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Postestimation commands
The following postestimation commands are of special interest after pca and pcamat:

Command Description

estat anti anti-image correlation and covariance matrices

estat kmo Kaiser–Meyer–Olkin measure of sampling adequacy

estat loadings component-loading matrix in one of several normalizations

estat residuals matrix of correlation or covariance residuals

estat rotatecompare compare rotated and unrotated components

estat smc squared multiple correlations between each variable and the rest
∗ estat summarize display summary statistics over the estimation sample

loadingplot plot component loadings

rotate rotate component loadings

scoreplot plot score variables

screeplot plot eigenvalues

∗estat summarize is not available after pcamat.

The following standard postestimation commands are also available:

Command Description

† estat vce variance–covariance matrix of the estimators (VCE)

estimates cataloging estimation results

etable table of estimation results
∗ lincom point estimates, standard errors, testing, and inference for linear combi-

nations of parameters
∗ nlcom point estimates, standard errors, testing, and inference for nonlinear com-

binations of parameters

predict score variables, fitted values, and residuals
∗ predictnl point estimates, standard errors, testing, and inference for generalized pre-

dictions
∗ test Wald tests of simple and composite linear hypotheses
∗ testnl Wald tests of nonlinear hypotheses

†estat vce is available after pca and pcamat with the vce(normal) option.
∗lincom, nlcom, predictnl, test, and testnl are available only after pca with the vce(normal) option.
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predict

Description for predict
predict creates new variables containing predictions such as scores, fitted values, raw residuals, and

residual sums of squares.

Menu for predict
Statistics > Postestimation

Syntax for predict
predict [ type ] {stub* | newvarlist} [ if ] [ in ] [ , statistic options ]

statistic # of vars. Description (𝑘 = # of orig. vars.; 𝑓 = # of components)

Main

score 1, . . . , 𝑓 scores based on the components; the default

fit 𝑘 fitted values using the retained components

residual 𝑘 raw residuals from the fit using the retained components

q 1 residual sums of squares

options Description

Main

norotated use unrotated results, even when rotated results are available

center base scores on centered variables

notable suppress table of scoring coefficients

format(% fmt) format for displaying the scoring coefficients

Options for predict
Note on pcamat: predict requires that variables with the correct names be available in memory.

Apart from centered scores, means() should have been specified with pcamat. If you used pcamat
because you have access only to the correlation or covariance matrix, you cannot use predict.

� � �
Main �

score calculates the scores for components 1, . . . , #, where # is the number of variables in newvarlist.

fit calculates the fitted values, using the retained components, for each variable. The number of vari-

ables in newvarlist should equal the number of variables in the varlist of pca; see [MV] pca.

residual calculates for each variable the raw residuals (residual = observed − fitted), with the fitted

values computed using the retained components.

q calculates the Rao statistics (that is, the sums of squares of the omitted components) weighted by the

respective eigenvalues. This equals the residual sums of squares between the original variables and

the fitted values.

https://www.stata.com/manuals/d.pdf#dDatatypes
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.4inrange
https://www.stata.com/manuals/d.pdf#dformat
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/mvpca.pdf#mvpca
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norotated uses unrotated results, even when rotated results are available.

center bases scores on centered variables. This option is relevant only for a PCA of a covariance matrix,
in which the scores are based on uncentered variables by default. Scores for a PCA of a correlation

matrix are always based on the standardized variables.

notable suppresses the table of scoring coefficients.

format(% fmt) specifies the display format for scoring coefficients. The default is format(%8.4f).

estat

Description for estat
estat anti displays the anti-image correlation and anti-image covariance matrices. These are minus

the partial covariance and minus the partial correlation of all pairs of variables, holding all other variables

constant.

estat kmo displays the Kaiser–Meyer–Olkin (KMO) measure of sampling adequacy. KMO takes val-

ues between 0 and 1, with small values indicating that overall the variables have too little in common to

warrant a PCA. Historically, the following labels are given to values of KMO (Kaiser 1974):

0.00 to 0.49 unacceptable

0.50 to 0.59 miserable

0.60 to 0.69 mediocre

0.70 to 0.79 middling

0.80 to 0.89 meritorious

0.90 to 1.00 marvelous

estat loadings displays the component-loading matrix in one of several normalizations of the

columns (eigenvectors).

estat residuals displays the difference between the observed correlation or covariance matrix and
the fitted (reproduced) matrix using the retained factors.

estat rotatecompare displays the unrotated (principal) components next to the most recent rotated
components.

estat smc displays the squared multiple correlations between each variable and all other variables.

SMC is a theoretical lower bound for communality and thus an upper bound for the unexplained variance.

estat summarize displays summary statistics of the variables in the principal component analysis

over the estimation sample. This subcommand is not available after pcamat.

Menu for estat
Statistics > Postestimation

https://www.stata.com/manuals/d.pdf#dformat
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Syntax for estat
Display the anti-image correlation and covariance matrices

estat anti [ , nocorr nocov format(% fmt) ]

Display the Kaiser–Meyer–Olkin measure of sampling adequacy

estat kmo [ , novar format(% fmt) ]

Display the component-loading matrix

estat loadings [ , cnorm(unit | eigen | inveigen) format(% fmt) ]

Display the differences in matrices

estat residuals [ , obs fitted format(% fmt) ]

Display the unrotated and rotated components

estat rotatecompare [ , format(% fmt) ]

Display the squared multiple correlations

estat smc [ , format(% fmt) ]

Display the summary statistics

estat summarize [ , labels noheader noweights ]

collect is allowed with estat anti, estat kmo, estat loadings, estat residuals, estat smc, and estat
summarize; see [U] 11.1.10 Prefix commands.

Options for estat
nocorr, an option used with estat anti, suppresses the display of the anti-image correlation matrix,

that is, minus the partial correlationmatrix of all pairs of variables, holding constant all other variables.

nocov, an option used with estat anti, suppresses the display of the anti-image covariance matrix, that
is, minus the partial covariance matrix of all pairs of variables, holding constant all other variables.

format(% fmt) specifies the display format. The defaults differ between the subcommands.

novar, an option used with estat kmo, suppresses the Kaiser–Meyer–Olkin measures of sampling ad-

equacy for the variables in the principal component analysis, displaying the overall KMO measure

only.

cnorm(unit | eigen | inveigen), an option used with estat loadings, selects the normalization of
the eigenvectors, the columns of the principal-component loading matrix. The following normaliza-

tions are available
unit ssq(column) = 1; the default

eigen ssq(column) = eigenvalue

inveigen ssq(column) = 1/eigenvalue

https://www.stata.com/manuals/d.pdf#dformat
https://www.stata.com/manuals/d.pdf#dformat
https://www.stata.com/manuals/d.pdf#dformat
https://www.stata.com/manuals/d.pdf#dformat
https://www.stata.com/manuals/d.pdf#dformat
https://www.stata.com/manuals/d.pdf#dformat
https://www.stata.com/manuals/u11.pdf#u11.1.10Prefixcommands
https://www.stata.com/manuals/d.pdf#dformat
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with ssq(column) being the sum of squares of the elements in a column and eigenvalue, the eigenvalue

associated with the column (eigenvector).

obs, an option used with estat residuals, displays the observed correlation or covariance matrix for
which the PCAwas performed.

fitted, an option used with estat residuals, displays the fitted (reconstructed) correlation or covari-
ance matrix based on the retained components.

labels, noheader, and noweights are the same as for the generic estat summarize command; see

[R] estat summarize.

Remarks and examples
After computing the principal components and the associated eigenvalues, you have more issues to

resolve. How many components do you want to retain? How well is the correlation or covariance

matrix approximated by the retained components? How can you interpret the principal components?

Is it possible to improve the interpretability by rotating the retained principal components? And, when

these issues have been settled, the component scores are probably needed for later research.

The rest of this entry describes the specific tools available for these purposes.

Remarks are presented under the following headings:

Postestimation statistics
Plots of eigenvalues, component loadings, and scores
Rotating the components
How rotate interacts with pca
Predicting the component scores

In addition to these specific postestimation tools, general tools are available as well. pca is an estima-
tion command, so it is possible to manage a series of PCA analyses with the estimates command; see

[R] estimates. If you have specified the vce(normal) option, pca has stored the coefficients e(b) and
the associated variance–covariance matrix e(V), and you can use standard Stata commands to test hy-
potheses about the principal components and eigenvalues (“confirmatory principal component analysis”),

for instance, with the test, lincom, and testnl commands. We caution you to test only hypotheses

that do not violate the assumptions of the theory underlying the derivation of the covariance matrix. In

particular, all eigenvalues are assumed to be different and strictly positive. Thus it makes no sense to use

test to test the hypothesis that the smallest four eigenvalues are equal (let alone that they are equal to

zero.)

Postestimation statistics
pca displays the principal components in unit normalization; the sum of squares of the principal load-

ings equals 1. This parallels the standard conventions in mathematics concerning eigenvectors. Some

texts and some software use a different normalization. Some texts multiply the eigenvectors by the

square root of the eigenvalues. In this normalization, the sum of the squared loadings equals the variance

explained by that component. estat loadings can display the loadings in this normalization.
. use https://www.stata-press.com/data/r19/audiometric
(Audiometric measures)
. pca l* r*, comp(4)
(output omitted )

https://www.stata.com/manuals/restatsummarize.pdf#restatsummarize
https://www.stata.com/manuals/restimates.pdf#restimates
https://www.stata.com/manuals/rtest.pdf#rtest
https://www.stata.com/manuals/rlincom.pdf#rlincom
https://www.stata.com/manuals/rtestnl.pdf#rtestnl
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. estat loadings, cnorm(eigen)
Principal component loadings (unrotated)

component normalization: sum of squares(column) = eigenvalue

Comp1 Comp2 Comp3 Comp4

lft500 .795 -.4032 .1562 -.2239
lft1000 .8345 -.2868 -.05132 -.3291
lft2000 .7262 .3035 -.4645 -.193
lft4000 .5567 .6032 .4242 -.1101
rght500 .6804 -.4911 .2561 .3331

rght1000 .8155 -.2948 -.0285 .2544
rght2000 .6175 .4033 -.5559 .2674
rght4000 .5039 .6533 .4209 .1087

How close the retained principal components approximate the correlation matrix can be seen from

the fitted (reconstructed) correlation matrix and from the residuals, that is, the difference between the

observed and fitted correlations.

. estat residual, fit format(%7.3f)
Fitted correlation matrix

Variable lft500 lft1000 lft2000 lft4000 rght500

lft500 0.869
lft1000 0.845 0.890
lft2000 0.426 0.606 0.872
lft4000 0.290 0.306 0.412 0.866
rght500 0.704 0.586 0.162 0.155 0.881

rght1000 0.706 0.683 0.467 0.236 0.777
rght2000 0.182 0.340 0.778 0.322 0.169
rght4000 0.179 0.176 0.348 0.841 0.166

Variable rg~1000 rg~2000 rg~4000

rght1000 0.818
rght2000 0.469 0.925
rght4000 0.234 0.370 0.870



pca postestimation — Postestimation tools for pca and pcamat 7

Residual correlation matrix

Variable lft500 lft1000 lft2000 lft4000 rght500

lft500 0.131
lft1000 -0.067 0.110
lft2000 -0.024 -0.070 0.128
lft4000 -0.035 -0.031 0.013 0.134
rght500 -0.008 -0.034 0.077 0.024 0.119

rght1000 -0.064 0.024 -0.021 0.027 -0.114
rght2000 0.056 0.020 -0.076 -0.005 -0.010
rght4000 0.025 0.041 -0.022 -0.131 -0.034

Variable rg~1000 rg~2000 rg~4000

rght1000 0.182
rght2000 -0.054 0.075
rght4000 -0.014 0.005 0.130

All off diagonal residuals are small, except perhaps the two measurements at the highest frequency.

estat also provides some of the standard methods for studying correlation matrices to assess whether
the variables have strong linear relations with each other. In a sense, these methods could be seen as

preestimation rather than as postestimation methods. The first method is the inspection of the squared

multiple correlation (the regression 𝑅2) of each variable on all other variables.

. estat smc
Squared multiple correlations of variables with all other variables

Variable smc

lft500 0.7113
lft1000 0.7167
lft2000 0.6229
lft4000 0.5597
rght500 0.5893

rght1000 0.6441
rght2000 0.5611
rght4000 0.5409

The SMCmeasures help identify variables that cannot be explained well from the other variables. For

such variables, you should reevaluate whether they should be included in the analysis. In our examples,

none of the SMCs are so small as to warrant exclusion. Two other statistics are offered. First, we can

inspect the anti-image correlation and covariance matrices, that is, the negative of correlations (covari-

ances) of the variables partialing out all other variables. If many of these correlations or covariances

are “high”, the relationships between some of the variables have little to do with the other variables,

indicating that it will not be possible to obtain a low-dimensional reduction of the data.
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. estat anti, nocov format(%7.3f)
Anti-image correlation coefficients partialing out all other variables

Variable lft500 lft1000 lft2000 lft4000 rght500 rg~1000

lft500 1.000
lft1000 -0.561 1.000
lft2000 -0.051 -0.267 1.000
lft4000 -0.014 0.026 -0.285 1.000
rght500 -0.466 0.131 0.064 -0.017 1.000

rght1000 0.023 -0.389 0.043 -0.042 -0.441 1.000
rght2000 0.085 0.068 -0.617 0.161 0.067 -0.248
rght4000 -0.047 -0.002 0.150 -0.675 0.019 0.023

Variable rg~2000 rg~4000

rght2000 1.000
rght4000 -0.266 1.000

The Kaiser–Meyer–Olkin measure of sampling adequacy compares the correlations and the partial

correlations between variables. If the partial correlations are relatively high compared to the correlations,

the KMO measure is small, and a low-dimensional representation of the data is not possible.

. estat kmo
Kaiser-Meyer-Olkin measure of sampling adequacy

Variable kmo

lft500 0.7701
lft1000 0.7767
lft2000 0.7242
lft4000 0.6449
rght500 0.7562

rght1000 0.8168
rght2000 0.6673
rght4000 0.6214

Overall 0.7328

Using the Kaiser (1974) characterization of KMO values,

0.00 to 0.49 unacceptable

0.50 to 0.59 miserable

0.60 to 0.69 mediocre

0.70 to 0.79 middling

0.80 to 0.89 meritorious

0.90 to 1.00 marvelous

we declare our KMO value, 0.73, middling.

Plots of eigenvalues, component loadings, and scores
After computing the principal components, we probably wish to determine how many components to

keep. In factor analysis the question of the “true” number of factors is a complicated one. With PCA, it

is a little more straightforward. We may set a percentage of variance we wish to account for, say, 90%,
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and retain just enough components to account for at least that much of the variance. Usually you will

want to weigh the costs associated with using more components in later analyses against the benefits of

the extra variance they account for. The relative magnitudes of the eigenvalues indicate the amount of

variance they account for. A useful tool for visualizing the eigenvalues relative to one another, so that

you can decide the number of components to retain, is the scree plot proposed by Cattell (1966); see

[MV] screeplot.

. screeplot, mean
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Eigenvalues
Mean

Scree plot of eigenvalues after pca

Because we are analyzing a correlation matrix, the mean eigenvalue is 1. We wish to retain the

components associated with the high part of the scree plot and drop the components associated with the

lower flat part of the scree plot. The boundary between high and low is not clear here, but we would

choose two or three components, although the fourth component had the nice interpretation of the left

versus the right ear; see [MV] pca.

A problem in interpreting the scree plot is that no guidance is given with respect to its stability under

sampling. How different could the plot be with different samples? The approximate variance of an

eigenvalue �̂� of a covariance matrix for multivariate normal distributed data is 2𝜆2/𝑛. From this we can

derive confidence intervals for the eigenvalues. These scree plot confidence intervals aid in the selection

of important components.

https://www.stata.com/manuals/mvscreeplot.pdf#mvscreeplot
https://www.stata.com/manuals/mvpca.pdf#mvpca
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. screeplot, ci
(caution is advised in interpreting an asymptotic theory-based confidence
interval of eigenvalues of a correlation matrix)
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Scree plot of eigenvalues after pca

Despite our appreciation of the underlying interpretability of the fourth component, the evidence still

points to retaining two or three principal components.

Plotting the components is sometimes useful in interpreting a PCA. We may look at the components

from the perspective of the columns (variables) or the rows (observations). The associated plots are

produced by the commands loadingplot (variables) and scoreplot (observations).

By default, the first two components are used to produce the loading plot.

. loadingplot
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Component loadings

You may request more components, in which case each possible pair of requested components will

be graphed. You can choose between a matrix or combined graph layout for the multiple graphs. Here

we show the combined layout.
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. loadingplot, comp(3) combined
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Score plots approach the display of principal components from the perspective of the observations.

scoreplot and loadingplot have most of their options in common; see [MV] scoreplot. Unlike

loadingplot, which automatically uses the variable names as marker labels, with scoreplot you use
the mlabel() graph option to provide meaningful marker labels. Score plots are especially helpful if

the observations are well-known objects, such as countries, firms, or brands. The score plot may help

you visualize the principal components with your background knowledge of these objects. Score plots

are sometimes useful for detecting outliers; see Jackson (2003).

Technical note
In [MV] pca, we noted that PCAmay also be interpreted as fixed-effects factor analysis; in that inter-

pretation, the selection of the number of components to be retained is of comparable complexity as in

factor analysis.

Rotating the components
Rotating principal components is a disputed issue and one in which reasonable people may disagree.

pca computes the principal components. Rotating the solution destroys some of the properties of prin-

cipal components. In particular, the first rotated component no longer has maximal variance, the second

rotated component no longer has maximal variance among those linear combinations uncorrelated to the

first component, etc. If preserving the maximal variance property is very important to your interpreta-

tions, do not rotate.

On the other hand, when we rotate, say, the leading three principal components, the total variance

explained by the three rotated components is equal to the variance explained by the three principal com-

ponents. If you applied an orthogonal rotation, the rotated components are still uncorrelated. The only

thing that has changed is that the explanation is distributed differently among the three rotated compo-

nents. If the rotated components have a clearer interpretation, you may actually prefer to use them in

your subsequent work.

After pca, a wide variety of rotations are available; see [MV] rotate. The default method of rotation is

varimax, rotating the principal components to maximize the sum over the columns of the within-column

variances.

https://www.stata.com/manuals/mvscoreplot.pdf#mvscoreplot
https://www.stata.com/manuals/g-3marker_label_options.pdf#g-3marker_label_options
https://www.stata.com/manuals/mvpca.pdf#mvpca
https://www.stata.com/manuals/mvrotate.pdf#mvrotate
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. rotate
Principal components/correlation Number of obs = 100

Number of comp. = 4
Trace = 8

Rotation: orthogonal varimax (Kaiser off) Rho = 0.8737

Component Variance Difference Proportion Cumulative

Comp1 2.11361 .400444 0.2642 0.2642
Comp2 1.71316 .118053 0.2141 0.4783
Comp3 1.59511 .0275517 0.1994 0.6777
Comp4 1.56756 . 0.1959 0.8737

Rotated components

Variable Comp1 Comp2 Comp3 Comp4 Unexplained

lft500 0.5756 0.0265 -0.1733 0.1781 .1308
lft1000 0.6789 -0.0289 -0.0227 -0.0223 .1105
lft2000 0.3933 0.0213 0.5119 -0.2737 .1275
lft4000 0.1231 0.6987 -0.0547 -0.0885 .1342
rght500 -0.0005 0.0158 -0.0380 0.7551 .1194

rght1000 0.0948 -0.0248 0.2289 0.5481 .1825
rght2000 -0.1173 -0.0021 0.8047 0.0795 .07537
rght4000 -0.1232 0.7134 0.0550 0.0899 .1303

Component rotation matrix

Comp1 Comp2 Comp3 Comp4

Comp1 0.6663 0.3784 0.4390 0.4692
Comp2 -0.3055 0.6998 0.4012 -0.5059
Comp3 -0.0657 0.6059 -0.7365 0.2936
Comp4 -0.6770 -0.0022 0.3224 0.6616

rotate now labels one of the columns of the first table as “Variance” instead of “Eigenvalue”; the

rotated components have been ordered in decreasing order of variance. The variance explained by the

four rotated components equals 87.37%, which is identical to the explained variance by the four leading

principal components. But whereas the principal components have rather dispersed eigenvalues, the four

rotated components all explain about the same fraction of the variance.

You may also choose to rotate only a few of the retained principal components. In contrast to most

methods of factor analysis, the principal components are not affected by the number of retained compo-

nents. However, the first two rotated components are different if you are rotating all four components or

only the leading two or three principal components.
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. rotate, comp(3)
Principal components/correlation Number of obs = 100

Number of comp. = 4
Trace = 8

Rotation: orthogonal varimax (Kaiser off) Rho = 0.8737

Component Variance Difference Proportion Cumulative

Comp1 2.99422 1.16842 0.3743 0.3743
Comp2 1.8258 .123163 0.2282 0.6025
Comp3 1.70264 1.23585 0.2128 0.8153
Comp4 .466782 . 0.0583 0.8737

Rotated components

Variable Comp1 Comp2 Comp3 Comp4 Unexplained

lft500 0.5326 -0.0457 0.0246 -0.3278 .1308
lft1000 0.4512 0.1618 -0.0320 -0.4816 .1105
lft2000 0.0484 0.6401 0.0174 -0.2824 .1275
lft4000 0.0247 0.0011 0.6983 -0.1611 .1342
rght500 0.5490 -0.1799 0.0163 0.4876 .1194

rght1000 0.4521 0.1368 -0.0259 0.3723 .1825
rght2000 -0.0596 0.7148 -0.0047 0.3914 .07537
rght4000 -0.0200 0.0059 0.7138 0.1591 .1303

Component rotation matrix

Comp1 Comp2 Comp3 Comp4

Comp1 0.7790 0.5033 0.3738 0.0000
Comp2 -0.5932 0.3987 0.6994 0.0000
Comp3 0.2030 -0.7666 0.6092 -0.0000
Comp4 0.0000 -0.0000 -0.0000 1.0000

The three-component varimax-rotated solution differs from the leading three components from the

four component varimax-rotated solution. The fourth component is not affected by a rotation among the

leading three component—it is still the fourth principal component.

So, how interpretable are rotated components? We believe that for this example the original compo-

nents had a much clearer interpretation than the rotated components. Notice how the clear symmetry in

the treatment of left and right ears has been broken.
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To add further to an already controversial method, we may use oblique rotation methods. An example

is the oblique oblimin method.

. rotate, oblimin oblique
Principal components/correlation Number of obs = 100

Number of comp. = 4
Trace = 8

Rotation: oblique oblimin (Kaiser off) Rho = 0.8737

Component Variance Proportion Rotated comp. are correlated

Comp1 2.21066 0.2763
Comp2 1.71164 0.2140
Comp3 1.69708 0.2121
Comp4 1.62592 0.2032

Rotated components

Variable Comp1 Comp2 Comp3 Comp4 Unexplained

lft500 0.5834 0.0259 0.1994 -0.1649 .1308
lft1000 0.6797 -0.0292 0.0055 -0.0157 .1105
lft2000 0.3840 0.0216 -0.2489 0.5127 .1275
lft4000 0.1199 0.6988 -0.0857 -0.0545 .1342
rght500 0.0261 0.0146 0.7561 -0.0283 .1194

rght1000 0.1140 -0.0257 0.5575 0.2370 .1825
rght2000 -0.1158 -0.0022 0.0892 0.8048 .07537
rght4000 -0.1209 0.7134 0.0848 0.0549 .1303

Component rotation matrix

Comp1 Comp2 Comp3 Comp4

Comp1 0.6836 0.3773 0.5053 0.4523
Comp2 -0.3250 0.7008 -0.5137 0.3916
Comp3 -0.0550 0.6054 0.2774 -0.7337
Comp4 -0.6557 -0.0029 0.6408 0.3238

The oblique rotation methods do not change the variance that is unexplained by the components. But

this time, the rotated components are no longer uncorrelated. This makes measuring the importance of

the rotated components more ambiguous, a problem that is similar to ambiguities in interpreting impor-

tance of correlated independent variables. In this oblique case, the sum of the variances of the rotated

components equals 90.6% (0.2763+ 0.2140+ 0.2121+ 0.2032) of the total variance. This is larger than

the 87.37% of variance explained by the four principal components. The oblique rotated components

partly explain the same variance, and this shared variance is entering multiple times into the total.

How rotate interacts with pca
rotate stores the rotated component loadings and associated statistics in e(), the estimation storage

area, along with the regular pca estimation results. Replaying pca will display the rotated results again.

Other postestimation statistics also use the rotated results whenever this is meaningful. For instance,

loadingplot would display the rotated loadings. These postestimation commands have an option

norotated that specifies that the unrotated results, that is, the principal components, be used. Thus,

typing
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. pca, norotated

displays the standard pca output for the unrotated (principal) solution, and typing

. loadingplot, norotated

produces the loading plot for the unrotated (principal) solution.

If you execute rotate again, the new rotate results are stored with the pca estimation, replacing

the previous rotate results. Thus pca knows about at most one rotation.

To compare rotated and unrotated results, it is of course possible to replay the rotated results (pca) and
unrotated results (pca, norotate) consecutively. You would especially seek to compare the loadings.
Such a comparison is easier if the loadings are displayed in parallel. This feature is provided with the

estat command rotatecompare.

. estat rotatecompare
Rotation matrix oblique oblimin (Kaiser off)

Variable Comp1 Comp2 Comp3 Comp4

Comp1 0.6836 0.3773 0.5053 0.4523
Comp2 -0.3250 0.7008 -0.5137 0.3916
Comp3 -0.0550 0.6054 0.2774 -0.7337
Comp4 -0.6557 -0.0029 0.6408 0.3238

Rotated component loadings

Variable Comp1 Comp2 Comp3 Comp4

lft500 0.5834 0.0259 0.1994 -0.1649
lft1000 0.6797 -0.0292 0.0055 -0.0157
lft2000 0.3840 0.0216 -0.2489 0.5127
lft4000 0.1199 0.6988 -0.0857 -0.0545
rght500 0.0261 0.0146 0.7561 -0.0283

rght1000 0.1140 -0.0257 0.5575 0.2370
rght2000 -0.1158 -0.0022 0.0892 0.8048
rght4000 -0.1209 0.7134 0.0848 0.0549

Unrotated component loadings

Variable Comp1 Comp2 Comp3 Comp4

lft500 0.4011 -0.3170 0.1582 -0.3278
lft1000 0.4210 -0.2255 -0.0520 -0.4816
lft2000 0.3664 0.2386 -0.4703 -0.2824
lft4000 0.2809 0.4742 0.4295 -0.1611
rght500 0.3433 -0.3860 0.2593 0.4876

rght1000 0.4114 -0.2318 -0.0289 0.3723
rght2000 0.3115 0.3171 -0.5629 0.3914
rght4000 0.2542 0.5135 0.4262 0.1591

Finally, sometimes you may want to remove rotation results permanently; for example, you decide to

continue with the unrotated (principal) solution. Because all postestimation commands operate on the

rotated solution by default, you would have to add the option norotated over and over again. Instead,

you can remove the rotated solution with the command

. rotate, clear
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Technical note
pca results may be stored and restored with estimates, just like other estimation results. If you have

stored PCA estimation results without rotated results, and later rotate the solution, the rotated results

are not automatically stored as well. The pca would need to be stored again.

Predicting the component scores
After deciding on the number of components and, possibly, the rotation of the components, you may

want to estimate the component scores for all respondents. To estimate only the first component scores,

which here is called pc1:
. predict pc1
(score assumed)
(3 components skipped)
Scoring coefficients

sum of squares(column-loading) = 1

Variable Comp1 Comp2 Comp3 Comp4

lft500 0.4011 -0.3170 0.1582 -0.3278
lft1000 0.4210 -0.2255 -0.0520 -0.4816
lft2000 0.3664 0.2386 -0.4703 -0.2824
lft4000 0.2809 0.4742 0.4295 -0.1611
rght500 0.3433 -0.3860 0.2593 0.4876

rght1000 0.4114 -0.2318 -0.0289 0.3723
rght2000 0.3115 0.3171 -0.5629 0.3914
rght4000 0.2542 0.5135 0.4262 0.1591

The table is informing you that pc1 could be obtained as a weighted sum of standardized variables,

. egen std_lft500 = std(lft500)

. egen std_lft1000 = std(lft1000)

. egen std_rght4000 = std(rght4000)

. gen pc1 = 0.4011*std_lft500 + 0.4210*std_lft1000 + ... + 0.2542*std_rght4000

(egen’s std() function converts a variable to its standardized form (mean 0, variance 1); see [D] egen.)

The principal-component scores are in standardized units after a PCA of a correlation matrix and in the

original units after a PCA of a covariance matrix.

It is possible to predict other statistics as well. For instance, the fitted values of the eight variables by

the first four principal components are obtained as

. predict f_1-f_8, fit

The predicted values are in the units of the original variables, with the means substituted back in. If

we had retained all eight components, the fitted values would have been identical to the observations.

Technical note
The fitted values are meaningful in the interpretation of PCA as rank-restricted multivariate regression.

The component scores are the “𝑥 variables”; the component loadings are the regression coefficients. If

the PCAwas computed for a correlation matrix, you could think of the regression as being in standardized

units. The fitted values are transformed from the standardized units back to the original units.

https://www.stata.com/manuals/degen.pdf#degen
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Technical note
You may have observed that the scoring coefficients were equal to the component loadings. This

holds true for the principal components in unit normalization and for the orthogonal rotations thereof; it

does not hold for oblique rotations.

Stored results
Let 𝑝 be the number of variables and 𝑓, the number of factors.
predict, in addition to generating variables, also stores the following in r():

Matrices

r(scoef) 𝑝 × 𝑓 matrix of scoring coefficients

estat anti stores the following in r():

Matrices

r(acov) 𝑝 × 𝑝 anti-image covariance matrix

r(acorr) 𝑝 × 𝑝 anti-image correlation matrix

estat kmo stores the following in r():

Scalars

r(kmo) the Kaiser–Meyer–Olkin measure of sampling adequacy

Matrices

r(kmow) column vector of KMO measures for each variable

estat loadings stores the following in r():

Macros

r(cnorm) component normalization: eigen, inveigen, or unit

Matrices

r(A) 𝑝 × 𝑓 matrix of normalized component loadings

estat residuals stores the following in r():

Matrices

r(fit) 𝑝 × 𝑝 matrix of fitted values

r(residual) 𝑝 × 𝑝 matrix of residuals

estat smc stores the following in r():

Matrices

r(smc) vector of squared multiple correlations of variables with all other variables

See the returned results of estat summarize in [R] estat summarize and of estat vce in [R] estat
vce (available when vce(normal) is specified with pca or pcamat).

https://www.stata.com/manuals/restatsummarize.pdf#restatsummarize
https://www.stata.com/manuals/restatvce.pdf#restatvce
https://www.stata.com/manuals/restatvce.pdf#restatvce
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rotate after pca and pcamat add to the existing e():

Scalars

e(r f) number of components in rotated solution

e(r fmin) rotation criterion value

Macros

e(r class) orthogonal or oblique
e(r criterion) rotation criterion

e(r ctitle) title for rotation

e(r normalization) kaiser or none

Matrices

e(r L) rotated loadings

e(r T) rotation

e(r Ev) explained variance by rotated components

The components in the rotated solution are in decreasing order of e(r Ev).

Methods and formulas
estat anti computes and displays the anti-image covariance matrixC and the anti-image correlation

matrix A

C = {diag(R)}−1/2 R {diag(R)}−1/2

A = {diag(R)}−1 R {diag(R)}−1

where R is the inverse of the correlation matrix.

estat kmo computes the “Kaiser–Meyer–Olkin measure of sampling adequacy” (KMO) and is de-

fined as

KMO =
∑𝒮 𝑟2

𝑖𝑗

∑𝒮(𝑎2
𝑖𝑗 + 𝑟2

𝑖𝑗)

where 𝒮 = (𝑖, 𝑗; 𝑖 ≠ 𝑗); 𝑟𝑖𝑗 is the correlation of variables 𝑖 and 𝑗; and 𝑎𝑖𝑗 is the anti-image correlation.

The variable-wise measure KMO𝑖 is defined analogously as

KMO𝑖 =
∑𝒫 𝑟2

𝑖𝑗

∑𝒫(𝑎2
𝑖𝑗 + 𝑟2

𝑖𝑗)

where 𝒫 = (𝑗; 𝑖 ≠ 𝑗).
estat loadings displays the component loadings in different normalizations (see Jackson [2003,

16–18]; he labels them as U, V, andW vectors). Let C = L𝚲L′ be the spectral or eigen decomposition

of the analyzed correlation or covariance matrix C, with L the orthonormal eigenvectors of C, and 𝚲 a

diagonal matrix of eigenvalues. The principal components A, that is, the eigenvectors L, are displayed

in one of the following normalizations:

cnorm(unit) A = L and so A′A = I

normal(eigen) A = L𝚲1/2 and so A′A = 𝚲
normal(inveigen) A = L𝚲−1/2 and so A′A = 𝚲−1

Normalization of the component loadings affects the normalization of the component scores.

The standard errors of the components are available only in unit normalization, that is, as normalized

eigenvectors.
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estat residuals computes the fitted values F for the analyzed correlation or covariance matrix C

as F = L𝚲L′ over the retained components, with L being the retained components in unit normalization

and 𝚲 being the associated eigenvalues. The residuals are simply C− F.

estat smc displays the squared multiple correlation coefficients SMC𝑖 of each variable on the other

variables in the analysis. These are conveniently computed from the inverse R of the correlation matrix

C,

SMC𝑖 = 1 − R−1
𝑖𝑖

See [MV] rotate and [MV] rotatemat for details concerning the rotation methods and algorithms used.

The variance of the rotated loadings Lr is computed as Lr′CLr.

To understand predict after pca and pcamat, think of PCA as a fixed-effects factor analysis with

homoskedastic residuals

Z = AL′ + E

L contains the loadings, and A contains the scores. Z is the centered variables for a PCA of a covariance

matrix and standardized variables for a PCA of a correlation matrix. A is estimated by OLS regression of

Z on L

Â = ZB B = L(L′L)−

The columns of A are called the scores. The matrix B contains the scoring coefficients. The PCA-fitted

values for Z are defined as the fitted values from this regression, or in matrix terms,

Ẑ = ZPL = ZL(L′L)−L′

with PL the orthogonal projection on (the rowspace of) L.

This formulation allows orthogonal as well as oblique loadings L as well as loadings in different

normalizations.

The above formulation is in transformed units. predict transforms the fitted values back to the

original units. The component scores are left in transformed units, with one exception. After a PCA

of covariances, means are substituted back in unless the option centered is specified. The residuals

are returned in the original units. The residual sums of squares (over the variables) and the normalized

versions are in transformed units.
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[MV] screeplot — Scree plot of eigenvalues
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