
procrustes — Procrustes transformation

Description Quick start Menu Syntax Options
Remarks and examples Stored results Methods and formulas References Also see

Description
procrustes performs the Procrustean analysis, a standard method of multidimensional scaling in

which the goal is to transform the source varlist to be as close as possible to the target varlist. Closeness is

measured by the residual sum of squares. The permitted transformations are any combination of dilation

(uniform scaling), rotation and reflection (that is, orthogonal or oblique transformations), and translation.

procrustes deals with complete cases only. procrustes assumes equal weights or scaling for the

dimensions. Variables measured on different scales should be standardized before using procrustes.

Quick start
Procrustes transform source variables x1 and x2 to be close to target variables y1 and y2

procrustes (y1 y2) (x1 x2)

Add a third source variable, x3, and target variable, y3
procrustes (y1 y2 y3) (x1 x2 x3)

Same as above, but allow an oblique instead of an orthogonal rotation

procrustes (y1 y2 y3) (x1 x2 x3), transform(oblique)

Same as above, but suppress dilation

procrustes (y1 y2 y3) (x1 x2 x3), transform(oblique) norho

Menu
Statistics > Multivariate analysis > Procrustes transformations
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Syntax
procrustes (varlist𝑦) (varlist𝑥) [ if ] [ in ] [weight ] [ , options ]

options Description

Model

transform(orthogonal) orthogonal rotation and reflection transformation; the default

transform(oblique) oblique rotation transformation

transform(unrestricted) unrestricted transformation

noconstant suppress the constant

norho suppress the dilation factor 𝜌 (set 𝜌 = 1)

force allow overlap and duplicates in varlist𝑦 and varlist𝑥 (advanced)

Reporting

nofit suppress table of fit statistics by target variable

bootstrap, by, collect, jackknife, and statsby are allowed; see [U] 11.1.10 Prefix commands.

Weights are not allowed with the bootstrap prefix; see [R] bootstrap.

aweights are not allowed with the jackknife prefix; see [R] jackknife.

aweights and fweights are allowed; see [U] 11.1.6 weight.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options

� � �
Model �

transform(transform) specifies the transformation method. The following transformation methods are

allowed:

orthogonal specifies that the linear transformation matrixA should be orthogonal,A′A = AA′ = I.

This is the default.

oblique specifies that the linear transformation matrixA should be oblique, diag(AA′) = 1.

unrestricted applies no restrictions to A, making the procrustes transformation equivalent to

multivariate regression with uncorrelated errors; see [MV] mvreg.

noconstant specifies that the translation component c is fixed at 0 (the 0 vector).

norho specifies that the dilation (scaling) constant 𝜌 is fixed at 1. This option is not relevant with

transform(unrestricted); here 𝜌 is always fixed at 1.

force, an advanced option, allows overlap and duplicates in the target variables varlist𝑦 and source

variables varlist𝑥.

� � �
Reporting �

nofit suppresses the table of fit statistics per target variable. This option may be specified during esti-

mation and upon replay.

https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.4inrange
https://www.stata.com/manuals/mvprocrustes.pdf#mvprocrustesSyntaxweight
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.10Prefixcommands
https://www.stata.com/manuals/rbootstrap.pdf#rbootstrap
https://www.stata.com/manuals/rjackknife.pdf#rjackknife
https://www.stata.com/manuals/u11.pdf#u11.1.6weight
https://www.stata.com/manuals/u20.pdf#u20Estimationandpostestimationcommands
https://www.stata.com/manuals/mvmvreg.pdf#mvmvreg
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
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Remarks and examples
Remarks are presented under the following headings:

Introduction to Procrustes methods
Orthogonal Procrustes analysis
Is an orthogonal Procrustes analysis symmetric?
Other transformations

Introduction to Procrustes methods
The name Procrustes analysis was applied to optimal matching of configurations byHurley and Cattell

(1962) and refers to Greek mythology. The following account follows Cox and Cox (2001, 123). Trav-

elers from Eleusis to Athens were kindly invited by Damastes to spend the night at his place. Damastes,

however, practiced a queer kind of hospitality. If guests would not fit the bed, Damastes would either

stretch them to make them fit, or chop off extremities if they were too long. Therefore, he was given

the nickname Procrustes—ancient Greek for “the stretcher”. Theseus, a warrior, finally gave Procrustes

some of his own medicine.

Procrustes methods have been applied in many areas. Gower and Dijksterhuis (2004) mention appli-

cations in psychometrics (for example, the matching of factor loading matrices), image analysis, market

research, molecular biology, biometric identification, and shape analysis.

Formally, procrustes solves the minimization problem

Minimize |Y − (1c′ + ρ X A) |

where c is a row vector representing the translation, ρ is the scalar “dilation factor”, A is the rotation

and reflection matrix (orthogonal, oblique, or unrestricted), and |.| denotes the L2 norm. The goal is to

transform the source X to be as close as possible to the target Y. The permitted Closeness is measured

by the residual sum of squares.

Some of the early work on Procrustes analysis was done by Mosier (1939), Green (1952), Hurley and

Cattell (1962), and Browne (1967); see Gower and Dijksterhuis (2004).
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Orthogonal Procrustes analysis

Example 1
We illustrate procrustes with John Speed’s historical 1610 map of the Worcestershire region in

England, engraved and printed by Jodocus Hondius in Amsterdam in 1611–1612. Used with permission

of Peen (2007).

We analyze the accuracy of this map. Cox and Cox (2001) present data on the locations of 20 towns

and villages on this old map, as well as the locations on a modern map from the Landranger Series of

Ordnance Survey Maps. The locations were measured relative to the lower-left corner of the maps. We

list this small dataset, specifying the noobs option to prevent wrapping and sep(0) to suppress internal

horizontal lines.
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. use https://www.stata-press.com/data/r19/speed_survey
(Data on Speed’s Worcestershire map (1610))
. list name lname speed_x speed_y survey_x survey_y, sep(0) noobs

name lname speed_x speed_y survey_x survey_y

Alve Alvechurch 192 211 1027 725
Arro Arrow 217 155 1083 565
Astl Astley 88 180 787 677
Beck Beckford 193 66 976 358
Beng Bengeworth 220 99 1045 435
Crad Cradley 79 93 736 471
Droi Droitwich 136 171 893 633
Ecki Eckington 169 81 922 414
Eves Evesham 211 105 1037 437
Hall Hallow 113 142 828 579
Hanb Hanbury 162 180 944 637
Inkb Inkberrow 188 156 1016 573
Kemp Kempsey 128 108 848 490
Kidd Kidderminster 104 220 826 762
Mart Martley 78 145 756 598
Stud Studley 212 185 1074 632
Tewk Tewkesbury 163 40 891 324
UpSn UpperSnodsbury 163 138 943 544
Upto Upton 138 71 852 403
Worc Worcester 125 132 850 545

Youwill probably conclude immediately that the scales of the twomaps differ and that the coordinates

are expressed with respect to different reference points; the lower-left corners of the maps correspond to

different physical locations. Another distinction will not be so obvious—at least not by looking at these

numbers: the orientations of the maps may well differ. We display as scatterplots Speed’s data (speed x,
speed y) and the modern survey data (survey x, survey y).
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. scatter speed_y speed_x, mlabel(name) ytitle(””) xtitle(””)
> yscale(off) xscale(off) ylabel(,nogrid) xlabel(,nogrid)
> title(Historic map of 20 towns and villages in Worcestershire)
> subtitle((Speed 1610)) graphregion(fcolor(gs14))
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(Speed 1610)

Historic map of 20 towns and villages in Worcestershire

. scatter survey_y survey_x, mlabel(name) ytitle(””) xtitle(””)
> yscale(off) xscale(off) ylabel(,nogrid) xlabel(, nogrid)
> title(Modern map of 20 towns and villages in Worcestershire)
> subtitle((Landranger series of Ordnance Survey Maps))
> graphregion(fcolor(gs14))
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Modern map of 20 towns and villages in Worcestershire

To gauge the accuracy of the historic map, we must account for differences in scale, location, and

orientation. Because the area depicted on the map is relatively small, we think that it is justified to

ignore the curvature of the earth and approximate distances along the globe with Euclidean distances,

and apply a Procrustes analysis,

survey map = transformation(speed map) + residual

choosing the transformation (from among the allowed transformations) to minimize the residual in terms

of the residual sum of squares. The transformation should allow for, in mathematical terms, translation,

uniform scaling, and two-dimensional orthogonal rotation. The uniform scaling factor is often described
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as the dilation factor, a positive scalar. The transformation from source to target configuration can be

written as

(survey x survey y) = (𝑐𝑥 𝑐𝑦) + 𝜌 (speed x speed y) (𝑎11 𝑎12
𝑎21 𝑎22

) + (res x res y)

or simply as

survey map = translation + dilation × speed map × rotation + residual

The matrix

A = (𝑎11 𝑎12
𝑎21 𝑎22

)

should satisfy the constraint that it represents an orthogonal rotation—it should maintain the lengths of

vectors and the angles between vectors. We estimate the translation (𝑐𝑥 𝑐𝑦), dilation factor 𝜌, and the
rotation matrix A with the procrustes command.

. procrustes (survey_x survey_y) (speed_x speed_y)
Procrustes analysis (orthogonal) Number of observations = 20

Model df (df_m) = 4
Residual df (df_r) = 36
SS(target) = 495070
RSS(target) = 1973.384
RMSE = root(RSS/df_r) = 7.403797
Procrustes = RSS/SS = 0.0040

Translation c

survey_x survey_y

_cons 503.8667 293.9878

Rotation and reflection matrix A (orthogonal)

survey_x survey_y

speed_x .9841521 -.1773266
speed_y .1773266 .9841521

Dilation factor
rho = 2.3556

Fit statistics by target variable

Statistics survey_x survey_y

SS 216310.2 278759.8
RSS 1081.36 892.0242

RMSE 7.750841 7.039666
Procrustes .0049991 .0032

Corr_y_yhat .9976669 .9985076

We can read the elements of the transformation from the output: the translation from the Speed map

onto the survey map is (504, 294). The scale of the survey and Speed maps differ by a factor of 2.36.

The orientations of the maps also differ somewhat; if the maps had been oriented the same, we would

have expected the rotation to be an identity matrix. Note that .9842 + .1772 = 1, subject to rounding

error—indeed the rotation is “norm preserving”. A counterclockwise rotation in a plane over 𝜃 can be

written as
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( cos(𝜃) sin(𝜃)
− sin(𝜃) cos(𝜃))

See appendix B in Gower and Dijksterhuis (2004). Here cos(𝜃) = 0.984, so 𝜃 = cos−1(0.984) = 0.179

radians. For easier interpretation, we convert this into degrees. The difference in the orientation of the

two maps is 360 × 0.179/(2𝜋) = 10.3 degrees.

The other output produced by procrustes may be more familiar. procrustes estimated four pa-

rameters: the angle of rotation, two translation parameters, and the dilation factor 𝜌. SS(target) is the

centered sum of squares of the survey data, and is meaningful mostly in relation to the residual sum of

squares RSS(target). The Procrustes statistic, defined as RSS/SS, measures the size of the residuals relative

to the variation in the target variables; it is equivalent to 1 − 𝑅2 in a regression analysis context. The

smaller the Procrustes statistic, the closer the correspondence of Speed’s map to the survey map. The

number in this case, 0.004, is small indeed. Another way of looking at fit is via the square root of the

mean squared residual error, RMSE, a measure for the average size of residuals.

The last output table describes how well the transformed Speed coordinates match the survey coor-

dinates, separately for the horizontal (𝑥) and the vertical (𝑦) coordinates. In this case, we do not see

disturbing differences between the coordinates. By definition, the overall Procrustes statistic and the

overall RMSE are averages of the coordinate statistics. Because Procrustes analysis treats (weights) both

coordinates the same and independently, analogous to the sphericity assumption in multivariate regres-

sion or MANOVA analysis, the comparable statistics for the different coordinates is reassuring.

This example is continued in [MV] procrustes postestimation, demonstrating how to generate fitted

values and residual sum of squares with predict, how to produce a graph showing the target overlaid

with the transformed source values with procoverlay, and how to produce various summaries and

comparisons with estat.

A Procrustes analysis fits the transformation subject to the constraint that A is orthogonal; for other

constraints, see below. In two dimensions, there are actually two types of orthogonal matrices: rotations

and reflections. Think of left and right hands. A rotation transforms a left hand into a left hand, never into

a right hand; rotation preserves orientation. A reflection changes a left hand into a right hand; reflections

invert orientation. In algebraic terms, an orthogonal matrix A satisfies det(A) = ±1. A is a rotation if

det(A) = 1, and A is a reflection if det(A) = −1. In more than two dimensions, the classification of

orthogonal transformations is more complicated.

Example 2
In example 1, we treated the location, dilation, and orientation as estimable aspects of the transforma-

tion. It is possible to omit the location and dilation aspects—though, admittedly, from a casual inspection

as well as the substantial understanding of the data, these aspects are crucial. For instance, we may omit

the dilation factor—that is, assume 𝜌 = 1—with the norho option.

https://www.stata.com/manuals/mvprocrustespostestimation.pdf#mvprocrustespostestimationRemarksandexamplesex1
https://www.stata.com/manuals/mvprocrustespostestimation.pdf#mvprocrustespostestimation
https://www.stata.com/manuals/mvprocrustes.pdf#mvprocrustesRemarksandexamplesOthertransformations
https://www.stata.com/manuals/mvprocrustes.pdf#mvprocrustesRemarksandexamplesex_procrustes_speed


procrustes — Procrustes transformation 9

. procrustes (survey_x survey_y) (speed_x speed_y), norho
Procrustes analysis (orthogonal) Number of observations = 20

Model df (df_m) = 3
Residual df (df_r) = 37
SS(target) = 495070
RSS(target) = 165278.1
RMSE = root(RSS/df_r) = 66.83544
Procrustes = RSS/SS = 0.3338

Translation c

survey_x survey_y

_cons 741.4458 435.6215

Rotation and reflection matrix A (orthogonal)

survey_x survey_y

speed_x .9841521 -.1773266
speed_y .1773266 .9841521

Dilation factor
rho = 1.0000

Fit statistics by target variable

Statistics survey_x survey_y

SS 216310.2 278759.8
RSS 70385.78 94892.36

RMSE 61.68174 71.61925
Procrustes .3253928 .340409

Corr_y_yhat .9976669 .9985076

As expected, the optimal transformation without dilation implies a much weaker relation between the

Speed and Survey maps; the Procrustes statistic has increased from 0.0040 to 0.3338. We conclude that

we cannot adequately describe the correspondence between the maps if we ignore differences in scale.

Is an orthogonal Procrustes analysis symmetric?
In examples 1 and 2, we transformed the Speed map to optimally match the modern Survey map. We

could also have reversed the procedure, that is, transform the Survey map to match the Speed map.

https://www.stata.com/manuals/mvprocrustes.pdf#mvprocrustesRemarksandexamplesex_procrustes_speed
https://www.stata.com/manuals/mvprocrustes.pdf#mvprocrustesRemarksandexamplesex2
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Example 3
Here we change the order of the Speed and Survey map in our call to procrustes from example 1.

. procrustes (speed_x speed_y) (survey_x survey_y)
Procrustes analysis (orthogonal) Number of observations = 20

Model df (df_m) = 4
Residual df (df_r) = 36
SS(target) = 88862.75
RSS(target) = 354.2132
RMSE = root(RSS/df_r) = 3.136759
Procrustes = RSS/SS = 0.0040

Translation c

speed_x speed_y

_cons -187.0142 -159.5801

Rotation and reflection matrix A (orthogonal)

speed_x speed_y

survey_x .9841521 .1773266
survey_y -.1773266 .9841521

Dilation factor
rho = 0.4228

Fit statistics by target variable

Statistics speed_x speed_y

SS 41544.95 47317.8
RSS 218.3815 135.8317

RMSE 3.483146 2.747036
Procrustes .0052565 .0028706

Corr_y_yhat .9975074 .9986641

The implied transformations are similar but not identical. For instance, the product of estimated scale

factors is 2.3556×0.4228 = 0.9959, which is close to 1 but not identical to 1—this is not due to roundoff

error. Why do the results differ? Think about the analogy with regression analysis. The regression of

𝑌 on 𝑋 and the regression of 𝑋 on 𝑌 generally imply different relationships between the variables. In

geometric terms, one minimizes the sum of squares of the “vertical” distances between the data point

and the regression line, whereas the other minimizes the “horizontal” distances. The implied regression

lines are the same if the variance in 𝑋 and 𝑌 are the same. Even if this does not hold, the proportion of

explained variance 𝑅2 in both regressions is the same. In Procrustes analysis, an analogous relationship

holds between the analyses “Speed = transformed(Survey) + E” and “Survey = transformed(Speed)

+ E”. Both analyses yield the same Procrustes statistic. The implied analyses are equivalent (that is,

the implied transformation in one analysis is the mathematical inverse of the transformation in the other

analysis) only if the Speed and Survey data are scaled so that the trace of the associated covariance

matrices is the same.

https://www.stata.com/manuals/mvprocrustes.pdf#mvprocrustesRemarksandexamplesex_procrustes_speed
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Other transformations
A Procrustes analysis can also be applied with other classes of transformations. Browne (1967) an-

alyzed Procrustes analyses with oblique rotations. Cramer (1974) and ten Berge and Nevels (1977)

identified and solved some problems in Browne’s solution (but still ignore the problem that the derived

oblique rotations are not necessarily orientation preserving). procrustes supports oblique transforma-

tions. procrustes also allows dilation; see Methods and formulas.

Example 4
Even though the orthogonal Procrustes analysis of example 1 demonstrated a similarity between the

two configurations assuming an orthogonal transformation, we now investigate what happens with an

oblique transformation.

. procrustes (survey_x survey_y) (speed_x speed_y), trans(oblique)
Procrustes analysis (oblique) Number of observations = 20

Model df (df_m) = 5
Residual df (df_r) = 35
SS(target) = 495070
RSS(target) = 1967.854
RMSE = root(RSS/df_r) = 7.498294
Procrustes = RSS/SS = 0.0040

Translation c

survey_x survey_y

_cons 503.0093 292.4346

Rotation and reflection matrix A (oblique)

survey_x survey_y

speed_x .9835969 -.1737553
speed_y .1803803 .9847889

Dilation factor
rho = 2.3562

Fit statistics by target variable

Statistics survey_x survey_y

SS 216310.2 278759.8
RSS 1080.677 887.1769

RMSE 7.858307 7.1201
Procrustes .004996 .0031826

Corr_y_yhat .9976685 .9985163

We see that the optimal oblique transformation is almost orthogonal; the columns of the oblique

rotation and reflection matrix are almost perpendicular. The dilation factor and translation vector hardly

differ from the orthogonal case shown in example 1. Finally, we see that the residual sum of squares

decreased little, namely, from 1,973.4 to 1,967.9.

https://www.stata.com/manuals/mvprocrustes.pdf#mvprocrustesMethodsandformulas
https://www.stata.com/manuals/mvprocrustes.pdf#mvprocrustesRemarksandexamplesex_procrustes_speed
https://www.stata.com/manuals/mvprocrustes.pdf#mvprocrustesRemarksandexamplesex_procrustes_speed
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Procrustes analysis can be interpreted as multivariate regression Y = c+ xB+ e in which some non-

linear restriction is applied to the coefficients B. Procrustes analysis assumes B = 𝜌A with A assumed

to be orthogonal or A assumed to be oblique. The intercepts of the multivariate regression are, of course,

the translation of the Procrustean transform. In contrast to multivariate regression, it is assumed that the

distribution of the residuals e is spherical; that is, all that is assumed is that var(e) = 𝜎2I. This assump-

tion affects standard errors, not the estimated coefficients. Multivariate regression serves as a useful

baseline to gauge the extent to which the Procrustean analysis is appropriate. procrustes supports the

transform(unrestricted) option and displays the fitted model in a format comparable to Procrustes

analysis.

Example 5
We demonstrate with Speed’s map data.

. procrustes (survey_x survey_y) (speed_x speed_y), trans(unrestricted)
Procrustes analysis (unrestricted) Number of observations = 20

Model df (df_m) = 6
Residual df (df_r) = 34
SS(target) = 495070
RSS(target) = 1833.435
RMSE = root(RSS/df_r) = 7.343334
Procrustes = RSS/SS = 0.0037

Translation c

survey_x survey_y

_cons 510.8028 288.243

Rotation and reflection matrix A (unrestricted)

survey_x survey_y

speed_x 2.27584 -.4129564
speed_y .4147244 2.355725

Fit statistics by target variable

Statistics survey_x survey_y

SS 216310.2 278759.8
RSS 1007.14 826.2953

RMSE 7.696981 6.971772
Procrustes .004656 .0029642

Corr_y_yhat .9976693 .9985168

Because we already saw that there is almost no room to improve on the orthogonal Procrustes trans-

form with this particular dataset, dropping the restrictions on the coefficients hardly improves the fit. For

instance, the residual sum of squares further decreases from 1,967.9 in the oblique case to 1,833.4 in the

unrestricted case, with only a small reduction in the value of the Procrustes statistic.
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Stored results
procrustes stores the following in e():
Scalars

e(N) number of observations

e(rho) dilation factor

e(P) Procrustes statistic

e(ss) total sum of squares, summed over all 𝑦 variables

e(rss) residual sum of squares, summed over all 𝑦 variables

e(rmse) root mean squared error

e(urmse) root mean squared error (unadjusted for # of estimated parameters)

e(df m) model degrees of freedom

e(df r) residual degrees of freedom

e(ny) number of 𝑦 variables (target variables)

Macros

e(cmd) procrustes
e(cmdline) command as typed

e(ylist) 𝑦 variables (target variables)

e(xlist) 𝑥 variables (source variables)

e(transform) orthogonal, oblique, or unrestricted
e(uniqueA) 1 if rotation is unique, 0 otherwise

e(wtype) weight type

e(wexp) weight expression

e(properties) nob noV
e(estat cmd) program used to implement estat
e(predict) program used to implement predict
e(marginsnotok) predictions disallowed by margins

Matrices

e(c) translation vector

e(A) orthogonal transformation matrix

e(ystats) matrix containing fit statistics

Functions

e(sample) marks estimation sample

Methods and formulas
Methods and formulas are presented under the following headings:

Introduction
Orthogonal transformations
Oblique transformations
Unrestricted transformations
Reported statistics

Introduction
A Procrustes analysis is accomplished by solving a matrix minimization problem

Minimize |Y − (1c′ + ρ X A) |

with respect to A, c, and 𝜌. A is a matrix representing a linear transformation, 𝜌 > 0 is a scalar called

the “dilation factor”, c is a translation (row-) vector, and |.| is the Frobenius (or L2) norm. Three classes
of transformations are available in procrustes: orthogonal, oblique, and unrestricted. The orthogonal
class consists of all orthonormal matrices A, that is, all square matrices that satisfy A′A = I, repre-

senting orthogonal norm-preserving rotations and reflections. The oblique class comprises all normal
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matrices A, characterized by diag(A′A) = 1. Oblique transformations preserve the length of vectors but

not the angles between vectors—orthogonal vectors will generally not remain orthogonal under oblique

transformations. Finally, the unrestricted class consists of all conformable regular matrices A.

Define Ỹ and X̃ as the centered Y and X, respectively, if a constant c is included in the analysis and

as the uncentered Y and X otherwise.

The derivation of the optimal A obviously differs for the three classes of transformations.

Orthogonal transformations
The solution for the orthonormal case can be expressed in terms of the singular value decomposition

of Ỹ′X̃,

Ỹ′X̃ = U𝚲V′

where U′U = V′V = I. Then

Â = VU′

Â is the same whether or not scaling is required, that is, whether 𝜌 is a free parameter or a fixed parameter.
When 𝜌 is a free parameter, the optimal 𝜌 is

̂𝜌 = trace(ÂỸ′X̃)
trace(X̃′X̃)

See ten Berge (1977) for a modern and elementary derivation; see Mardia, Kent, and Taylor (2024)

for a derivation using matrix differential calculus.

Oblique transformations
Improving on earlier studies by Browne (1967) and Cramer (1974), ten Berge and Nevels (1977)

provide a full algorithm to compute the optimal oblique rotation without dilation, that is, with uniform

scaling 𝜌 = 1. In contrast to the orthogonal case, the optimal oblique rotation Â depends on 𝜌. To the best
of our knowledge, this case has not been treated in the literature (J. M. F. ten Berge, 2004, pers. comm.).

However, an “alternating least squares” extension of the ten Berge and Nevels (1977) algorithm deals

with this case.

For each iteration, step (a) follows ten Berge and Nevels (1977) for calculating Ỹ and ̂𝜌X̃. In step (b)
of an iteration, 𝜌 is optimized, keeping Â fixed, with solution

̂𝜌 = trace(ÂỸ′X̃)
trace(X̃′X̃ÂÂ′)

Iteration continues while the relative decrease in the residual sum of squares is large enough. This al-

gorithm is ensured to yield a local optimum of the residual sum of squares as the RSS decreases both

when updating the rotation A and when updating the dilation factor 𝜌. Beware that the algorithm is not

guaranteed to find the global minimum.
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Unrestricted transformations
In the unrestricted solution, the dilation factor 𝜌 is fixed at 1. The computation of the Procrustes

transformation is obviously equivalent to the least-squares solution of multivariate regression

Â = (X̃′X̃)−1X̃′Ỹ

Given Â and ̂𝜌, the optimal translation ̂c can be written as

̂c = Y′1 − ̂𝜌ÂX

If the constant is suppressed, c is simply set to 0.

Reported statistics
procrustes computes and displays the following statistics for each target variable separately and

globally by adding the appropriate sums of squares over all target variables. The predicted values Ŷ for

Y are defined as

Ŷ = 1 ̂c′ + ̂𝜌XÂ

The Procrustes statistic, 𝑃, is a scaled version of the squared distance of Y:

𝑃 = RSS/SS

where

RSS = trace((Y − Ŷ)(Y − Ŷ)′)

SS = trace(Ỹ′Ỹ)

Note that 0 ≤ 𝑃 ≤ 1, and a small value of 𝑃 means that Y is close to the transformed value of X, that is,

the X and Y configurations are similar. In the literature, this statistic is often denoted by 𝑅2. It is easy

to confuse this with the 𝑅2 statistic in a regression context, which is actually 1 − 𝑃.
A measure for the size of the residuals is the root mean squared error,

RMSE = √RSS/dfr

Here dfr are 𝑁𝑛𝑦 − dfm, with dfm = 𝑛𝑦𝑛𝑥 + 𝑛𝑦 + 1− 𝑘, and with 𝑁 the number of observations, 𝑛𝑦 and

𝑛𝑥 the number of target variables and source variables, respectively, and 𝑘, the number of restrictions,
defined as

orthogonal: 𝑘 = 𝑛𝑥(𝑛𝑥 − 1)/2
oblique: 𝑘 = 𝑛𝑦
unrestricted: 𝑘 = 1

procrustes computes RMSE(𝑗) for target variable 𝑦𝑗 as

RMSE(𝑗) = √RSS(𝑗)/(dfr/𝑛𝑦)

Finally, procrustes computes the Pearson correlation between 𝑦𝑗 and 𝑦𝑗. For the unrestricted trans-

formation, this is just the square root of the explained variance 1− 𝑃(𝑗), where 𝑃(𝑗) = RSS(𝑗)/SS. For
the orthogonal and oblique transformation, this relationship does not hold.
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