mvtest normality — Multivariate normality tests

Description

mvtest normality performs tests for univariate, bivariate, and multivariate normality. See [MV] mvtest for more multivariate tests.

Quick start

Doornik–Hansen omnibus test for multivariate normality for v1, v2, v3, and v4
mvtest normality v1 v2 v3 v4

Also show Henze–Zirkler’s consistent test, Mardia’s multivariate kurtosis test, and Mardia’s multivariate skewness test
mvtest normality v1 v2 v3 v4, ///
stats(dhansen hzirkler kurtosis skewness)

Same as above
mvtest normality v1 v2 v3 v4, stats(all)

Also show Doornik–Hansen test for bivariate normality for each pair of variables
mvtest normality v1 v2 v3 v4, stats(all) bivariate

As above, but show univariate normality tests from sktest instead of the bivariate tests
mvtest normality v1 v2 v3 v4, stats(all) univariate

Show all multivariate, bivariate, and univariate tests of normality for v1, v2, v3, and v4
mvtest normality v1 v2 v3 v4, stats(all) bivariate univariate

Menu

Statistics > Multivariate analysis > MANOVA, multivariate regression, and related > Multivariate test of means, covariances, and normality
Syntax

```plaintext
mvtest normality varlist [if] [in] [weight] [, options]
```

<table>
<thead>
<tr>
<th>Options</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>univariate</td>
<td>display tests for univariate normality (sktest)</td>
</tr>
<tr>
<td>bivariate</td>
<td>display tests for bivariate normality (Doornik–Hansen)</td>
</tr>
<tr>
<td>stats(stats)</td>
<td>statistics to be computed</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>stats</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>dhansen</td>
<td>Doornik–Hansen omnibus test; the default</td>
</tr>
<tr>
<td>hzirkler</td>
<td>Henze–Zirkler’s consistent test</td>
</tr>
<tr>
<td>kurtosis</td>
<td>Mardia’s multivariate kurtosis test</td>
</tr>
<tr>
<td>skewness</td>
<td>Mardia’s multivariate skewness test</td>
</tr>
<tr>
<td>all</td>
<td>all tests listed here</td>
</tr>
</tbody>
</table>

bootstrap, by, jackknife, rolling, and statsby are allowed; see [U] 11.1.10 Prefix commands.

Weights are not allowed with the bootstrap prefix; see [R] bootstrap.

aweights are not allowed with the jackknife prefix; see [R] jackknife.

fweights are allowed; see [U] 11.1.6 weight.

Options

univariate specifies that tests for univariate normality be displayed, as obtained from sktest; see [R] sktest.

bivariate specifies that the Doornik–Hansen (2008) test for bivariate normality be displayed for each pair of variables.

stats(stats) specifies one or more test statistics for multivariate normality. Multiple stats are separated by white space. The following stats are available:

- kurtosis produces the test based on Mardia’s (1970) measure of multivariate kurtosis.
- skewness produces the test based on Mardia’s (1970) measure of multivariate skewness.
- all is a convenient shorthand for stats(dhansen hzirkler kurtosis skewness).
Example 1

The classic Fisher iris data from Anderson (1935) consists of four features measured on 50 samples from each of three iris species. The four features are the length and width of the sepal and petal. The three species are *Iris setosa*, *Iris versicolor*, and *Iris virginica*. We hypothesize that these features might be normally distributed within species, though they are likely not normally distributed across species. We will examine the *Iris setosa* data.

```
. use https://www.stata-press.com/data/r16/iris
   (Iris data)
. kdensity petlen if iris==1, name(petlen, replace) title(petal length)
. kdensity petwid if iris==1, name(petwid, replace) title(petal width)
. kdensity sepwid if iris==1, name(sepwid, replace) title(sepal width)
. kdensity seplen if iris==1, name(seplen, replace) title(sepal length)
. graph combine petlen petwid seplen sepwid, title("Iris setosa data")
```
We perform all multivariate, univariate, and bivariate tests of normality.

```
.mvtest norm pet* sep* if iris==1, bivariate univariate stats(all)
```

<table>
<thead>
<tr>
<th>Variable</th>
<th>Pr(Skewness)</th>
<th>Pr(Kurtosis)</th>
<th>adj chi2(2)</th>
<th>Prob>chi2</th>
</tr>
</thead>
<tbody>
<tr>
<td>petlen</td>
<td>0.7403</td>
<td>0.1447</td>
<td>2.36</td>
<td>0.3074</td>
</tr>
<tr>
<td>petwid</td>
<td>0.0010</td>
<td>0.0442</td>
<td>12.03</td>
<td>0.0024</td>
</tr>
<tr>
<td>seplen</td>
<td>0.7084</td>
<td>0.8157</td>
<td>0.19</td>
<td>0.9075</td>
</tr>
<tr>
<td>sepwid</td>
<td>0.8978</td>
<td>0.1627</td>
<td>2.07</td>
<td>0.3553</td>
</tr>
</tbody>
</table>

Doornik-Hansen test for bivariate normality

<table>
<thead>
<tr>
<th>Pair of variables</th>
<th>chi2</th>
<th>df</th>
<th>Prob>chi2</th>
</tr>
</thead>
<tbody>
<tr>
<td>petlen petwid</td>
<td>17.47</td>
<td>4</td>
<td>0.0016</td>
</tr>
<tr>
<td>seplen</td>
<td>5.76</td>
<td>4</td>
<td>0.2177</td>
</tr>
<tr>
<td>sepwid</td>
<td>8.50</td>
<td>4</td>
<td>0.0748</td>
</tr>
<tr>
<td>petwid seplen</td>
<td>14.97</td>
<td>4</td>
<td>0.0048</td>
</tr>
<tr>
<td>sepwid</td>
<td>19.15</td>
<td>4</td>
<td>0.0007</td>
</tr>
<tr>
<td>seplen sepwid</td>
<td>5.92</td>
<td>4</td>
<td>0.2049</td>
</tr>
</tbody>
</table>

Test for multivariate normality

- Mardia mSkewness = 3.079721 $\chi^2(20) = 27.860$ $\text{Prob}>\chi^2 = 0.1128$
- Mardia mKurtosis = 26.53766 $\chi^2(1) = 1.677$ $\text{Prob}>\chi^2 = 0.1953$
- Henze-Zirkler = .9468453 $\chi^2(1) = 2.707$ $\text{Prob}>\chi^2 = 0.0999$
- Doornik-Hansen $\chi^2(8) = 24.414$ $\text{Prob}>\chi^2 = 0.0020$

From the univariate tests of normality, `petwid` does not appear to be normally distributed: \(p \)-values of 0.0010 for skewness, 0.0442 for kurtosis, and 0.0024 for the joint univariate test. The univariate tests of the other three variables do not lead to a rejection of the null hypothesis of normality.

The bivariate tests of normality show a rejection (at the 5% level) of the null hypothesis of bivariate normality for all pairs of variables that include `petwid`. Other pairings fail to reject the null hypothesis of bivariate normality.

Of the four multivariate normality tests, only the Doornik–Hansen test rejects the null hypothesis of multivariate normality, \(p \)-value of 0.0020.

The Doornik-Hansen (2008) test and Mardia’s (1970) test for multivariate kurtosis take computing time roughly proportional to the number of observations. In contrast, the computing time of the test by Henze-Zirkler (1990) and Mardia’s (1970) test for multivariate skewness are roughly proportional to the square of the number of observations.
Stored results

mvtest normality stores the following in r():

Scalars

- `r(p_dh)` p-value for Doornik–Hansen test (stats(dhansen))
- `r(df_dh)` degrees of freedom of chi2_dh (stats(dhansen))
- `r(chi2_dh)` Doornik–Hansen statistic (stats(dhansen))
- `r(rank_hz)` rank of covariance matrix (stats(hzirkler))
- `r(p_hz)` p-value for two-sided Henze–Zirkler’s test (stats(hzirkler))
- `r(z_hz)` normal variate associated with hz (stats(hzirkler))
- `r(V_hz)` expected variance of log(hz) (stats(hzirkler))
- `r(E_hz)` expected value of log(hz) (stats(hzirkler))
- `r(hz)` Henze–Zirkler discrepancy statistic (stats(hzirkler))
- `r(rank_mkurt)` rank of covariance matrix (stats(kurtosis))
- `r(p_mkurt)` p-value for Mardia’s multivariate kurtosis test (stats(kurtosis))
- `r(z_mkurt)` normal variate associated with Mardia mKurtosis (stats(kurtosis))
- `r(chi2_mkurt)` chi-squared of Mardia mKurtosis (stats(kurtosis))
- `r(mkurt)` Mardia mKurtosis test statistic (stats(kurtosis))
- `r(rank_mskew)` rank for Mardia mSkewness test (stats(skewness))
- `r(p_mskew)` p-value for Mardia’s multivariate skewness test (stats(skewness))
- `r(df_mskew)` degrees of freedom of Mardia mSkewness test (stats(skewness))
- `r(chi2_mskew)` chi-squared of Mardia mSkewness test (stats(skewness))
- `r(mskew)` Mardia mSkewness test statistic (stats(skewness))

Matrices

- `r(U_dh)` matrix with the skewness and kurtosis of orthonormalized variables (used in the Doornik–Hansen test): b_1, b_2, $z(b_1)$, and $z(b_2)$ (stats(dhansen))
- `r(Utest)` bivariate test statistics (bivariate)
- `r(Utest)` univariate test statistics (univariate)

Methods and formulas

There are N independent k-variate observations, x_i, $i = 1, \ldots, N$. Let X denote the $N \times k$ matrix of observations. We wish to test whether these observations are multivariate normal distributed, $\text{MVN}_k(\mu, \Sigma)$. The sample mean is $\bar{x} = 1/N \sum_i x_i$, and the sample covariance matrix is $S = 1/N \sum (x_i - \bar{x})(x_i - \bar{x})'$.

Methods and formulas are presented under the following headings:

- Mardia mSkewness and mKurtosis
- Henze–Zirkler
- Doornik–Hansen

Mardia mSkewness and mKurtosis

Mardia (1970) defined multivariate skewness, $b_{1,k}$, and kurtosis, $b_{2,k}$, as

$$ b_{1,k} = \frac{1}{N^2} \sum_{i=1}^{N} \sum_{j=1}^{N} g_{ij}^3 $$

and

$$ b_{2,k} = \frac{1}{N} \sum_{i=1}^{N} g_{ii}^2 $$

where $g_{ij} = (x_i - \bar{x})' S^{-1} (x_j - \bar{x})$. The test statistic

$$ z_1 = \frac{(k+1)(N+1)(N+3)}{6(N+1)(k+1)-6} b_{1,k} $$
is approximately \(\chi^2 \) distributed with \(k(k + 1)(k + 2)/6 \) degrees of freedom. The test statistic

\[
z_2 = \frac{b_{2,k} - k(k + 2)}{\sqrt{8k(k + 2)/N}}
\]

is approximately \(N(0, 1) \) distributed. Also see Rencher and Christensen (2012, 108); Mardia, Kent, and Bibby (1979, 20–22); and Seber (1984, 148–149).

Henze–Zirkler

The Henze–Zirkler (1990) test, under the assumption that \(S \) is nonsingular, is

\[
T = \frac{1}{N} \sum_{i=1}^{N} \sum_{j=1}^{N} \exp \left\{ -\frac{\beta^2}{2} (x_i - x_j)'S^{-1}(x_i - x_j) \right\}
\]

\[
- 2(1 + \beta^2)^{-k/2} \sum_{i=1}^{N} \exp \left\{ -\frac{\beta^2}{2(1 + \beta^2)} (x_i - \bar{x})'S^{-1}(x_i - \bar{x}) \right\}
\]

\[
+ N(1 + 2\beta^2)^{-k/2}
\]

where

\[
\beta = \frac{1}{\sqrt{2}} \left\{ \frac{N(2k + 1)}{4} \right\}^{1/(k+4)}
\]

As \(N \to \infty \), the first two moments of \(T \) are given by

\[
E(T) = 1 - (1 + 2\beta^2)^{-k/2} \left\{ 1 + \frac{k\beta^2}{1 + 2\beta^2} + \frac{k(k + 2)\beta^4}{2(1 + 2\beta^2)^2} \right\}
\]

\[
\text{Var}(T) = 2(1 + 4\beta^2)^{-k/2} + 2(1 + 2\beta^2)^{-k} \left\{ 1 + \frac{2k\beta^4}{(1 + 2\beta^2)^2} + \frac{3k(k + 2)\beta^8}{4(1 + 2\beta^2)^4} \right\}
\]

\[
- 4w^{-k/2} \left\{ 1 + \frac{3k\beta^4}{2w} + \frac{k(k + 2)\beta^8}{2w^2} \right\}
\]

where \(w = (1 + \beta^2)(1 + 3\beta^2) \).

Henze–Zirkler suggest obtaining a \(p \)-value from the assumption, supported by a series of simulations, that \(T \) is approximately lognormal distributed. Thus let \(VZ = \ln \{ 1 + \text{Var}(T)/E(T)^2 \} \) and \(EZ = \ln \{ E(T) \} - VZ/2 \). The transformation \(Z = \{ \ln(T) - EZ \} / \sqrt{VZ} \). The \(p \)-value of \(Z \) is computed as \(p = 2\Phi(\{-|Z|\}) \), where \(\Phi() \) is the cumulative normal distribution.

Doornik–Hansen

For the Doornik–Hansen (2008) test, the multivariate observations are transformed, then the univariate skewness and kurtosis for each transformed variable is computed, and then these are combined into an approximate \(\chi^2 \) statistic.
Let V be a matrix with ith diagonal element equal to $S_{ii}^{-1/2}$, where S_{ii} is the ith diagonal element of S. $C = VSV$ is then the correlation matrix. Let H be a matrix with columns equal to the eigenvectors of C, and let Λ be a diagonal matrix with the corresponding eigenvalues. Let \bar{X} be the centered version of X, that is, \bar{X} subtracted from each row. The data are then transformed using $\hat{X} = \bar{X}VH^{-1/2}H'$.

The univariate skewness and kurtosis for each column of \hat{X} is then computed. The general formula for univariate skewness is $\sqrt{b_1} = m_3/m_2^{3/2}$ and kurtosis is $b_2 = m_4/m_2^2$, where $m_p = 1/N \sum_{i=1}^N (x_i - \bar{x})^p$. Let \hat{x}_i denote the ith observation from the selected column of \hat{X}. Because by construction the mean of \hat{x}_i is zero and the variance m_2 is one, the formulas simplify to $\sqrt{b_1} = m_3$ and $b_2 = m_4$, where $m_p = 1/N \sum_{i=1}^N x_i^p$.

The univariate skewness, $\sqrt{b_1}$, is transformed into an approximately normal variate, z_1, as in D’Agostino (1970):

$$z_1 = \delta \log \left(y + \sqrt{1 + y^2}\right)$$

where

$$y = \left\{ \frac{b_1(\omega^2 - 1)(N + 1)(N + 3)}{12(N - 2)} \right\}^{1/2}$$

$$\delta = \left(\log \sqrt{\omega^2} \right)^{-1/2}$$

$$\omega^2 = -1 + \sqrt{2(\beta - 1)}$$

$$\beta = \frac{3(N^2 + 27N - 70)(N + 1)(N + 3)}{(N - 2)(N + 5)(N + 7)(N + 9)}$$

The univariate kurtosis, b_2, is transformed from a gamma variate into a χ^2-variate and then into a standard normal variable, z_2, using the Wilson–Hilferty (1931) transform:

$$z_2 = \sqrt{9\alpha} \left\{ \left(\frac{X}{2\alpha} \right)^{1/3} - 1 + \frac{1}{9\alpha} \right\}$$

where

$$\chi = 2f(b_2 - 1 - b_1)$$

$$\alpha = a + b_1c$$

$$f = \frac{(N + 5)(N + 7)(N^3 + 37N^2 + 11N - 313)}{12\delta}$$

$$c = \frac{(N - 7)(N + 5)(N + 7)(N^2 + 2N - 5)}{6\delta}$$

$$a = \frac{(N - 2)(N + 5)(N + 7)(N^2 + 27N - 70)}{6\delta}$$

$$\delta = (N - 3)(N + 1)(N^2 + 15N - 4)$$

The z_1 and z_2 associated with the columns of \hat{X} are collected into vectors Z_1 and Z_2. The statistic $Z_1'Z_1 + Z_2'Z_2$ is approximately χ^2 distributed with $2k$ degrees of freedom.
Acknowledgment

An earlier implementation of the Doornik and Hansen (2008) test is the omninorm package of Baum and Cox (2007).

References

Also see

[R] sktest — Skewness and kurtosis test for normality

[R] swilk — Shapiro–Wilk and Shapiro–Francia tests for normality