
datasignature — Determine whether data have changed

Description Syntax Options Remarks and examples
Stored results Reference Also see

Description
datasignature calculates, displays, and stores in r(datasignature) checksums of the data,

forming a signature. A signature might be

162:11(12321):2725060400:4007406597

The signature can be stored and later used to determine whether the data have changed.

Syntax
datasignature [varlist] [if] [in] [, options]

options Description

fast perform calculation in machine-dependent way

esample restrict to estimation sample

nonames do not include checksum for variable names

nodefault treat empty varlist as null

Options
fast specifies that the checksum calculation be made in a faster, less computationally intensive, and

machine-dependent way. With this option, datasignature runs faster on all computers and can

run in less than one-third of the time on some computers. The result can be compared with other

fast computations made on the same computer, and computers of the same make, but not across

computers of different makes. See Remarks and examples below.

esample specifies that the checksum be calculated on the data for which e(sample) = 1. Coding

datasignature ‘varlist’, esample

or

datasignature ‘varlist’ if e(sample)

produces the same result. The former is a little quicker. If the esample option is specified, if exp

may not be specified.

nonames specifies that the variable-names checksum in the signature be omitted. Rather than the signa-

ture being 74:12(71728):2814604011:3381794779, it would be 74:12:2814604011:3381794779. This

option is useful when you do not care about the names or you know that the names have changed,

such as when using temporary variables.

1

https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.4inrange
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/p_datasignature.pdf#p_datasignatureRemarksandexamples

datasignature — Determine whether data have changed 2

nodefault specifies that when varlist is not specified, it be taken to mean no variables rather than all

variables in the dataset. Thus you may code

datasignature ‘modelvars’, nodefault

and obtain desired results even if ‘modelvars’ expands to nothing.

Remarks and examples
For an introduction to data signatures, see [D] datasignature. To briefly summarize:

• A signature is a short string that is calculated from a dataset, such as

74:12(71728):3831085005:1395876116. If a dataset has the same signature at two different

times, then it is highly likely that the data have not changed. If a dataset has a different signature,

then it is certain that the data have changed.

• An example data signature is 74:12(71728):3831085005:1395876116. The components are

a. 74, the number of observations;

b. 12, the number of variables;

c. 71728, a checksum function of the variable names and the order in which they occur;

and

d. 3831085005 and 1395876116, checksum functions of the values of the variables,

calculated two different ways.

• Signatures are functions of

a. the number of observations and number of variables in the data;

b. the values of the variables;

c. the names of the variables;

d. the order in which the variables occur in the dataset if varlist is not specified, or in

varlist if it is; and

e. the storage types of the variables.

If any of these change, the signature changes. The signature is not a function of the

sort order of the data. The signature is not a function of variable labels, value labels,

contents of characteristics, and the like.

Programs sometimes need to verify that they are running on the same data at two different times.

This verification is especially common with estimation commands, where the estimation is performed

by one command and postestimation analyses by another. To ensure that the data have not changed, one

obtains the signature at the time of estimation and then compares that with the signature obtained when

the postestimation command is run. See [P] signestimationsample for an example.

If you are producing signatures for use within a Stata session—signatures that will not be written to

disk and thus cannot possibly be transferred to different computers—specify datasignature’s fast
option. On some computers, datasignature can run in less than one-third of the time if this option is

specified.

datasignature, fast is faster for two reasons: 1) the option uses a less computationally intensive

algorithm and 2) the computation is made in a machine-dependent way. The first affects the quality of

the signature, and the second does not.

https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/ddatasignature.pdf#ddatasignature
https://www.stata.com/manuals/psignestimationsample.pdf#psignestimationsample

datasignature — Determine whether data have changed 3

Remember that signatures have two checksums for the data. When fast is specified, a different,

inferior algorithm is substituted for the second checksum. In the fast case, the second signature is not

conditionally independent of the first and thus does not provide 48 bits of additional information; it prob-

ably provides around 24 bits. The default second checksum calculation was selected to catch problems

that the first calculation does not catch. In the fast case, the second checksum does not have that prop-

erty. These details make the fast signature sound markedly inferior. Nevertheless, the first checksum

calculation, which is used both in the default and the fast cases, is good, and when datasignature
was written, we considered using only the first calculation in both cases. We believe that, for within-

session testing, where one does not have to guard against changes produced by an intelligent enemy who

may be trying to fool you, the first checksum alone is adequate. The inferior second checksumwe include

in the fast case provides more protection than we think necessary.

The second difference has nothing to do with quality. Modern computers come in two types: those

that record least-significant bytes (LSBs) first and those that record most-significant bytes (MSBs) first.

Intel-based computers, for instance, are usually LSB, whereas Sun computers are MSB.

By default, datasignature makes the checksum calculation in an LSB way, even on MSB com-

puters. MSB computers must therefore go to extra work to emulate the LSB calculation, and so

datasignature runs slower on them.

When you specify fast, datasignature calculates the checksum the native way. The checksum

is every bit as good, but the checksum produced will be different on MSB computers. If you merely store

the signature in memory for use later in the session, however, that does not matter.

Stored results
datasignature stores the following in r():

Macros

r(datasignature) the signature

Reference
Gould, W. W. 2006. Stata tip 35: Detecting whether data have changed. Stata Journal 6: 428–429.

Also see
[D] datasignature — Determine whether data have changed

[P] signestimationsample — Determine whether the estimation sample has changed

[D] compare — Compare two variables

[D] cf — Compare two datasets

Stata, Stata Press, Mata, NetCourse, and NetCourseNow are registered trademarks of StataCorp
LLC. Stata and Stata Press are registered trademarks with the World Intellectual Property Or-
ganization of the United Nations. StataNow is a trademark of StataCorp LLC. Other brand and
product names are registered trademarks or trademarks of their respective companies. Copyright
© 1985–2025 StataCorp LLC, College Station, TX, USA. All rights reserved.

®

For suggested citations, see the FAQ on citing Stata documentation.

https://www.stata-journal.com/article.html?article=dm0024
https://www.stata.com/manuals/ddatasignature.pdf#ddatasignature
https://www.stata.com/manuals/psignestimationsample.pdf#psignestimationsample
https://www.stata.com/manuals/dcompare.pdf#dcompare
https://www.stata.com/manuals/dcf.pdf#dcf
https://www.stata.com/support/faqs/resources/citing-software-documentation-faqs/

