)
𝑗 β(𝑖) with x𝑗 ≡ 1 and β(𝑖) a scalar. The score vector becomes

u𝑗 = ( 𝑠(1)
𝑗 x

(1)
𝑗 𝑠(2)

𝑗 x
(2)
𝑗 . . . 𝑠(𝑝)

𝑗 x
(𝑝)
𝑗 )

where 𝑠(𝑖)
𝑗 = 𝜕 ln𝐿𝑗/𝜕(x𝑗β

(𝑖)) is the equation-level score for the 𝑖th equation.
This notation has been introduced so that it is clear how to call robust. You use

. robust 𝑠(1)
𝑗 𝑠(2)

𝑗 ... 𝑠(𝑝)
𝑗 , options

where 𝑠(1)
𝑗 , etc., are variables that contain the equation-level score values. The D matrix that you pass to

robust or post with ereturn post must be labeled with exactly 𝑝 equation names.

robust takes the first equation-level score variable, 𝑠(1)
𝑗 , and matches it to the first equation on the

D matrix to determine x
(1)
𝑗 , takes the second equation-level score variable and matches it to the second

equation, etc. Some examples will make this perfectly clear.

Example 6
Here is what a matrix with equation names looks like, ending with a call to robust

. generate cat = rep78 - 3
(5 missing values generated)
. replace cat = 2 if cat < 0
(10 real changes made)
. mlogit cat price foreign, base(0)
(output omitted )

. matrix D = e(V)
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. matrix list D
symmetric D[9,9]

0: 0: 0: 1: 1:
o. o. o.

price foreign _cons price foreign
0:o.price 0

0:o.foreign 0 0
0:o._cons 0 0 0

1:price 0 0 0 1.240e-08
1:foreign 0 0 0 -1.401e-06 .59355402

1:_cons 0 0 0 -.00007592 -.13992997
2:price 0 0 0 4.265e-09 -5.366e-07

2:foreign 0 0 0 -1.590e-06 .37202359
2:_cons 0 0 0 -.0000265 -.0343682

1: 2: 2: 2:

_cons price foreign _cons
1:_cons .61347545
2:price -.00002693 1.207e-08

2:foreign -.02774147 -3.184e-06 .56833686
2:_cons .20468675 -.00007108 -.1027108 .54017838

. predict s*, scores

. _robust s1 s2 s3, v(D)

where s1, s2, and s3 are the equation-level score variables.

Covariance matrices frommodels with auxiliary parameters look just like multiple-equation matrices.

The second equation consists of the auxiliary parameter only. We again end with a call to robust.

. matrix list D
symmetric D[5,5]

eq1: eq1: eq1: eq1: sigma:
weight gear_ratio foreign _cons _cons

eq1:weight 5.978e-07
eq1:gear_ratio .00069222 2.2471526

eq1:foreign .00011344 -.88159935 1.4426905
eq1:_cons -.00392566 -8.6029018 1.8864693 37.377729

sigma:_cons -3.527e-14 -3.915e-10 -1.035e-10 -4.552e-09 .07430437
. _robust s1 s2, v(D)

Example 7
We will now give an example using ml and robust to produce an estimation command that has

vce(robust) and vce(cluster clustvar) options. You can actually accomplish all of this easily by

using ml without using the robust command because ml has robust and cluster() options. We will

pretend that these two options are unavailable to illustrate the use of robust.

To keep the example simple, we will do linear regression as a maximum likelihood estimator. Here

the log likelihood is

ln𝐿𝑗 = −1
2

{(
𝑦𝑗 − x𝑗β

𝜎
)

2

+ ln(2𝜋𝜎2)}
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There is an auxiliary parameter, 𝜎; thus, we have two equation-level scores:

𝜕 ln𝐿𝑗

𝜕(x𝑗β)
=

𝑦𝑗 − x𝑗β

𝜎2

𝜕 ln𝐿𝑗

𝜕𝜎
= 1

𝜎
{(

𝑦𝑗 − x𝑗β

𝜎
)

2

− 1}

Here are programs to compute this estimator. We have two ado-files: mymle.ado and likereg.ado.
The first ado-file contains two programs, mymle and Scores. mymle is themain program, and Scores is a
subprogram that computes the equation-level scores after we compute the maximum likelihood solution.

Because Scores is called only by mymle, we can nest it in the mymle.ado file; see [U] 17 Ado-files.

begin mymle.ado
program mymle, eclass

version 19.5 // (or version 19 if you do not have StataNow)
local options ”Level(cilevel)”
if replay() {

if ”‘e(cmd)’”!=”mymle” {
error 301

}
syntax [, ‘options’]
ml display, level(‘level’)
exit

}
syntax varlist [if] [in] [, /*

*/ ‘options’ Robust CLuster(varname) * ]
/* Determine estimation sample. */

marksample touse
if ”‘cluster’”!=”” {

markout ‘touse’ ‘cluster’, strok
local clopt ”cluster(‘cluster’)”

}
/* Get starting values. */

tokenize ‘varlist’
local depn ”‘1’”
macro shift
quietly summarize ‘depn’ if ‘touse’
local cons = r(mean)
local sigma = r(sd)

/* Do ml. */
ml model lf likereg (‘depn’=‘*’) (sigma:) if ‘touse’, /*

*/ init(/eq1=‘cons’ /sigma=‘sigma’) max /*
*/ title(”MLE linear regression”) ‘options’

if ”‘robust’”!=”” | ”‘cluster’”!=”” {
tempvar s1 s2
Scores ‘depn’ ‘s1’ ‘s2’
_robust ‘s1’ ‘s2’ if ‘touse’, ‘clopt’

}
ereturn local cmd ”mymle”
ml display, level(‘level’)

end

https://www.stata.com/manuals/u17.pdf#u17Ado-files


robust — Robust variance estimates 21

program Scores
version 19.5 // (or version 19 if you do not have StataNow)
args depn s1 s2
quietly {

predict double ‘s1’
gen double ‘s2’ = (((‘depn’ - ‘s1’)/[sigma][_cons])^2 - 1) /*
*/ /[sigma][_cons]
replace ‘s1’ = (‘depn’ - ‘s1’)/([sigma][_cons]^2)

}
end

end mymle.ado

Our likereg program computes the likelihood. Because it is called by Stata’s ml commands, we cannot

nest it in the other file.

begin likereg.ado
program likereg

version 19.5 // (or version 19 if you do not have StataNow)
args lf xb s
qui replace ‘lf’ = -0.5*((($ML_y1 - ‘xb’)/‘s’)^2 + log(2*_pi*‘s’^2))

end
end likereg.ado

Note the following:

• Our command mymle will produce robust variance estimates if either the robust or the cluster()
option is specified. Otherwise, it will display the traditional estimates.

• We used the lf method with ml; see [R] ml. We could have used the d1 or d2 methods. Because

we would probably include code to compute the first derivatives analytically for the vce(robust)
option, there is no point in using d0. (However, we could compute the first derivatives numerically

and pass these to robust.)

• Our Scores program uses predict to compute the index x𝑗β. Because we had already posted the

results using ml, predict is available to us. By default, predict computes the index for the first

equation.

• Again because we had already posted the results by using ml, we can use [sigma][ cons] to get the

value of 𝜎; see [U] 13.5 Accessing coefficients and standard errors for the syntax used to access

coefficients from multiple-equation models.

• ml calls ereturn post, so when we call robust, it alters the posted covariance matrix, replacing it

with the robust covariance matrix. robust also sets e(vcetype), and if the cluster() option is

specified, it sets e(clustvar) as well.

• We let ml produce 𝑧 statistics, even when we specified the cluster() option. If the number of

clusters is small, it would be better to use 𝑡 statistics. To do this, we could specify the dof() option

on the ml command, but we would have to compute the number of clusters in advance. We could

also get the number of clusters from robust’s r(N clust) and then repost the matrices by using

ereturn repost.

https://www.stata.com/manuals/rml.pdf#rml
https://www.stata.com/manuals/u13.pdf#u13.5Accessingcoefficientsandstandarderrors
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If we run our command with the cluster() option, we get

. mymle mpg weight gear_ratio foreign, cluster(rep78)
Initial: Log likelihood = -219.4845
Rescale: Log likelihood = -219.4845
Rescale eq: Log likelihood = -219.4845
Iteration 0: Log likelihood = -219.4845 (not concave)
Iteration 1: Log likelihood = -207.02829 (not concave)
Iteration 2: Log likelihood = -202.6134
Iteration 3: Log likelihood = -190.01198
Iteration 4: Log likelihood = -181.94871
Iteration 5: Log likelihood = -181.94473
Iteration 6: Log likelihood = -181.94473
MLE linear regression Number of obs = 69

Wald chi2(3) = 135.82
Log likelihood = -181.94473 Prob > chi2 = 0.0000

(Std. err. adjusted for 5 clusters in rep78)

Robust
mpg Coefficient std. err. z P>|z| [95% conf. interval]

eq1
weight -.005893 .000803 -7.34 0.000 -.0074669 -.0043191

gear_ratio 1.904503 2.134518 0.89 0.372 -2.279075 6.08808
foreign -2.149017 1.178012 -1.82 0.068 -4.457879 .1598441

_cons 34.09959 4.121243 8.27 0.000 26.02211 42.17708

sigma
_cons 3.380223 .8840543 3.82 0.000 1.647508 5.112937

These results are similar to the earlier results that we got with our first myreg program and regress,
vce(cluster rep78).

Our likelihood is not globally concave. Linear regression is not globally concave in β and 𝜎. ml’s lf
convergence routine encountered a little trouble in the beginning but had no problem coming to the right

solution.

Stored results
robust stores the following in r():

Scalars

r(N) number of observations

r(N sub) subpopulation observations

r(N strata) number of strata

r(N clust) number of clusters (PSUs)

r(singleton) 1 if singleton strata, 0 otherwise

r(census) 1 if census data, 0 otherwise

r(df r) variance degrees of freedom

r(sum w) sum of weights

r(N subpop) number of observations for subpopulation (subpop() only)

r(sum wsub) sum of weights for subpopulation (subpop() only)

Macros

r(subpop) subpop from subpop()
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r(N strata) and r(N clust) are always set. If the strata() option is not specified, then r(N strata) =
1 (there truly is one stratum). If neither the cluster() nor the psu() option is specified, then r(N clust)
equals the number of observations (each observation is a PSU).

When robust alters the post of ereturn post, it also stores the following in e():
Macros

e(vcetype) Robust
e(clustvar) name of cluster (PSU) variable

e(vcetype) controls the phrase that ereturn display displays above “std. err.”; e(vcetype) can be

set to another phrase (or to empty for no phrase). e(clustvar) displays the banner “(Std. err. adjusted

for # clusters in varname)”, or it can be set to empty (ereturn local clustvar ””).

Methods and formulas
We give the formulas here for complex survey data from one stage of stratified cluster sampling, as

this is the most general case.

Our parameter estimates, β̂, are the solution to the estimating equation

G(β) =
𝐿

∑
ℎ=1

𝑛ℎ

∑
𝑖=1

𝑚ℎ𝑖

∑
𝑗=1

𝑤ℎ𝑖𝑗S(β; 𝑦ℎ𝑖𝑗, xℎ𝑖𝑗) = 0

where (ℎ, 𝑖, 𝑗) index the observations: ℎ = 1, . . . , 𝐿 are the strata; 𝑖 = 1, . . . , 𝑛ℎ are the sampled PSUs

(clusters) in stratum ℎ; and 𝑗 = 1, . . . , 𝑚ℎ𝑖 are the sampled observations in PSU (ℎ, 𝑖). The outcome

variable is represented by 𝑦ℎ𝑖𝑗; the explanatory variables are xℎ𝑖𝑗 (a row vector); and𝑤ℎ𝑖𝑗 are the weights.

If no weights are specified, 𝑤ℎ𝑖𝑗 = 1. If the weights are aweights, they are first normalized to sum to

the total number of observations in the sample: 𝑛 = ∑𝐿
ℎ=1 ∑𝑛ℎ

𝑖=1 𝑚ℎ𝑖. If the weights are fweights, the
formulas below do not apply; fweights are treated in such a way to give the same results as unweighted

observations duplicated the appropriate number of times.

For maximum likelihood estimators, S(β; 𝑦ℎ𝑖𝑗, xℎ𝑖𝑗) = 𝜕 ln𝐿𝑗/𝜕β is the score vector, where ln𝐿𝑗 is

the log likelihood. For survey data, this is not a true likelihood, but a “pseudolikelihood”; see [SVY] Sur-

vey.

Let

D = −𝜕G(β)
𝜕β

∣
−1

𝛽=𝛽

For maximum likelihood estimators,D is the traditional covariance estimate—the negative of the inverse

of the Hessian. In the following, the sign of D does not matter.

The robust covariance estimate calculated by robust is

̂𝑉 (β̂) = DMD

whereM is computed as follows. Let uℎ𝑖𝑗 = S(β; 𝑦ℎ𝑖𝑗, xℎ𝑖𝑗) be a row vector of scores for the (ℎ, 𝑖, 𝑗)
observation. Let

uℎ𝑖• =
𝑚ℎ𝑖

∑
𝑗=1

𝑤ℎ𝑖𝑗uℎ𝑖𝑗 and uℎ•• = 1
𝑛ℎ

𝑛ℎ

∑
𝑖=1

uℎ𝑖•

https://www.stata.com/manuals/svysurvey.pdf#svySurvey
https://www.stata.com/manuals/svysurvey.pdf#svySurvey


robust — Robust variance estimates 24

M is given by

M = 𝑛 − 1
𝑛 − 𝑘

𝐿
∑
ℎ=1

(1 − 𝑓ℎ) 𝑛ℎ
𝑛ℎ − 1

𝑛ℎ

∑
𝑖=1

(uℎ𝑖• − uℎ••)′(uℎ𝑖• − uℎ••)

where 𝑘 is the value given in the minus() option. By default, 𝑘 = 1, and the term (𝑛 − 1)/(𝑛 − 𝑘)
vanishes. Stata’s regress, vce(robust) and regress, vce(cluster clustvar) commands use 𝑘
equal to the number of explanatory variables in the model, including the constant (Fuller et al. 1986).

The svy prefix uses 𝑘 = 1.

The specification 𝑘 = 0 is handled differently. If minus(0) is specified, (𝑛 − 1)/(𝑛 − 𝑘) and

𝑛ℎ/(𝑛ℎ − 1) are both replaced by 1.
The factor (1 − 𝑓ℎ) is the finite population correction. If the fpc() option is not specified, 𝑓ℎ = 0

is used. If fpc() is specified and the variable is greater than or equal to 𝑛ℎ, it is assumed to contain the

values of 𝑁ℎ, and 𝑓ℎ is given by 𝑓ℎ = 𝑛ℎ/𝑁ℎ, where 𝑁ℎ is the total number of PSUs in the population

belonging to the ℎth stratum. If the fpc() variable is less than or equal to 1, it is assumed to contain the

values of 𝑓ℎ. See [SVY] Variance estimation for details.

For the vsrs() option and the computation of ̂𝑉srswor, the subpop() option, and the srssubpop
option, see [SVY] estat and [SVY] Subpopulation estimation.
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