
Glossary

agglomerative hierarchical clustering methods. Agglomerative hierarchical clustering methods are

bottom-up methods for hierarchical clustering. Each observation begins in a separate group. The

closest pair of groups is agglomerated or merged in each iteration until all the data are in one cluster.

This process creates a hierarchy of clusters. Contrast to divisive hierarchical clustering methods.

anti-image correlation matrix or anti-image covariance matrix. The image of a variable is defined as

that part which is predictable by regressing each variable on all the other variables; hence, the anti-

image is the part of the variable that cannot be predicted. The anti-image correlation matrix A is a

matrix of the negatives of the partial correlations among variables. Partial correlations represent the

degree to which the factors explain each other in the results. The diagonal of the anti-image correla-

tion matrix is the Kaiser–Meyer–Olkin measure of sampling adequacy for the individual variables.

Variables with small values should be eliminated from the analysis. The anti-image covariance matrix

C contains the negatives of the partial covariances and has one minus the squared multiple correla-

tions in the principal diagonal. Most of the off-diagonal elements should be small in both anti-image

matrices in a good factor model. Both anti-image matrices can be calculated from the inverse of the

correlation matrix R via

A = {diag(R)}−1R{diag(R)}−1

C = {diag(R)}−1/2R{diag(R)}−1/2

Also see Kaiser–Meyer–Olkin measure of sampling adequacy.

average-linkage clustering. Average-linkage clustering is a hierarchical clustering method that uses the

average proximity of observations between groups as the proximity measure between the two groups.

Bayes’s theorem. Bayes’s theorem states that the probability of an event, 𝐴, conditional on another

event, 𝐵, is generally different from the probability of 𝐵 conditional on 𝐴, although the two are

related. Bayes’s theorem is that

𝑃(𝐴|𝐵) = 𝑃(𝐵|𝐴)𝑃(𝐴)
𝑃(𝐵)

where 𝑃(𝐴) is the marginal probability of 𝐴, and 𝑃(𝐴|𝐵) is the conditional probability of 𝐴 given

𝐵, and likewise for 𝑃(𝐵) and 𝑃(𝐵|𝐴).
Bentler’s invariant pattern simplicity rotation. Bentler’s (1977) rotation maximizes the invariant

pattern simplicity. It is an oblique rotation that minimizes the criterion function

𝑐(𝚲) = − log[|(𝚲2)′𝚲2|] + log[|diag{(𝚲2)′𝚲2}|]

See Crawford–Ferguson rotation for a definition of 𝚲. Also see oblique rotation.

betweenmatrix andwithinmatrix. The between and within matrices are SSCPmatrices that measure the

spread between groups and within groups, respectively. These matrices are used in multivariate anal-

ysis of variance and related hypothesis tests: Wilks’s lambda, Roy’s largest root, Lawley–Hotelling

trace, and Pillai’s trace.
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Here we have 𝑘 independent random samples of size 𝑛. The between matrix H is given by

H = 𝑛
𝑘

∑
𝑖=1

(y𝑖• − y••)(y𝑖• − y••)′ =
𝑘

∑
𝑖=1

1
𝑛
y𝑖•y

′
𝑖• − 1

𝑘𝑛
y••y

′
••

The within matrix E is defined as

E =
𝑘

∑
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𝑛
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Also see SSCP matrix.

biplot. A biplot is a scatterplot which represents both observations and variables simultaneously. There

are many different biplots; variables in biplots are usually represented by arrows and observations are

usually represented by points.

biquartimax rotation or biquartimin rotation. Biquartimax rotation and biquartimin rotation are syn-

onyms. They put equal weight on the varimax and quartimax criteria, simplifying the columns and

rows of the matrix. This is an oblique rotation equivalent to an oblimin rotation with 𝛾 = 0.5. Also

see varimax rotation, quartimax rotation, and oblimin rotation.

boundary solution or Heywood solution. See Heywood case.

CA. See correspondence analysis.

canonical correlation analysis. Canonical correlation analysis attempts to describe the relationships

between two sets of variables by finding linear combinations of each so that the correlation between

the linear combinations is maximized.

canonical discriminant analysis. Canonical linear discriminant analysis is LDA where describing how

groups are separated is of primary interest. Also see linear discriminant analysis.

canonical loadings. The canonical loadings are coefficients of canonical linear discriminant functions.

Also see canonical discriminant analysis and loading.

canonical variate set. The canonical variate set is a linear combination or weighted sum of variables ob-

tained from canonical correlation analysis. Two sets of variables are analyzed in canonical correlation

analysis. The first canonical variate of the first variable set is the linear combination in standardized

form that has maximal correlation with the first canonical variate from the second variable set. The

subsequent canonical variates are uncorrelated to the previous and have maximal correlation under

that constraint.

centered data. A centered dataset has zero mean. You can center data x by taking x− x.

centroid-linkage clustering. Centroid-linkage clustering is a hierarchical clustering method that com-

putes the proximity between two groups as the proximity between the group means.

classical scaling. Classical scaling is a method of performing MDS via an eigen decomposition. This

is contrasted to modern MDS, which is achieved via the minimization of a loss function. Also see

multidimensional scaling and modern scaling.

classification. Classification is the act of allocating or classifying observations to groups as part of

discriminant analysis. In some sources, classification is synonymous with cluster analysis.

classification function. Classification functions can be obtained after LDA or QDA. They are functions

based on Mahalanobis distance for classifying observations to the groups. See discriminant function

for an alternative. Also see linear discriminant analysis and quadratic discriminant analysis.
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classification table. A classification table, also known as a confusion matrix, gives the count of observa-

tions from each group that are classified into each of the groups as part of a discriminant analysis. The

element at (𝑖, 𝑗) gives the number of observations that belong to the 𝑖th group but were classified into
the 𝑗th group. High counts are expected on the diagonal of the table where observations are correctly
classified, and small values are expected off the diagonal. The columns of the matrix are categories

of the predicted classification; the rows represent the actual group membership.

cluster analysis. Cluster analysis is a method for determining natural groupings or clusters of observa-

tions.

cluster tree. See dendrogram.

clustering. See cluster analysis.

common factors. Common factors are found by factor analysis. They linearly reconstruct the original

variables. In factor analysis, reconstruction is defined in terms of prediction of the correlation matrix

of the original variables.

communality. Communality is the proportion of a variable’s variance explained by the common factors

in factor analysis. It is also “1 − uniqueness”. Also see uniqueness.

complete-linkage clustering. Complete-linkage clustering is a hierarchical clustering method that uses

the farthest pair of observations between two groups to determine the proximity of the two groups.

component scores. Component scores are calculated after PCA. Component scores are the coordinates

of the original variables in the space of principal components.

Comrey’s tandem 1 and 2 rotations. Comrey (1967) describes two rotations, the first (tandem 1) to

judge which “small” factors should be dropped, the second (tandem 2) for “polishing”.

Tandem principle 1 minimizes the criterion

𝑐(𝚲) = ⟨𝚲2, (𝚲𝚲′)2𝚲2⟩

Tandem principle 2 minimizes the criterion

𝑐(𝚲) = ⟨𝚲2, {11′ − (𝚲𝚲′)2}𝚲2⟩

See Crawford–Ferguson rotation for a definition of 𝚲.

configuration. The configuration in MDS is a representation in a low-dimensional (usually 2-

dimensional) space with distances in the low-dimensional space approximating the dissimilarities or

disparities in high-dimensional space. Also see multidimensional scaling, dissimilarity, and disparity.

configuration plot. A configuration plot after MDS is a (usually 2-dimensional) plot of labeled points

showing the low-dimensional approximation to the dissimilarities or disparities in high-dimensional

space. Also see multidimensional scaling, dissimilarity, and disparity.

confusion matrix. A confusion matrix is a synonym for a classification table after discriminant analysis.

See classification table.

contrast or contrasts. In ANOVA, a contrast in 𝑘 population means is defined as a linear combination

𝛿 = 𝑐1𝜇1 + 𝑐2𝜇2 + · · · + 𝑐𝑘𝜇𝑘

where the coefficients satisfy
𝑘

∑
𝑖=1

𝑐𝑖 = 0
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In the multivariate setting (MANOVA), a contrast in 𝑘 population mean vectors is defined as

δ = 𝑐1µ1 + 𝑐2µ2 + · · · 𝑐𝑘µ𝑘

where the coefficients again satisfy
𝑘

∑
𝑖=1

𝑐𝑖 = 0

The univariate hypothesis 𝛿 = 0 may be tested with contrast (or test) afterANOVA. The multivari-
ate hypothesis δ = 0 may be tested with manovatest after MANOVA.

correspondence analysis. Correspondence analysis (CA) gives a geometric representation of the rows

and columns of a two-way frequency table. The geometric representation is helpful in understanding

the similarities between the categories of variables and associations between variables. CA is calcu-

lated by singular value decomposition. Also see singular value decomposition.

correspondence analysis projection. A correspondence analysis projection is a line plot of the row

and column coordinates after CA. The goal of this graph is to show the ordering of row and column

categories on each principal dimension of the analysis. Each principal dimension is represented by a

vertical line; markers are plotted on the lines where the row and column categories project onto the

dimensions. Also see correspondence analysis.

costs. Costs in discriminant analysis are the cost of misclassifying observations.

covarimin rotation. Covarimin rotation is an orthogonal rotation equivalent to varimax. Also see vari-

max rotation.

Crawford–Ferguson rotation. Crawford–Ferguson (1970) rotation is a general oblique rotation with

several interesting special cases.

Special cases of the Crawford–Ferguson rotation include

𝜅 Special case

0 quartimax / quartimin

1/p varimax / covarimin

f /(2p) equamax

(f − 1)/(p + f − 2) parsimax

1 factor parsimony

p = number of rows of A.

f = number of columns of A.

Where A is the matrix to be rotated, T is the rotation and 𝚲 = AT. The Crawford–Ferguson rotation

is achieved by minimizing the criterion

𝑐(𝚲) = 1 − 𝜅
4

⟨𝚲2, 𝚲2(11′ − I)⟩ + 𝜅
4

⟨𝚲2, (11′ − I)𝚲2⟩

Also see oblique rotation.

crossed variables or stacked variables. In CA and MCA crossed categorical variables may be formed

from the interactions of two or more existing categorical variables. Variables that contain these inter-

actions are called crossed or stacked variables.

crossing variables or stacking variables. In CA andMCA, crossing or stacking variables are the existing

categorical variables whose interactions make up a crossed or stacked variable.
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curse of dimensionality. The curse of dimensionality is a term coined by Richard Bellman (1961) to de-

scribe the problem caused by the exponential increase in size associated with adding extra dimensions

to a mathematical space. On the unit interval, 10 evenly spaced points suffice to sample with no more

distance than 0.1 between them; however a unit square requires 100 points, and a unit cube requires

1000 points. Many multivariate statistical procedures suffer from the curse of dimensionality. Adding

variables to an analysis without adding sufficient observations can lead to imprecision.

dendrogram or cluster tree. A dendrogram or cluster tree graphically presents information about how

observations are grouped together at various levels of (dis)similarity in hierarchical cluster analysis.

At the bottom of the dendrogram, each observation is considered its own cluster. Vertical lines extend

up for each observation, and at various (dis)similarity values, these lines are connected to the lines

from other observations with a horizontal line. The observations continue to combine until, at the top

of the dendrogram, all observations are grouped together. Also see hierarchical clustering.

dilation. A dilation stretches or shrinks distances in Procrustes rotation.

dimension. A dimension is a parameter or measurement required to define a characteristic of an object

or observation. Dimensions are the variables in the dataset. Weight, height, age, blood pressure,

and drug dose are examples of dimensions in health data. Number of employees, gross income, net

income, tax, and year are examples of dimensions in data about companies.

discriminant analysis. Discriminant analysis is used to describe the differences between groups and to

exploit those differences when allocating (classifying) observations of unknown group membership.

Discriminant analysis is also called classification in many references.

discriminant function. Discriminant functions are formed from the eigenvectors from Fisher’s approach

to LDA. See linear discriminant analysis. See classification function for an alternative.

discriminating variables. Discriminating variables in a discriminant analysis are analyzed to determine

differences between groups where group membership is known. These differences between groups

are then exploited when classifying observations to the groups.

disparity. Disparities are transformed dissimilarities, that is, dissimilarity values transformed by some

function. The class of functions to transform dissimilarities to disparities may either be 1) a class

of metric, or known functions such as linear functions or power functions that can be parameterized

by real scalars or 2) a class of more general (nonmetric) functions, such as any monotonic function.

Disparities are used in MDS. Also see dissimilarity, multidimensional scaling, metric scaling, and

nonmetric scaling.

dissimilarity, dissimilaritymatrix, and dissimilaritymeasure. Dissimilarity or a dissimilaritymeasure

is a quantification of the difference between two things, such as observations or variables or groups of

observations or a method for quantifying that difference. A dissimilarity matrix is a matrix containing

dissimilarity measurements. Euclidean distance is one example of a dissimilarity measure. Contrast

to similarity. Also see proximity and Euclidean distance.

divisive hierarchical clustering methods. Divisive hierarchical clustering methods are top-down meth-

ods for hierarchical clustering. All the data begin as a part of one large cluster; with each iteration, a

cluster is broken into two to create two new clusters. At the first iteration there are two clusters, then

three, and so on. Divisive methods are very computationally expensive. Contrast to agglomerative

hierarchical clustering methods.

eigenvalue. An eigenvalue is the scale factor by which an eigenvector is multiplied. For many multivari-

ate techniques, the size of an eigenvalue indicates the importance of the corresponding eigenvector.

Also see eigenvector.
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eigenvector. An eigenvector of a linear transformation is a nonzero vector that is either left unaffected

or simply multiplied by a scale factor after the transformation.

Here x is an eigenvector of linear transformation A with eigenvalue 𝜆:

Ax = 𝜆x

For many multivariate techniques, eigenvectors form the basis for analysis and interpretation. Also

see loading.

equamax rotation. Equamax rotation is an orthogonal rotation whose criterion is a weighted sum of

the varimax and quartimax criteria. Equamax reflects a concern for simple structure within the rows

and columns of the matrix. It is equivalent to oblimin with 𝛾 = 𝑝/2, or to the Crawford–Ferguson
family with 𝜅 = 𝑓/2𝑝, where 𝑝 is the number of rows of the matrix to be rotated, and 𝑓 is the number
of columns. Also see orthogonal rotation, varimax rotation, quartimax rotation, oblimin rotation, and

Crawford–Ferguson rotation.

Euclidean distance. The Euclidean distance between two observations is the distance one would mea-

sure with a ruler. The distance between vector P = (𝑃1, 𝑃2, . . . , 𝑃𝑛) and Q = (𝑄1, 𝑄2, . . . , 𝑄𝑛) is
given by

𝐷(P,Q) = √(𝑃1 − 𝑄1)2 + (𝑃2 − 𝑄2)2 + · · · + (𝑃𝑛 − 𝑄𝑛)2 = √
𝑛

∑
𝑖=1

(𝑃𝑖 − 𝑄𝑖)2

factor. A factor is an unobserved random variable that is thought to explain variability among observed

random variables.

factor analysis. Factor analysis is a statistical technique used to explain variability among observed ran-

dom variables in terms of fewer unobserved random variables called factors. The observed variables

are then linear combinations of the factors plus error terms.

If the correlation matrix of the observed variables is R, then R is decomposed by factor analysis as

R = 𝚲𝚽𝚲′ + 𝚿

𝚲 is the loading matrix, and 𝚿 contains the specific variances, for example, the variance specific to

the variable not explained by the factors. The default unrotated form assumes uncorrelated common

factors, 𝚽 = I.

factor loading plot. A factor loading plot produces a scatter plot of the factor loadings after factor

analysis.

factor loadings. Factor loadings are the regression coefficients which multiply the factors to produce

the observed variables in the factor analysis.

factor parsimony. Factor parsimony is an oblique rotation, which maximizes the column simplicity of

the matrix. It is equivalent to a Crawford–Ferguson rotation with 𝜅 = 1. Also see oblique rotation

and Crawford–Ferguson rotation.

factor scores. Factor scores are computed after factor analysis. Factor scores are the coordinates of

the original variables, x, in the space of the factors. The two types of scoring are regression scoring

(Thomson 1951) and Bartlett (1937, 1938) scoring.

Using the symbols defined in factor analysis, the formula for regression scoring is

f̂ = 𝚲′
R−1x
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In the case of oblique rotation the formula becomes

̂f = 𝚽𝚲′
R−1x

The formula for Bartlett scoring is
̂f = 𝚪−1𝚲′𝚿−1x

where

𝚪 = 𝚲′𝚿−1𝚲

Also see factor analysis.

Heywood case orHeywood solution. AHeywood case can appear in factor analysis output; this indicates

that a boundary solution, called a Heywood solution, was produced. The geometric assumptions

underlying the likelihood-ratio test are violated, though the test may be useful if interpreted cautiously.

hierarchical clustering and hierarchical clustering methods. In hierarchical clustering, the data are

placed into clusters via iterative steps. Contrast to partition clustering. Also see agglomerative hier-

archical clustering methods and divisive hierarchical clustering methods.

Hotelling’s 𝑇 2 generalized means test. Hotelling’s 𝑇 2 generalized means test is a multivariate test that

reduces to a standard 𝑡 test if only one variable is specified. It tests whether one set of means is zero
or if two sets of means are equal.

inertia. In CA, the inertia is related to the definition in applied mathematics of “moment of inertia”,

which is the integral of the mass times the squared distance to the centroid. Inertia is defined as the

total Pearson 𝜒2 for the two-way table divided by the total number of observations, or the sum of the

squared singular values found in the singular value decomposition.

total inertia = 1
𝑛

𝜒2 = ∑
𝑘

𝜆2
𝑘

In MCA, the inertia is defined analogously. In the case of the indicator or Burt matrix approach, it is

given by the formula

total inertia = ( 𝑞
𝑞 − 1

) ∑ 𝜙2
𝑡 − (𝐽 − 𝑞)

𝑞2

where 𝑞 is the number of active variables, 𝐽 is the number of categories and 𝜙𝑡 is the 𝑡th (unadjusted)
eigenvalue of the eigen decomposition. In JCA the total inertia of the modified Burt matrix is defined

as the sum of the inertias of the off-diagonal blocks. Also see correspondence analysis and multiple

correspondence analysis.

iterated principal-factor method. The iterated principal-factor method is a method for performing

factor analysis in which the communalities ℎ̂2
𝑖 are estimated iteratively from the loadings in �̂� using

ℎ̂2
𝑖 =

𝑚
∑
𝑗=1

�̂�2
𝑖𝑗

Also see factor analysis and communality.

JCA. An acronym for joint correspondence analysis; see multiple correspondence analysis.

joint correspondence analysis. See multiple correspondence analysis.
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Kaiser–Meyer–Olkin measure of sampling adequacy. The Kaiser–Meyer–Olkin (KMO) measure of

sampling adequacy takes values between 0 and 1, with small values meaning that the variables have

too little in common to warrant a factor analysis or PCA. Historically, the following labels have been

given to values of KMO (Kaiser 1974):

0.00 to 0.49 unacceptable

0.50 to 0.59 miserable

0.60 to 0.69 mediocre

0.70 to 0.79 middling

0.80 to 0.89 meritorious

0.90 to 1.00 marvelous

kmeans. Kmeans is a method for performing partition cluster analysis. The user specifies the number

of clusters, 𝑘, to create using an iterative process. Each observation is assigned to the group whose
mean is closest, and then based on that categorization, new group means are determined. These steps

continue until no observations change groups. The algorithm begins with 𝑘 seed values, which act

as the 𝑘 group means. There are many ways to specify the beginning seed values. Also see partition

clustering.

kmedians. Kmedians is a variation of kmeans. The same process is performed, except that medians

instead of means are computed to represent the group centers at each step. Also see kmeans and

partition clustering.

KMO. See Kaiser–Meyer–Olkin measure of sampling adequacy.

KNN. See kth nearest neighbor.

Kruskal stress. The Kruskal stress measure (Kruskal 1964; Cox and Cox 2001, 63) used inMDS is given

by

Kruskal(D̂,E) = {
∑(𝐸𝑖𝑗 − �̂�𝑖𝑗)2

∑ 𝐸2
𝑖𝑗

}
1/2

where 𝐷𝑖𝑗 is the dissimilarity between objects 𝑖 and 𝑗, 1 ≤ 𝑖, 𝑗 ≤ 𝑛, and �̂�𝑖𝑗 is the disparity, that is,

the transformed dissimilarity, and 𝐸𝑖𝑗 is the Euclidean distance between rows 𝑖 and 𝑗 of the matching
configuration. Kruskal stress is an example of a loss function in modern MDS. After classical MDS,

estat stress gives the Kruskal stress. Also see classical scaling, multidimensional scaling, and

stress.

kth nearest neighbor. 𝑘th-nearest-neighbor (KNN) discriminant analysis is a nonparametric discrimina-
tion method based on the 𝑘 nearest neighbors of each observation. Both continuous and binary data

can be handled through the different similarity and dissimilarity measures. KNN analysis can distin-

guish irregular-shaped groups, including groups with multiple modes. Also see discriminant analysis

and nonparametric methods.

Lawley–Hotelling trace. The Lawley–Hotelling trace is a test statistic for the hypothesis test𝐻0 ∶ µ1 =
µ2 = · · · = µ𝑘 based on the eigenvalues 𝜆1, 𝜆2, . . . , 𝜆𝑠 of E

−1H. It is defined as

𝑈 (𝑠) = trace(E−1H) =
𝑠

∑
𝑖=1

𝜆𝑖

where H is the between matrix and E is the within matrix, see between matrix.

LDA. See linear discriminant analysis.

https://www.stata.com/manuals/mvglossary.pdf#mvGlossarypartition_clustering
https://www.stata.com/manuals/mvglossary.pdf#mvGlossarypartition_clustering
https://www.stata.com/manuals/mvglossary.pdf#mvGlossarykmeans
https://www.stata.com/manuals/mvglossary.pdf#mvGlossarypartition_clustering
https://www.stata.com/manuals/mvglossary.pdf#mvGlossaryKMO
https://www.stata.com/manuals/mvglossary.pdf#mvGlossaryKNN
https://www.stata.com/manuals/mvglossary.pdf#mvGlossaryclassical_scaling
https://www.stata.com/manuals/mvglossary.pdf#mvGlossaryMDS
https://www.stata.com/manuals/mvglossary.pdf#mvGlossarystress
https://www.stata.com/manuals/mvglossary.pdf#mvGlossarydiscrim_analysis
https://www.stata.com/manuals/mvglossary.pdf#mvGlossarynonparametric_methods
https://www.stata.com/manuals/mvglossary.pdf#mvGlossarybetween_matrix
https://www.stata.com/manuals/mvglossary.pdf#mvGlossaryLDA


Glossary 9

leave one out. In discriminant analysis, classification of an observation while leaving it out of the esti-

mation sample is done to check the robustness of the analysis; thus the phrase “leave one out” (LOO).

Also see discriminant analysis.

linear discriminant analysis. Linear discriminant analysis (LDA) is a parametric form of discriminant

analysis. In Fisher’s (1936) approach to LDA, linear combinations of the discriminating variables pro-

vide maximal separation between the groups. The Mahalanobis (1936) formulation of LDA assumes

that the observations come from multivariate normal distributions with equal covariance matrices.

Also see discriminant analysis and parametric methods.

linkage. In cluster analysis, the linkage refers to the measure of proximity between groups or clusters.

loading. A loading is a coefficient or weight in a linear transformation. Loadings play an important role

in many multivariate techniques, including factor analysis, PCA, MANOVA, LDA, and canonical corre-

lations. In some settings, the loadings are of primary interest and are examined for interpretability. For

many multivariate techniques, loadings are based on an eigenanalysis of a correlation or covariance

matrix. Also see eigenvector.

loading plot. A loading plot is a scatter plot of the loadings after LDA, factor analysis or PCA.

logistic discriminant analysis. Logistic discriminant analysis is a form of discriminant analysis based

on the assumption that the likelihood ratios of the groups have an exponential form. Multinomial

logistic regression provides the basis for logistic discriminant analysis. Because multinomial logistic

regression can handle binary and continuous regressors, logistic discriminant analysis is also appro-

priate for binary and continuous discriminating variables. Also see discriminant analysis.

LOO. See leave one out.

loss. Modern MDS is performed by minimizing a loss function, also called a loss criterion. The loss

quantifies the difference between the disparities and the Euclidean distances.

Loss functions include Kruskal’s stress and its square, both normalized with either disparities or dis-

tances, the strain criterion which is equivalent to classical metric scaling when the disparities equal

the dissimilarities, and the Sammon (1969) mapping criterion which is the sum of the scaled, squared

differences between the distances and the disparities, normalized by the sum of the disparities.

Also see multidimensional scaling, Kruskal stress, classical scaling, and disparity.

Mahalanobis distance. The Mahalanobis distance measure is a scale-invariant way of measuring dis-

tance. It takes into account the correlations of the dataset.

Mahalanobis transformation. The Mahalanobis transformation takes a Cholesky factorization of the

inverse of the covariance matrix S−1 in the formula for Mahalanobis distance and uses it to transform

the data. If we have the Cholesky factorization S−1 = L′L, then the Mahalanobis transformation of

x is z = Lx, and z′z = 𝐷2
𝑀(x).

MANCOVA. MANCOVA is multivariate analysis of covariance. See multivariate analysis of variance.

MANOVA. multivariate analysis of variance.

mass. In CA and MCA, the mass is the marginal probability. The sum of the mass over the active row or

column categories equals 1.
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matching coefficient. The matching similarity coefficient is used to compare two binary variables. If 𝑎
is the number of observations that both have value 1, and 𝑑 is the number of observations that both

have value 0, and 𝑏, 𝑐 are the number of (1, 0) and (0, 1) observations, respectively, then the matching
coefficient is given by

𝑎 + 𝑑
𝑎 + 𝑏 + 𝑐 + 𝑑

Also see similarity measure.

matching configuration. In MDS, the matching configuration is the low dimensional configuration

whose distances approximate the high-dimensional dissimilarities or disparities. Also see multidi-

mensional scaling, dissimilarity, and disparity.

matching configuration plot. After MDS, this is a scatter plot of the matching configuration.

maximum-likelihood factormethod. The maximum-likelihood factor method is a method for perform-

ing factor analysis that assumesmultivariate normal observations. It maximizes the determinant of the

partial correlation matrix; thus, this solution is also meaningful as a descriptive method for nonnormal

data. Also see factor analysis.

MCA. See multiple correspondence analysis.

MDS. See multidimensional scaling.

MDS configuration plot. See configuration plot.

measure. Ameasure is a quantity representing the proximity between objects or method for determining

the proximity between objects. Also see proximity.

median-linkage clustering. Median-linkage clustering is a hierarchical clustering method that uses the

distance between the medians of two groups to determine the similarity or dissimilarity of the two

groups. Also see cluster analysis and agglomerative hierarchical clustering methods.

metric scaling. Metric scaling is a type ofMDS, in which the dissimilarities are transformed to disparities

via a class of known functions. This is contrasted to nonmetric scaling. Also see multidimensional

scaling.

minimum entropy rotation. The minimum entropy rotation is an orthogonal rotation achieved by min-

imizing the deviation from uniformity (entropy). The minimum entropy criterion (Jennrich 2004)

is

𝑐(𝚲) = −1
2

⟨𝚲2, log𝚲2⟩

See Crawford–Ferguson rotation for a definition of 𝚲. Also see orthogonal rotation.

misclassification rate. The misclassification rate calculated after discriminant analysis is, in its simplest

form, the fraction of observations incorrectly classified. See discriminant analysis.

modern scaling. Modern scaling is a form of MDS that is achieved via the minimization of a loss func-

tion that compares the disparities (transformed dissimilarities) in the higher-dimensional space and

the distances in the lower-dimensional space. Contrast to classical scaling. Also see dissimilarity,

disparity, multidimensional scaling, and loss.

multidimensional scaling. Multidimensional scaling (MDS) is a dimension-reduction and visualiza-

tion technique. Dissimilarities (for instance, Euclidean distances) between observations in a high-

dimensional space are represented in a lower-dimensional space which is typically two dimensions

so that the Euclidean distance in the lower-dimensional space approximates in some sense the dis-

similarities in the higher-dimensional space. Often the higher-dimensional dissimilarities are first
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transformed to disparities, and the disparities are then approximated by the distances in the lower-

dimensional space. Also see dissimilarity, disparity, classical scaling, loss, modern scaling, metric

scaling, and nonmetric scaling.

multiple correspondence analysis. Multiple correspondence analysis (MCA) and joint correspondence

analysis (JCA) are methods for analyzing observations on categorical variables. MCA and JCA analyze

a multiway table and are usually viewed as an extension of CA. Also see correspondence analysis.

multivariate analysis of covariance. See multivariate analysis of variance.

multivariate analysis of variance. Multivariate analysis of variance (MANOVA) is used to test hypothe-

ses about means. Four multivariate statistics are commonly computed in MANOVA: Wilks’s lambda,

Pillai’s trace, Lawley–Hotelling trace, and Roy’s largest root. Also see Wilks’s lambda, Pillai’s trace,

Lawley–Hotelling trace, and Roy’s largest root.

multivariate regression. Multivariate regression is a method of estimating a linear (matrix) model

Y = XB+ 𝚵

Multivariate regression is estimated by least-squares regression, and it can be used to test hypotheses,

much like MANOVA.

nearest neighbor. See kth nearest neighbor.

nonmetric scaling. Nonmetric scaling is a type of modernMDS in which the dissimilarities may be trans-

formed to disparities via any monotonic function as opposed to a class of known functions. Contrast

to metric scaling. Also see multidimensional scaling, dissimilarity, disparity, and modern scaling.

nonparametric methods. Nonparametric statistical methods, such as KNN discriminant analysis, do not

assume the population fits any parameterized distribution.

normalization. Normalization presents information in a standard form for interpretation. In CA the row

and column coordinates can be normalized in different ways depending on how one wishes to interpret

the data. Normalization is also used in rotation, MDS, and MCA.

oblimax rotation. Oblimax rotation is a method for oblique rotation which maximizes the number of

high and low loadings. When restricted to orthogonal rotation, oblimax is equivalent to quartimax

rotation. Oblimax minimizes the oblimax criterion

𝑐(𝚲) = − log(⟨𝚲2, 𝚲2⟩) + 2 log(⟨𝚲, 𝚲⟩)

See Crawford–Ferguson rotation for a definition of 𝚲. Also see oblique rotation, orthogonal rotation,

and quartimax rotation.

oblimin rotation. Oblimin rotation is a general method for oblique rotation, achieved by minimizing

the oblimin criterion

𝑐(𝚲) = 1
4

⟨𝚲2, {I− (𝛾/𝑝)11′}𝚲2(11′ − I)⟩
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Oblimin has several interesting special cases:

𝛾 Special case

0 quartimax / quartimin

1/2 biquartimax / biquartimin

1 varimax / covarimin

p/2 equamax

p = number of rows of A.

See Crawford–Ferguson rotation for a definition of 𝚲 and A. Also see oblique rotation.

oblique rotation or oblique transformation. An oblique rotation maintains the norms of the rows of

the matrix but not their inner products. In geometric terms, this maintains the lengths of vectors, but

not the angles between them. In contrast, in orthogonal rotation, both are preserved.

ordination. Ordination is the ordering of a set of data points with respect to one or more axes. MDS is a

form of ordination.

orthogonal rotation or orthogonal transformation. Orthogonal rotation maintains both the norms of

the rows of the matrix and also inner products of the rows of the matrix. In geometric terms, this

maintains both the lengths of vectors and the angles between them. In contrast, oblique rotation

maintains only the norms, that is, the lengths of vectors.

parametric methods. Parametric statistical methods, such as LDA and QDA, assume the population fits a

parameterized distribution. For example, for LDAwe assume the groups are multivariate normal with

equal covariance matrices.

parsimax rotation. Parsimax rotation is an orthogonal rotation that balances complexity between the

rows and the columns. It is equivalent to the Crawford–Ferguson family with 𝜅 = (𝑓 −1)/(𝑝+𝑓 −2),
where 𝑝 is the number of rows of the original matrix, and 𝑓 is the number of columns. See orthogonal
rotation and Crawford–Ferguson rotation.

partially specified target rotation. Partially specified target rotation minimizes the criterion

𝑐(𝚲) = ‖W⊗ (𝚲 −H)‖2

for a given target matrix H and a nonnegative weighting matrixW (usually zero–one valued). See

Crawford–Ferguson rotation for a definition of 𝚲.

partition clustering and partition cluster-analysis methods. Partition clustering methods break the

observations into a distinct number of nonoverlapping groups. This is accomplished in one step,

unlike hierarchical cluster-analysis methods, in which an iterative procedure is used. Consequently,

this method is quicker and will allow larger datasets than the hierarchical clusteringmethods. Contrast

to hierarchical clustering. Also see kmeans and kmedians.

PCA. See principal component analysis.

Pillai’s trace. Pillai’s trace is a test statistic for the hypothesis test 𝐻0 ∶ µ1 = µ2 = · · · = µ𝑘 based on

the eigenvalues 𝜆1, . . . , 𝜆𝑠 of E
−1H. It is defined as

𝑉 (𝑠) = trace[(E+H)−1H] =
𝑠

∑
𝑖=1

𝜆𝑖
1 + 𝜆𝑖

where H is the between matrix and E is the within matrix. See between matrix.

https://www.stata.com/manuals/mvglossary.pdf#mvGlossaryCF_rotation
https://www.stata.com/manuals/mvglossary.pdf#mvGlossaryoblique_rotation
https://www.stata.com/manuals/mvglossary.pdf#mvGlossaryorthogonal_rotation
https://www.stata.com/manuals/mvglossary.pdf#mvGlossaryorthogonal_rotation
https://www.stata.com/manuals/mvglossary.pdf#mvGlossaryCF_rotation
https://www.stata.com/manuals/mvglossary.pdf#mvGlossaryCF_rotation
https://www.stata.com/manuals/mvglossary.pdf#mvGlossaryhier_clustering
https://www.stata.com/manuals/mvglossary.pdf#mvGlossarykmeans
https://www.stata.com/manuals/mvglossary.pdf#mvGlossarykmedians
https://www.stata.com/manuals/mvglossary.pdf#mvGlossaryPCA
https://www.stata.com/manuals/mvglossary.pdf#mvGlossarybetween_matrix


Glossary 13

posterior probabilities. After discriminant analysis, the posterior probabilities are the probabilities of a

given observation being assigned to each of the groups based on the prior probabilities, the training

data, and the particular discriminant model. Contrast to prior probabilities.

principal component analysis. Principal component analysis (PCA) is a statistical technique used for

data reduction. The leading eigenvectors from the eigen decomposition of the correlation or the co-

variance matrix of the variables describe a series of uncorrelated linear combinations of the variables

that contain most of the variance. In addition to data reduction, the eigenvectors from a PCA are often

inspected to learn more about the underlying structure of the data.

principal factor method. The principal factor method is a method for factor analysis in which the factor

loadings, sometimes called factor patterns, are computed using the squared multiple correlations as

estimates of the communality. Also see factor analysis and communality.

prior probabilities Prior probabilities in discriminant analysis are the probabilities of an observation

belonging to a group before the discriminant analysis is performed. Prior probabilities are often based

on the prevalence of the groups in the population as a whole. Contrast to posterior probabilities.

Procrustes rotation. AProcrustes rotation is an orthogonal or oblique transformation, that is, a restricted

Procrustes transformation without translation or dilation (uniform scaling).

Procrustes transformation. The goal of Procrustes transformation is to transform the source matrix

X to be as close as possible to the target Y. The permitted transformations are any combination of

dilation (uniform scaling), rotation and reflection (that is, orthogonal or oblique transformations), and

translation. Closeness is measured by residual sum of squares. In some cases, unrestricted Procrustes

transformation is desired; this allows the data to be transformed not just by orthogonal or oblique rota-

tions, but by all conformable regular matricesA. Unrestricted Procrustes transformation is equivalent

to a multivariate regression.

The name comes from Procrustes of Greek mythology; Procrustes invited guests to try his iron bed.

If the guest was too tall for the bed, Procrustes would amputate the guest’s feet, and if the guest was

too short, he would stretch the guest out on a rack.

Also see orthogonal rotation, oblique rotation, dilation, and multivariate regression.

promax power rotation. Promax power rotation is an oblique rotation. It does not fit in the minimizing-

a-criterion framework that is at the core ofmost other rotations. The promaxmethod (Hendrickson and

White 1964) was proposed before computing power became widely available. The promax rotation

consists of three steps:

1. Perform an orthogonal rotation.

2. Raise the elements of the rotated matrix to some power, preserving the sign of the elements.

Typically the power is in the range 2 ≤ power ≤ 4. This operation is meant to distinguish

clearly between small and large values.

3. The matrix from step two is used as the target for an oblique Procrustean rotation from the

original matrix.

proximity, proximity matrix, and proximity measure. Proximity or a proximity measure means the

nearness or farness of two things, such as observations or variables or groups of observations or a

method for quantifying the nearness or farness between two things. A proximity is measured by a

similarity or dissimilarity. A proximity matrix is a matrix of proximities. Also see similarity and

dissimilarity.

QDA. See quadratic discriminant analysis.
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quadratic discriminant analysis. Quadratic discriminant analysis (QDA) is a parametric form of dis-

criminant analysis and is a generalization of LDA. Like LDA, QDA assumes that the observations come

from a multivariate normal distribution, but unlike LDA, the groups are not assumed to have equal

covariance matrices. Also see discriminant analysis, linear discriminant analysis, and parametric

methods.

quartimax rotation. Quartimax rotation maximizes the variance of the squared loadings within the rows

of the matrix. It is an orthogonal rotation that is equivalent to minimizing the criterion

𝑐(𝚲) = ∑
𝑖

∑
𝑟

𝜆4
𝑖𝑟 = −1

4
⟨𝚲2, 𝚲2⟩

See Crawford–Ferguson rotation for a definition of 𝚲.

quartimin rotation. Quartimin rotation is an oblique rotation that is equivalent to quartimax rotation

when quartimin is restricted to orthogonal rotations. Quartimin is equivalent to oblimin rotation with

𝛾 = 0. Also see quartimax rotation, oblique rotation, orthogonal rotation, and oblimin rotation.

reflection. A reflection is an orientation reversing orthogonal transformation, that is, a transformation

that involves negating coordinates in one or more dimensions. A reflection is a Procrustes transfor-

mation.

repeated measures. Repeated measures data have repeated measurements for the subjects over some

dimension, such as time—for example test scores at the start, midway, and end of the class. The

repeated observations are typically not independent. Repeated-measures ANOVA is one approach for

analyzing repeated measures data, and MANOVA is another. Also see sphericity.

rotation. A rotation is an orientation preserving orthogonal transformation. A rotation is a Procrustes

transformation.

Roy’s largest root. Roy’s largest root test is a test statistic for the hypothesis test 𝐻0 ∶ µ1 = · · · = µ𝑘
based on the largest eigenvalue of E−1H. It is defined as

𝜃 = 𝜆1
1 + 𝜆1

Here H is the between matrix, and E is the within matrix. See between matrix.

Sammon mapping criterion. The Sammon (1969) mapping criterion is a loss criterion used with MDS;

it is the sum of the scaled, squared differences between the distances and the disparities, normalized

by the sum of the disparities. Also see multidimensional scaling, modern scaling, and loss.

score. Ascore for an observation after factor analysis, PCA, or LDA is derived from a column of the loading

matrix and is obtained as the linear combination of that observation’s data by using the coefficients

found in the loading.

score plot. A score plot produces scatterplots of the score variables after factor analysis, PCA, or LDA.

scree plot. A scree plot is a plot of eigenvalues or singular values ordered from greatest to least after

an eigen decomposition or singular value decomposition. Scree plots help determine the number of

factors or components in an eigen analysis. Scree is the accumulation of loose stones or rocky debris

lying on a slope or at the base of a hill or cliff; this plot is called a scree plot because it looks like a

scree slope. The goal is to determine the point where the mountain gives way to the fallen rock.
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Shepard diagram. AShepard diagram afterMDS is a 2-dimensional plot of high-dimensional dissimilar-

ities or disparities versus the resulting low-dimensional distances. Also see multidimensional scaling.

similarity, similarity matrix, and similarity measure. A similarity or a similarity measure is a quan-

tification of how alike two things are, such as observations or variables or groups of observations, or

a method for quantifying that alikeness. A similarity matrix is a matrix containing similarity measure-

ments. The matching coefficient is one example of a similarity measure. Contrast to dissimilarity.

Also see proximity and matching coefficient.

single-linkage clustering. Single-linkage clustering is a hierarchical clustering method that computes

the proximity between two groups as the proximity between the closest pair of observations between

the two groups.

singular value decomposition. A singular value decomposition (SVD) is a factorization of a rectangular

matrix. It says that ifM is an 𝑚 × 𝑛 matrix, there exists a factorization of the form

M = U𝚺V∗

whereU is an 𝑚×𝑚 unitary matrix, 𝚺 is an 𝑚×𝑛 matrix with nonnegative numbers on the diagonal

and zeros off the diagonal, and V∗ is the conjugate transpose of V, an 𝑛 × 𝑛 unitary matrix. IfM is a

real matrix, then so is V, and V∗ = V′.

sphericity. Sphericity is the state or condition of being a sphere. In repeated measuresANOVA, sphericity

concerns the equality of variance in the difference between successive levels of the repeated measure.

The multivariate alternative toANOVA, calledMANOVA, does not require the assumption of sphericity.

Also see repeated measures.

SSCPmatrix. SSCP is an acronym for the sums of squares and cross products. Also see between matrix.

stacked variables. See crossed variables.

stacking variables. See crossing variables.

standardized data. A standardized dataset has a mean of zero and a standard deviation of one. You can

standardize data x by taking (x− x)/𝜎, where 𝜎 is the standard deviation of the data.

stopping rules. Stopping rules for hierarchical cluster analysis are used to determine the number of

clusters. A stopping-rule value (also called an index) is computed for each cluster solution, that is, at

each level of the hierarchy in hierarchical cluster analysis. Also see hierarchical clustering.

stress. See Kruskal stress and loss.

structure. Structure, as in factor structure, is the correlations between the variables and the common

factors after factor analysis. Structure matrices are available after factor analysis and LDA. Also see

factor analysis and linear discriminant analysis.

supplementary rows or columns or supplementary variables. Supplementary rows or columns can

be included in CA, and supplementary variables can be included in MCA. They do not affect the CA

or MCA solution, but they are included in plots and tables with statistics of the corresponding row or

column points. Also see correspondence analysis and multiple correspondence analysis.

SVD. See singular value decomposition.

target rotation. Target rotation minimizes the criterion

𝑐(𝚲) = 1
2

‖𝚲 −H‖2

for a given target matrix H.

See Crawford–Ferguson rotation for a definition of 𝚲.
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taxonomy. Taxonomy is the study of the general principles of scientific classification. It also denotes

classification, especially the classification of plants and animals according to their natural relation-

ships. Cluster analysis is a tool used in creating a taxonomy and is synonymous with numerical

taxonomy. Also see cluster analysis.

tetrachoric correlation. A tetrachoric correlation estimates the correlation coefficients of binary vari-

ables by assuming a latent bivariate normal distribution for each pair of variables, with a threshold

model for manifest variables.

ties. After discriminant analysis, ties in classification occur when two or more posterior probabilities are

equal for an observation. They are most common with KNN discriminant analysis.

total inertia or total principal inertia. The total (principal) inertia in CA and MCA is the sum of the

principal inertias. In CA, total inertia is the Pearson 𝜒2/𝑛. In CA, the principal inertias are the sin-

gular values; in MCA the principal inertias are the eigenvalues. Also see correspondence analysis and

multiple correspondence analysis.

uniqueness. In factor analysis, the uniqueness is the percentage of a variable’s variance that is not

explained by the common factors. It is also “1 − communality”. Also see communality.

unrestricted transformation. An unrestricted transformation is a Procrustes transformation that allows

the data to be transformed, not just by orthogonal and oblique rotations, but by all conformable regular

matrices. This is equivalent to a multivariate regression. Also see Procrustes transformation and

multivariate regression.

varimax rotation. Varimax rotation maximizes the variance of the squared loadings within the columns

of the matrix. It is an orthogonal rotation equivalent to oblimin with 𝛾 = 1 or to the Craw-

ford–Ferguson family with 𝜅 = 1/𝑝, where 𝑝 is the number of rows of the matrix to be rotated.

Also see orthogonal rotation, oblimin rotation, and Crawford–Ferguson rotation.

Ward’s linkage clustering. Ward’s-linkage clustering is a hierarchical clustering method that joins the

two groups resulting in the minimum increase in the error sum of squares.

weighted-average linkage clustering. Weighted-average linkage clustering is a hierarchical clustering

method that uses the weighted average similarity or dissimilarity of the two groups as the measure

between the two groups.

Wilks’s lambda. Wilks’s lambda is a test statistic for the hypothesis test 𝐻0 ∶ µ1 = µ2 = · · · = µ𝑘
based on the eigenvalues 𝜆1, . . . , 𝜆𝑠 of E

−1H. It is defined as

Λ = |E|
|E+H|

=
𝑠

∏
𝑖=1

1
1 + 𝜆𝑖

where H is the between matrix and E is the within matrix. See between matrix.

Wishart distribution. The Wishart distribution is a family of probability distributions for nonnegative-

definite matrix-valued random variables (“random matrices”). These distributions are of great impor-

tance in the estimation of covariance matrices in multivariate statistics.

within matrix. See between matrix.
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