
factor postestimation — Postestimation tools for factor and factormat

Postestimation commands predict estat Remarks and examples
Stored results Methods and formulas References Also see

Postestimation commands
The following postestimation commands are of special interest after factor and factormat:

Command Description

estat anti anti-image correlation and covariance matrices

estat common correlation matrix of the common factors

estat factors AIC and BIC model-selection criteria for different numbers of factors

estat kmo Kaiser–Meyer–Olkin measure of sampling adequacy

estat residuals matrix of correlation residuals

estat rotatecompare compare rotated and unrotated loadings

estat smc squared multiple correlations between each variable and the rest

estat structure correlations between variables and common factors
∗ estat summarize estimation sample summary

loadingplot plot factor loadings

rotate rotate factor loadings

scoreplot plot score variables

screeplot plot eigenvalues

∗estat summarize is not available after factormat.

The following standard postestimation commands are also available:

Command Description

∗ estimates cataloging estimation results
† predict regression and Bartlett scores

∗estimates table is not allowed, and estimates stats is allowed only with the ml factor method.
†predict after factormat works only if you have variables in memory that match the names specified in factormat.

predict assumes mean zero and standard deviation one unless the means() and sds() options of factormat were
provided.
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predict

Description for predict
predict creates new variables containing predictions such as factors scored by the regression method

or by the Bartlett method.

Menu for predict
Statistics > Postestimation

Syntax for predict
predict [ type ] {stub* | newvarlist} [ if ] [ in ] [ , statistic options ]

statistic Description

Main

regression regression scoring method; the default

bartlett Bartlett scoring method

options Description

Main

norotated use unrotated results, even when rotated results are available

notable suppress table of scoring coefficients

format(% fmt) format for displaying the scoring coefficients

Options for predict

� � �
Main �

regression produces factors scored by the regression method. This is the default.

bartlett produces factors scored by the method suggested by Bartlett (1937, 1938). This method

produces unbiased factors, but they may be less accurate than those produced by the default regression

method suggested by Thomson (1951). Regression-scored factors have the smallest mean squared

error from the true factors but may be biased.

norotated specifies that unrotated factors be scored even when you have previously issued a rotate
command. The default is to use rotated factors if they are available and unrotated factors otherwise.

notable suppresses the table of scoring coefficients.

format(% fmt) specifies the display format for scoring coefficients.

https://www.stata.com/manuals/d.pdf#dDatatypes
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.4inrange
https://www.stata.com/manuals/mvfactorpostestimation.pdf#mvfactorpostestimationpredictstatistic
https://www.stata.com/manuals/mvfactorpostestimation.pdf#mvfactorpostestimationpredictoptions
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estat

Description for estat
estat anti displays the anti-image correlation and anti-image covariance matrices. These are minus

the partial covariance and minus the partial correlation matrices of all pairs of variables, holding all other

variables constant.

estat common displays the correlation matrix of the common factors. For orthogonal factor loadings,

the common factors are uncorrelated, and hence an identity matrix is shown. estat common is of more

interest after oblique rotations.

estat factors displays model-selection criteria (AIC and BIC) for models with 1, 2, . . . , # factors.

Each model is estimated using maximum likelihood (that is, using the ml option of factor).

estat kmo specifies that the Kaiser–Meyer–Olkin (KMO) measure of sampling adequacy be dis-

played. KMO takes values between 0 and 1, with small values meaning that overall the variables have

too little in common to warrant a factor analysis. Historically, the following labels are given to values of

KMO (Kaiser 1974):
0.00 to 0.49 unacceptable

0.50 to 0.59 miserable

0.60 to 0.69 mediocre

0.70 to 0.79 middling

0.80 to 0.89 meritorious

0.90 to 1.00 marvelous

estat residuals displays the raw or standardized residuals of the observed correlations with respect

to the fitted (reproduced) correlation matrix.

estat rotatecompare displays the unrotated factor loadings and the most recent rotated factor load-
ings.

estat smc displays the squared multiple correlations between each variable and all other variables.

SMC is a theoretical lower bound for communality, so it is an upper bound for uniqueness. The pf factor

method estimates the communalities by smc.

estat structure displays the factor structure, that is, the correlations between the variables and the

common factors.

estat summarize displays summary statistics of the variables in the factor analysis over the estima-

tion sample. This subcommand is, of course, not available after factormat.

Menu for estat
Statistics > Postestimation
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Syntax for estat
Anti-image correlation/covariance matrices

estat anti [ , nocorr nocov format(% fmt) ]

Correlation of common factors

estat common [ , norotated format(% fmt) ]

Model-selection criteria

estat factors [ , factors(#) detail ]

Sample adequacy measures

estat kmo [ , novar format(% fmt) ]

Residuals of correlation matrix

estat residuals [ , fitted obs sresiduals format(% fmt) ]

Comparison of rotated and unrotated loadings

estat rotatecompare [ , format(% fmt) ]

Squared multiple correlations

estat smc [ , format(% fmt) ]

Correlations between variables and common factors

estat structure [ , norotated format(% fmt) ]

Summarize variables for estimation sample

estat summarize [ , labels noheader noweights ]

collect is allowed with estat anti, estat common, estat factors, estat kmo, estat residuals, estat smc,
estat structure, and estat summarize; see [U] 11.1.10 Prefix commands.

Options for estat

� � �
Main �

nocorr, an option used with estat anti, suppresses the display of the anti-image correlation matrix.

nocov, an option used with estat anti, suppresses the display of the anti-image covariance matrix.

format(% fmt) specifies the display format. The defaults differ between the subcommands.

norotated, an option used with estat common and estat structure, requests that the displayed

and returned results be based on the unrotated original factor solution rather than on the last rotation

(orthogonal or oblique).

https://www.stata.com/manuals/d.pdf#dformat
https://www.stata.com/manuals/d.pdf#dformat
https://www.stata.com/manuals/d.pdf#dformat
https://www.stata.com/manuals/d.pdf#dformat
https://www.stata.com/manuals/d.pdf#dformat
https://www.stata.com/manuals/d.pdf#dformat
https://www.stata.com/manuals/d.pdf#dformat
https://www.stata.com/manuals/u11.pdf#u11.1.10Prefixcommands
https://www.stata.com/manuals/d.pdf#dformat
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factors(#), an option used with estat factors, specifies the maximum number of factors to include

in the summary table.

detail, an option used with estat factors, presents the output from each run of factor (or

factormat) used in the computations of the AIC and BIC values.

novar, an option used with estat kmo, suppresses the KMO measures of sampling adequacy for the

variables in the factor analysis, displaying the overall KMO measure only.

fitted, an option used with estat residuals, displays the fitted (reconstructed) correlation matrix on
the basis of the retained factors.

obs, an option used with estat residuals, displays the observed correlation matrix.

sresiduals, an option used with estat residuals, displays the matrix of standardized residuals of

the correlations. Be careful when interpreting these residuals; see Jöreskog and Sörbom (1988).

labels, noheader, and noweights are the same as for the generic estat summarize command; see

[R] estat summarize.

Remarks and examples
Remarks are presented under the following headings:

Postestimation statistics
Plots of eigenvalues, factor loadings, and scores
Rotating the factor loadings
Factor scores

Postestimation statistics
Many postestimation statistics are available after factor and factormat.

Example 1: Squared multiple correlations
After factor and factormat there are several “classical” methods for assessing whether the vari-

ables have enough in common to have warranted the use of a factor model. One method is to examine the

squared multiple correlations of each variable with all other variables—this is usually an upper bound to

communality and thus a lower bound to 1 − uniqueness(= communality) of the variables.
. use https://www.stata-press.com/data/r19/bg2
(Physician-cost data)
. quietly factor bg2cost1-bg2cost6, factors(2) ml
. estat smc
Squared multiple correlations of variables with all other variables

Variable smc

bg2cost1 0.1054
bg2cost2 0.1370
bg2cost3 0.1637
bg2cost4 0.0866
bg2cost5 0.1671
bg2cost6 0.1683

https://www.stata.com/manuals/restatsummarize.pdf#restatsummarize
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Other diagnostic tools, such as examining the anti-image correlation and anti-image covariance ma-

trices (estat anti) and the Kaiser–Meyer–Olkin measure of sampling adequacy (estat kmo), are also
available. See [MV] pca postestimation for an illustration of their use.

Example 2: Model-selection criteria
Another set of postestimation tools help in determining the number of factors that should be retained.

Later we will show the use of screeplot for producing a scree plot—a plot of the explained variance

by the common factors. This is often used as a visual guide for selecting the number of factors to retain.

Some authors advocate the standard model information criteriaAIC and BIC for determining the num-

ber of factors (Schwarz 1978; Akaike 1987). This presupposes that the factors are extracted by maximum

likelihood. estat factors provides these measures.

. estat factors
Factor analysis with different numbers of factors (maximum likelihood)

#factors loglik df_m df_r AIC BIC

1 -60.53727 6 9 133.0745 159.1273
2 -6.842448 11 4 35.6849 83.44823
3 -3.34e-12 15 0 30 95.13182

no Heywood cases encountered

The table shows the AIC and BIC statistics for the models with 1, 2, and 3 factors. The three-factor

model is saturated, with 0 degrees of freedom. In this trivial case, and excluding the saturated case, both

criteria select the two-factor model.

Example 3: Structure matrix and observed correlations
Two estat subcommands display statistics that help in interpreting the model and the results—in

particular after an oblique rotation. estat structure displays the structure matrix containing the cor-

relations between the (manifest) variables and the common factors.

. estat structure
Structure matrix: correlations between variables and common factors

Variable Factor1 Factor2

bg2cost1 -0.1371 0.4235
bg2cost2 0.4140 0.1994
bg2cost3 0.6199 0.3692
bg2cost4 0.3577 0.0909
bg2cost5 -0.3752 0.4355
bg2cost6 -0.4295 0.4395

This matrix of correlations coincides with the pattern matrix, that is, the matrix with factor loadings.

This holds true for the unrotated factor solution as well as after an orthogonal rotation, such as a varimax

rotation. It does not hold true after an oblique rotation. After an oblique rotation, the common factors

are correlated. This correlation between the common factors also influences the correlation between the

https://www.stata.com/manuals/mvpcapostestimation.pdf#mvpcapostestimation
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common factors and the manifest variables. The correlation matrix of the common factors is displayed

by the common subcommand of estat. Because we have not yet rotated, we would see only an identity
matrix. Later we show estat common output after an oblique rotation.

To assess the quality of a factor model, we may compare the observed correlation matrix C with the

fitted (“reconstructed”) matrix �̂� = �̂��̂��̂�
′

+ �̂� by examining the raw residuals C − �̂�.

. estat residuals, obs fit
Observed correlations

Variable bg2co~1 bg2co~2 bg2co~3 bg2co~4 bg2co~5 bg2co~6

bg2cost1 1.0000
bg2cost2 0.0920 1.0000
bg2cost3 0.0540 0.3282 1.0000
bg2cost4 -0.0380 0.1420 0.2676 1.0000
bg2cost5 0.2380 -0.1394 -0.0550 -0.0567 1.0000
bg2cost6 0.2431 -0.0671 -0.1075 -0.1329 0.3524 1.0000

Fitted (”reconstructed”) values for correlations

Variable bg2co~1 bg2co~2 bg2co~3 bg2co~4 bg2co~5 bg2co~6

bg2cost1 1.0000
bg2cost2 0.0277 1.0000
bg2cost3 0.0714 0.3303 0.9999
bg2cost4 -0.0106 0.1662 0.2553 1.0000
bg2cost5 0.2359 -0.0685 -0.0718 -0.0946 1.0000
bg2cost6 0.2450 -0.0902 -0.1040 -0.1137 0.3525 1.0000

Raw residuals of correlations (observed-fitted)

Variable bg2co~1 bg2co~2 bg2co~3 bg2co~4 bg2co~5 bg2co~6

bg2cost1 -0.0000
bg2cost2 0.0643 -0.0000
bg2cost3 -0.0174 -0.0021 0.0001
bg2cost4 -0.0274 -0.0242 0.0124 -0.0000
bg2cost5 0.0021 -0.0709 0.0168 0.0379 0.0000
bg2cost6 -0.0019 0.0231 -0.0035 -0.0193 -0.0002 -0.0000

To gauge the size of the residuals, estat residuals can also display the standardized residuals.

. estat residuals, sres
Standardized residuals of correlations

Variable bg2co~1 bg2co~2 bg2co~3 bg2co~4 bg2co~5 bg2co~6

bg2cost1 -0.0001
bg2cost2 1.5324 -0.0003
bg2cost3 -0.4140 -0.0480 0.0011
bg2cost4 -0.6538 -0.5693 0.2859 -0.0000
bg2cost5 0.0484 -1.6848 0.3993 0.9003 0.0001
bg2cost6 -0.0434 0.5480 -0.0836 -0.4560 -0.0037 -0.0000
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Be careful when interpreting these standardized residuals, as they tend to be smaller than normalized

residuals; that is, these residuals tend to have a smaller variance than 1 if the model is true (see Bollen

[1989]).

Plots of eigenvalues, factor loadings, and scores
Scree plots, factor loading plots, and score plots are easily obtained after factor and factormat.

Example 4: The scree plot
The scree plot is a popular tool for determining the number of factors to be retained. A scree plot

is a plot of the eigenvalues shown in decreasing order (Cattell 1966). We fit a factor model, extracting

factors with the principal factor method.

. use https://www.stata-press.com/data/r19/sp2

. factor ghp31-ghp05, pcf
(output omitted )

Howmany factors should we retain? We issue the screeplot command with the mean option, speci-

fying that a horizontal line be plotted at the mean of the eigenvalues (a height of 1 because we are dealing

with the eigenvalues of a correlation matrix).

. screeplot, mean
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Scree plot of eigenvalues after factor

The plot suggests that we retain three factors, both because of the shape of the scree plot and be-

cause of Kaiser’s well-known criterion suggesting that we retain factors with eigenvalue larger than 1.

We may specify the option mineigen(1) during estimation to enforce this criterion. Here there is no

need—mineigen(1) is the default with pcf.
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Example 5: Factor loadings plot
Asecond plot that is sometimes useful is the factor loadings plot. We display the plot with the loadings

of the leading two factors.

. loadingplot, xline(0) yline(0) aspect(1) note(Unrotated principal factors)
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The plot makes it relatively easy to identify clusters of variables with similar loadings. With more

than two factors, we can choose to see the multiple plots in a matrix style or a combined-graph style.

The default is matrix style, but the combined style allows better control over various graph options—for

instance, the addition of xline(0) and yline(0). Here is a combined style graph.

. loadingplot, factors(3) combined xline(0) yline(0) aspect(1)
> xlabel(-0.8(0.4)0.8) ylabel(-0.8(0.4)0.8)
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Example 6: Score variables plot
Common factor scores can also be plotted for the observations by using the scoreplot command.

(See the discussion of predict to see how you can produce score variables.)

. scoreplot, msymbol(smcircle) msize(tiny)
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With so many observations, the plot’s main purpose is to identify extreme cases. With smaller datasets

with meaningful descriptions of the observations (for example, country names, brands), the score plot is

good for visually clustering observations with similar loadings.

See [MV] scoreplot for more examples of loadingplot and scoreplot.

Technical note
The loading plots and score plots we have shown were for the original unrotated factor solution. After

rotating (which we will discuss next), these plots display the most recent rotated solution. Specify option

norotated to refer to the unrotated result. To display the plots of rotated and unrotated results at the

same time, you may use either of the following two approaches. First, you may display them in different

Graph windows.

. plotcmd, norotated name(name1)

. plotcmd, name(name2)

Alternatively, you may save the plots and create a combined graph

. plotcmd, norotated saving(name1)

. plotcmd, saving(name2)

. graph combine name1.gph name2.gph

See [G-2] graph combine for details.

Rotating the factor loadings
Rotation is an attempt to describe the information in several factors by reexpressing them so that

loadings on a few variables are as large as possible, and loadings on the rest of the variables are as small

as possible. We have this freedom to reexpress because of the indeterminant nature of the factor model.

For example, if you find that z1 and z2 are two factors, then z1+z2 and z1−z2 are equally valid solutions.

https://www.stata.com/manuals/mvfactorpostestimation.pdf#mvfactorpostestimationRemarksandexamplesFactorscores
https://www.stata.com/manuals/mvscoreplot.pdf#mvscoreplot
https://www.stata.com/manuals/g-2graphcombine.pdf#g-2graphcombine
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Technical note
Said more technically: we are trying to find a set of 𝑓 factor variables such that the observed variables

can be best explained by regressing them on the 𝑓 factor variables. Usually, 𝑓 is a small number such as

1 or 2. If 𝑓 ≥ 2, there is an inherent indeterminacy in the construction of the factors because any linear

combination of the calculated factors serves equally well as a set of regressors. Rotation capitalizes on

this indeterminacy to create a set of variables that looks as much like the original variables as possible.

The rotate command modifies the results of the last factor or factormat command to create a set

of loadings that are more interpretable than those produced by factor or factormat. You may perform
one factor analysis followed by several rotate commands, thus experimenting with different types of

rotation. If you retain too few factors, the variables for several distinct concepts may be merged, as in our

example below. If you retain too many factors, several factors may attempt to measure the same concept,

causing the factors to get in each other’s way, suggesting too many distinct concepts after rotation.

Technical note
It is possible to restrict rotation to a number of leading factors. For instance, if you extracted three

factors, youmay specify the option factors(2) to rotate to exclude the third factor from being rotated.

The new two leading factors are combinations of the initial two leading factors and are not affected by

the fixed factor.

https://www.stata.com/manuals/mvfactorpostestimation.pdf#mvfactorpostestimationRemarksandexamplesex7
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Example 7: Orthogonal varimax rotation
We return to our physician-cost example in [MV] factor and perform a factor analysis using the

principal-component factor method, retaining two factors. We then tell rotate to apply the default

orthogonal varimax rotation (Kaiser 1958).

. use https://www.stata-press.com/data/r19/bg2, clear
(Physician-cost data)
. quietly factor bg2cost1-bg2cost6, pcf factors(2)
. rotate
Factor analysis/correlation Number of obs = 568

Method: principal-component factors Retained factors = 2
Rotation: orthogonal varimax (Kaiser off) Number of params = 11

Factor Variance Difference Proportion Cumulative

Factor1 1.57170 0.03430 0.2619 0.2619
Factor2 1.53740 . 0.2562 0.5182

LR test: independent vs. saturated: chi2(15) = 269.07 Prob>chi2 = 0.0000
Rotated factor loadings (pattern matrix) and unique variances

Variable Factor1 Factor2 Uniqueness

bg2cost1 0.6853 0.2300 0.4775
bg2cost2 -0.0126 0.7142 0.4898
bg2cost3 -0.0161 0.7818 0.3886
bg2cost4 -0.1502 0.5703 0.6521
bg2cost5 0.7292 -0.1198 0.4539
bg2cost6 0.7398 -0.1537 0.4290

Factor rotation matrix

Factor1 Factor2

Factor1 0.7460 -0.6659
Factor2 0.6659 0.7460

Here the factors are rotated so that the three “negative” items are grouped together and the three “positive”

items are grouped.

Look at the uniqueness column. Uniqueness is the percentage of variance for the variable that is not

explained by the common factors; we may also think of it as the variances of the specific factors for the

variables. We stress that rotation involves the “common factors”, so the uniqueness is not affected by the

rotation. As we noted in [MV] factor, the uniqueness is relatively high in this example, placing doubt on

the usefulness of the factor model here.

https://www.stata.com/manuals/mvfactor.pdf#mvfactorRemarksandexamplesex1
https://www.stata.com/manuals/mvfactor.pdf#mvfactor
https://www.stata.com/manuals/mvfactor.pdf#mvfactor
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Example 8: More orthogonal varimax rotation
Here we examine 19 variables describing various aspects of health. These variables were collected

from a random selection of 9,999 visitors to doctors’ offices by Tarlov et al. (1989). Factor analysis

yields three clear factors. We then examine several rotations of these three factors.

. use https://www.stata-press.com/data/r19/sp2

. describe
Contains data from https://www.stata-press.com/data/r19/sp2.dta
Observations: 9,999

Variables: 20 26 Jan 2024 09:26
(_dta has notes)

Variable Storage Display Value
name type format label Variable label

patid int %9.0g Case ID
ghp31 float %9.0g Health excellent, very good, good,

fair, poor
pf01 float %9.0g How long limit vigorous activity
pf02 float %9.0g How long limit moderate activity
pf03 float %9.0g How long limit walk/climb
pf04 float %9.0g How long limit bend/stoop
pf05 float %9.0g How long limit walk 1 block
pf06 float %9.0g How long limit eat/dress/bath
rkeep float %9.0g Does health keep work-job-hse
rkind float %9.0g Can’t do kind/amount of work
sact0 float %9.0g Last month limit activities
mha01 float %9.0g Last month very nervous
mhp03 float %9.0g Last month calm/peaceful
mhd02 float %9.0g Last month downhearted/blue
mhp01 float %9.0g Last month a happy person
mhc01 float %9.0g Last month down in the dumps
ghp01 float %9.0g Somewhat ill
ghp04 float %9.0g Healthy as anybody I know
ghp02 float %9.0g Health is excellent
ghp05 float %9.0g Feel bad lately

Sorted by: patid

We now perform our factorization, requesting that three factors be retained.
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. factor ghp31-ghp05, factors(3)
(obs=9,999)
Factor analysis/correlation Number of obs = 9,999

Method: principal factors Retained factors = 3
Rotation: (unrotated) Number of params = 54

Factor Eigenvalue Difference Proportion Cumulative

Factor1 7.27086 4.90563 0.7534 0.7534
Factor2 2.36523 1.38826 0.2451 0.9985
Factor3 0.97697 1.00351 0.1012 1.0997
Factor4 -0.02654 0.00538 -0.0027 1.0970
Factor5 -0.03191 0.00378 -0.0033 1.0937
Factor6 -0.03569 0.00353 -0.0037 1.0900
Factor7 -0.03922 0.00271 -0.0041 1.0859
Factor8 -0.04193 0.00662 -0.0043 1.0815
Factor9 -0.04855 0.01015 -0.0050 1.0765

Factor10 -0.05870 0.00250 -0.0061 1.0704
Factor11 -0.06120 0.00224 -0.0063 1.0641
Factor12 -0.06344 0.00376 -0.0066 1.0575
Factor13 -0.06720 0.00345 -0.0070 1.0506
Factor14 -0.07065 0.00185 -0.0073 1.0432
Factor15 -0.07250 0.00033 -0.0075 1.0357
Factor16 -0.07283 0.00772 -0.0075 1.0282
Factor17 -0.08055 0.01190 -0.0083 1.0198
Factor18 -0.09245 0.00649 -0.0096 1.0103
Factor19 -0.09894 . -0.0103 1.0000

LR test: independent vs. saturated: chi2(171) = 1.0e+05 Prob>chi2 = 0.0000
Factor loadings (pattern matrix) and unique variances

Variable Factor1 Factor2 Factor3 Uniqueness

ghp31 -0.6519 -0.0562 0.3440 0.4535
pf01 0.6150 0.3226 -0.0072 0.5177
pf02 0.6867 0.3737 0.2175 0.3415
pf03 0.6712 0.3774 0.1621 0.3807
pf04 0.6540 0.3588 0.2268 0.3921
pf05 0.6209 0.3258 0.2631 0.4392
pf06 0.4370 0.1803 0.2241 0.7263

rkeep 0.6868 0.1820 0.0870 0.4876
rkind 0.7244 0.2464 0.0780 0.4085
sact0 0.6556 -0.0719 0.0461 0.5628
mha01 0.5297 -0.4773 0.1268 0.4755
mhp03 -0.4810 0.5691 -0.1238 0.4294
mhd02 0.5208 -0.5949 0.1623 0.3485
mhp01 -0.4980 0.5955 -0.1225 0.3824
mhc01 0.4927 -0.5215 0.1531 0.4618
ghp01 0.6686 0.0194 -0.3621 0.4215
ghp04 -0.6833 -0.0195 0.4089 0.3656
ghp02 -0.7398 -0.0227 0.4212 0.2748
ghp05 0.6163 -0.2760 -0.1626 0.5175

The first factor is a general health factor. (To understand that claim, compare the factor loadings with the

description of the variables as shown by describe above. Also, just as with the physician-cost data, the

sense of some of the coded responses is reversed.) The second factor loads most highly on the five “men-
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tal health” items. The third factor loads most highly on “general health perception” items—those with

names having the letters ghp in them. The other items describe “physical health”. These designations

are based primarily on the wording of the questions, which is summarized in the variable labels.

. rotate, varimax
Factor analysis/correlation Number of obs = 9,999

Method: principal factors Retained factors = 3
Rotation: orthogonal varimax (Kaiser off) Number of params = 54

Factor Variance Difference Proportion Cumulative

Factor1 4.20556 0.83302 0.4358 0.4358
Factor2 3.37253 0.33756 0.3495 0.7852
Factor3 3.03497 . 0.3145 1.0997

LR test: independent vs. saturated: chi2(171) = 1.0e+05 Prob>chi2 = 0.0000
Rotated factor loadings (pattern matrix) and unique variances

Variable Factor1 Factor2 Factor3 Uniqueness

ghp31 -0.2968 -0.1647 -0.6567 0.4535
pf01 0.5872 0.0263 0.3699 0.5177
pf02 0.7740 0.0848 0.2287 0.3415
pf03 0.7386 0.0580 0.2654 0.3807
pf04 0.7484 0.0842 0.2018 0.3921
pf05 0.7256 0.1063 0.1518 0.4392
pf06 0.5023 0.1268 0.0730 0.7263

rkeep 0.6023 0.2048 0.3282 0.4876
rkind 0.6590 0.1669 0.3597 0.4085
sact0 0.4187 0.3875 0.3342 0.5628
mha01 0.1467 0.6859 0.1803 0.4755
mhp03 -0.0613 -0.7375 -0.1514 0.4294
mhd02 0.0921 0.7893 0.1416 0.3485
mhp01 -0.0570 -0.7671 -0.1612 0.3824
mhc01 0.1102 0.7124 0.1359 0.4618
ghp01 0.2783 0.1977 0.6797 0.4215
ghp04 -0.2652 -0.1908 -0.7264 0.3656
ghp02 -0.2986 -0.2116 -0.7690 0.2748
ghp05 0.1755 0.4756 0.4748 0.5175

Factor rotation matrix

Factor1 Factor2 Factor3

Factor1 0.6658 0.4796 0.5715
Factor2 0.5620 -0.8263 0.0387
Factor3 0.4908 0.2954 -0.8197

With rotation, the structure of the data becomes much clearer. The first rotated factor is physical health,

the second is mental health, and the third is general health perception. The a priori designation of the

items is confirmed.

After rotation, physical health is the first factor. rotate has ordered the factors by explained vari-

ance. Still, we warn that the importance of any factor must be gauged against the number of variables

that purportedly measure it. Here we included nine variables that measured physical health, five that
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measured mental health, and five that measured general health perception. Had we started with only one

mental health item, it would have had a high uniqueness, but we would not want to conclude that it was,

therefore, largely noise.

Technical note
Some people prefer specifying the option normalize to apply a Kaiser normalization (Horst 1965),

which places equal weight on all rows of the matrix to be rotated.

Example 9: Oblique oblimin rotation
The literature suggests that physical health and mental health are related. Also, general health per-

ception may be largely a combination of the two. For these reasons, an oblique rotation of a two-factor

solution is worth trying. We try the oblique oblimin rotation (Harman 1976).

. factor ghp31-ghp05, factors(2)
(obs=9,999)
Factor analysis/correlation Number of obs = 9,999

Method: principal factors Retained factors = 2
Rotation: (unrotated) Number of params = 37

Factor Eigenvalue Difference Proportion Cumulative

Factor1 7.27086 4.90563 0.7534 0.7534
Factor2 2.36523 1.38826 0.2451 0.9985
Factor3 0.97697 1.00351 0.1012 1.0997
Factor4 -0.02654 0.00538 -0.0027 1.0970
Factor5 -0.03191 0.00378 -0.0033 1.0937
Factor6 -0.03569 0.00353 -0.0037 1.0900
Factor7 -0.03922 0.00271 -0.0041 1.0859
Factor8 -0.04193 0.00662 -0.0043 1.0815
Factor9 -0.04855 0.01015 -0.0050 1.0765

Factor10 -0.05870 0.00250 -0.0061 1.0704
Factor11 -0.06120 0.00224 -0.0063 1.0641
Factor12 -0.06344 0.00376 -0.0066 1.0575
Factor13 -0.06720 0.00345 -0.0070 1.0506
Factor14 -0.07065 0.00185 -0.0073 1.0432
Factor15 -0.07250 0.00033 -0.0075 1.0357
Factor16 -0.07283 0.00772 -0.0075 1.0282
Factor17 -0.08055 0.01190 -0.0083 1.0198
Factor18 -0.09245 0.00649 -0.0096 1.0103
Factor19 -0.09894 . -0.0103 1.0000

LR test: independent vs. saturated: chi2(171) = 1.0e+05 Prob>chi2 = 0.0000
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Factor loadings (pattern matrix) and unique variances

Variable Factor1 Factor2 Uniqueness

ghp31 -0.6519 -0.0562 0.5718
pf01 0.6150 0.3226 0.5178
pf02 0.6867 0.3737 0.3888
pf03 0.6712 0.3774 0.4070
pf04 0.6540 0.3588 0.4435
pf05 0.6209 0.3258 0.5084
pf06 0.4370 0.1803 0.7765

rkeep 0.6868 0.1820 0.4952
rkind 0.7244 0.2464 0.4145
sact0 0.6556 -0.0719 0.5650
mha01 0.5297 -0.4773 0.4916
mhp03 -0.4810 0.5691 0.4448
mhd02 0.5208 -0.5949 0.3748
mhp01 -0.4980 0.5955 0.3974
mhc01 0.4927 -0.5215 0.4853
ghp01 0.6686 0.0194 0.5526
ghp04 -0.6833 -0.0195 0.5327
ghp02 -0.7398 -0.0227 0.4522
ghp05 0.6163 -0.2760 0.5439

. rotate, oblimin oblique
Factor analysis/correlation Number of obs = 9,999

Method: principal factors Retained factors = 2
Rotation: oblique oblimin (Kaiser off) Number of params = 37

Factor Variance Proportion Rotated factors are correlated

Factor1 6.58719 0.6826
Factor2 4.65444 0.4823

LR test: independent vs. saturated: chi2(171) = 1.0e+05 Prob>chi2 = 0.0000
Rotated factor loadings (pattern matrix) and unique variances

Variable Factor1 Factor2 Uniqueness

ghp31 -0.5517 -0.2051 0.5718
pf01 0.7179 -0.0747 0.5178
pf02 0.8115 -0.0968 0.3888
pf03 0.8022 -0.1068 0.4070
pf04 0.7750 -0.0951 0.4435
pf05 0.7249 -0.0756 0.5084
pf06 0.4743 -0.0044 0.7765

rkeep 0.6712 0.0939 0.4952
rkind 0.7478 0.0449 0.4145
sact0 0.4608 0.3340 0.5650
mha01 0.0652 0.6869 0.4916
mhp03 0.0401 -0.7587 0.4448
mhd02 -0.0280 0.8003 0.3748
mhp01 0.0462 -0.7918 0.3974
mhc01 0.0039 0.7160 0.4853
ghp01 0.5378 0.2484 0.5526
ghp04 -0.5494 -0.2541 0.5327
ghp02 -0.5960 -0.2736 0.4522
ghp05 0.2805 0.5213 0.5439
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Factor rotation matrix

Factor1 Factor2

Factor1 0.9277 0.6831
Factor2 0.3733 -0.7303

The first factor is defined predominantly by physical health and the second by mental health. General

health perception loads on both, but more on physical health than mental health. To compare the rotated

and unrotated solution, looking at both in parallel form is often useful.

. estat rotatecompare
Rotation matrix oblique oblimin (Kaiser off)

Variable Factor1 Factor2

Factor1 0.9277 0.6831
Factor2 0.3733 -0.7303

Factor loadings

Rotated Unrotated
Variable Factor1 Factor2 Factor1 Factor2

ghp31 -0.5517 -0.2051 -0.6519 -0.0562
pf01 0.7179 -0.0747 0.6150 0.3226
pf02 0.8115 -0.0968 0.6867 0.3737
pf03 0.8022 -0.1068 0.6712 0.3774
pf04 0.7750 -0.0951 0.6540 0.3588
pf05 0.7249 -0.0756 0.6209 0.3258
pf06 0.4743 -0.0044 0.4370 0.1803

rkeep 0.6712 0.0939 0.6868 0.1820
rkind 0.7478 0.0449 0.7244 0.2464
sact0 0.4608 0.3340 0.6556 -0.0719
mha01 0.0652 0.6869 0.5297 -0.4773
mhp03 0.0401 -0.7587 -0.4810 0.5691
mhd02 -0.0280 0.8003 0.5208 -0.5949
mhp01 0.0462 -0.7918 -0.4980 0.5955
mhc01 0.0039 0.7160 0.4927 -0.5215
ghp01 0.5378 0.2484 0.6686 0.0194
ghp04 -0.5494 -0.2541 -0.6833 -0.0195
ghp02 -0.5960 -0.2736 -0.7398 -0.0227
ghp05 0.2805 0.5213 0.6163 -0.2760

Look again at the factor output. The variances of the first and second factor of the unrotated solution
are 7.27 and 2.37, respectively. After an orthogonal rotation, the explained variance of 7.27 + 2.37 is

distributed differently over the two factors. For instance, if we typed rotate, varimax to obtain an

orthogonal varimax rotation, we would see that the first factor has variance 5.75, and the second factor

has 3.88—within rounding error 7.27 + 2.37 = 5.75 + 3.88. The situation after an oblique rotation is

different. The variances of the first and second factors are 6.59 and 4.65, which add up to more than

in the orthogonal case. In the oblique case, the common factors are correlated and thus “partly explain

the same variance”. Therefore, the cumulative proportion of variance explained by the factors is not

displayed here.

https://www.stata.com/manuals/mvfactorpostestimation.pdf#mvfactorpostestimationRemarksandexamplesex9
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Most researchers would not be willing to accept a solution in which the common factors are highly

correlated.

. estat common
Correlation matrix of the oblimin(0) rotated common factors

Factors Factor1 Factor2

Factor1 1
Factor2 .3611 1

The correlation of .36 seems acceptable, so we think that the oblique rotation was a success here.

Factor scores
The predict command creates a set of new variables that are estimates of the first 𝑘 common factors

produced by factor, factormat, or rotate. Two types of scoring are available: regression or Thomson
scoring and Bartlett scoring.

The number of variables may be less than the number of factors. If so, the first such factors will

be used. If the number of variables is greater than the number of factors created or rotated, the unused

factors will be filled with missing values.

Example 10: Predicting scores
Using our automobile data, wewish to develop an index of roominess on the basis of a car’s headroom,

rear-seat leg room, and trunk space. We begin by extracting the factors of the three variables:

. use https://www.stata-press.com/data/r19/autofull
(Automobile models)
. factor headroom rear_seat trunk
(obs=74)
Factor analysis/correlation Number of obs = 74

Method: principal factors Retained factors = 1
Rotation: (unrotated) Number of params = 3

Factor Eigenvalue Difference Proportion Cumulative

Factor1 1.71426 1.79327 1.1799 1.1799
Factor2 -0.07901 0.10329 -0.0544 1.1255
Factor3 -0.18231 . -0.1255 1.0000

LR test: independent vs. saturated: chi2(3) = 82.93 Prob>chi2 = 0.0000
Factor loadings (pattern matrix) and unique variances

Variable Factor1 Uniqueness

headroom 0.7280 0.4700
rear_seat 0.7144 0.4897

trunk 0.8209 0.3261
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All the factor loadings are positive, so we have indeed obtained a “roominess” factor. The predict
command will now create the one retained factor, which we will call f1:

. predict f1
(option regression assumed; regression scoring)
Scoring coefficients (method = regression)

Variable Factor1

headroom 0.28323
rear_seat 0.26820

trunk 0.45964

The table with scoring coefficients informs us that the factor is obtained as a weighted sum of stan-

dardized versions of headroom, rear seat, and trunk with weights 0.28, 0.27, and 0.46.

If factor had retained more than one factor, typing predict f1 would still have added only the first

factor to our data. Typing predict f1 f2, however, would have added the first two factors to our data.
f1 is now our “roominess” index, so we might compare the roominess of domestic and foreign cars:

. table foreign, statistic(mean f1) statistic(sd f1)

Mean Standard deviation

Foreign
Domestic .2022442 .9031404
Foreign -.4780318 .6106609
Total 4.51e-09 .8804116

We find that domestic cars are, on average, roomier than foreign cars, at least in our data.

Technical note
Are common factors not supposed to be normalized to have mean 0 and standard deviation 1? In our

example above, the mean is 4.5 × 10−9 and the standard deviation is 0.88. Why is that?

For the mean, the deviation from zero is due to numerical roundoff, which would diminish dramati-

cally if we had typed predict double f1 instead. The explanation for the standard deviation of 0.88,

on the other hand, is not numerical roundoff. At a theoretical level, the factor is supposed to have stan-

dard deviation 1, but the estimation method almost never yields that result unless an exact solution to the

factor model is found. This happens for the same reason that, when you regress 𝑦 on 𝑥, you do not get
the same equation as if you regress 𝑥 on 𝑦, unless 𝑥 and 𝑦 are perfectly collinear.

By the way, if you had two factors, you would expect the correlation between the two factors to be

zero because that is how they are theoretically defined. The matrix algebra, however, does not usually

work out that way. It is somewhat analogous to the fact that if you regress 𝑦 on 𝑥 and the regression

assumption that the errors are uncorrelated with the dependent variable is satisfied, then it automatically

cannot be satisfied if you regress 𝑥 on 𝑦.
The covariance matrix of the estimated factors is

𝐸( ̂f ̂f ′) = I − (I + 𝚪)−1

where

𝚪 = 𝚲′𝚿−1𝚲
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The columns of 𝚲 are orthogonal to each other, but the inclusion of 𝚿 in the middle of the equation

destroys that relationship unless all the elements of 𝚿 are equal.

Example 11: Rescaling the scores
Let’s pretend that we work for the K. E. Watt Company, a fictional industry group that generates

statistics on automobiles. Our “roominess” index has mean 0 and standard deviation 0.88, but indexes

we present to the public generally have mean 100 and standard deviation 10. First, we wish to rescale

our index:

. generate roomidx = (f1/.88041161)*10 + 100

. table foreign, statistic(mean roomidx) statistic(sd roomidx) statistic(freq)
> nformat(%9.2f)

Mean Standard deviation Frequency

Foreign
Domestic 102.30 10.26 52.00
Foreign 94.57 6.94 22.00
Total 100.00 10.00 74.00

Now when we release our results, we can write, “The K. E.Watt index of roominess shows that domestic

cars are, on average, roomier, with an index of 102 versus only 95 for foreign cars.”

Now let’s find the “roomiest” car in our data:

. sort roomidx

. list fullname roomidx in l

fullname roomidx

74. Merc. Marquis 116.7469

We can also write, “K. E. Watt finds that the Mercury Marquis is the roomiest automobile among those

surveyed, with a roominess index of 117 versus an average of 100.”

Technical note
predict provides two methods of scoring: the default regression scoring, which we have used above,

and the optional Bartlett method. An artificial example will best illustrate the use and meaning of the

methods. We begin by creating a known-to-be-correct factor model in which the true loadings are 0.4, 0.6,

and 0.8. The variances of the unique factors are 1− 0.42 = 0.84, 1− 0.62 = 0.64, and 1− 0.82 = 0.36,

respectively. We make the sample size large enough so that random fluctuations are not important.

. drop _all

. set seed 12345

. set obs 10000
Number of observations (_N) was 0, now 10,000.
. generate ftrue = rnormal()
. generate x1 = .4*ftrue + sqrt(.84)*rnormal()
. generate x2 = .6*ftrue + sqrt(.64)*rnormal()
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. generate x3 = .8*ftrue + sqrt(.36)*rnormal()

. summarize x1 x2 x3
Variable Obs Mean Std. dev. Min Max

x1 10,000 .0195519 1.011165 -3.778123 4.267452
x2 10,000 .0127835 1.001259 -3.828994 4.102375
x3 10,000 .0058335 1.002475 -3.595906 3.89754

Because we concocted our data, the iterated principal-factor method reproduces the true loadings most

faithfully:

. factor x1 x2 x3, ipf factors(1)
(obs=10,000)
Factor analysis/correlation Number of obs = 10,000

Method: iterated principal factors Retained factors = 1
Rotation: (unrotated) Number of params = 3

Factor Eigenvalue Difference Proportion Cumulative

Factor1 1.16678 1.16662 1.0000 1.0000
Factor2 0.00016 0.00036 0.0001 1.0002
Factor3 -0.00020 . -0.0002 1.0000

LR test: independent vs. saturated: chi2(3) = 3887.29 Prob>chi2 = 0.0000
Factor loadings (pattern matrix) and unique variances

Variable Factor1 Uniqueness

x1 0.4156 0.8273
x2 0.6046 0.6345
x3 0.7928 0.3715

Let us now compare regression and Bartlett scoring:

. predict freg
(option regression assumed; regression scoring)
Scoring coefficients (method = regression)

Variable Factor1

x1 0.14449
x2 0.27410
x3 0.61377

. predict fbar, bartlett
Scoring coefficients (method = Bartlett)

Variable Factor1

x1 0.20285
x2 0.38475
x3 0.86162
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Comparing the two scoring vectors, we see that Bartlett scoring yields larger coefficients. The regression

scoring method is biased insofar as𝐸(freg|ftrue) is not ftrue, something we can reveal by regressing
freg on ftrue:

. regress freg ftrue
Source SS df MS Number of obs = 10,000

F(1, 9998) = 25339.34
Model 5107.57467 1 5107.57467 Prob > F = 0.0000

Residual 2015.26671 9,998 .201566984 R-squared = 0.7171
Adj R-squared = 0.7170

Total 7122.84138 9,999 .712355374 Root MSE = .44896

freg Coefficient Std. err. t P>|t| [95% conf. interval]

ftrue .7169557 .004504 159.18 0.000 .708127 .7257843
_cons -.0088417 .00449 -1.97 0.049 -.0176429 -.0000404

Note the coefficient on ftrue of 0.717 < 1. The Bartlett scoring method, on the other hand, is unbiased:

. regress fbar ftrue
Source SS df MS Number of obs = 10,000

F(1, 9998) = 25339.33
Model 10065.1734 1 10065.1734 Prob > F = 0.0000

Residual 3971.35998 9,998 .397215441 R-squared = 0.7171
Adj R-squared = 0.7170

Total 14036.5334 9,999 1.40379372 Root MSE = .63025

fbar Coefficient Std. err. t P>|t| [95% conf. interval]

ftrue 1.006458 .0063226 159.18 0.000 .9940642 1.018851
_cons -.0124119 .006303 -1.97 0.049 -.024767 -.0000568

The zero bias of the Bartlett method comes at the costs of less accuracy, for example, in terms of the

mean squared error.

. generate dbar = (fbar - ftrue)^2

. generate dreg = (freg - ftrue)^2

. summarize ftrue fbar freg dbar dreg
Variable Obs Mean Std. dev. Min Max

ftrue 10,000 .0123322 .996866 -4.196032 3.815439
fbar 10,000 2.08e-10 1.184818 -3.78561 4.550449
freg 10,000 -6.44e-10 .8440115 -2.696714 3.241498
dbar 10,000 .3973295 .5654751 1.31e-09 7.656609
dreg 10,000 .2812835 .4053233 9.68e-10 4.814044

Neither estimator follows the assumption that the scaled factor has unit variance. The regression estima-

tor has a variance less than 1, and the Bartlett estimator has a variance greater than 1.
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The difference between the two scoring methods is not as important as it might seem because the bias

in the regression method is only a matter of scaling and shifting.

. correlate freg fbar ftrue
(obs=10,000)

freg fbar ftrue

freg 1.0000
fbar 1.0000 1.0000

ftrue 0.8468 0.8468 1.0000

Therefore, the choice of which scoring method we apply is largely immaterial.

Stored results
Let 𝑝 be the number of variables and 𝑓, the number of factors.
predict, in addition to generating variables, also stores the following in r():

Macros

r(method) regression or Bartlett

Matrices

r(scoef) 𝑝 × 𝑓 matrix of scoring coefficients

estat anti stores the following in r():

Matrices

r(acov) 𝑝 × 𝑝 anti-image covariance matrix

r(acorr) 𝑝 × 𝑝 anti-image correlation matrix

estat common stores the following in r():

Matrices

r(Phi) 𝑓 × 𝑓 correlation matrix of common factors

estat factors stores the following in r():

Matrices

r(stats) 𝑘 × 5 matrix with log likelihood, degrees of freedom, AIC, and BIC

for models with 1 to 𝑘 factors estimated via maximum likelihood

estat kmo stores the following in r():

Scalars

r(kmo) the Kaiser–Meyer–Olkin measure of sampling adequacy

Matrices

r(kmow) column vector of KMO measures for each variable

estat residuals stores the following in r():

Matrices

r(fit) fitted matrix for the correlations, Ĉ = �̂��̂��̂�
′

+ �̂�
r(res) raw residual matrix C − Ĉ

r(SR) standardized residuals (sresiduals option only)
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estat smc stores the following in r():

Matrices

r(smc) vector of squared multiple correlations of variables with all other variables

estat structure stores the following in r():

Matrices

r(st) 𝑝 × 𝑓 matrix of correlations between variables and common factors

See [R] estat summarize for the stored results of estat summarize.

rotate after factor and factormat add to the existing e():

Scalars

e(r f) number of factors in rotated solution

e(r fmin) rotation criterion value

Macros

e(r class) orthogonal or oblique
e(r criterion) rotation criterion

e(r ctitle) title for rotation

e(r normalization) kaiser or none

Matrices

e(r L) rotated loadings

e(r T) rotation

e(r Phi) correlations between common factors

e(r Ev) explained variance by common factors

The factors in the rotated solution are in decreasing order of e(r Ev).

Methods and formulas
Methods and formulas are presented under the following headings:

estat
rotate
predict

estat
See Methods and formulas of [MV] pca postestimation for the formulas for estat anti, estat kmo,

and estat smc.

estat residuals computes the standardized residuals ̃𝑟𝑖𝑗 as

̃𝑟𝑖𝑗 =
√

𝑁(𝑟𝑖𝑗 − 𝑓𝑖𝑗)

√𝑓2
𝑖𝑗 + 𝑓𝑖𝑖𝑓𝑗𝑗

suggested by Jöreskog and Sörbom (1986), where 𝑁 is the number of observations, 𝑟𝑖𝑗 is the observed

correlation of variables 𝑖 and 𝑗, and 𝑓𝑖𝑗 is the fitted correlation of variables 𝑖 and 𝑗. Also see Bollen

(1989). Caution is warranted in interpretation of these residuals; see Jöreskog and Sörbom (1988).

estat structure computes the correlations of the variables and the common factors as 𝚲𝚽.

https://www.stata.com/manuals/restatsummarize.pdf#restatsummarize
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rotate
See Methods and formulas of [MV] rotatemat for the details of rotation.

The correlation of common factors after rotation is T′T, where T is the factor rotation matrix, satis-

fying Lrotated = Lunrotated(T′)−1

predict
The formula for regression scoring (Thomson 1951) in the orthogonal case is

f̂ = 𝚲′𝚺−1x

where 𝚲 is the unrotated or orthogonally rotated loading matrix. For oblique rotation, the regression

scoring is defined as
̂f = 𝚽𝚲′𝚺−1x

where 𝚽 is the correlation matrix of the common factors.

The formula for Bartlett scoring (Bartlett 1937, 1938) is

𝚪−1𝚲′𝚿−1x

where

𝚪 = 𝚲′𝚿−1𝚲

See Harman (1976) and Lawley and Maxwell (1971).
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[MV] factor — Factor analysis
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