
rotate — Orthogonal and oblique rotations after factor and pca

Description Quick start Menu Syntax Options
Remarks and examples Stored results Methods and formulas References Also see

Description
rotate performs a rotation of the loading matrix after factor, factormat, pca, or pcamat; see

[MV] factor and [MV] pca. Many rotation criteria (such as varimax and oblimin) are available that can

be applied with respect to the orthogonal and oblique class of rotations.

rotate, clear removes the rotation results from the estimation results.

If you want to rotate a given matrix, see [MV] rotatemat.

If you want a Procrustes rotation, which rotates variables optimally toward other variables, see

[MV] procrustes.

Quick start
Orthogonal varimax rotation of loading matrix after pca or factor

rotate

Same as above, but apply the minimum entropy rotation criterion

rotate, entropy

Same as above, but apply oblique quartimin rotation criterion

rotate, oblique quartimin

Same as above, but rotate the Kaiser normalized matrix

rotate, oblique quartimin normalize

Menu
Statistics > Multivariate analysis > Factor and principal component analysis > Postestimation > Rotate loadings
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https://www.stata.com/manuals/mvfactor.pdf#mvfactor
https://www.stata.com/manuals/mvpca.pdf#mvpca
https://www.stata.com/manuals/mvrotatemat.pdf#mvrotatemat
https://www.stata.com/manuals/mvprocrustes.pdf#mvprocrustes
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Syntax
rotate [ , options ]

rotate, clear

options Description

Main

orthogonal restrict to orthogonal rotations; the default, except with promax()
oblique allow oblique rotations

rotation methods rotation criterion

normalize rotate Kaiser normalized matrix

factors(#) rotate # factors or components; default is to rotate all

components(#) synonym for factors()

Reporting

blanks(#) display loadings as blanks when |loading| < #; default is blanks(0)
detail show rotatemat output; seldom used

format(% fmt) display format for matrices; default is format(%9.5f)
noloading suppress display of rotated loadings

norotation suppress display of rotation matrix

Optimization

optimize options control the maximization process; seldom used

collect is allowed; see [U] 11.1.10 Prefix commands.

rotation methods Description

∗ varimax varimax (orthogonal only); the default

vgpf varimax via the GPF algorithm (orthogonal only)

quartimax quartimax (orthogonal only)

equamax equamax (orthogonal only)

parsimax parsimax (orthogonal only)

entropy minimum entropy (orthogonal only)

tandem1 Comrey’s tandem 1 principle (orthogonal only)

tandem2 Comrey’s tandem 2 principle (orthogonal only)

∗ promax[(#)] promax power # (implies oblique); default is promax(3)

oblimin[(#)] oblimin with 𝛾 = #; default is oblimin(0)
cf(#) Crawford–Ferguson family with 𝜅 = #, 0 ≤ # ≤ 1

bentler Bentler’s invariant pattern simplicity

oblimax oblimax

quartimin quartimin

target(Tg) rotate toward matrix Tg

partial(Tg W) rotate toward matrix Tg, weighted by matrix W

∗varimax and promax ignore all optimize options.

https://www.stata.com/manuals/mvrotate.pdf#mvrotateSyntaxrotation_methods
https://www.stata.com/manuals/d.pdf#dformat
https://www.stata.com/manuals/mvrotatemat.pdf#mvrotatematOptionsoptopts
https://www.stata.com/manuals/u11.pdf#u11.1.10Prefixcommands
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Options

� � �
Main �

orthogonal specifies that an orthogonal rotation be applied. This is the default.

See Rotation criteria below for details on the rotation methods available with orthogonal.

oblique specifies that an oblique rotation be applied. This often yields more interpretable factors with a

simpler structure than that obtained with an orthogonal rotation. In many applications (for example,

after factor and pca) the factors before rotation are orthogonal (uncorrelated), whereas the oblique
rotated factors are correlated.

See Rotation criteria below for details on the rotation methods available with oblique.

clear specifies that rotation results be cleared (removed) from the last estimation command. clearmay
not be combined with any other option.

rotate stores its results within the e() results of pca and factor, overwriting any previous rotation
results. Postestimation commands such as predict operate on the last rotated results, if any, instead

of the unrotated results, and allow you to specify norotated to use the unrotated results. The clear
option of rotate allows you to remove the rotation results from e(), thus freeing you from having

to specify norotated for the postestimation commands.

normalize requests that the rotation be applied to the Kaiser normalization (Horst 1965) of the matrix

A, so that the rowwise sums of squares equal 1. Kaiser normalization applies to the rotated columns

only (see the factors() option below).

factors(#), and synonym components(#), specifies the number of factors or components (columns
of the loading matrix) to be rotated, counted “from the left”, that is, with the lowest column index.

The other columns are left unrotated. All columns are rotated by default.

� � �
Reporting �

blanks(#) shows blanks for loadings with absolute values smaller than #.

detail displays the rotatemat output; seldom used.

format(% fmt) specifies the display format for matrices. The default is format(%9.5f).

noloading suppresses the display of the rotated loadings.

norotation suppresses the display of the optimal rotation matrix.

� � �
Optimization �

optimize options are seldom used; see [MV] rotatemat.

Rotation criteria
In the descriptions below, the matrix to be rotated is denoted as A, p denotes the number of rows of

A, and f denotes the number of columns of A (factors or components). If A is a loading matrix from

factor or pca, p is the number of variables, and f is the number of factors or components.

https://www.stata.com/manuals/mvrotate.pdf#mvrotateOptionsRotationcriteria
https://www.stata.com/manuals/mvrotate.pdf#mvrotateOptionsRotationcriteria
https://www.stata.com/manuals/d.pdf#dformat
https://www.stata.com/manuals/mvrotatemat.pdf#mvrotatemat


rotate — Orthogonal and oblique rotations after factor and pca 4

Criteria suitable only for orthogonal rotations
varimax and vgpf apply the orthogonal varimax rotation (Kaiser 1958). varimax maximizes the vari-

ance of the squared loadings within factors (columns of A). It is equivalent to cf(1/p) and to

oblimin(1). varimax, the most popular rotation, is implemented with a dedicated fast algorithm

and ignores all optimize options. Specify vgpf to switch to the general GPF algorithm used for the

other criteria.

quartimax uses the quartimax criterion (Harman 1976). quartimax maximizes the variance of the

squared loadings within the variables (rows ofA). For orthogonal rotations, quartimax is equivalent

to cf(0) and to oblimax.

equamax specifies the orthogonal equamax rotation. equamax maximizes a weighted sum of the

varimax and quartimax criteria, reflecting a concern for simple structure within variables (rows

of A) as well as within factors (columns of A). equamax is equivalent to oblimin(p/2) and cf(#),
where # = f /(2p).

parsimax specifies the orthogonal parsimax rotation. parsimax is equivalent to cf(#), where # =
(f − 1)/(p + f − 2).

entropy applies the minimum entropy rotation criterion (Jennrich 2004).

tandem1 specifies that the first principle of Comrey’s tandem be applied. According to Comrey (1967),

this principle should be used to judge which “small” factors should be dropped.

tandem2 specifies that the second principle of Comrey’s tandem be applied. According to Comrey

(1967), tandem2 should be used for “polishing”.

Criteria suitable only for oblique rotations
promax[(#)] specifies the oblique promax rotation. The optional argument specifies the promax power.

Not specifying the argument is equivalent to specifying promax(3). Values smaller than 4 are rec-

ommended, but the choice is yours. Larger promax powers simplify the loadings (generate numbers

closer to zero and one) but at the cost of additional correlation between factors. Choosing a value is

a matter of trial and error, but most sources find values in excess of 4 undesirable in practice. The

power must be greater than 1 but is not restricted to integers.

Promax rotation is an oblique rotation method that was developed before the “analytical methods”

(based on criterion optimization) became computationally feasible. Promax rotation comprises an

oblique Procrustean rotation of the original loadings A toward the elementwise #-power of the or-

thogonal varimax rotation of A.

Criteria suitable for orthogonal and oblique rotations
oblimin[(#)] specifies that the oblimin criterion with 𝛾 = # be used. When restricted to orthogonal

transformations, the oblimin() family is equivalent to the orthomax criterion function. Special cases
of oblimin() include

𝛾 Special case

0 quartimax / quartimin

1/2 biquartimax / biquartimin

1 varimax / covarimin

p/2 equamax

p = number of rows of A.

https://www.stata.com/manuals/mvrotatemat.pdf#mvrotatematOptionsoptopts
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𝛾 defaults to zero. Jennrich (1979) recommends 𝛾 ≤ 0 for oblique rotations. For 𝛾 > 0, it is possible
that optimal oblique rotations do not exist; the iterative procedure used to compute the solution will

wander off to a degenerate solution.

cf(#) specifies that a criterion from the Crawford–Ferguson (1970) family be used with 𝜅 = #. cf(𝜅)
can be seen as (1−𝜅)cf1(A)+(𝜅)cf2(A), where cf1(A) is a measure of row parsimony and cf2(A) is
a measure of column parsimony. cf1(A) attains its greatest lower bound when no row of A has more

than one nonzero element, whereas cf2(A) reaches zero if no column of A has more than one nonzero

element.

For orthogonal rotations, the Crawford–Ferguson family is equivalent to the oblimin() family. For

orthogonal rotations, special cases include the following:

𝜅 Special case

0 quartimax / quartimin

1/p varimax / covarimin

f /(2p) equamax

( f − 1)/(p + f − 2) parsimax

1 factor parsimony

p = number of rows of A.

f = number of columns of A.

bentler specifies that the “invariant pattern simplicity” criterion (Bentler 1977) be used.

oblimax specifies the oblimax criterion. oblimax maximizes the number of high and low loadings.

oblimax is equivalent to quartimax for orthogonal rotations.

quartimin specifies that the quartimin criterion be used. For orthogonal rotations, quartimin is equiv-

alent to quartimax.

target(Tg) specifies that A be rotated as near as possible to the conformable matrix Tg. Nearness is

expressed by the Frobenius matrix norm.

partial(Tg W) specifies that A be rotated as near as possible to the conformable matrix Tg. Nearness

is expressed by a weighted (by W ) Frobenius matrix norm. W should be nonnegative and usually is

zero–one valued, with ones identifying the target values to be reproduced as closely as possible by

the factor loadings, whereas zeros identify loadings to remain unrestricted.

Remarks and examples
Remarks are presented under the following headings:

Orthogonal rotations
Oblique rotations
Other types of rotation

In this entry, we focus primarily on the rotation of factor loading matrices in factor analysis. rotate
may also be used after pca, with the same syntax. We advise caution in the interpretation of rotated load-

ings in principal component analysis because some of the optimality properties of principal components

are not preserved under rotation. See [MV] pca postestimation for more discussion of this point.

https://www.stata.com/manuals/mvpcapostestimation.pdf#mvpcapostestimation
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Orthogonal rotations
The interpretation of a factor analytical solution is not always easy—an understatement, many will

agree. This is due partly to the standard way in which the inherent indeterminacy of factor analysis

is resolved. Orthogonal transformations of the common factors and the associated factor loadings are

possible without affecting the reconstructed (fitted) correlation matrix and preserving the property that

common factors are uncorrelated. This gives considerable freedom in selecting an orthogonal rotation to

facilitate the interpretation of the factor loadings. Thurstone (1935) offered criteria for a “simple struc-

ture” required for a psychologically meaningful factor solution. These informal criteria for interpretation

were then formalized into formal rotation criteria, for example, Harman (1976) and Gorsuch (1983).

Example 1: Orthogonal varimax rotation
We illustrate rotate by using a factor analysis of the correlation matrix of eight physical variables

(height, arm span, length of forearm, length of lower leg, weight, bitrochanteric diameter, chest girth,

and chest width) of 305 girls.

. matrix input R = (1000 846 805 859 473 398 301 382 \
> 846 1000 881 826 376 326 277 415 \
> 805 881 1000 801 380 319 237 345 \
> 859 826 801 1000 436 329 327 365 \
> 473 376 380 436 1000 762 730 629 \
> 398 326 319 329 762 1000 583 577 \
> 301 277 237 327 730 583 1000 539 \
> 382 415 345 365 629 577 539 1000)
. matrix R = R/1000
. matrix colnames R = height arm_span fore_arm lower_leg
> weight bitrod ch_girth ch_width
. matrix rownames R = height arm_span fore_arm lower_leg
> weight bitrod ch_girth ch_width
. matlist R, border format(%7.3f)

height arm_s~n fore_~m lower~g weight bitrod ch_gi~h ch_wi~h

height 1.000
arm_span 0.846 1.000
fore_arm 0.805 0.881 1.000

lower_leg 0.859 0.826 0.801 1.000
weight 0.473 0.376 0.380 0.436 1.000
bitrod 0.398 0.326 0.319 0.329 0.762 1.000

ch_girth 0.301 0.277 0.237 0.327 0.730 0.583 1.000
ch_width 0.382 0.415 0.345 0.365 0.629 0.577 0.539 1.000
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We extract two common factors with the iterated principal-factor method. See the description of

factormat in [MV] factor for details on running a factor analysis on a Stata matrix rather than on a

dataset.

. factormat R, n(305) fac(2) ipf
(obs=305)
Factor analysis/correlation Number of obs = 305

Method: iterated principal factors Retained factors = 2
Rotation: (unrotated) Number of params = 15

Factor Eigenvalue Difference Proportion Cumulative

Factor1 4.44901 2.93878 0.7466 0.7466
Factor2 1.51023 1.40850 0.2534 1.0000
Factor3 0.10173 0.04705 0.0171 1.0171
Factor4 0.05468 0.03944 0.0092 1.0263
Factor5 0.01524 0.05228 0.0026 1.0288
Factor6 -0.03703 0.02321 -0.0062 1.0226
Factor7 -0.06025 0.01415 -0.0101 1.0125
Factor8 -0.07440 . -0.0125 1.0000

LR test: independent vs. saturated: chi2(28) = 2092.68 Prob>chi2 = 0.0000
Factor loadings (pattern matrix) and unique variances

Variable Factor1 Factor2 Uniqueness

height 0.8560 -0.3244 0.1620
arm_span 0.8482 -0.4115 0.1112
fore_arm 0.8082 -0.4090 0.1795

lower_leg 0.8309 -0.3424 0.1923
weight 0.7503 0.5712 0.1108
bitrod 0.6307 0.4922 0.3600

ch_girth 0.5687 0.5096 0.4169
ch_width 0.6074 0.3507 0.5081

https://www.stata.com/manuals/mvfactor.pdf#mvfactor
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The default factor solution is rather poor from the perspective of a “simple structure”, namely, that

variables should have high loadings on few (one) factors and factors should ideally have only low and

high values. A plot of the loadings is illuminating.

. loadingplot, xlab(0(.2)1) ylab(-.4(.2).6) aspect(1) yline(0) xline(0)

height
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Factor loadings

There are two groups of variables. Wewould like to see one group of variables close to one axis and the

other group of variables close to the other axis. Turning the plot by about 45 degrees counterclockwise

should make this possible and offer a much “simpler” structure. This is what the rotate command

accomplishes.

. rotate
Factor analysis/correlation Number of obs = 305

Method: iterated principal factors Retained factors = 2
Rotation: orthogonal varimax (Kaiser off) Number of params = 15

Factor Variance Difference Proportion Cumulative

Factor1 3.39957 0.83989 0.5705 0.5705
Factor2 2.55968 . 0.4295 1.0000

LR test: independent vs. saturated: chi2(28) = 2092.68 Prob>chi2 = 0.0000
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Rotated factor loadings (pattern matrix) and unique variances

Variable Factor1 Factor2 Uniqueness

height 0.8802 0.2514 0.1620
arm_span 0.9260 0.1770 0.1112
fore_arm 0.8924 0.1550 0.1795

lower_leg 0.8708 0.2220 0.1923
weight 0.2603 0.9064 0.1108
bitrod 0.2116 0.7715 0.3600

ch_girth 0.1515 0.7484 0.4169
ch_width 0.2774 0.6442 0.5081

Factor rotation matrix

Factor1 Factor2

Factor1 0.8018 0.5976
Factor2 -0.5976 0.8018

See [MV] factor for the interpretation of the first panel. Here we will focus on the second and third

panel. The rotated factor loadings satisfy

Factor1rotated = 0.8018 × Factor1unrotated − 0.5976 × Factor2unrotated

Factor2rotated = 0.5976 × Factor1unrotated + 0.8018 × Factor2unrotated

The uniqueness—the variance of the specific factors—is not affected, because we are changing only

the coordinates in common factor space. The purpose of rotation is to make factor loadings easier to

interpret. The first factor loads high on the first four variables and low on the last four variables; for the

second factor, the roles are reversed. This is really a simple structure according to Thurstone’s criteria.

This is clear in the plot of the factor loadings.

. loadingplot, xlab(0(.2)1) ylab(0(.2)1) aspect(1) yline(0) xline(0)
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https://www.stata.com/manuals/mvfactor.pdf#mvfactor
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rotate provides several different rotations. You may make your intention clearer by typing the com-

mand as

. rotate, orthogonal varimax
(output omitted )

rotate defaults to orthogonal (angle and length preserving) rotations of the axes; thus, orthogonal
may be omitted. The default rotation method is varimax, probably the most popular method. We warn

that the varimax rotation is not appropriate if you expect a general factor contributing to all variables (see

also Gorsuch 1983, chap. 9). In such a case you could, for instance, consider a quartimax rotation.

Example 2: Orthogonal varimax rotation with normalization
rotate has performed what is known as “raw varimax”, rotating the axes to maximize the sum of the

variance of the squared loadings in the columns—the variance in a column is large if it comprises small

and large (in the absolute sense) values. In rotating the axes, rows with large initial loadings—that is,

with high communalities—have more influence than rows with only small values. Kaiser suggested that

in the computation of the optimal rotation, all rows should have the same weight. This is usually known

as the Kaiser normalization and sometimes known as the Horst normalization (Horst 1965). The option

normalize applies this normalization method for rotation.

. rotate, normalize
Factor analysis/correlation Number of obs = 305

Method: iterated principal factors Retained factors = 2
Rotation: orthogonal varimax (Kaiser on) Number of params = 15

Factor Variance Difference Proportion Cumulative

Factor1 3.31500 0.67075 0.5563 0.5563
Factor2 2.64425 . 0.4437 1.0000

LR test: independent vs. saturated: chi2(28) = 2092.68 Prob>chi2 = 0.0000
Rotated factor loadings (pattern matrix) and unique variances

Variable Factor1 Factor2 Uniqueness

height 0.8724 0.2775 0.1620
arm_span 0.9203 0.2045 0.1112
fore_arm 0.8874 0.1815 0.1795

lower_leg 0.8638 0.2478 0.1923
weight 0.2332 0.9137 0.1108
bitrod 0.1885 0.7775 0.3600

ch_girth 0.1292 0.7526 0.4169
ch_width 0.2581 0.6522 0.5081

Factor rotation matrix

Factor1 Factor2

Factor1 0.7837 0.6212
Factor2 -0.6212 0.7837

Here the raw and normalized varimax rotated loadings are not much different.
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In the first example, loadingplot after rotate showed the rotated loadings, not the unrotated load-

ings. How can this be? Remember that Stata estimation commands store their results in e(), which we
can list using ereturn list.

. ereturn list
scalars:

e(f) = 2
e(N) = 305

e(df_m) = 15
e(df_r) = 13

e(chi2_i) = 2092.68137837692
e(df_i) = 28
e(p_i) = 0

e(evsum) = 5.95922412962743
e(r_f) = 2

macros:
e(r_normalization) : ”kaiser”

e(r_class) : ”orthogonal”
e(r_criterion) : ”varimax”

e(r_ctitle) : ”varimax”
e(cmdline) : ”factormat R, n(305) fac(2) ipf”

e(cmd) : ”factor”
e(marginsnotok) : ”_ALL”

e(properties) : ”nob noV eigen”
e(title) : ”Factor analysis”

e(predict) : ”factor_p”
e(estat_cmd) : ”factor_estat”

e(rotate_cmd) : ”factor_rotate”
e(rngstate) : ”XAA1055b80bcee95e83ca9e2d41adfb0f0806ad6e5dec14687..”
e(factors) : ”factors(2)”
e(mtitle) : ”iterated principal factors”
e(method) : ”ipf”

e(matrixname) : ”R”
matrices:

e(r_Ev) : 1 x 2
e(r_Phi) : 2 x 2

e(r_T) : 2 x 2
e(r_L) : 8 x 2

e(C) : 8 x 8
e(Phi) : 2 x 2

e(L) : 8 x 2
e(Psi) : 1 x 8
e(Ev) : 1 x 8

functions:
e(sample)

When you replay an estimation command, it simply knows where to look, so that it can redisplay

the output. rotate does something that few other postestimation commands are allowed to do: it adds

information to the estimation results computed by factor or pca. But to avoid confusion, it writes in

e() fields with the prefix r . For instance, the matrix e(r L) contains the rotated loadings.

If you replay factor after rotate, factor will display the rotated results. And this is what all

factor and pca postestimation commands do. For instance, if you predict after rotate, predict
will use the rotated results. Of course, it is still possible to operate on the unrotated results. factor,
norotated replays the unrotated results. predict with the norotated option computes the factor

scores for the unrotated results.

https://www.stata.com/manuals/mvrotate.pdf#mvrotateRemarksandexamplesex1
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rotate stores information only about the most recent rotation, overwriting any information from the

previous rotation. If you need the previous results again, run rotate with the respective options again;

you do not need to run factor again. It is also possible to use estimates store to store estimation

results for different rotations, which you may later restore and replay at will. See [R] estimates store for

details.

If you no longer need the rotation results, you may type

. rotate, clear

to clean up the rotation result and return the factor results back to their pristine state (as if rotate had

never been called).

Example 3: Orthogonal quartimax and orthogonal oblimin rotations
rotate provides many more orthogonal rotations. Previously we stated that the varimax rotation can

be thought of as the rotation that maximizes the varimax criterion, namely, the variance of the squared

loadings summed over the columns. A column of loadings with a high variance tends to contain a series

of large values and a series of low values, achieving the simplicity aim of factor analytic interpretation.

The other types of rotation simply maximize other concepts of simplicity. For instance, the quartimax
rotation aims at rowwise simplicity—preferably, the loadings within variables fall into a grouping of a

few large ones and a few small ones, using again the variance in squared loadings as the criterion to be

maximized.

. rotate, quartimax normalize
Factor analysis/correlation Number of obs = 305

Method: iterated principal factors Retained factors = 2
Rotation: orthogonal quartimax (Kaiser on) Number of params = 15

Factor Variance Difference Proportion Cumulative

Factor1 3.32371 0.68818 0.5577 0.5577
Factor2 2.63553 . 0.4423 1.0000

LR test: independent vs. saturated: chi2(28) = 2092.68 Prob>chi2 = 0.0000
Rotated factor loadings (pattern matrix) and unique variances

Variable Factor1 Factor2 Uniqueness

height 0.8732 0.2749 0.1620
arm_span 0.9210 0.2017 0.1112
fore_arm 0.8880 0.1788 0.1795

lower_leg 0.8646 0.2452 0.1923
weight 0.2360 0.9130 0.1108
bitrod 0.1909 0.7769 0.3600

ch_girth 0.1315 0.7522 0.4169
ch_width 0.2601 0.6514 0.5081

Factor rotation matrix

Factor1 Factor2

Factor1 0.7855 0.6188
Factor2 -0.6188 0.7855

https://www.stata.com/manuals/restimatesstore.pdf#restimatesstore
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Here the quartimax and the varimax rotated results are rather similar. This need not be the

case—varimax focuses on simplicity within columns (factors) and quartimax within rows (variables).

It is possible to compromise, rotating to strive for a weighted sum of row simplicity and column simplic-

ity. This is known as the orthogonal oblimin criterion; in the orthogonal case, oblimin() is equivalent

to the Crawford–Ferguson (option cf()) family and to the orthomax family. These are parameterized

families of criteria with, for instance, the following special cases:

oblimin(0) quartimax rotation

oblimin(0.5) biquartimax rotation

oblimin(1) varimax rotation

. rotate, oblimin(0.5) normalize
Factor analysis/correlation Number of obs = 305

Method: iterated principal factors Retained factors = 2
Rotation: orthogonal oblimin (Kaiser on) Number of params = 15

Factor Variance Difference Proportion Cumulative

Factor1 3.31854 0.67783 0.5569 0.5569
Factor2 2.64071 . 0.4431 1.0000

LR test: independent vs. saturated: chi2(28) = 2092.68 Prob>chi2 = 0.0000
Rotated factor loadings (pattern matrix) and unique variances

Variable Factor1 Factor2 Uniqueness

height 0.8727 0.2764 0.1620
arm_span 0.9206 0.2033 0.1112
fore_arm 0.8877 0.1804 0.1795

lower_leg 0.8642 0.2468 0.1923
weight 0.2343 0.9134 0.1108
bitrod 0.1895 0.7772 0.3600

ch_girth 0.1301 0.7525 0.4169
ch_width 0.2589 0.6518 0.5081

Factor rotation matrix

Factor1 Factor2

Factor1 0.7844 0.6202
Factor2 -0.6202 0.7844

Because the varimax and orthomax rotation are relatively close, the factor loadings resulting from an

optimal rotation of a compromise criterion are close as well.

The orthogonal quartimax rotation may be obtained in different ways, namely, directly or by the

appropriate member of the oblimin() or cf() families:

. rotate, quartimax
(output omitted )

. rotate, oblimin(0)
(output omitted )

. rotate, cf(0)
(output omitted )
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Technical note
The orthogonal varimax rotation also belongs to the oblimin and Crawford–Ferguson families.

. rotate, varimax
(output omitted )

. rotate, oblimin(1)
(output omitted )

. rotate, cf(0.125)
(output omitted )

(The 0.125 = 1/8 above is 1 divided by the number of variables.) All three produce the orthogonal

varimax rotation. (There is actually a fourth way, namely rotate, vgpf.) There is, however, a subtle
difference in algorithms used. The varimax rotation as specified by the varimax option (which is also the
default) is computed by the classic algorithm of cycling through rotations of two factors at a time. The

other ways use the general “gradient projection” algorithm proposed by Jennrich; see [MV] rotatemat

for more information.

Oblique rotations
In addition to orthogonal rotations, oblique rotations are also available.

Example 4: Oblique oblimin rotation
The rotation methods that we have discussed so far are all orthogonal: the angles between the axes

are unchanged, so the rotated factors are uncorrelated.

Returning to our original factor analysis,

. factormat R, n(305) fac(2) ipf
(output omitted )

we examine the correlation matrix of the common factors,

. estat common
Correlation matrix of the common factors

Factors Factor1 Factor2

Factor1 1
Factor2 0 1

and see that they are uncorrelated.

The indeterminacy in the factor analytic model, however, allows us to consider other transformations

of the common factors, namely, oblique rotations. These are rotations of the axes that preserve the norms

of the rows of the loadings but not the angles between the axes or the angles between the rows. There

are advantages and disadvantages of oblique rotations. See, for instance, Gorsuch (1983, chap. 9). In

many substantive theories, there seems little reason to impose the restriction that the common factors be

uncorrelated. The additional freedom in choosing the axes generally leads to more easily interpretable

factors, sometimes to a great extent. However, although most researchers are willing to accept mildly

correlated factors, they would prefer to use fewer of such factors.

https://www.stata.com/manuals/mvrotatemat.pdf#mvrotatemat
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rotate provides an extensive menu of oblique rotations; with a few exceptions, criteria suitable for

orthogonal rotations are also suitable for oblique rotation. Again oblique rotation can be conceived of as

maximizing some “simplicity” criterion. We illustrate with the oblimin oblique rotation.

. rotate, oblimin oblique normalize
Factor analysis/correlation Number of obs = 305

Method: iterated principal factors Retained factors = 2
Rotation: oblique oblimin (Kaiser on) Number of params = 15

Factor Variance Proportion Rotated factors are correlated

Factor1 3.95010 0.6629
Factor2 3.35832 0.5635

LR test: independent vs. saturated: chi2(28) = 2092.68 Prob>chi2 = 0.0000
Rotated factor loadings (pattern matrix) and unique variances

Variable Factor1 Factor2 Uniqueness

height 0.8831 0.0648 0.1620
arm_span 0.9560 -0.0288 0.1112
fore_arm 0.9262 -0.0450 0.1795

lower_leg 0.8819 0.0344 0.1923
weight 0.0047 0.9408 0.1108
bitrod -0.0069 0.8032 0.3600

ch_girth -0.0653 0.7923 0.4169
ch_width 0.1042 0.6462 0.5081

Factor rotation matrix

Factor1 Factor2

Factor1 0.9112 0.7930
Factor2 -0.4120 0.6092

The oblique rotation yields a much “simpler” structure in the Thurstone (1935) sense than that of the

orthogonal rotations. This time, the common factors are moderately correlated.

. estat common
Correlation matrix of the oblimin(0) rotated common factors

Factors Factor1 Factor2

Factor1 1
Factor2 .4716 1

Technical note
The numerical maximization of a simplicity criterion with respect to the class of orthogonal or oblique

rotations proceeds in a stepwise method, making small improvements from an initial guess, until no more

small improvements are possible. Such a procedure is not guaranteed to converge to the global optimum

but to a local optimum instead. In practice, we experience few such problems. To some extent, this is

because we have a reasonable starting value using the unrotated factors or loadings. As a safeguard, Stata
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starts the improvement from multiple initial positions chosen at random from the classes of orthonormal

and normal rotation matrices. If the maximization procedure converges to the same criterion value at

each trial, we may be reasonably certain that we have found the global optimum. Let us illustrate.

. set seed 123

. rotate, oblimin oblique normalize protect(10)
Trial 1 : min criterion .0181657
Trial 2 : min criterion .0181657
Trial 3 : min criterion .0181657
Trial 4 : min criterion .0181657
Trial 5 : min criterion .0181657
Trial 6 : min criterion .0181657
Trial 7 : min criterion .0181657
Trial 8 : min criterion .0181657
Trial 9 : min criterion 458260.7
Trial 10 : min criterion .0181657
Factor analysis/correlation Number of obs = 305

Method: iterated principal factors Retained factors = 2
Rotation: oblique oblimin (Kaiser on) Number of params = 15

Factor Variance Proportion Rotated factors are correlated

Factor1 3.95010 0.6629
Factor2 3.35832 0.5635

LR test: independent vs. saturated: chi2(28) = 2092.68 Prob>chi2 = 0.0000
Rotated factor loadings (pattern matrix) and unique variances

Variable Factor1 Factor2 Uniqueness

height 0.8831 0.0648 0.1620
arm_span 0.9560 -0.0288 0.1112
fore_arm 0.9262 -0.0450 0.1795

lower_leg 0.8819 0.0344 0.1923
weight 0.0047 0.9408 0.1108
bitrod -0.0069 0.8032 0.3600

ch_girth -0.0653 0.7923 0.4169
ch_width 0.1042 0.6462 0.5081

Factor rotation matrix

Factor1 Factor2

Factor1 0.9112 0.7930
Factor2 -0.4120 0.6092

Here three of the random trials converged to distinct rotations from the rest. Specifying options log
and trace would demonstrate that in these cases, the initial configurations were so far off that no im-

provements could be found. In a real application, we would probably rerun rotate with more trials, say,

protect(50), for more reassurance.
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Technical note
There is another but almost trivial source of nonuniqueness. All simplicity criteria supported by

rotate and rotatemat are invariant with respect to permutations of the rows and of the columns. Also,

the signs of rotated loadings are undefined. rotatemat, the computational engine of rotate, makes
sure that all columns have a positive orientation, that is, have a positive sum. rotate, after factor and

pca, also sorts the columns into decreasing order of explained variance.

Other types of rotation
rotate supports a few rotation methods that do not fit into the scheme of “simplicity maximization”.

The first is known as the target rotation, which seeks to rotate the factor loading matrix to approximate

as much as possible a target matrix of the same size as the factor loading matrix.

Example 5: Rotation toward a target matrix
We continue with our same example. If we had expected a factor loading structure in which the

first group of four variables would load especially high on the first factor and the second group of four

variables on the second factor, we could have set up the following target matrix.

. matrix W = ( 1,0 \ 1,0 \ 1,0 \ 1,0 \ 0,1 \ 0,1 \ 0,1 \ 0,1 )

. matrix list W
W[8,2]

c1 c2
r1 1 0
r2 1 0
r3 1 0
r4 1 0
r5 0 1
r6 0 1
r7 0 1
r8 0 1
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It is also possible to request an orthogonal or oblique rotation toward the targetW.

. rotate, target(W) normalize
Factor analysis/correlation Number of obs = 305

Method: iterated principal factors Retained factors = 2
Rotation: orthogonal target (Kaiser on) Number of params = 15

Factor Variance Difference Proportion Cumulative

Factor1 3.30616 0.65307 0.5548 0.5548
Factor2 2.65309 . 0.4452 1.0000

LR test: independent vs. saturated: chi2(28) = 2092.68 Prob>chi2 = 0.0000
Rotated factor loadings (pattern matrix) and unique variances

Variable Factor1 Factor2 Uniqueness

height 0.8715 0.2802 0.1620
arm_span 0.9197 0.2073 0.1112
fore_arm 0.8869 0.1843 0.1795

lower_leg 0.8631 0.2505 0.1923
weight 0.2304 0.9144 0.1108
bitrod 0.1861 0.7780 0.3600

ch_girth 0.1268 0.7530 0.4169
ch_width 0.2561 0.6530 0.5081

Factor rotation matrix

Factor1 Factor2

Factor1 0.7817 0.6236
Factor2 -0.6236 0.7817

With this target matrix, the result is not far different from the varimax and other orthogonal rotations.

Example 6: Oblique promax rotation
For our last example, we return to the early days of factor analysis, the time before fast computing.

Analytical methods for orthogonal rotation, such as varimax, were developed relatively early. Analo-

gous methods for oblique rotations proved more complicated. Hendrickson and White (1964) proposed

a computationally simple method to obtain an oblique rotation that comprises an oblique Procrustes ro-

tation of the factor loadings toward a signed power of the varimax rotation of the factor loadings. The

promax method has one parameter, the power to which the varimax loadings are raised. Larger promax

powers simplify the factor loadings (that is, generate more zeros and ones) at the cost of more correlation

between the common factors. Generally, we recommend that you keep the power in the range (1,4] and

not restricted to integers. Specifying promax is equivalent to promax(3).
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. rotate, promax normalize
Factor analysis/correlation Number of obs = 305

Method: iterated principal factors Retained factors = 2
Rotation: oblique promax (Kaiser on) Number of params = 15

Factor Variance Proportion Rotated factors are correlated

Factor1 3.92727 0.6590
Factor2 3.31295 0.5559

LR test: independent vs. saturated: chi2(28) = 2092.68 Prob>chi2 = 0.0000
Rotated factor loadings (pattern matrix) and unique variances

Variable Factor1 Factor2 Uniqueness

height 0.8797 0.0744 0.1620
arm_span 0.9505 -0.0176 0.1112
fore_arm 0.9205 -0.0340 0.1795

lower_leg 0.8780 0.0443 0.1923
weight 0.0214 0.9332 0.1108
bitrod 0.0074 0.7966 0.3600

ch_girth -0.0509 0.7851 0.4169
ch_width 0.1152 0.6422 0.5081

Factor rotation matrix

Factor1 Factor2

Factor1 0.9069 0.7832
Factor2 -0.4214 0.6218

In this simple two-factor example, the promax solution is similar to the oblique oblimin solution.

Stored results
rotate adds stored results named e(r name) to the stored results that were already defined by

factor or pca.

rotate adds to the following results:

Scalars

e(r f) number of factors/components in rotated solution

e(r fmin) rotation criterion value

Macros

e(r class) orthogonal or oblique
e(r criterion) rotation criterion

e(r ctitle) title for rotation

e(r normalization) kaiser or none

Matrices

e(r L) rotated loadings

e(r T) rotation

e(r Phi) correlations between common factors (after factor only)

e(r Ev) explained variance by common factors (factor) or rotated components (pca)

The factors/components in the rotated solution are in decreasing order of e(r Ev).
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Technical note
The rest of this section contains information of interest to programmers who want to provide rotate

support to other estimation commands. Similar to other postestimation commands, such as estat and

predict, rotate invokes a handler command. The name of this command is extracted from the field

e(rotate cmd). The estimation command cmd should set this field appropriately. For instance, pca
sets the macro e(rotate cmd) to pca rotate. The command pca rotate implements rotation after

pca and pcamat, using rotatemat as the computational engine. pca rotate does not display output

itself; it relies on pca to do so.

For consistent behavior for end users and programmers alike, we recommend that the estimation com-

mand cmd, the driver commands, and other postestimation commands adhere to the following guidelines:

Driver command
• The rotate driver command for cmd should be named cmd rotate.

• cmd rotate should be an e-class command, that is, returning in e().

• Make sure that cmd rotate is invoked after the correct estimation command (for example, if
”‘e(cmd)’” != ”pca” . . .).

• Allow at least the option detail and any option available to rotatemat.

• Extract from e() the matrix you want to rotate; invoke rotatemat on the matrix; and run this com-

mand quietly (that is, suppress all output) unless the option detail was specified.

• Extract the r() objects returned by rotatemat; see Methods and formulas of [MV] rotatemat for

details.

• Compute derived results needed for your estimator.

• Store in e() fields (macros, scalars, matrices) named r name, adding to the existing e() fields.

Store the macros returned by rotatemat under the same named prefixed with r . In particular, the

macro e(r criterion) should be set to the name of the rotation criterion returned by rotatemat
as r(criterion). Other commands can check this field to find out whether rotation results are

available.

We suggest that only the most recent rotation results be stored, overwriting any existing e(r *)
results. The programmer command rotate clear clears any existing r * fields from e().

• Display the rotation results by replaying cmd.

Estimation command cmd
• In cmd, define e(rotate cmd) to cmd rotate.

• cmd should be able to display the rotated results and should default to do so if rotated results are

available. Include an option noROTated to display the unrotated results.

• You may use the programmer command rotate text to obtain a standard descriptive text for the

rotation method.

Other postestimation commands
• Other postestimation commands after cmd should operate on the rotated results whenever they are

appropriate and available, unless the option noROTated specifies otherwise.

https://www.stata.com/manuals/mvrotatemat.pdf#mvrotatematMethodsandformulas
https://www.stata.com/manuals/mvrotatemat.pdf#mvrotatemat
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• Mention that you operate on the unrotated results only if rotated results are available, but the user or

you as the programmer decided not to use them.

Methods and formulas
See Methods and formulas of [MV] rotatemat.� �
Henry Felix Kaiser (1927–1992) was born in Morristown, New Jersey, and educated in California,

where he earned degrees at Berkeley in between periods of naval service during and after World

War II. A specialist in psychological and educational statistics and measurement, Kaiser worked at

the Universities of Illinois and Wisconsin before returning to Berkeley in 1968. He made several

contributions to factor analysis, including varimax rotation (the subject of his PhD) and a measure

for assessing sampling adequacy. Kaiser is remembered as an eccentric who spray-painted his shoes

in unusual colors and listed ES (Eagle Scout) as his highest degree.� �
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