
measure option — Option for similarity and dissimilarity measures

Description Syntax Options References Also see

Description
Several commands have options that allow you to specify a similarity or dissimilarity measure des-

ignated as measure in the syntax; see [MV] cluster, [MV] mds, [MV] discrim knn, and [MV] matrix

dissimilarity. These options are documented here. Most analysis commands (for example, cluster
and mds) transform similarity measures to dissimilarity measures as needed.

Syntax
command . . . , . . . measure(measure) . . .

or

command . . . , . . . measure . . .

measure Description

cont measure similarity or dissimilarity measure for continuous data

binary measure similarity measure for binary data

mixed measure dissimilarity measure for a mix of binary and continuous data

cont measure Description

L2 Euclidean distance (Minkowski with argument 2)

Euclidean alias for L2
L(2) alias for L2

L2squared squared Euclidean distance

Lpower(2) alias for L2squared
L1 absolute-value distance (Minkowski with argument 1)

absolute alias for L1
cityblock alias for L1
manhattan alias for L1
L(1) alias for L1
Lpower(1) alias for L1

Linfinity maximum-value distance (Minkowski with infinite argument)

maximum alias for Linfinity
L(#) Minkowski distance with # arguments

Lpower(#) Minkowski distance with # arguments raised to # power

Canberra Canberra distance

correlation correlation coefficient similarity measure

angular angular separation similarity measure

angle alias for angular
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https://www.stata.com/manuals/mvcluster.pdf#mvcluster
https://www.stata.com/manuals/mvmds.pdf#mvmds
https://www.stata.com/manuals/mvdiscrimknn.pdf#mvdiscrimknn
https://www.stata.com/manuals/mvmatrixdissimilarity.pdf#mvmatrixdissimilarity
https://www.stata.com/manuals/mvmatrixdissimilarity.pdf#mvmatrixdissimilarity
https://www.stata.com/manuals/mvmeasure_option.pdf#mvmeasure_optionSyntaxcont_measure
https://www.stata.com/manuals/mvmeasure_option.pdf#mvmeasure_optionSyntaxbinary_measure
https://www.stata.com/manuals/mvmeasure_option.pdf#mvmeasure_optionSyntaxmixed_measure
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binary measure Description

matching simple matching similarity coefficient

Jaccard Jaccard binary similarity coefficient

Russell Russell and Rao similarity coefficient

Hamann Hamann similarity coefficient

Dice Dice similarity coefficient

antiDice anti-Dice similarity coefficient

Sneath Sneath and Sokal similarity coefficient

Rogers Rogers and Tanimoto similarity coefficient

Ochiai Ochiai similarity coefficient

Yule Yule similarity coefficient

Anderberg Anderberg similarity coefficient

Kulczynski Kulczyński similarity coefficient

Pearson Pearson’s 𝜙 similarity coefficient

Gower2 similarity coefficient with same denominator as Pearson

mixed measure Description

Gower Gower’s dissimilarity coefficient

Options
Measures are divided into those for continuous data and binary data. measure is not case sensitive.

Full definitions are presented in Similarity and dissimilarity measures for continuous data, Similarity

measures for binary data, and Dissimilarity measures for mixed data.

The similarity or dissimilarity measure is most often used to determine the similarity or dissimilar-

ity between observations. However, sometimes the similarity or dissimilarity between variables is of

interest.

Similarity and dissimilarity measures for continuous data
Here are the similarity and dissimilarity measures for continuous data available in Stata. In the fol-

lowing formulas, 𝑝 represents the number of variables, 𝑁 is the number of observations, and 𝑥𝑖𝑣 denotes

the value of observation 𝑖 for variable 𝑣.
The formulas are presented in two forms. The first is the formula used when computing the similarity

or dissimilarity between observations. The second is the formula used when computing the similarity or

dissimilarity between variables.

L2 (aliases Euclidean and L(2))
requests the Minkowski distance metric with argument 2. For comparing observations 𝑖 and 𝑗, the
formula is

{
𝑝

∑
𝑎=1

(𝑥𝑖𝑎 − 𝑥𝑗𝑎)2}
1/2

https://www.stata.com/manuals/mvmeasure_option.pdf#mvmeasure_optionOptionsSimilarityanddissimilaritymeasuresforcontinuousdata
https://www.stata.com/manuals/mvmeasure_option.pdf#mvmeasure_optionOptionsSimilaritymeasuresforbinarydata
https://www.stata.com/manuals/mvmeasure_option.pdf#mvmeasure_optionOptionsSimilaritymeasuresforbinarydata
https://www.stata.com/manuals/mvmeasure_option.pdf#mvmeasure_optionOptionsDissimilaritymeasuresformixeddata
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and for comparing variables 𝑢 and 𝑣 the formula is

{
𝑁

∑
𝑘=1

(𝑥𝑘𝑢 − 𝑥𝑘𝑣)2}
1/2

L2 is best known as Euclidean distance and is the default dissimilarity measure for discrim knn,
mds, matrix dissimilarity, and all the cluster subcommands except for centroidlinkage,
medianlinkage, and wardslinkage, which default to using L2squared; see [MV] discrim knn,

[MV] mds, [MV] matrix dissimilarity, and [MV] cluster.

L2squared (alias Lpower(2))
requests the square of the Minkowski distance metric with argument 2. For comparing observations

𝑖 and 𝑗, the formula is
𝑝

∑
𝑎=1

(𝑥𝑖𝑎 − 𝑥𝑗𝑎)2

and for comparing variables 𝑢 and 𝑣, the formula is

𝑁
∑
𝑘=1

(𝑥𝑘𝑢 − 𝑥𝑘𝑣)2

L2squared is best known as squared Euclidean distance and is the default dissimilarity measure

for the centroidlinkage, medianlinkage, and wardslinkage subcommands of cluster; see
[MV] cluster.

L1 (aliases absolute, cityblock, manhattan, L(1), and Lpower(1))
requests the Minkowski distance metric with argument 1. For comparing observations 𝑖 and 𝑗, the
formula is 𝑝

∑
𝑎=1

|𝑥𝑖𝑎 − 𝑥𝑗𝑎|

and for comparing variables 𝑢 and 𝑣, the formula is

𝑁
∑
𝑘=1

|𝑥𝑘𝑢 − 𝑥𝑘𝑣|

L1 is best known as absolute-value distance.

Linfinity (alias maximum)
requests the Minkowski distance metric with infinite argument. For comparing observations 𝑖 and 𝑗,
the formula is

max𝑎=1,...,𝑝|𝑥𝑖𝑎 − 𝑥𝑗𝑎|

and for comparing variables 𝑢 and 𝑣, the formula is

max𝑘=1,...,𝑁|𝑥𝑘𝑢 − 𝑥𝑘𝑣|

Linfinity is best known as maximum-value distance.

https://www.stata.com/manuals/mvdiscrimknn.pdf#mvdiscrimknn
https://www.stata.com/manuals/mvmds.pdf#mvmds
https://www.stata.com/manuals/mvmatrixdissimilarity.pdf#mvmatrixdissimilarity
https://www.stata.com/manuals/mvcluster.pdf#mvcluster
https://www.stata.com/manuals/mvcluster.pdf#mvcluster
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L(#)
requests the Minkowski distance metric with argument #. For comparing observations 𝑖 and 𝑗, the
formula is

(
𝑝

∑
𝑎=1

|𝑥𝑖𝑎 − 𝑥𝑗𝑎|#)
1/#

# ≥ 1

and for comparing variables 𝑢 and 𝑣, the formula is

(
𝑁

∑
𝑘=1

|𝑥𝑘𝑢 − 𝑥𝑘𝑣|#)
1/#

# ≥ 1

We discourage using extremely large values for #. Because the absolute value of the difference is

being raised to the value of #, depending on the nature of your data, you could experience numeric

overflow or underflow. With a large value of #, the L() option will produce results similar to those of

the Linfinity option. Use the numerically more stable Linfinity option instead of a large value

for # in the L() option.

See Anderberg (1973) for a discussion of the Minkowski metric and its special cases.

Lpower(#)
requests the Minkowski distance metric with argument #, raised to the # power. For comparing ob-

servations 𝑖 and 𝑗, the formula is
𝑝

∑
𝑎=1

|𝑥𝑖𝑎 − 𝑥𝑗𝑎|# # ≥ 1

and for comparing variables 𝑢 and 𝑣, the formula is
𝑁

∑
𝑘=1

|𝑥𝑘𝑢 − 𝑥𝑘𝑣|# # ≥ 1

As with L(#), we discourage using extremely large values for #; see the discussion above.

Canberra
requests the following distance metric when comparing observations 𝑖 and 𝑗

𝑝

∑
𝑎=1

|𝑥𝑖𝑎 − 𝑥𝑗𝑎|
|𝑥𝑖𝑎| + |𝑥𝑗𝑎|

and the following distance metric when comparing variables 𝑢 and 𝑣
𝑁

∑
𝑘=1

|𝑥𝑘𝑢 − 𝑥𝑘𝑣|
|𝑥𝑘𝑢| + |𝑥𝑘𝑣|

When comparing observations, the Canberra metric takes values between 0 and 𝑝, the number of

variables. When comparing variables, the Canberra metric takes values between 0 and 𝑁, the number

of observations; see Gordon (1999) and Gower (1985). Gordon (1999) explains that the Canberra

distance is sensitive to small changes near zero.

correlation
requests the correlation coefficient similarity measure. For comparing observations 𝑖 and 𝑗, the for-
mula is

∑𝑝
𝑎=1(𝑥𝑖𝑎 − 𝑥𝑖.)(𝑥𝑗𝑎 − 𝑥𝑗.)

{∑𝑝
𝑎=1(𝑥𝑖𝑎 − 𝑥𝑖.)2 ∑𝑝

𝑏=1(𝑥𝑗𝑏 − 𝑥𝑗.)2}1/2

https://www.stata.com/manuals/mvmeasure_option.pdf#mvmeasure_optionOptionslarge_val
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and for comparing variables 𝑢 and 𝑣, the formula is

∑𝑁
𝑘=1(𝑥𝑘𝑢 − 𝑥.𝑢)(𝑥𝑘𝑣 − 𝑥.𝑣)

{∑𝑁
𝑘=1(𝑥𝑘𝑢 − 𝑥.𝑢)2 ∑𝑁

𝑙=1(𝑥𝑙𝑣 − 𝑥.𝑣)2}1/2

where 𝑥𝑖. = (∑𝑝
𝑎=1 𝑥𝑖𝑎)/𝑝 and 𝑥.𝑢 = (∑𝑁

𝑘=1 𝑥𝑘𝑢)/𝑁.

The correlation similarity measure takes values between −1 and 1. With this measure, the relative

direction of the two vectors is important. The correlation similarity measure is related to the angular

separation similarity measure (described next). The correlation similarity measure gives the cosine

of the angle between the two vectors measured from the mean; see Gordon (1999).

angular (alias angle)
requests the angular separation similarity measure. For comparing observations 𝑖 and 𝑗, the formula
is

∑𝑝
𝑎=1 𝑥𝑖𝑎𝑥𝑗𝑎

(∑𝑝
𝑎=1 𝑥2

𝑖𝑎 ∑𝑝
𝑏=1 𝑥2

𝑗𝑏)1/2

and for comparing variables 𝑢 and 𝑣, the formula is

∑𝑁
𝑘=1 𝑥𝑘𝑢𝑥𝑘𝑣

(∑𝑁
𝑘=1 𝑥2

𝑘𝑢 ∑𝑁
𝑙=1 𝑥2

𝑙𝑣)1/2

The angular separation similarity measure is the cosine of the angle between the two vectors measured

from zero and takes values from −1 to 1; see Gordon (1999).

Similarity measures for binary data
Similarity measures for binary data are based on the four values from the cross-tabulation of obser-

vation 𝑖 and 𝑗 (when comparing observations) or variables 𝑢 and 𝑣 (when comparing variables).

For comparing observation 𝑖 and 𝑗, the cross-tabulation is

obs. 𝑗
1 0

obs. 1 𝑎 𝑏
𝑖 0 𝑐 𝑑

𝑎 is the number of variables where observations 𝑖 and 𝑗 both had ones, and 𝑑 is the number of variables

where observations 𝑖 and 𝑗 both had zeros. The number of variables where observation 𝑖 is one and

observation 𝑗 is zero is 𝑏, and the number of variables where observation 𝑖 is zero and observation 𝑗 is
one is 𝑐.

For comparing variables 𝑢 and 𝑣, the cross-tabulation is

var. 𝑣
1 0

var. 1 𝑎 𝑏
𝑢 0 𝑐 𝑑
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𝑎 is the number of observationswhere variables𝑢 and 𝑣 both had ones, and 𝑑 is the number of observations
where variables 𝑢 and 𝑣 both had zeros. The number of observations where variable 𝑢 is one and variable

𝑣 is zero is 𝑏, and the number of observations where variable 𝑢 is zero and variable 𝑣 is one is 𝑐.
Stata treats nonzero values as one when a binary value is expected. Specifying one of the binary simi-

larity measures imposes this behavior unless some other option overrides it (for instance, the allbinary
option of matrix dissimilarity; see [MV] matrix dissimilarity).

Hubálek (1982) gives an extensive list of binary similarity measures. Gower (1985) lists 15 binary

similarity measures, 14 of which are implemented in Stata. (The excluded measure has many cases

where the quantity is undefined, so it was not implemented.) Anderberg (1973) gives an interesting table

where many of these measures are compared based on whether the zero–zero matches are included in the

numerator, whether these matches are included in the denominator, and how the weighting of matches

and mismatches is handled. Hilbe (1992b, 1992a) implemented an early Stata command for computing

some of these (as well as other) binary similarity measures.

The formulas for some of these binary similarity measures are undefined when either one or both of

the vectors (observations or variables depending on which are being compared) are all zeros (or, some-

times, all ones). Gower (1985) says concerning these cases, “These coefficients are then conventionally

assigned some appropriate value, usually zero.”

The following binary similarity coefficients are available. Unless stated otherwise, the similarity

measures range from 0 to 1.

matching
requests the simple matching (Zubin 1938, Sokal and Michener 1958) binary similarity coefficient

𝑎 + 𝑑
𝑎 + 𝑏 + 𝑐 + 𝑑

which is the proportion of matches between the 2 observations or variables.

Jaccard
requests the Jaccard (1901, 1908) binary similarity coefficient

𝑎
𝑎 + 𝑏 + 𝑐

which is the proportion of matches when at least one of the vectors had a one. If both vectors are all

zeros, this measure is undefined. Stata then declares the answer to be one, meaning perfect agreement.

This is a reasonable choice for most applications and will cause an all-zero vector to have similarity of

one only with another all-zero vector. In all other cases, an all-zero vector will have Jaccard similarity

of zero to the other vector.

The Jaccard coefficient was discovered earlier by Gilbert (1884).

Russell
requests the Russell and Rao (1940) binary similarity coefficient

𝑎
𝑎 + 𝑏 + 𝑐 + 𝑑

Hamann
requests the Hamann (1961) binary similarity coefficient

(𝑎 + 𝑑) − (𝑏 + 𝑐)
𝑎 + 𝑏 + 𝑐 + 𝑑

https://www.stata.com/manuals/mvmatrixdissimilarity.pdf#mvmatrixdissimilarity


measure option — Option for similarity and dissimilarity measures 7

which is the number of agreements minus disagreements divided by the total. The Hamann coefficient

ranges from −1, perfect disagreement, to 1, perfect agreement. The Hamann coefficient is equal to

twice the simple matching coefficient minus 1.

Dice
requests the Dice binary similarity coefficient

2𝑎
2𝑎 + 𝑏 + 𝑐

suggested by Czekanowski (1932), Dice (1945), and Sørensen (1948). The Dice coefficient is similar

to the Jaccard similarity coefficient but gives twice the weight to agreements. Like the Jaccard coef-

ficient, the Dice coefficient is declared by Stata to be one if both vectors are all zero, thus avoiding

the case where the formula is undefined.

antiDice
requests the binary similarity coefficient

𝑎
𝑎 + 2(𝑏 + 𝑐)

which is credited to Anderberg (1973) but was shown earlier by Sokal and Sneath (1963, 129). We did

not call this theAnderberg coefficient because there is another coefficient better known by that name;

see the Anderberg option. The name antiDice is our creation. This coefficient takes the opposite

view from the Dice coefficient and gives double weight to disagreements. As with the Jaccard and

Dice coefficients, the anti-Dice coefficient is declared to be one if both vectors are all zeros.

Sneath
requests the Sneath and Sokal (1962) binary similarity coefficient

2(𝑎 + 𝑑)
2(𝑎 + 𝑑) + (𝑏 + 𝑐)

which is similar to the simple matching coefficient but gives double weight to matches. Also compare

the Sneath and Sokal coefficient with the Dice coefficient, which differs only in whether it includes

𝑑.
Rogers

requests the Rogers and Tanimoto (1960) binary similarity coefficient

𝑎 + 𝑑
(𝑎 + 𝑑) + 2(𝑏 + 𝑐)

which takes the opposite approach from the Sneath and Sokal coefficient and gives double weight

to disagreements. Also compare the Rogers and Tanimoto coefficient with the anti-Dice coefficient,

which differs only in whether it includes 𝑑.

Ochiai
requests the Ochiai (1957) binary similarity coefficient

𝑎
{(𝑎 + 𝑏)(𝑎 + 𝑐)}1/2

https://www.stata.com/manuals/mvmeasure_option.pdf#mvmeasure_optionOptionsAnderberg
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The formula for the Ochiai coefficient is undefined when one or both of the vectors being compared

are all zeros. If both are all zeros, Stata declares the measure to be one, and if only one of the two

vectors is all zeros, the measure is declared to be zero.

The Ochiai coefficient was presented earlier by Driver and Kroeber (1932).

Yule
requests the Yule (see Yule [1900] and Yule and Kendall [1950]) binary similarity coefficient

𝑎𝑑 − 𝑏𝑐
𝑎𝑑 + 𝑏𝑐

which ranges from −1 to 1. The formula for the Yule coefficient is undefined when one or both of the

vectors are either all zeros or all ones. Stata declares the measure to be 1 when 𝑏 + 𝑐 = 0, meaning

that there is complete agreement. Stata declares the measure to be −1 when 𝑎 + 𝑑 = 0, meaning

that there is complete disagreement. Otherwise, if 𝑎𝑑 − 𝑏𝑐 = 0, Stata declares the measure to be 0.

These rules, applied before using the Yule formula, avoid the cases where the formula would produce

an undefined result.

Anderberg
requests the Anderberg binary similarity coefficient

( 𝑎
𝑎 + 𝑏

+ 𝑎
𝑎 + 𝑐

+ 𝑑
𝑐 + 𝑑

+ 𝑑
𝑏 + 𝑑

)/4

TheAnderberg coefficient is undefined when one or both vectors are either all zeros or all ones. This

difficulty is overcome by first applying the rule that if both vectors are all ones (or both vectors are

all zeros), the similarity measure is declared to be one. Otherwise, if any of the marginal totals (𝑎+𝑏,
𝑎 + 𝑐, 𝑐 + 𝑑, 𝑏 + 𝑑) are zero, then the similarity measure is declared to be zero.
Though this similarity coefficient is best known as the Anderberg coefficient, it appeared earlier in

Sokal and Sneath (1963, 130).

Kulczynski
requests the Kulczyński (1927) binary similarity coefficient

( 𝑎
𝑎 + 𝑏

+ 𝑎
𝑎 + 𝑐

)/2

The formula for this measure is undefined when one or both of the vectors are all zeros. If both vectors

are all zeros, Stata declares the similarity measure to be one. If only one of the vectors is all zeros,

the similarity measure is declared to be zero.

Pearson
requests Pearson’s (1900) 𝜙 binary similarity coefficient

𝑎𝑑 − 𝑏𝑐
{(𝑎 + 𝑏)(𝑎 + 𝑐)(𝑑 + 𝑏)(𝑑 + 𝑐)}1/2

which ranges from −1 to 1. The formula for this coefficient is undefined when one or both of the

vectors are either all zeros or all ones. Stata declares the measure to be 1 when 𝑏 + 𝑐 = 0, meaning

that there is complete agreement. Stata declares the measure to be −1 when 𝑎 + 𝑑 = 0, meaning that

there is complete disagreement. Otherwise, if 𝑎𝑑 − 𝑏𝑐 = 0, Stata declares the measure to be 0. These

rules, applied before using Pearson’s 𝜙 coefficient formula, avoid the cases where the formula would

produce an undefined result.



measure option — Option for similarity and dissimilarity measures 9

Gower2
requests the binary similarity coefficient

𝑎𝑑
{(𝑎 + 𝑏)(𝑎 + 𝑐)(𝑑 + 𝑏)(𝑑 + 𝑐)}1/2

which is presented by Gower (1985) but appeared earlier in Sokal and Sneath (1963, 130). Stata uses

the name Gower2 to avoid confusion with the better-known Gower coefficient, which is used with a

mix of binary and continuous data.

The formula for this similarity measure is undefined when one or both of the vectors are all zeros or

all ones. This is overcome by first applying the rule that if both vectors are all ones (or both vectors

are all zeros) then the similarity measure is declared to be one. Otherwise, if 𝑎𝑑 = 0, the similarity

measure is declared to be zero.

Dissimilarity measures for mixed data
Here is one measure that works with a mix of binary and continuous data. Binary variables are those

containing only zeros, ones, and missing values; all other variables are treated as continuous.

Gower
requests the Gower (1971) dissimilarity coefficient for a mix of binary and continuous variables. For

comparing observations 𝑖 and 𝑗, the formula is

∑𝑣 𝛿𝑖𝑗𝑣𝑑𝑖𝑗𝑣

∑𝑣 𝛿𝑖𝑗𝑣

where 𝛿𝑖𝑗𝑣 is a binary indicator equal to 1 whenever both observations 𝑖 and 𝑗 are nonmissing for vari-
able 𝑣, and zero otherwise. Observations with missing values are not included when using cluster or
mds, and so if an observation is included, 𝛿𝑖𝑗𝑣 = 1 and ∑𝑣 𝛿𝑖𝑗𝑣 is the number of variables. However,

using matrix dissimilarity with the Gower option does not exclude observations with missing

values. See [MV] cluster, [MV] mds, and [MV] matrix dissimilarity.

For binary variables 𝑣,

𝑑𝑖𝑗𝑣 = {0 if 𝑥𝑖𝑣 = 𝑥𝑗𝑣
1 otherwise

This is the same as the matching measure.

For continuous variables 𝑣,

𝑑𝑖𝑗𝑣 =
|𝑥𝑖𝑣 − 𝑥𝑗𝑣|

{max𝑘(𝑥𝑘𝑣) − min𝑘(𝑥𝑘𝑣)}

𝑑𝑖𝑗𝑣 is set to 0 if max𝑘(𝑥𝑘𝑣) − min𝑘(𝑥𝑘𝑣) = 0, that is, if the range of the variable is zero. This is the

L1 measure divided by the range of the variable.

For comparing variables 𝑢 and 𝑣, the formula is

∑𝑖 𝛿𝑖𝑢𝑣𝑑𝑖𝑢𝑣

∑𝑖 𝛿𝑖𝑢𝑣

https://www.stata.com/manuals/mvcluster.pdf#mvcluster
https://www.stata.com/manuals/mvmds.pdf#mvmds
https://www.stata.com/manuals/mvmatrixdissimilarity.pdf#mvmatrixdissimilarity
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where 𝛿𝑖𝑢𝑣 is a binary indicator equal to 1 whenever both variables 𝑢 and 𝑣 are nonmissing for obser-
vation 𝑖, and zero otherwise. If there are no missing values, ∑𝑖 𝛿𝑖𝑢𝑣 is the number of observations;

otherwise, it is the number of observations for which neither variable 𝑢 nor 𝑣 has a missing value.

If all the variables are binary,

𝑑𝑖𝑢𝑣 = {0 if 𝑥𝑖𝑢 = 𝑥𝑖𝑣
1 otherwise

If at least one variable is continuous,

𝑑𝑖𝑢𝑣 = |𝑥𝑖𝑢 − 𝑥𝑖𝑣|

{max𝑣(𝑥𝑖𝑣) − min𝑣(𝑥𝑖𝑣)}

𝑑𝑖𝑢𝑣 is set to 0 if max𝑣(𝑥𝑖𝑣) − min𝑣(𝑥𝑖𝑣) = 0, that is, if the range of the observation is zero.
The Gower measure interprets binary variables as those with only 0, 1, or missing values. All other

variables are treated as continuous.

In [MV]matrix dissimilarity, missing observations are included only in the calculation of the Gower
dissimilarity, but the formula for this dissimilarity measure is undefined when all the values of 𝛿𝑖𝑗𝑣 or

𝛿𝑖𝑢𝑣 are zero. The dissimilarity is then set to missing.

Technical note: Matrix dissimilarity and the Gower measure
Normally the commands

. matrix dissimilarity gm = x1 x2 y1, Gower

. clustermat waverage gm, add

and

. cluster waverage x1 x2 y1, measure(Gower)

will yield the same results, and likewise with mdsmat and mds. However, if any of the variables contain
missing observations, this will not be the case. cluster and mds exclude all observations that have

missing values for any of the variables of interest, whereas matrix dissimilarity with the Gower
option does not. See [MV] cluster, [MV] mds, and [MV] matrix dissimilarity for more information.

Note: matrix dissimilarity without the Gower option does exclude all observations that have

missing values for any of the variables of interest.

Technical note: Binary similarity measures applied to averages
Some cluster-analysis methods (such as Stata’s kmeans and kmedians clustering) need to compute the

similarity or dissimilarity between observations and group averages or group medians; see [MV] cluster.

With binary data, a group average is interpreted as a proportion.

A group median for binary data will be zero or one, except when there are an equal number of zeros

and ones. Here Stata calls the median 0.5, which can also be interpreted as a proportion.

https://www.stata.com/manuals/mvmatrixdissimilarity.pdf#mvmatrixdissimilarity
https://www.stata.com/manuals/mvcluster.pdf#mvcluster
https://www.stata.com/manuals/mvmds.pdf#mvmds
https://www.stata.com/manuals/mvmatrixdissimilarity.pdf#mvmatrixdissimilarity
https://www.stata.com/manuals/mvcluster.pdf#mvcluster
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In Stata’s cluster kmeans and cluster kmedians commands for comparing a binary observation to
a group proportion (see Partition cluster-analysis methods in [MV] cluster), the values of 𝑎, 𝑏, 𝑐, and 𝑑 are
obtained by assigning the appropriate fraction of the count to these values. In our earlier table showing

the relationship of 𝑎, 𝑏, 𝑐, and 𝑑 in the cross-tabulation of observation 𝑖 and observation 𝑗, we replace
observation 𝑗 by the group-proportions vector. Then when observation 𝑖 is 1, we add the corresponding
proportion to 𝑎 and add oneminus that proportion to 𝑏. When observation 𝑖 is 0, we add the corresponding
proportion to 𝑐 and add one minus that proportion to 𝑑. After the values of 𝑎, 𝑏, 𝑐, and 𝑑 are computed in

this way, the binary similarity measures are computed using the formulas as already described.� �
John Clifford Gower (1930–2019) was born in London. He studied mathematics and statistics at

the Universities of Cambridge and Manchester. From 1955 until his retirement in 1990, he worked

at Rothamsted Experimental Station in Hertfordshire (where R. A. Fisher, W. G. Cochran, F. Yates,

J. A. Nelder, and R. W. M. Wedderburn also worked at various times). Gower’s initial focus was

on computing: the Elliott 401 computer then at Rothamsted (now visible in the Science Museum

in London) was probably the first in the world to be devoted entirely to agricultural and biologi-

cal research. From the mid 1960s, his main emphasis was applied multivariate analysis, especially

classification problems and graphical methods. That led to first-authored books on biplots and Pro-

crustes problems and to several highly cited papers. In retirement, Gower was long associated with

the Open University. He traveled and collaborated widely and actively supported several learned

societies.

Paul Jaccard (1868–1944) was a Swiss botanist who was born in Sainte-Croix (Vaud) and died in

Zürich. He studied at Lausanne, Zürich, and Paris before being appointed to posts at Lausanne

in 1894, where he specialized in plant geography, undertaking fieldwork in Egypt, Sweden, and

Turkestan. In 1903, Jaccard returned to Zürich to a chair in general botany and plant physiology at

ETH. His interests there centered on the microscopic analysis of wood, and anatomical and physio-

logical studies of the growth of trees.

Robert Reuven Sokal (1926–2012) was born in Vienna to a Jewish family. He gained degrees from

St. John’s University in Shanghai and the University of Chicago. Sokal worked at the University of

Kansas–Lawrence and (from 1969) the State University of NewYork–Stony Brook. He was one of

the leaders in the development of numerical taxonomy (Sokal and Sneath 1963; Sneath and Sokal

1973) and was prominent in the application of statistical methods within biological systematics.

With F. J. Rohlf, he authored one of the leading biometrics texts (Sokal and Rohlf 2011). In the

latter stages of his career, his interests centered on genetic variation in human populations, European

ethnohistory, and spatial statistics. Sokal was a member of the US National Academy of Sciences.

Peter HenryAndrews Sneath (1923–2011)was born in Ceylon (nowSri Lanka) and studiedmedicine

in Cambridge and London. After military service, he specialized in microbial systematics and the

application of computers to biomedical science, working for theMedical Research Council in theUK

and the University of Leicester. With Robert Sokal, Sneath wrote the two initial texts on numerical

taxonomy. He is a Fellow of the Royal Society. A bacterial taxon, the genus Sneathia, was named

after him in 2002.� �

https://www.stata.com/manuals/mvcluster.pdf#mvclusterRemarksandexamplesPartitioncluster-analysismethods
https://www.stata.com/manuals/mvcluster.pdf#mvcluster


measure option — Option for similarity and dissimilarity measures 12

References
Anderberg, M. R. 1973. Cluster Analysis for Applications. New York: Academic Press. https://doi.org/10.1016/C2013-0-

06161-0.

Cox, D. R. 2015. A conversation with John C. Gower. International Statistical Review 83: 339–356. https://doi.org/10.

1111/insr.12094.

Czekanowski, J. 1932. “Coefficient of racial likeness” und “durchschnittliche Differenz”.Anthropologischer Anzeiger 9:

227–249.

Dice, L. R. 1945. Measures of the amount of ecologic association between species. Ecology 26: 297–302. https://doi.

org/10.2307/1932409.

Driver, H. E., and A. L. Kroeber. 1932. Quantitative expression of cultural relationships. University of California Publi-

cations in American Archaeology and Ethnology 31: 211–256.

Futuyma, D. J. 2012. Robert R. Sokal (1926–2012). Science 336: 816. https://doi.org/10.1126/science.1224101.

Gilbert, G. K. 1884. Finley’s tornado predictions.American Meteorological Journal 1: 166–172.

Gordon, A. D. 1999. Classification. 2nd ed. Boca Raton, FL: Chapman and Hall/CRC. https://doi.org/10.1201/

9780367805302.

Gower, J. C. 1971. A general coefficient of similarity and some of its properties. Biometrics 27: 857–871. https://doi.org/

10.2307/2528823.

———. 1985. “Measures of similarity, dissimilarity, and distance”. In Encyclopedia of Statistical Sciences, edited by

S. Kotz, N. L. Johnson, and C. B. Read, vol. 5: 397–405. New York: Wiley.

Hamann, U. 1961. Merkmalsbestand und Verwandtschaftsbeziehungen der Farinosae. Ein Beitrag zum System der

Monokotyledonen.Willdenowia 2: 639–768.

Hilbe, J. M. 1992a. sg9.1: Additional statistics to similari output. Stata Technical Bulletin 10: 22. Reprinted in Stata

Technical Bulletin Reprints, vol. 2, p. 132. College Station, TX: Stata Press.

———. 1992b. sg9: Similarity coefficients for 2 × 2 binary data. Stata Technical Bulletin 9: 14–15. Reprinted in Stata

Technical Bulletin Reprints, vol. 2, pp. 130–131. College Station, TX: Stata Press.

Hubálek, Z. 1982. Coefficients of association and similarity, based on binary (presence-absence) data: An evaluation.

Biological Reviews 57: 669–689. https://doi.org/10.1111/j.1469-185X.1982.tb00376.x.

Jaccard, P. 1901. Distribution de la flore alpine dans le Bassin des Dranses et dans quelques régions voisines. Bulletin de

la Société Vaudoise des Sciences Naturelles 37: 241–272. https://doi.org/10.5169/seals-266440.

———. 1908. Nouvelles recherches sur la distribution florale. Bulletin de la Société Vaudoise des Sciences Naturelles 44:

223–270. https://doi.org/10.5169/seals-268384.

Kaufman, L., and P. J. Rousseeuw. 1990. Finding Groups in Data: An Introduction to Cluster Analysis. New York: Wiley.

https://doi.org/10.1002/9780470316801.

Kulczyński, S. 1927. Die Pflanzenassoziationen der Pieninen [In Polish, German summary]. Bulletin International de

l’Academie Polonaise des Sciences et des Lettres, Classe des Sciences Mathematiques et Naturelles, B (Sciences Na-

turelles) Suppl. II: 57–203.

Ochiai, A. 1957. Zoogeographic studies on the soleoid fishes found in Japan and its neighbouring regions [in Japanese,

English summary]. Bulletin of the Japanese Society of Scientific Fisheries 22: 526–530.

Pearson, K. 1900. Mathematical contributions to the theory of evolution—VII. On the correlation of characters not quan-

titatively measureable. Philosophical Transactions of the Royal Society, A ser., 195: 1–47. https://doi.org/10.1098/rsta.

1900.0022.

Rogers, D. J., and T. T. Tanimoto. 1960. A computer program for classifying plants. Science 132: 1115–1118. https:

//doi.org/10.1126/science.132.3434.1115.

Ross, G. J. S. 2019. John Clifford Gower, 1930–2019. Journal of the Royal Statistical Society, A ser., 182: 1639–1641.

https://doi.org/10.1111/rssa.12518.

Russell, P. F., and T. R. Rao. 1940. On habitat and association of species of anopheline larvae in south-eastern Madras.

Journal of the Malaria Institute of India 3: 153–178.

https://doi.org/10.1016/C2013-0-06161-0
https://doi.org/10.1016/C2013-0-06161-0
https://doi.org/10.1111/insr.12094
https://doi.org/10.1111/insr.12094
https://doi.org/10.2307/1932409
https://doi.org/10.2307/1932409
https://doi.org/10.1126/science.1224101
https://doi.org/10.1201/9780367805302
https://doi.org/10.1201/9780367805302
https://doi.org/10.2307/2528823
https://doi.org/10.2307/2528823
https://www.stata.com/products/stb/journals/stb10.pdf
https://www.stata.com/products/stb/journals/stb9.pdf
https://doi.org/10.1111/j.1469-185X.1982.tb00376.x
https://doi.org/10.5169/seals-266440
https://doi.org/10.5169/seals-268384
https://doi.org/10.1002/9780470316801
https://doi.org/10.1098/rsta.1900.0022
https://doi.org/10.1098/rsta.1900.0022
https://doi.org/10.1126/science.132.3434.1115
https://doi.org/10.1126/science.132.3434.1115
https://doi.org/10.1111/rssa.12518


measure option — Option for similarity and dissimilarity measures 13

Sneath, P. H. A. 1995. Thirty years of numerical taxonomy. Systematic Biology 44: 281–298. https://doi.org/10.1093/

sysbio/44.3.281.

———. 2010. Reflections on microbial systematics. Bulletin of Bergey’s International Society for Microbial Systematics

1: 77–83.

Sneath, P. H. A., and R. R. Sokal. 1962. Numerical taxonomy. Nature 193: 855–860. https://doi.org/10.1038/193855a0.

———. 1973. Numerical Taxonomy: The Principles and Practice of Numerical Classification. San Francisco: Freeman.

Sokal, R. R., and C. D. Michener. 1958.A statistical method for evaluating systematic relationships. University of Kansas

Science Bulletin 28: 1409–1438.

Sokal, R. R., and F. J. Rohlf. 2011. Biometry. 4th ed. New York: Freeman.

Sokal, R. R., and P. H. A. Sneath. 1963. Principles of Numerical Taxonomy. San Francisco: Freeman.

Sørensen, T. J. 1948.Amethod of establishing groups of equal amplitude in plant sociology based on similarity of species

content and its application to analyses of the vegetation on Danish commons. Royal Danish Academy of Sciences and

Letters, Biological Series 5: 1–34.

Yule, G. U. 1900. On the association of attributes in statistics: With illustrations from the material of the Childhood

Society, etc. Philosophical Transactions of the Royal Society, A ser., 194: 257–319. https://doi.org/10.1098/rsta.1900.

0019.

Yule, G. U., and M. G. Kendall. 1950.An Introduction to the Theory of Statistics. 14th ed. New York: Hafner.

Zubin, J. 1938. A technique for measuring like-mindedness. Journal of Abnormal and Social Psychology 33: 508–516.

https://doi.org/10.1037/h0055441.

Also see
[MV] matrix dissimilarity — Compute similarity or dissimilarity measures

[MV] cluster — Introduction to cluster-analysis commands

[MV] clustermat — Introduction to clustermat commands

Stata, Stata Press, and Mata are registered trademarks of StataCorp LLC. Stata and Stata
Press are registered trademarks with the World Intellectual Property Organization of the
United Nations. StataNow and NetCourseNow are trademarks of StataCorp LLC. Other
brand and product names are registered trademarks or trademarks of their respective com-
panies. Copyright © 1985–2025 StataCorp LLC, College Station, TX, USA. All rights
reserved.

®

For suggested citations, see the FAQ on citing Stata documentation.

https://doi.org/10.1093/sysbio/44.3.281
https://doi.org/10.1093/sysbio/44.3.281
https://doi.org/10.1038/193855a0
https://doi.org/10.1098/rsta.1900.0019
https://doi.org/10.1098/rsta.1900.0019
https://doi.org/10.1037/h0055441
https://www.stata.com/manuals/mvmatrixdissimilarity.pdf#mvmatrixdissimilarity
https://www.stata.com/manuals/mvcluster.pdf#mvcluster
https://www.stata.com/manuals/mvclustermat.pdf#mvclustermat
https://www.stata.com/support/faqs/resources/citing-software-documentation-faqs/

