
mdslong — Multidimensional scaling of proximity data in long format

Description Quick start Menu Syntax Options
Remarks and examples Stored results Methods and formulas References Also see

Description
mdslong performs multidimensional scaling (MDS) for two-way proximity data in long format with

an explicit measure of similarity or dissimilarity between objects. mdslong performs classical metric

MDS as well as modern metric and nonmetric MDS.

For MDS with two-way proximity data in a matrix, see [MV] mdsmat. If you are looking for MDS on

a dataset, based on dissimilarities between observations over variables, see [MV] mds.

Quick start
Classical multidimensional scaling based on dissimilarities in variable d between subjects identified by

variables i and j
mdslong d, id(i j)

Same as above, but suppress the MDS configuration plot and use 3 dimensions for the approximating

configuration

mdslong d, id(i j) noplot dimension(3)

Modern multidimensional scaling

mdslong d, id(i j) method(modern)

Same as above, but with Sammon mapping loss criterion and Procrustes rotation toward the classical

solution

mdslong d, id(i j) loss(sammon) normalize(classical)

Nonmetric modern multidimensional scaling

mdslong d, id(i j) method(nonmetric)

Menu
Statistics > Multivariate analysis > Multidimensional scaling (MDS) > MDS of proximity-pair data
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https://www.stata.com/manuals/mvmdsmat.pdf#mvmdsmat
https://www.stata.com/manuals/mvmds.pdf#mvmds
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Syntax
mdslong depvar [ if ] [ in ] [weight ], id(var1 var2) [ options ]

options Description

Model
∗ id(var1 var2) identify comparison pairs (object1, object2)

method(method) method for performing MDS

loss(loss) loss function

transform(tfunction) permitted transformations of dissimilarities

normalize(norm) normalization method; default is normalize(principal)
s2d(standard) convert similarity to dissimilarity: dissim𝑖𝑗 = √sim𝑖𝑖 + sim𝑗𝑗 − 2sim𝑖𝑗;

the default

s2d(oneminus) convert similarity to dissimilarity: dissim𝑖𝑗 = 1 − sim𝑖𝑗
force correct problems in proximity information

dimension(#) configuration dimensions; default is dimension(2)
addconstant make distance matrix positive semidefinite (classical MDS only)

Reporting

neigen(#) maximum number of eigenvalues to display; default is neigen(10)
(classical MDS only)

config display table with configuration coordinates

noplot suppress configuration plot

Minimization

initialize(initopt) start with configuration given in initopt

tolerance(#) tolerance for configuration matrix; default is tolerance(1e-4)
ltolerance(#) tolerance for loss criterion; default is ltolerance(1e-8)
iterate(#) perform maximum # of iterations; default is iterate(1000)
protect(#) perform # optimizations and report best solution; default is protect(1)
[no]log display or suppress the iteration log; default is to display

trace display current configuration in iteration log

gradient display current gradient matrix in iteration log

sdprotect(#) advanced; see description below

∗ id(var1 var2) is required.

by, collect, and statsby are allowed; see [U] 11.1.10 Prefix commands.

aweights and fweights are allowed for methods modern and nonmetric; see [U] 11.1.6 weight.

The maximum number of compared objects allowed is the maximum matrix size; see [R] Limits.

sdprotect(#) does not appear in the dialog box.

See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.4inrange
https://www.stata.com/manuals/mvmdslong.pdf#mvmdslongSyntaxweight
https://www.stata.com/manuals/mvmdslong.pdf#mvmdslongSyntaxmethod
https://www.stata.com/manuals/mvmdslong.pdf#mvmdslongSyntaxloss
https://www.stata.com/manuals/mvmdslong.pdf#mvmdslongSyntaxtfunction
https://www.stata.com/manuals/mvmdslong.pdf#mvmdslongSyntaxnorm
https://www.stata.com/manuals/mvmdslong.pdf#mvmdslongSyntaxinitopt
https://www.stata.com/manuals/mvmdslong.pdf#mvmdslongOptionssdprotect()
https://www.stata.com/manuals/u11.pdf#u11.1.10Prefixcommands
https://www.stata.com/manuals/u11.pdf#u11.1.6weight
https://www.stata.com/manuals/rlimits.pdf#rLimits
https://www.stata.com/manuals/u20.pdf#u20Estimationandpostestimationcommands
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method Description

classical classical MDS; default if neither loss() nor transform() is
specified

modern modern MDS; default if loss() or transform() is specified;
except when loss(stress) and transform(monotonic) are
specified

nonmetric nonmetric (modern) MDS; default when loss(stress) and
transform(monotonic) are specified

loss Description

stress stress criterion, normalized by distances; the default

nstress stress criterion, normalized by disparities

sstress squared stress criterion, normalized by distances

nsstress squared stress criterion, normalized by disparities

strain strain criterion (with transform(identity) is equivalent to

classical MDS)

sammon Sammon mapping

tfunction Description

identity no transformation; disparity = dissimilarity; the default

power power 𝛼: disparity = dissimilarity𝛼

monotonic weakly monotonic increasing functions (nonmetric scaling); only

with loss(stress)

norm Description

principal principal orientation; location = 0; the default

classical Procrustes rotation toward classical solution

target(matname)[ , copy ] Procrustes rotation toward matname; ignore naming conflicts

if copy is specified

initopt Description

classical start with classical solution; the default

random[ (#) ] start at random configuration, setting seed to #

from(matname)[ , copy ] start from matname; ignore naming conflicts if copy is specified

Options

� � �
Model �

id(var1 var2) is required. The pair of variables var1 and var2 should uniquely identify comparisons.

var1 and var2 are string or numeric variables that identify the objects to be compared. var1 and var2
should be of the same data type; if they are value labeled, they should be labeled with the same value

label. Using value-labeled variables or string variables is generally helpful in identifying the points

in plots and tables.
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Example data layout for mdslong proxim, id(i1 i2).

proxim i1 i2

7 1 2
10 1 3
12 1 4
4 2 3
6 2 4
3 3 4

If you have multiple measurements per pair, we suggest that you specify the mean of the measures as

the proximity and the inverse of the variance as the weight.

method(method) specifies the method for MDS.

method(classical) specifies classical metric scaling, also known as “principal coordinates anal-

ysis” when used with Euclidean proximities. Classical MDS obtains equivalent results to modern

MDSwith loss(strain) and transform(identity)without weights. The calculations for clas-
sicalMDS are fast; consequently, classical MDS is generally used to obtain starting values for mod-

ern MDS. If the options loss() and transform() are not specified, mds computes the classical

solution, likewise if method(classical) is specified loss() and transform() are not allowed.

method(modern) specifies modern scaling. If method(modern) is specified but not loss() or

transform(), then loss(stress) and transform(identity) are assumed. All values of

loss() and transform() are valid with method(modern).

method(nonmetric) specifies nonmetric scaling, which is a type of modern scaling. If

method(nonmetric) is specified, loss(stress) and transform(monotonic) are assumed.

Other values of loss() and transform() are not allowed.

loss(loss) specifies the loss criterion.

loss(stress) specifies that the stress loss function be used, normalized by the squared Eu-

clidean distances. This criterion is often called Kruskal’s stress-1. Optimal configurations for

loss(stress) and for loss(nstress) are equivalent up to a scale factor, but the iteration paths

may differ. loss(stress) is the default.

loss(nstress) specifies that the stress loss function be used, normalized by the squared dispar-

ities, that is, transformed dissimilarities. Optimal configurations for loss(stress) and for

loss(nstress) are equivalent up to a scale factor, but the iteration paths may differ.

loss(sstress) specifies that the squared stress loss function be used, normalized by the fourth

power of the Euclidean distances.

loss(nsstress) specifies that the squared stress criterion, normalized by the fourth power of the

disparities (transformed dissimilarities) be used.

loss(strain) specifies the strain loss criterion. Classical scaling is equivalent to loss(strain)
and transform(identity) but is computed by a faster noniterative algorithm. Specifying

loss(strain) still allows transformations.

loss(sammon) specifies the Sammon (1969) loss criterion.

transform(tfunction) specifies the class of allowed transformations of the dissimilarities; transformed

dissimilarities are called disparities.
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transform(identity) specifies that the only allowed transformation is the identity; that is, dispar-

ities are equal to dissimilarities. transform(identity) is the default.

transform(power) specifies that disparities are related to the dissimilarities by a power function,

disparity = dissimilarity𝛼, 𝛼 > 0

transform(monotonic) specifies that the disparities are a weakly monotonic function of the dis-

similarities. This is also known as nonmetric MDS. Tied dissimilarities are handled by the primary

method; that is, ties may be broken but are not necessarily broken. transform(monotonic) is

valid only with loss(stress).

normalize(norm) specifies a normalization method for the configuration. Recall that the location and

orientation of an MDS configuration is not defined (“identified”); an isometric transformation (that

is, translation, reflection, or orthonormal rotation) of a configuration preserves interpoint Euclidean

distances.

normalize(principal) performs a principal normalization, in which the configuration columns

have zero mean and correspond to the principal components, with positive coefficient for the ob-

servation with lowest value of id(). normalize(principal) is the default.

normalize(classical) normalizes by a distance-preserving Procrustean transformation of the con-
figuration toward the classical configuration in principal normalization; see [MV] procrustes.

normalize(classical) is not valid if method(classical) is specified.

normalize(target(matname) [ , copy ]) normalizes by a distance-preserving Procrustean trans-

formation toward matname; see [MV] procrustes. matname should be an 𝑛 × 𝑝 matrix, where 𝑛 is

the number of observations and 𝑝 is the number of dimensions, and the rows of matname should

be ordered with respect to id(). The rownames of matname should be set correctly but will be

ignored if copy is also specified.

Note on normalize(classical) and normalize(target()): the Procrustes transformation com-
prises any combination of translation, reflection, and orthonormal rotation—these transformations

preserve distance. Dilation (uniform scaling) would stretch distances and is not applied. However,

the output reports the dilation factor, and the reported Procrustes statistic is for the dilated configura-

tion.

s2d(standard | oneminus) specifies how similarities are converted into dissimilarities. By default,

the command assumes dissimilarity data. Specifying s2d() indicates that your proximity data are

similarities.

Dissimilarity data should have zeros on the diagonal (that is, an object is identical to itself) and non-

negative off-diagonal values. Dissimilarities need not satisfy the triangular inequality, 𝐷(𝑖, 𝑗)2 ≤
𝐷(𝑖, ℎ)2 + 𝐷(ℎ, 𝑗)2. Similarity data should have ones on the diagonal (that is, an object is identical

to itself) and have off-diagonal values between zero and one. In either case, proximities should be

symmetric. See option force if your data violate these assumptions.

The available s2d() options, standard and oneminus, are defined as follows:

standard dissim𝑖𝑗 = √sim𝑖𝑖 + sim𝑗𝑗 − 2sim𝑖𝑗 = √2(1 − sim𝑖𝑗)

oneminus dissim𝑖𝑗 = 1 − sim𝑖𝑗

s2d(standard) is the default.

s2d() should be specified only with measures in similarity form.

https://www.stata.com/manuals/mvprocrustes.pdf#mvprocrustes
https://www.stata.com/manuals/mvprocrustes.pdf#mvprocrustes
https://www.stata.com/manuals/mvmdslong.pdf#mvmdslongOptionsforce
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force corrects problems with the supplied proximity information. In the long format used by mdslong,
multiple measurements on (𝑖, 𝑗) may be available. Including both (𝑖, 𝑗) and (𝑗, 𝑖) would be treated

as multiple measurements. This is an error, even if the measures are identical. Option force uses

the mean of the measurements. force also resolves problems on the diagonal, that is, comparisons

of objects with themselves; these should have zero dissimilarity or unit similarity. force does not

resolve incomplete data, that is, pairs (𝑖, 𝑗) for which no measurement is available. Out-of-range

values are also not fixed.

dimension(#) specifies the dimension of the approximating configuration. The default is

dimension(2), and # should not exceed the number of positive eigenvalues of the centered distance

matrix.

addconstant specifies that if the double-centered distance matrix is not positive semidefinite (psd), a

constant should be added to the squared distances to make it psd and, hence, Euclidean. This option

is allowed with classical MDS only.

� � �
Reporting �

neigen(#) specifies the number of eigenvalues to be included in the table. The default is neigen(10).
Specifying neigen(0) suppresses the table. This option is allowed with classical MDS only.

config displays the table with the coordinates of the approximating configuration. This table may also

be displayed using the postestimation command estat config; see [MV] mds postestimation.

noplot suppresses the graph of the approximating configuration. The graph can still be produced later

via mdsconfig, which also allows the standard graphics options for fine-tuning the plot; see [MV]mds

postestimation plots.

� � �
Minimization �

These options are available only with method(modern) or method(nonmetric):

initialize(initopt) specifies the initial values of the criterion minimization process.

initialize(classical), the default, uses the solution from classical metric scaling as initial val-

ues. With protect(), all but the first run start from random perturbations from the classical

solution. These random perturbations are independent and normally distributed with standard

error equal to the product of sdprotect(#) and the standard deviation of the dissimilarities.

initialize(classical) is the default.

initialize(random) starts an optimization process from a random starting configuration. These

random configurations are generated from independent normal distributions with standard error

equal to the product of sdprotect(#) and the standard deviation of the dissimilarities. The means
of the configuration are irrelevant in MDS.

initialize(from(matname)[ , copy ]) sets the initial value to matname. matname should be an

𝑛 × 𝑝 matrix, where 𝑛 is the number of observations and 𝑝 is the number of dimensions, and the

rows of matname should be ordered with respect to id(). The rownames of matname should be

set correctly but will be ignored if copy is specified. With protect(), the second-to-last runs start
from random perturbations from matname. These random perturbations are independent normal

distributed with standard error equal to the product of sdprotect(#) and the standard deviation

of the dissimilarities.

tolerance(#) specifies the tolerance for the configuration matrix. When the relative change in the

configuration from one iteration to the next is less than or equal to tolerance(), the tolerance()
convergence criterion is satisfied. The default is tolerance(1e-4).

https://www.stata.com/manuals/mvmdspostestimation.pdf#mvmdspostestimation
https://www.stata.com/manuals/mvmdspostestimationplots.pdf#mvmdspostestimationplots
https://www.stata.com/manuals/mvmdspostestimationplots.pdf#mvmdspostestimationplots
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ltolerance(#) specifies the tolerance for the fit criterion. When the relative change in the fit criterion

from one iteration to the next is less than or equal to ltolerance(), the ltolerance() convergence
is satisfied. The default is ltolerance(1e-8).

Both the tolerance() and ltolerance() criteria must be satisfied for convergence.

iterate(#) specifies the maximum number of iterations. The default is iterate(1000).

protect(#) requests that # optimizations be performed and that the best of the solutions be reported.

The default is protect(1). See option initialize() on starting values of the runs. The output

contains a table of the return code, the criterion value reached, and the seed of the random number used

to generate the starting value. Specifying a large number, such as protect(50), provides reasonable
insight whether the solution found is a global minimum and not just a local minimum.

If any of the options log, trace, or gradient is also specified, iteration reports will be printed for

each optimization run. Beware: this option will produce a lot of output.

log and nolog specify whether to display the iteration log. The iteration log is displayed by default

unless you used set iterlog off to suppress it; see set iterlog in [R] set iter.

trace displays the configuration matrices in the iteration report. Beware: this option may produce a lot

of output.

gradient displays the gradient matrices of the fit criterion in the iteration report. Beware: this option

may produce a lot of output.

The following option is available with mdslong but is not shown in the dialog box:

sdprotect(#) sets a proportionality constant for the standard deviations of random configurations

(init(random)) or random perturbations of given starting configurations (init(classical) or

init(from())). The default is sdprotect(1).

Remarks and examples
Remarks are presented under the following headings:

Introduction
Proximity data in long format
Modern nonmetric MDS

Introduction
Multidimensional scaling (MDS) is a dimension-reduction and visualization technique. Dissimilarities

(for instance, Euclidean distances) between observations in a high-dimensional space are represented

in a lower-dimensional space (typically two dimensions) so that the Euclidean distance in the lower-

dimensional space approximates the dissimilarities in the higher-dimensional space. See Kruskal and

Wish (1978) for a brief nontechnical introduction to MDS. Young (1987) and Borg and Groenen (2005)

are more advanced textbook-sized treatments.

mdslong performsMDS on data in long format. depvar specifies proximity data in either dissimilarity

or similarity form. The comparison pairs are identified by two variables specified in the required option

id(). Exactly 1 observation with a nonmissing depvar should be included for each pair (𝑖, 𝑗). Pairs are
unordered; you do not include observations for both (𝑖, 𝑗) and (𝑗, 𝑖). Observations for comparisons of
objects with themselves (𝑖, 𝑖) are optional. See option force if your data violate these assumptions.

https://www.stata.com/manuals/mvmdslong.pdf#mvmdslongOptionsinitialize()
https://www.stata.com/manuals/rsetiter.pdf#rsetiter
https://www.stata.com/manuals/mvmdslong.pdf#mvmdslongOptionsforce
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When you have multiple independent measurements of the dissimilarities, you may specify the mean

of these dissimilarity measurements as the combined measurement and specify 1/(# of measurements)
or 1/variance(measurements) as weights. For more discussion of weights in MDS, we refer to Borg and

Groenen (2005, sec. 11.3). Weights should be irreducible; that is, it is not possible to split the objects

into disjointed groups with all intergroup weights 0.

In some applications, the similarity or dissimilarity of objects is defined by the researcher in terms

of variables (attributes) measured on the objects. If you need MDS of this form, you should continue by

reading [MV] mds.

Often, however, proximities—that is, similarities or dissimilarities—are measured directly. For in-

stance, psychologists studying the similarities or dissimilarities in a set of stimuli—smells, sounds, faces,

concepts, etc.—may have subjects rate the dissimilarity of pairs of stimuli. Linguists have subjects rate

the similarity or dissimilarity of pairs of dialects. Political scientists have subjects rate the similarity

or dissimilarity of political parties or candidates for political office. In other fields, relational data are

studied that may be interpreted as proximities in amore abstract sense. For instance, sociologists study in-

terpersonal contact frequencies in groups (“social networks”); these measures are sometimes interpreted

in terms of similarities.

A wide variety of MDS methods have been proposed. mdslong performs classical and modern scal-

ing. Classical scaling has its roots in Young and Householder (1938) and Torgerson (1952). MDS requires

complete and symmetric dissimilarity interval-level data. To explore modern scaling, see Borg and Groe-

nen (2005). Classical scaling results in an eigen decomposition, whereas modern scaling is accomplished

by the minimization of a loss function. Consequently, eigenvalues are not available after modern MDS.

Computing the classical solution is straightforward, but with modern MDS the minimization of the

loss criteria over configurations is a high-dimensional problem that is easily beset by convergence to

local minimums. mdslong provides options to control the minimization process 1) by allowing the user

to select the starting configuration and 2) by selecting the best solution among multiple minimization

runs from random starting configurations.

Proximity data in long format
One format for proximity data is called the “long format”, with an observation recording the dissimi-

larity 𝑑𝑖𝑗 of the “objects” 𝑖 and 𝑗. This requires three variables: one variable to record the dissimilarities
and two variables to identify the comparison pair. The MDS command mdslong requires

• Complete data without duplicates: there is exactly 1 observation for each combination (𝑖, 𝑗) or
(𝑗, 𝑖).

• Optional diagonal: you may, but need not, specify dissimilarities for the reflexive pairs (𝑖, 𝑖).
If you do, you need not supply values for all (𝑖, 𝑖).

Example 1
We illustrate the use of mdslong with a popular dataset from theMDS literature. Rothkopf (1957) had

598 subjects listen to pairs of Morse codes for the 10 digits and for the 26 letters, recording for each pair

of codes the percentage of subjects who declared the codes to be the same. The data on the 10 digits are

reproduced in Mardia, Kent, and Taylor (2024, 420).

https://www.stata.com/manuals/mvmds.pdf#mvmds
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. use https://www.stata-press.com/data/r19/morse_long
(Morse data (Rothkopf 1957))
. list in 1/10

digit1 digit2 freqsame

1. 2 1 62
2. 3 1 16
3. 3 2 59
4. 4 1 6
5. 4 2 23

6. 4 3 38
7. 5 1 12
8. 5 2 8
9. 5 3 27

10. 5 4 56

Sixty-two percent of the subjects declare that the Morse codes for 1 and 2 are the same, 16% declare

that 1 and 3 are the same, 59% declare 2 and 3 to be the same, etc. We may think that these percentages

are similarity measures between the Morse codes: the more similar two Morse codes, the higher the

percentage is of subjects who do not distinguish them. The reported percentages suggest, for example,

that 1 and 2 are similar to approximately the same extent as 2 and 3, whereas 1 and 3 are much less

similar. This is the kind of relationship you would expect with data that can be adequately represented

with MDS.

We transform our data to a zero-to-one scale.

. generate sim = freqsame/100

and invoke mdslong on sim, specifying that the proximity variable sim be interpreted as similarities,

and we use option s2d(standard) to convert to dissimilarities by using the standard conversion.

. mdslong sim, id(digit1 digit2) s2d(standard)
Classical metric multidimensional scaling
Similarity variable: sim in long format
Dissimilarity: sqrt(2(1-similarity))

Number of obs = 10
Eigenvalues > 0 = 9 Mardia fit measure 1 = 0.5086
Retained dimensions = 2 Mardia fit measure 2 = 0.7227

abs(eigenvalue) (eigenvalue)^2
Dimension Eigenvalue Percent Cumul. Percent Cumul.

1 1.9800226 30.29 30.29 49.47 49.47
2 1.344165 20.57 50.86 22.80 72.27

3 1.063133 16.27 67.13 14.26 86.54
4 .66893922 10.23 77.36 5.65 92.18
5 .60159396 9.20 86.56 4.57 96.75
6 .42722301 6.54 93.10 2.30 99.06
7 .21220785 3.25 96.35 0.57 99.62
8 .1452025 2.22 98.57 0.27 99.89
9 .09351288 1.43 100.00 0.11 100.00
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The two-dimensional representation provides a reasonable, but certainly not impressive, fit to the

data. The plot itself is interesting, though, with the digits being roughly 45 degrees apart, except for the

pairs (0,9) and (4,5), which are mapped almost at the same locations. Interpretation is certainly helped

if you see the circular structure in the Morse codes.

digit morse code

1 . - - - -

2 . . - - -

3 . . . - -

4 . . . . -

5 . . . . .

6 - . . . .

7 - - . . .

8 - - - . .

9 - - - - .

0 - - - - -
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Example 2
You might have your data in wide instead of long format. The Morse code dataset in wide format has

10 observations, 10 data variables d1, . . . , d9, d0, and one case identifier.

. use https://www.stata-press.com/data/r19/morse_wide, clear
(Morse data (Rothkopf 1957))
. describe
Contains data from https://www.stata-press.com/data/r19/morse_wide.dta
Observations: 10 Morse data (Rothkopf 1957)

Variables: 11 14 Feb 2024 20:28
(_dta has notes)

Variable Storage Display Value
name type format label Variable label

digit byte %9.0g
d1 byte %9.0g
d2 byte %9.0g
d3 byte %9.0g
d4 byte %9.0g
d5 byte %9.0g
d6 byte %9.0g
d7 byte %9.0g
d8 byte %9.0g
d9 byte %9.0g
d0 byte %9.0g

Sorted by:
. list

digit d1 d2 d3 d4 d5 d6 d7 d8 d9 d0

1. 1 84 62 16 6 12 12 20 37 57 52
2. 2 62 89 59 23 8 14 25 25 28 18
3. 3 16 59 86 38 27 33 17 16 9 9
4. 4 6 23 38 89 56 34 24 13 7 7
5. 5 12 8 27 56 90 30 18 10 5 5

6. 6 12 14 33 34 30 86 65 22 8 18
7. 7 20 25 17 24 18 65 85 65 31 15
8. 8 37 25 16 13 10 22 65 88 58 39
9. 9 57 28 9 7 5 8 31 58 91 79

10. 0 52 18 9 7 5 18 15 39 79 94

Stata does not provide an MDS command to deal directly with the wide format because it is easy to

convert the wide format into the long format with the reshape command; see [D] reshape.

. reshape long d, i(digit) j(other)
(j = 0 1 2 3 4 5 6 7 8 9)
Data Wide -> Long

Number of observations 10 -> 100
Number of variables 11 -> 3
j variable (10 values) -> other
xij variables:

d0 d1 ... d9 -> d

https://www.stata.com/manuals/dreshape.pdf#dreshape
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Now our data are in long format, and we can use mdslong to obtain a MDS analysis.

. generate sim = d/100

. mdslong sim, id(digit other) s2d(standard) noplot
objects should have unit similarity to themselves
r(198);

mdslong complains. The wide data—and hence also the long data that we now have—also contain

the frequencies in which two identical Morse codes were recognized as the same. This is not 100%.

Auditive memory is not perfect, posing a problem for the standard MDS model. We can solve this by

ignoring the diagonal observations:

. mdslong ... if digit != other ...

We may also specify the force option. The force option will take care of a problem that has not yet

surfaced, namely, that mdslong requires 1 observation for each pair (𝑖, 𝑗). In the long data as now created,

we have duplicates observations (𝑖, 𝑗) and (𝑗, 𝑖). force will symmetrize the proximity information, but

it will not deal with multiple measurements in general; having 2 or more observations for (𝑖, 𝑗) is an
error. If you have multiple measurements, you may average the measurements and use weights.

. mdslong sim, id(digit other) s2d(standard) force noplot
Classical metric multidimensional scaling
Similarity variable: sim in long format
Dissimilarity: sqrt(2(1-similarity))

Number of obs = 10
Eigenvalues > 0 = 9 Mardia fit measure 1 = 0.5086
Retained dimensions = 2 Mardia fit measure 2 = 0.7227

abs(eigenvalue) (eigenvalue)^2
Dimension Eigenvalue Percent Cumul. Percent Cumul.

1 1.9800226 30.29 30.29 49.47 49.47
2 1.344165 20.57 50.86 22.80 72.27

3 1.063133 16.27 67.13 14.26 86.54
4 .66893922 10.23 77.36 5.65 92.18
5 .60159396 9.20 86.56 4.57 96.75
6 .42722301 6.54 93.10 2.30 99.06
7 .21220785 3.25 96.35 0.57 99.62
8 .1452025 2.22 98.57 0.27 99.89
9 .09351288 1.43 100.00 0.11 100.00

The output produced by mdslong here is identical to what we saw earlier.

Modern nonmetric MDS
Unlike classicalMDS, modernMDS is calculated via theminimization of the loss function. Eigenvalues

are no longer calculated. We look at nonmetric MDS, which is a type of modern MDS in which the

transformation from distances to disparities is not an identifiable function as in modern metric MDS but

is instead a general monotonic function.

https://www.stata.com/manuals/perror.pdf#perrorRemarksandexamplesr(198)
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Example 3
We return to the Rothkopf (1957) Morse codes in long format. When we specify

method(nonmetric), we assume loss(stress) and transform(monotonic).

. use https://www.stata-press.com/data/r19/morse_long, clear
(Morse data (Rothkopf 1957))
. generate sim = freqsame/100
. mdslong sim, id(digit1 digit2) s2d(standard) meth(nonmetric)
(loss(stress) assumed)
(transform(monotonic) assumed)
Iteration 1t: stress = .14719847
Iteration 1c: stress = .11378737
(output omitted )

Iteration 89t: stress = .07228281
Iteration 89c: stress = .07228281
Modern multidimensional scaling
Similarity variable: sim in long format
Dissimilarity: sqrt(2(1-similarity))

Loss criterion: stress = raw_stress/norm(distances)
Transformation: monotonic (nonmetric)

Number of obs = 10
Dimensions = 2

Normalization: principal Loss criterion = 0.0723
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MDS configuration

Each iteration has two steps associated with it. The two parts to each iteration consist of modifying the

transformation (the T-step) and modifying the configuration (the C-step). If the transform(identity)
option had been used, there would not be a T-step. In the iteration log, you see these as Iteration 1t and

Iteration 1c. The rest of the output from modern MDS is explained in [MV] mds.

Although there is a resemblance between this graph and the first graph, the points are not as circular

or as evenly spaced as they are in the first example, and a great deal more distance is seen between points

4 and 5. Nonmetric MDS depends only on the ordinal properties of the data and admits transformations

that may radically change the appearance of the configuration.

https://www.stata.com/manuals/mvmds.pdf#mvmds
https://www.stata.com/manuals/mvmdslong.pdf#mvmdslongRemarksandexamplesex_mdslong_mds
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After mdslong, all MDS postestimation tools are available. For instance, you may analyze residuals

with estat quantile, you may produce a Shepard diagram, etc.; see [MV] mds postestimation and

[MV] mds postestimation plots.

Stored results
mdslong stores the following in e():

Scalars

e(N) number of underlying observations

e(p) number of dimensions in the approximating configuration

e(np) number of strictly positive eigenvalues

e(addcons) constant added to squared dissimilarities to force positive semidefiniteness

e(mardia1) Mardia measure 1

e(mardia2) Mardia measure 2

e(critval) loss criterion value

e(npos) number of pairs with positive weights

e(wsum) sum of weights

e(alpha) parameter of transform(power)
e(ic) iteration count

e(rc) return code

e(converged) 1 if converged, 0 otherwise

Macros

e(cmd) mdslong
e(cmdline) command as typed

e(method) classical or modern MDS method

e(method2) nonmetric, if method(nonmetric)
e(loss) loss criterion

e(losstitle) description loss criterion

e(tfunction) identity, power, or monotonic, transformation function
e(transftitle) description of transformation

e(id) two ID variable names identifying compared object pairs

e(idtype) int or str; type of id() variable

e(duplicates) 1 if duplicates in id(), 0 otherwise

e(labels) labels for ID categories

e(mxlen) maximum length of category labels

e(depvar) dependent variable containing dissimilarities

e(dtype) similarity or dissimilarity; type of proximity data
e(s2d) standard or oneminus (when e(dtype) is similarity)
e(wtype) weight type

e(wexp) weight expression

e(unique) 1 if eigenvalues are distinct, 0 otherwise

e(init) initialization method

e(irngstate) initial random-number state used for init(random)
e(rngstate) random-number state for solution

e(norm) normalization method

e(targetmatrix) name of target matrix for normalize(target)
e(properties) nob noV for modern or nonmetric MDS; nob noV eigen for classical MDS

e(estat cmd) program used to implement estat
e(predict) program used to implement predict
e(marginsnotok) predictions disallowed by margins

https://www.stata.com/manuals/mvmdspostestimation.pdf#mvmdspostestimation
https://www.stata.com/manuals/mvmdspostestimationplots.pdf#mvmdspostestimationplots
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Matrices

e(D) dissimilarity matrix

e(Disparities) disparity matrix for nonmetric MDS

e(Y) approximating configuration coordinates

e(Ev) eigenvalues

e(W) weight matrix

e(idcoding) coding for integer identifier variable

e(norm stats) normalization statistics

e(linearf) two element vector defining the linear transformation; distance

equals first element plus second element times dissimilarity

Functions

e(sample) marks estimation sample

Methods and formulas
See Methods and formulas in [MV] mdsmat for information.
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Also see
[MV] mds postestimation — Postestimation tools for mds, mdsmat, and mdslong

[MV] mds postestimation plots — Postestimation plots for mds, mdsmat, and mdslong

[MV] biplot — Biplots

[MV] ca — Simple correspondence analysis

[MV] factor — Factor analysis

[MV] mds — Multidimensional scaling for two-way data

[MV] mdsmat — Multidimensional scaling of proximity data in a matrix

[MV] pca — Principal component analysis

[U] 20 Estimation and postestimation commands

Stata, Stata Press, and Mata are registered trademarks of StataCorp LLC. Stata and Stata
Press are registered trademarks with the World Intellectual Property Organization of the
United Nations. StataNow and NetCourseNow are trademarks of StataCorp LLC. Other
brand and product names are registered trademarks or trademarks of their respective com-
panies. Copyright © 1985–2025 StataCorp LLC, College Station, TX, USA. All rights
reserved.

®

For suggested citations, see the FAQ on citing Stata documentation.

https://www.stata.com/manuals/mvmdspostestimation.pdf#mvmdspostestimation
https://www.stata.com/manuals/mvmdspostestimationplots.pdf#mvmdspostestimationplots
https://www.stata.com/manuals/mvbiplot.pdf#mvbiplot
https://www.stata.com/manuals/mvca.pdf#mvca
https://www.stata.com/manuals/mvfactor.pdf#mvfactor
https://www.stata.com/manuals/mvmds.pdf#mvmds
https://www.stata.com/manuals/mvmdsmat.pdf#mvmdsmat
https://www.stata.com/manuals/mvpca.pdf#mvpca
https://www.stata.com/manuals/u20.pdf#u20Estimationandpostestimationcommands
https://www.stata.com/support/faqs/resources/citing-software-documentation-faqs/

