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Description
factor and factormat perform a factor analysis of a correlation matrix. The commands produce

principal factor, iterated principal factor, principal-component factor, and maximum-likelihood factor

analyses. factor and factormat display the eigenvalues of the correlation matrix, the factor loadings,

and the uniqueness of the variables.

factor expects data in the form of variables, allows weights, and can be run for subgroups.

factormat is for use with a correlation or covariance matrix.

Quick start
Principal-factor analysis using variables v1 to v5

factor v1 v2 v3 v4 v5

Same as above, but retain at most 3 factors

factor v1-v5, factors(3)

Principal-component factor analysis using variables v1 to v5
factor v1-v5, pcf

Maximum-likelihood factor analysis

factor v1-v5, ml

Same as above, but perform 50 maximizations with different starting values

factor v1-v5, ml protect(50)

Same as above, but set the seed for reproducibility

factor v1-v5, ml protect(50) seed(349285)

Principal-factor analysis based on a correlation matrix cmat with a sample size of 800

factormat cmat, n(800)

Same as above, retain only factors with eigenvalues greater than or equal to 1

factormat cmat, n(800) mineigen(1)

Menu
factor
Statistics > Multivariate analysis > Factor and principal component analysis > Factor analysis

factormat
Statistics > Multivariate analysis > Factor and principal component analysis > Factor analysis of a correlation
matrix
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Syntax
Factor analysis of data

factor varlist [ if ] [ in ] [weight ] [ , method options ]

Factor analysis of a correlation matrix

factormat matname, n(#) [method options factormat options ]

matname is a square Stata matrix or a vector containing the rowwise upper or lower triangle of the

correlation or covariance matrix. If a covariance matrix is provided, it is transformed into a correlation

matrix for the factor analysis.

method Description

Model 2

pf principal factor; the default

pcf principal-component factor

ipf iterated principal factor

ml maximum likelihood factor

options Description

Model 2

factors(#) maximum number of factors to be retained

mineigen(#) minimum value of eigenvalues to be retained

citerate(#) communality reestimation iterations (ipf only)

Reporting

blanks(#) display loadings as blank when |loadings| < #
altdivisor use trace of correlation matrix as the divisor for reported proportions

Maximization

protect(#) perform # optimizations and report the best solution (ml only)

random use random starting values (ml only); seldom used

seed(seed) random-number seed (ml with protect() or random only)

maximize options control the maximization process; seldom used (ml only)

norotated display unrotated solution, even if rotated results are available (replay only)

norotated does not appear in the dialog box.

https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.4inrange
https://www.stata.com/manuals/mvfactor.pdf#mvfactorSyntaxweight
https://www.stata.com/manuals/mvfactor.pdf#mvfactorSyntaxmethod
https://www.stata.com/manuals/mvfactor.pdf#mvfactorSyntaxoptions
https://www.stata.com/manuals/mvfactor.pdf#mvfactorSyntaxmethod
https://www.stata.com/manuals/mvfactor.pdf#mvfactorSyntaxoptions
https://www.stata.com/manuals/mvfactor.pdf#mvfactorSyntaxfactormat_options
https://www.stata.com/manuals/rsetseed.pdf#rsetseed
https://www.stata.com/manuals/mvfactor.pdf#mvfactorOptionsforfactorandfactormatmaxopts
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factormat options Description

Model

shape(full) matname is a square symmetric matrix; the default

shape(lower) matname is a vector with the rowwise lower triangle (with diagonal)

shape(upper) matname is a vector with the rowwise upper triangle (with diagonal)

names(namelist) variable names; required if matname is triangular

forcepsd modifies matname to be positive semidefinite
∗ n(#) number of observations

sds(matname2) vector with standard deviations of variables

means(matname3) vector with means of variables

∗ n(#) is required for factormat.

bootstrap, by, collect, jackknife, rolling, and statsby are allowed with factor; see [U] 11.1.10 Prefix commands.
However, bootstrap and jackknife results should be interpreted with caution; identification of the factor parameters
involves data-dependent restrictions, possibly leading to badly biased and overdispersed estimates (Milan and Whittaker
1995).

Weights are not allowed with the bootstrap prefix; see [R] bootstrap.

aweights are not allowed with the jackknife prefix; see [R] jackknife.

aweights and fweights are allowed with factor; see [U] 11.1.6 weight.

See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options for factor and factormat

� � �
Model 2 �

pf, pcf, ipf, and ml indicate the type of estimation to be performed. The default is pf.

pf specifies that the principal-factor method be used to analyze the correlation matrix. The factor

loadings, sometimes called the factor patterns, are computed using the squared multiple correla-

tions as estimates of the communality. pf is the default.

pcf specifies that the principal-component factor method be used to analyze the correlation matrix.

The communalities are assumed to be 1.

ipf specifies that the iterated principal-factor method be used to analyze the correlation matrix. This

reestimates the communalities iteratively.

ml specifies themaximum-likelihood factormethod, assumingmultivariate normal observations. This
estimation method is equivalent to Rao’s canonical-factor method and maximizes the determinant

of the partial correlation matrix. Hence, this solution is also meaningful as a descriptive method

for nonnormal data. ml is not available for singular correlation matrices. At least three variables

must be specified with method ml.

factors(#) and mineigen(#) specify the maximum number of factors to be retained. factors()
specifies the number directly, and mineigen() specifies it indirectly, keeping all factors with eigen-

values greater than the indicated value. The options can be specified individually, together, or not at

all.

factors(#) sets the maximum number of factors to be retained for later use by the postestimation

commands. factor always prints the full set of eigenvalues but prints the corresponding eigen-

vectors only for retained factors. Specifying a number larger than the number of variables in the

varlist is equivalent to specifying the number of variables in the varlist and is the default.

https://www.stata.com/manuals/u11.pdf#u11.1.10Prefixcommands
https://www.stata.com/manuals/rbootstrap.pdf#rbootstrap
https://www.stata.com/manuals/rjackknife.pdf#rjackknife
https://www.stata.com/manuals/u11.pdf#u11.1.6weight
https://www.stata.com/manuals/u20.pdf#u20Estimationandpostestimationcommands
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
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mineigen(#) sets the minimum value of eigenvalues to be retained. The default for all methods

except pcf is 5×10−6 (effectively zero), meaning that factors associated with negative eigenvalues

will not be printed or retained. The default for pcf is 1. Many sources recommend mineigen(1),
although the justification is complex and uncertain. If # is less than 5×10−6, it is reset to 5×10−6.

citerate(#) is used only with ipf and sets the number of iterations for reestimating the communalities.
If citerate() is not specified, iterations continue until the change in the communalities is small. ipf
with citerate(0) produces the same results that pf does.

� � �
Reporting �

blanks(#) specifies that factor loadings smaller than # (in absolute value) be displayed as blanks.

altdivisor specifies that reported proportions and cumulative proportions be computed using the trace

of the correlation matrix, trace(e(C)), as the divisor. The default is to use the sum of all eigenvalues

(even those that are negative) as the divisor.

� � �
Maximization �

protect(#) is used only with ml and requests that # optimizations with random starting values be per-

formed along with squared multiple correlation coefficient starting values and that the best of the

solutions be reported. The output also indicates whether all starting values converged to the same

solution. When specified with a large number, such as protect(50), this provides reasonable assur-
ance that the solution found is global and not just a local maximum. If trace is also specified (see

[R]Maximize), the parameters and likelihoods of each maximization will be printed.

random is used only with ml and requests that random starting values be used. This option is rarely used

and should be used only after protect() has shown the presence of multiple maximums.

seed(seed) is used only with ml when the random or protect() options are also specified. seed()
specifies the random-number seed; see [R] set seed. If seed() is not specified, the random-number

generator starts in whatever state it was last in.

maximize options: iterate(#), [no]log, trace, tolerance(#), and ltolerance(#); see [R]Max-

imize. These options are seldom used.

The following option is available with factor but is not shown in the dialog box:

norotated specifies that the unrotated factor solution be displayed, even if a rotated factor solution is

available. norotated is for use only with replaying results.

Options unique to factormat

� � �
Model �

shape(shape) specifies the shape (storage method) for the covariance or correlation matrix matname.

The following shapes are supported:

full specifies that the correlation or covariance structure of 𝑘 variables is a symmetric 𝑘×𝑘 matrix.

This is the default.

lower specifies that the correlation or covariance structure of 𝑘 variables is a vector with 𝑘(𝑘 + 1)/2
elements in rowwise lower-triangular order,

C11 C21 C22 C31 C32 C33 . . . C𝑘1 C𝑘2 . . . C𝑘𝑘

https://www.stata.com/manuals/rmaximize.pdf#rMaximize
https://www.stata.com/manuals/rsetseed.pdf#rsetseed
https://www.stata.com/manuals/rmaximize.pdf#rMaximize
https://www.stata.com/manuals/rmaximize.pdf#rMaximize
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upper specifies that the correlation or covariance structure of 𝑘 variables is a vector with 𝑘(𝑘 + 1)/2
elements in rowwise upper-triangular order,

C11 C12 C13 . . . C1𝑘 C22 C23 . . .C2𝑘 . . . C(𝑘−1,𝑘−1) C(𝑘−1,𝑘) C𝑘𝑘

names(namelist) specifies a list of 𝑘 different names to be used to document output and label estimation

results and as variable names by predict. names() is required if the correlation or covariance matrix
is in vectorized storage mode (that is, shape(lower) or shape(upper) is specified). By default,

factormat verifies that the row and column names of matname and the column or row names of

matname2 andmatname3 from the sds() and means() options are in agreement. Using the names()
option turns off this check.

forcepsd modifies the matrix matname to be positive semidefinite (psd) and so be a proper covariance

matrix. Ifmatname is not positive semidefinite, it will have negative eigenvalues. By setting negative

eigenvalues to 0 and reconstructing, we obtain the least-squares positive-semidefinite approximation

to matname. This approximation is a singular covariance matrix.

n(#), a required option, specifies the number of observations on which matname is based.

sds(matname2) specifies a 𝑘 × 1 or 1× 𝑘 matrix with the standard deviations of the variables. The row

or column names should match the variable names, unless the names() option is specified. sds()
may be specified only if matname is a correlation matrix. Specify sds() if you have variables in

your dataset and want to use predict after factormat. sds() does not affect the computations of

factormat but provides information so that predict does not assume that the standard deviations

are one.

means(matname3) specifies a 𝑘 ×1 or 1× 𝑘 matrix with the means of the variables. The row or column

names should match the variable names, unless the names() option is specified. Specify means()
if you have variables in your dataset and want to use predict after factormat. means() does not

affect the computations of factormat but provides information so that predict does not assume the

means are zero.

Remarks and examples
Remarks are presented under the following headings:

Introduction
Factor analysis
Factor analysis from a correlation matrix

Introduction
Factor analysis, in the sense of exploratory factor analysis, is a statistical technique for data reduction.

It reduces the number of variables in an analysis by describing linear combinations of the variables that

contain most of the information and that, we hope, admit meaningful interpretations.

Factor analysis originated with the work of Spearman (1904), and has since witnessed an explosive

growth, especially in the social sciences and, interestingly, in chemometrics. For an introduction, we

refer to Kim and Mueller (1978b, 1978a), van Belle, Fisher, Heagerty, and Lumley (2004, chap. 14),

Hamilton (2013, chap. 11), and Afifi et al. (2020). Intermediate-level treatments include Gorsuch (1983)

and Harman (1976). For mathematically more advanced discussions, see Mulaik (2010), Mardia, Kent,

and Taylor (2024, chap. 10), and Fuller (1987).
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Structural equation modeling provides a more general framework for performing factor analysis, in-

cluding confirmatory factor analysis; see [SEM] Intro 5, [SEM] Example 1, and [SEM] Example 3.

Also see Kolenikov (2009) for another implementation of confirmatory factor analysis.

Factor analysis
Factor analysis finds a few common factors (say, 𝑞 of them) that linearly reconstruct the 𝑝 original

variables

𝑦𝑖𝑗 = 𝑧𝑖1𝑏1𝑗 + 𝑧𝑖2𝑏2𝑗 + · · · + 𝑧𝑖𝑞𝑏𝑞𝑗 + 𝑒𝑖𝑗

where 𝑦𝑖𝑗 is the value of the 𝑖th observation on the 𝑗th variable, 𝑧𝑖𝑘 is the 𝑖th observation on the 𝑘th
common factor, 𝑏𝑘𝑗 is the set of linear coefficients called the factor loadings, and 𝑒𝑖𝑗 is similar to a

residual but is known as the 𝑗th variable’s unique factor. Everything except the left-hand-side variable
is to be estimated, so the model has an infinite number of solutions. Various constraints are introduced

to make the model determinate.

“Reconstruction” is typically defined in terms of prediction of the correlation matrix of the original

variables, unlike principal components (see [MV] pca), where reconstruction means minimum residual

variance summed across all equations (variables).

Once the factors and their loadings have been estimated, they are interpreted—an admittedly sub-

jective process. Interpretation typically means examining the 𝑏𝑘𝑗’s and assigning names to each factor.

Because of the indeterminacy of the factor solution, we are not limited to examining solely the 𝑏𝑘𝑗’s.

The loadings could be rotated. Rotations come in two forms—orthogonal and oblique. If we restrict

to orthogonal rotations, the rotated 𝑏𝑘𝑗s, despite appearing different, are every bit as good as (and no

better than) the original loadings. Oblique rotations are often desired but do not retain some important

properties of the original solution; see example 3. Because there are an infinite number of potential ro-

tations, different rotations could lead to different interpretations of the same data. These are not to be

viewed as conflicting, but instead as two different ways of looking at the same thing. See [MV] factor

postestimation and [MV] rotate for more information on rotation.

Example 1: A simple factor analysis on six questions
We wish to analyze physicians’ attitudes toward cost. Six questions about cost were asked of 568

physicians in the Medical Outcomes Study from Tarlov et al. (1989). We do not have the original data,

so we used corr2data to create a dataset with the same correlation matrix. Factor analysis is often used

to validate a combination of questions that looks meaningful at first glance. Here we wish to create a

variable that summarizes the information on each physician’s attitude toward cost.

https://www.stata.com/manuals/semintro5.pdf#semIntro5
https://www.stata.com/manuals/semexample1.pdf#semExample1
https://www.stata.com/manuals/semexample3.pdf#semExample3
https://www.stata.com/manuals/mvpca.pdf#mvpca
https://www.stata.com/manuals/mvfactor.pdf#mvfactorRemarksandexamplesex3
https://www.stata.com/manuals/mvfactorpostestimation.pdf#mvfactorpostestimation
https://www.stata.com/manuals/mvfactorpostestimation.pdf#mvfactorpostestimation
https://www.stata.com/manuals/mvrotate.pdf#mvrotate
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Each response is coded on a five-point scale, where 1 means “agree” and 5 means “disagree”:

. use https://www.stata-press.com/data/r19/bg2
(Physician-cost data)
. describe
Contains data from https://www.stata-press.com/data/r19/bg2.dta
Observations: 568 Physician-cost data

Variables: 7 11 Feb 2024 21:54
(_dta has notes)

Variable Storage Display Value
name type format label Variable label

clinid int %9.0g Physician identifier
bg2cost1 float %9.0g Best health care is expensive
bg2cost2 float %9.0g Cost is a major consideration
bg2cost3 float %9.0g Determine cost of tests first
bg2cost4 float %9.0g Monitor likely complications only
bg2cost5 float %9.0g Use all means regardless of cost
bg2cost6 float %9.0g Prefer unnecessary tests to

missing tests

Sorted by: clinid

We perform the factorization on bg2cost1, bg2cost2, . . . , bg2cost6.

. factor bg2cost1-bg2cost6
(obs=568)
Factor analysis/correlation Number of obs = 568

Method: principal factors Retained factors = 3
Rotation: (unrotated) Number of params = 15

Factor Eigenvalue Difference Proportion Cumulative

Factor1 0.85389 0.31282 1.0310 1.0310
Factor2 0.54107 0.51786 0.6533 1.6844
Factor3 0.02321 0.17288 0.0280 1.7124
Factor4 -0.14967 0.03951 -0.1807 1.5317
Factor5 -0.18918 0.06197 -0.2284 1.3033
Factor6 -0.25115 . -0.3033 1.0000

LR test: independent vs. saturated: chi2(15) = 269.07 Prob>chi2 = 0.0000
Factor loadings (pattern matrix) and unique variances

Variable Factor1 Factor2 Factor3 Uniqueness

bg2cost1 0.2470 0.3670 -0.0446 0.8023
bg2cost2 -0.3374 0.3321 -0.0772 0.7699
bg2cost3 -0.3764 0.3756 0.0204 0.7169
bg2cost4 -0.3221 0.1942 0.1034 0.8479
bg2cost5 0.4550 0.2479 0.0641 0.7274
bg2cost6 0.4760 0.2364 -0.0068 0.7175

factor retained only the first three factors because the eigenvalues associated with the remaining factors
are negative. According to the default mineigen(0) criterion, a factor must have an eigenvalue greater

than zero to be retained. You can set this threshold higher by specifying mineigen(#). Although factor
elected to retain three factors, only the first two appear to be meaningful.
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The first factor seems to describe the physician’s average position on cost because it affects the re-

sponses to all the questions “positively”, as shown by the signs in the first column of the factor-loading

table. We say “positively” because, obviously, the signs on three of the loadings are negative. When we

look back at the results of describe, however, we find that the direction of the responses on bg2cost2,
bg2cost3, and bg2cost4 are reversed. If the physician feels that cost should not be a major influence

on medical treatment, he or she is likely to disagree with these three items and to agree with the other

three.

The second factor loads positively (absolutely, not logically) on all six items and could be interpreted

as describing the physician’s tendency to agree with any good-sounding idea put forth. Psychologists

refer to this as the “positive response set”. On statistical grounds, we would probably keep this second

factor, although on substantive grounds, we would be tempted to drop it.

We finally point to the columnwith the header “uniqueness”. Uniqueness is the percentage of variance

for the variable that is not explained by the common factors. The quantity “1 − uniqueness” is called

communality. Uniqueness could be pure measurement error, or it could represent something that is

measured reliably in that particular variable, but not by any of the others. The greater the uniqueness,

the more likely that it is more than just measurement error. Values more than 0.6 are usually considered

high; all the variables in this problem are even higher—more than 0.71. If the uniqueness is high, then

the variable is not well explained by the factors.

Example 2: A different divisor for proportions
The cumulative proportions of the eigenvalues exceeded 1.0 in our factor analysis because of the

negative eigenvalues. By default, the proportion and cumulative proportion columns are computed using

the sum of all eigenvalues as the divisor. The altdivisor option allows you to display the proportions

and cumulative proportions by using the trace of the correlation matrix as the divisor. This option is

allowed at estimation time or when replaying results. We demonstrate by replaying the results with this

option.

. factor, altdivisor
Factor analysis/correlation Number of obs = 568

Method: principal factors Retained factors = 3
Rotation: (unrotated) Number of params = 15

Factor Eigenvalue Difference Proportion Cumulative

Factor1 0.85389 0.31282 0.1423 0.1423
Factor2 0.54107 0.51786 0.0902 0.2325
Factor3 0.02321 0.17288 0.0039 0.2364
Factor4 -0.14967 0.03951 -0.0249 0.2114
Factor5 -0.18918 0.06197 -0.0315 0.1799
Factor6 -0.25115 . -0.0419 0.1380

LR test: independent vs. saturated: chi2(15) = 269.07 Prob>chi2 = 0.0000
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Factor loadings (pattern matrix) and unique variances

Variable Factor1 Factor2 Factor3 Uniqueness

bg2cost1 0.2470 0.3670 -0.0446 0.8023
bg2cost2 -0.3374 0.3321 -0.0772 0.7699
bg2cost3 -0.3764 0.3756 0.0204 0.7169
bg2cost4 -0.3221 0.1942 0.1034 0.8479
bg2cost5 0.4550 0.2479 0.0641 0.7274
bg2cost6 0.4760 0.2364 -0.0068 0.7175

Among the sources we examined, there was not a consensus on which divisor is most appropriate.

Therefore, both are available.

Example 3: Principal-component factors instead of principal factors
factor provides several alternative estimation strategies for the factor model. We specified no op-

tions on the factor command when we fit our first model, so we obtained the principal-factor solution.

The communalities (defined as 1 − uniqueness) were estimated using the squared multiple correlation

coefficients.

We could have instead obtained the estimates from “principal-component factors”, treating the com-

munalities as all 1—meaning that there are no unique factors—by specifying the pcf option:

. factor bg2cost1-bg2cost6, pcf
(obs=568)
Factor analysis/correlation Number of obs = 568

Method: principal-component factors Retained factors = 2
Rotation: (unrotated) Number of params = 11

Factor Eigenvalue Difference Proportion Cumulative

Factor1 1.70622 0.30334 0.2844 0.2844
Factor2 1.40288 0.49422 0.2338 0.5182
Factor3 0.90865 0.18567 0.1514 0.6696
Factor4 0.72298 0.05606 0.1205 0.7901
Factor5 0.66692 0.07456 0.1112 0.9013
Factor6 0.59236 . 0.0987 1.0000

LR test: independent vs. saturated: chi2(15) = 269.07 Prob>chi2 = 0.0000
Factor loadings (pattern matrix) and unique variances

Variable Factor1 Factor2 Uniqueness

bg2cost1 0.3581 0.6279 0.4775
bg2cost2 -0.4850 0.5244 0.4898
bg2cost3 -0.5326 0.5725 0.3886
bg2cost4 -0.4919 0.3254 0.6521
bg2cost5 0.6238 0.3962 0.4539
bg2cost6 0.6543 0.3780 0.4290
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Here we find that the principal-component factor model is inappropriate. It is based on the assumption

that the uniquenesses are 0, but we find that there is considerable uniqueness—there is considerable

variability left over after our two factors. We should use some other method.

Example 4: Iterated principal-factor analysis
We could have fit our model using iterated principal factors by specifying the ipf option. Here the

initial estimates of the communalities would be the squared multiple correlation coefficients, but the

solution would then be iterated to obtain different (better) estimates:

. factor bg2cost1-bg2cost6, ipf
(obs=568)
Factor analysis/correlation Number of obs = 568

Method: iterated principal factors Retained factors = 5
Rotation: (unrotated) Number of params = 15

Factor Eigenvalue Difference Proportion Cumulative

Factor1 1.08361 0.31752 0.5104 0.5104
Factor2 0.76609 0.53816 0.3608 0.8712
Factor3 0.22793 0.19469 0.1074 0.9786
Factor4 0.03324 0.02085 0.0157 0.9942
Factor5 0.01239 0.01256 0.0058 1.0001
Factor6 -0.00017 . -0.0001 1.0000

LR test: independent vs. saturated: chi2(15) = 269.07 Prob>chi2 = 0.0000
Factor loadings (pattern matrix) and unique variances

Variable Factor1 Factor2 Factor3 Factor4 Factor5 Uniqueness

bg2cost1 0.2471 0.4059 -0.1349 -0.1303 0.0288 0.7381
bg2cost2 -0.4040 0.3959 -0.2636 0.0349 0.0040 0.6093
bg2cost3 -0.4479 0.4570 0.1290 0.0137 -0.0564 0.5705
bg2cost4 -0.3327 0.1943 0.2655 0.0091 0.0810 0.7744
bg2cost5 0.5294 0.3338 0.2161 -0.0134 -0.0331 0.5604
bg2cost6 0.5174 0.2943 -0.0801 0.1208 0.0265 0.6240

Here we retained too many factors. Unlike in principal factors or principal-component factors, we can-

not simply ignore the unnecessary factors because the uniquenesses are reestimated from the data and

therefore depend on the number of retained factors. We need to reestimate. We use the opportunity to

demonstrate the option blanks(#) for displaying “small loadings” as blanks for easier reading:
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. factor bg2cost1-bg2cost6, ipf factors(2) blanks(.30)
(obs=568)
Factor analysis/correlation Number of obs = 568

Method: iterated principal factors Retained factors = 2
Rotation: (unrotated) Number of params = 11

Factor Eigenvalue Difference Proportion Cumulative

Factor1 1.03954 0.30810 0.5870 0.5870
Factor2 0.73144 0.60785 0.4130 1.0000
Factor3 0.12359 0.11571 0.0698 1.0698
Factor4 0.00788 0.03656 0.0045 1.0743
Factor5 -0.02867 0.07418 -0.0162 1.0581
Factor6 -0.10285 . -0.0581 1.0000

LR test: independent vs. saturated: chi2(15) = 269.07 Prob>chi2 = 0.0000
Factor loadings (pattern matrix) and unique variances

Variable Factor1 Factor2 Uniqueness

bg2cost1 0.3941 0.7937
bg2cost2 -0.3590 0.7827
bg2cost3 -0.5189 0.4935 0.4872
bg2cost4 -0.3230 0.8699
bg2cost5 0.4667 0.3286 0.6742
bg2cost6 0.5179 0.3325 0.6212

(blanks represent abs(loading)<.3)

It is instructive to compare the reported uniquenesses for this model and the previous one, where five

factors were retained. Also, compared with the results we obtained from principal factors, these results

do not differ much.

Example 5: Maximum-likelihood factor analysis
Finally, we could have fit our model using the maximum likelihood method by specifying the ml

option. The maximum likelihood method assumes that the data are multivariate normal distributed. If

the factor model provides an adequate approximation to the data, maximum likelihood estimates have

favorable properties compared with the other estimation methods. Rao (1955) has shown that his canon-

ical factor method is equivalent to the maximum likelihood method. This method seeks to maximize

canonical correlations between the manifest variables and the common factors. Thus ml may be used

descriptively, even if we are unwilling to assume multivariate normality.

As with ipf, if we do not specify the number of factors, Stata retains more than two factors (it retained
three), and, as with ipf, we will need to reestimate with the number of factors that we really want. To
save paper, we will start by retaining two factors:



factor — Factor analysis 12

. factor bg2cost1-bg2cost6, ml factors(2)
(obs=568)
Iteration 0: Log likelihood = -28.702162
Iteration 1: Log likelihood = -7.0065234
Iteration 2: Log likelihood = -6.8513798
Iteration 3: Log likelihood = -6.8429502
Iteration 4: Log likelihood = -6.8424747
Iteration 5: Log likelihood = -6.8424491
Iteration 6: Log likelihood = -6.8424477
Factor analysis/correlation Number of obs = 568

Method: maximum likelihood Retained factors = 2
Rotation: (unrotated) Number of params = 11

Schwarz’s BIC = 83.4482
Log likelihood = -6.842448 (Akaike’s) AIC = 35.6849

Factor Eigenvalue Difference Proportion Cumulative

Factor1 1.02766 0.28115 0.5792 0.5792
Factor2 0.74651 . 0.4208 1.0000

LR test: independent vs. saturated: chi2(15) = 269.07 Prob>chi2 = 0.0000
LR test: 2 factors vs. saturated: chi2(4) = 13.58 Prob>chi2 = 0.0087

Factor loadings (pattern matrix) and unique variances

Variable Factor1 Factor2 Uniqueness

bg2cost1 -0.1371 0.4235 0.8018
bg2cost2 0.4140 0.1994 0.7888
bg2cost3 0.6199 0.3692 0.4794
bg2cost4 0.3577 0.0909 0.8638
bg2cost5 -0.3752 0.4355 0.6695
bg2cost6 -0.4295 0.4395 0.6224

factor displays a likelihood-ratio test of independence against the saturated model with each estimation

method. Because we are factor analyzing a correlation matrix, independence implies sphericity. Passing

this test is necessary for a factor analysis to be meaningful.

In addition to the “standard” output, when you use the ml option, Stata reports a likelihood-ratio test

of the number of factors in the model against the saturated model. This test is only approximately 𝜒2,

and we have used the correction recommended by Bartlett (1951). There are many variations on this test

in use by different statistical packages.

The following comments were made by the analyst looking at these results: “There is, in my opinion,

weak evidence of more than two factors. The 𝜒2 test for more than two factors is really a test of how

well you are fitting the correlation matrix. It is not surprising that the model does not fit it perfectly.

The significance of 1%, however, suggests to me that there might be a third factor. As for the loadings,

they yield a similar interpretation to other factor models we fit, although there are some noteworthy

differences.” When we challenged the analyst on this last statement, he added that he would want to

rotate the resulting factors before committing himself further.
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Technical note
Stata will sometimes comment, “Note: test formally not valid because a Heywood case was encoun-

tered”. The approximations used in computing the 𝜒2 value and degrees of freedom are mathematically

justified on the assumption that an interior solution to the factor maximum likelihood was found. This is

the case in our example above, but that will not always be so.

Boundary solutions, called Heywood solutions, often produce uniquenesses of 0, and then at least at a

formal level, the test cannot be justified. Nevertheless, we believe that the reported tests are useful, even

in such circumstances, provided that they are interpreted cautiously. The maximum likelihood method

seems to be particularly prone to producing Heywood solutions.

This message is also printed when, in principle, there are enough free parameters to completely fit the

correlation matrix, another sort of boundary solution. We say “in principle” because the correlation ma-

trix often cannot be fit perfectly, so you will see a positive 𝜒2 with zero degrees of freedom. This warning

note is printed because the geometric assumptions underlying the likelihood-ratio test are violated.

Technical note
In a factor analysis with factors estimated with the maximum likelihood method, there may possibly

be more than one local maximum, and you may want assurances that the maximum reported is the global

maximum. Multiple maximums are especially likely when there is more than one group of variables, the

groups are reasonably uncorrelated, and you attempt to fit a model with too few factors.

When you specify the protect(#) option, Stata performs # optimizations of the likelihood func-

tion, beginning each with random starting values, before continuing with the squared multiple correla-

tions–initialized solution. Stata then selects the maximum of the maximums and reports it, along with a

note informing you if other local maximumswere found. protect(50) provides considerable assurance.

If you then wish to explore any of the nonglobal maximums, include the random option. This option,

which is never specified with protect(), uses random starting values and reports the solution to which

those random values converge. For multiple maximums, giving the command repeatedly will eventually

report all local maximums. You are advised to set the random-number seed to ensure that your results

are reproducible; see [R] set seed.

Factor analysis from a correlation matrix
Youmaywant to perform a factor analysis directly from a correlationmatrix rather than from variables

in a dataset. You may not have access to the dataset, or you may have used another method of estimating

a correlation matrix—for example, as a matrix of tetrachoric correlations; see [R] tetrachoric. You can

provide either a correlation or a covariance matrix—factormat will translate a covariance matrix into

a correlation matrix.

Example 6: Factor analysis of a correlation matrix
We illustrate with a small example with three variables on respondent’s senses (visual, hearing, and

taste), with a correlation matrix.

https://www.stata.com/manuals/rsetseed.pdf#rsetseed
https://www.stata.com/manuals/rtetrachoric.pdf#rtetrachoric
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. matrix C = (1.000, 0.943, 0.771 \
> 0.943, 1.000, 0.605 \
> 0.771, 0.605, 1.000)

Elements within a row are separated by a comma, whereas rows are separated by a backslash, \.
We now use factormat to analyze C. There are two required options here. First, the option n(979)
specifies that the sample size is 979. Second, factormat has to have labels for the variables. It is

possible to define row and column names for C. We did not explicitly set the names of C, so Stata has

generated default row and columns names—r1 r2 r3 for the rows, and c1 c2 c3 for the columns. This

will confuse factormat: why does a symmetric correlation matrix have different names for the rows

and for the columns? factormat would complain about the problem and stop. We could set the row

and column names of C to be the same and invoke factormat again. We can also specify the names()
option with the variable names to be used.

. factormat C, n(979) names(visual hearing taste) fac(1) ipf
(obs=979)
Factor analysis/correlation Number of obs = 979

Method: iterated principal factors Retained factors = 1
Rotation: (unrotated) Number of params = 3

Warning: Solution is a Heywood case; that is, invalid or boundary values of
uniqueness.

Factor Eigenvalue Difference Proportion Cumulative

Factor1 2.43622 2.43609 1.0000 1.0000
Factor2 0.00013 0.00028 0.0001 1.0001
Factor3 -0.00015 . -0.0001 1.0000

LR test: independent vs. saturated: chi2(3) = 3425.87 Prob>chi2 = 0.0000
Factor loadings (pattern matrix) and unique variances

Variable Factor1 Uniqueness

visual 1.0961 -0.2014
hearing 0.8603 0.2599

taste 0.7034 0.5053

If we have the correlation matrix already in electronic form, this is a fine method. But if we have to

enter a correlation matrix by hand, we may rather want to exploit its symmetry to enter just the upper

triangle or lower triangle. This is not an issue with our small three-variable example, but what about a

correlation matrix of 25 variables? However, there is an advantage to entering the correlation matrix in

full symmetric form: redundancy offers some protection against making data entry errors; factormat
will complain if the matrix is not symmetric.

factormat allows us to enter just one of the triangles of the correlation matrix as a vector, that is, a

matrix with one row or column. We enter the upper triangle, including the diagonal,

. matrix Cup = (1.000, 0.943, 0.771,
> 1.000, 0.605,
> 1.000)

All elements are separated by a comma; indentation and the use of three lines are done for readability.

We could have typed, all the numbers “in a row”.

. matrix Cup = (1.000, 0.943, 0.771, 1.000, 0.605, 1.000)
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We have to specify the option shape(upper) to inform factormat that the elements in the vector

Cup are the upper triangle in rowwise order.

. factormat Cup, n(979) shape(upper) fac(2) names(visual hearing taste)
(output omitted )

If we had entered the lower triangle of C, a vector Clow, it would have been defined as

. matrix Clow = (1.000, 0.943, 1.000, 0.771, 0.605, 1.000)

The features of factormat and factor are the same for estimation. Postestimation facilities are also

the same—except that predict will not work after factormat, unless variables corresponding to the

names() option exist in the dataset; see [MV] factor postestimation.

Stored results
factor and factormat store the following in e():

Scalars

e(N) number of observations

e(f) number of retained factors

e(evsum) sum of all eigenvalues

e(df m) model degrees of freedom

e(df r) residual degrees of freedom

e(chi2 i) likelihood-ratio test of “independence vs. saturated”

e(df i) degrees of freedom of test of “independence vs. saturated”

e(p i) 𝑝-value of “independence vs. saturated”
e(ll 0) log likelihood of null model (ml only)

e(ll) log likelihood (ml only)

e(aic) Akaike’s AIC (ml only)

e(bic) Schwarz’s BIC (ml only)

e(chi2 1) likelihood-ratio test of “# factors vs. saturated” (ml only)

e(df 1) degrees of freedom of test of “# factors vs. saturated” (ml only)

Macros

e(cmd) factor
e(cmdline) command as typed

e(method) pf, pcf, ipf, or ml
e(wtype) weight type (factor only)

e(wexp) weight expression (factor only)

e(title) Factor analysis
e(mtitle) description of method (for example, principal factors)
e(heywood) Heywood case (when encountered)

e(matrixname) input matrix (factormat only)

e(mineigen) specified mineigen() option

e(factors) specified factors() option

e(rngstate) random-number state used (seed() option only)

e(properties) nob noV eigen
e(rotate cmd) factor rotate
e(estat cmd) factor estat
e(predict) factor p
e(marginsnotok) predictions disallowed by margins

Matrices

e(sds) standard deviations of analyzed variables

e(means) means of analyzed variables

e(C) analyzed correlation matrix

e(Phi) variance matrix common factors

https://www.stata.com/manuals/mvfactorpostestimation.pdf#mvfactorpostestimation
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e(L) factor loadings

e(Psi) uniqueness (variance of specific factors)

e(Ev) eigenvalues

Functions

e(sample) marks estimation sample (factor only)

rotate after factor and factormat stores items in e() along with the estimation command. See

Stored results of [MV] factor postestimation and [MV] rotate for details.

Methods and formulas
This section describes the statistical factor model. Suppose that there are 𝑝 variables and 𝑞 factors.

Let 𝚿 represent the 𝑝 × 𝑝 diagonal matrix of uniquenesses, and let 𝚲 represent the 𝑝 × 𝑞 factor loading
matrix. Let f be a 1 × 𝑞 matrix of factors. The standardized (mean 0, variance 1) vector of observed

variables x (1 × 𝑝) is given by the system of regression equations

x = f𝚲′ + e

where e is a 1 × 𝑝 vector of errors with diagonal covariance equal to the uniqueness matrix 𝚿. The

common factors f and the specific factors e are assumed to be uncorrelated.

Under the factor model, the correlation matrix of x, called 𝚺, is decomposed by factor analysis as

𝚺 = 𝚲𝚽𝚲′ + 𝚿

There is an obvious freedom in reexpressing a given decomposition of𝚺. The default and unrotated form

assumes uncorrelated common factors, 𝚽 = I. Stata performs this decomposition by an eigenvector

calculation. First, an estimate is found for the uniqueness 𝚿, and then the columns of 𝚲 are computed

as the 𝑞 leading eigenvectors, scaled by the square root of the appropriate eigenvalue.
See Harman (1976); Mardia, Kent, and Taylor (2024); Rencher (1998, chap. 10); and Rencher and

Christensen (2012, chap. 13) for discussions of estimation methods in factor analysis. Basilevsky (1994)

places factor analysis in a wider statistical context and details many interesting examples and links to

other methods. For details about maximum likelihood estimation, see also Lawley and Maxwell (1971)

and Clarke (1970).

References
Afifi, A.A., S. May, R.A. Donatello, and V.A. Clark. 2020. Practical MultivariateAnalysis. 6th ed. Boca Raton, FL: CRC

Press.

Akhtar-Danesh, N. 2018. qfactor: A command for Q-methodology analysis. Stata Journal 18: 432–446.

Baldwin, S. 2019. Psychological Statistics and Psychometrics Using Stata. College Station, TX: Stata Press.

Bartlett, M. S. 1951. The effect of standardization on a 𝜒2 approximation in factor analysis. Biometrika 38: 337–344.

https://doi.org/10.2307/2332580.

Basilevsky, A. T. 1994. Statistical Factor Analysis and Related Methods: Theory and Applications. New York: Wiley.

https://doi.org/10.1002/9780470316894.

Clarke, M. R. B. 1970. A rapidly convergent method for maximum-likelihood factor analysis. British Journal of Mathe-

matical and Statistical Psychology 23: 43–52. https://doi.org/10.1111/j.2044-8317.1970.tb00434.x.

Dinno,A. 2009. Implementing Horn’s parallel analysis for principal component analysis and factor analysis. Stata Journal

9: 291–298.

Fuller, W. A. 1987.Measurement Error Models. New York: Wiley. https://doi.org/10.1002/9780470316665.

https://www.stata.com/manuals/mvfactorpostestimation.pdf#mvfactorpostestimation
https://www.stata.com/manuals/mvrotate.pdf#mvrotate
https://www.stata.com/bookstore/practical-multivariate-analysis/
https://www.stata-journal.com/article.html?article=st0530
https://www.stata-press.com/books/psychological-statistics-and-psychometrics-using-stata/
https://doi.org/10.2307/2332580
https://doi.org/10.1002/9780470316894
https://doi.org/10.1111/j.2044-8317.1970.tb00434.x
https://www.stata-journal.com/article.html?article=st0166
https://doi.org/10.1002/9780470316665


factor — Factor analysis 17

Gorsuch, R. L. 1983. Factor Analysis. 2nd ed. Hillsdale, NJ: Lawrence Erlbaum.

Hamilton, L. C. 2013. Statistics with Stata: Updated for Version 12. 8th ed. Boston: Brooks/Cole.

Harman, H. H. 1976.Modern Factor Analysis. 3rd ed. Chicago: University of Chicago Press.

Kim, J.-O., and C.W.Mueller. 1978a. FactorAnalysis: Statistical Methods and Practical Issues. Thousand Oaks, CA: Sage.

https://doi.org/10.4135/9781412984256.

———. 1978b. Introduction to Factor Analysis. What It Is and How to Do It. Thousand Oaks, CA: Sage. https://doi.org/

10.4135/9781412984652.

Kolenikov, S. 2009. Confirmatory factor analysis using confa. Stata Journal 9: 329–373.

Lawley, D. N., and A. E. Maxwell. 1971. Factor Analysis as a Statistical Method. 2nd ed. London: Butterworths.

Mardia, K. V., J. T. Kent, and C. C. Taylor. 2024.Multivariate Analysis. 2nd ed. Hoboken, NJ: Wiley.

Milan, L., and J. C. Whittaker. 1995. Application of the parametric bootstrap to models that incorporate a singular value

decomposition. Journal of the Royal Statistical Society, C ser., 44: 31–49. https://doi.org/10.2307/2986193.

Mulaik, S. A. 2010. Foundations of Factor Analysis. 2nd ed. Boca Raton, FL: Chapman and Hall/CRC. https://doi.org/10.

1201/b15851.

Rao, C. R. 1955. Estimation and tests of significance in factor analysis. Psychometrika 20: 93–111. https://doi.org/10.

1007/BF02288983.

Rencher, A. C. 1998.Multivariate Statistical Inference and Applications. New York: Wiley.

Rencher, A. C., and W. F. Christensen. 2012. Methods of Multivariate Analysis. 3rd ed. Hoboken, NJ: Wiley. https:

//doi.org/10.1002/9781118391686.

Spearman, C. E. 1904. The proof and measurement of association between two things. American Journal of Psychology

15: 72–101. https://doi.org/10.2307/1412159.

Tarlov, A. R., J. E. Ware, Jr., S. Greenfield, E. C. Nelson, E. Perrin, and M. Zubkoff. 1989. The medical outcomes study.

An application of methods for monitoring the results of medical care. Journal of theAmerican MedicalAssociation 262:

925–930. https://doi.org/10.1001/jama.1989.03430070073033.

van Belle, G., L. D. Fisher, P. J. Heagerty, and T. S. Lumley. 2004. Biostatistics: AMethodology for the Health Sciences.

2nd ed. New York: Wiley.

Also see
[MV] factor postestimation — Postestimation tools for factor and factormat

[MV] alpha — Compute interitem correlations (covariances) and Cronbach’s alpha

[MV] canon — Canonical correlations

[MV] pca — Principal component analysis

[SEM] Intro 5 — Tour of models

[SEM] Example 1 — Single-factor measurement model

[SEM] Example 3 — Two-factor measurement model

[U] 20 Estimation and postestimation commands

Stata, Stata Press, and Mata are registered trademarks of StataCorp LLC. Stata and Stata
Press are registered trademarks with the World Intellectual Property Organization of the
United Nations. StataNow and NetCourseNow are trademarks of StataCorp LLC. Other
brand and product names are registered trademarks or trademarks of their respective com-
panies. Copyright © 1985–2025 StataCorp LLC, College Station, TX, USA. All rights
reserved.

®

For suggested citations, see the FAQ on citing Stata documentation.

https://www.stata.com/bookstore/statistics-with-stata/
https://doi.org/10.4135/9781412984256
https://doi.org/10.4135/9781412984652
https://doi.org/10.4135/9781412984652
https://www.stata-journal.com/article.html?article=st0169
https://doi.org/10.2307/2986193
https://doi.org/10.1201/b15851
https://doi.org/10.1201/b15851
https://doi.org/10.1007/BF02288983
https://doi.org/10.1007/BF02288983
https://doi.org/10.1002/9781118391686
https://doi.org/10.1002/9781118391686
https://doi.org/10.2307/1412159
https://doi.org/10.1001/jama.1989.03430070073033
https://www.stata.com/manuals/mvfactorpostestimation.pdf#mvfactorpostestimation
https://www.stata.com/manuals/mvalpha.pdf#mvalpha
https://www.stata.com/manuals/mvcanon.pdf#mvcanon
https://www.stata.com/manuals/mvpca.pdf#mvpca
https://www.stata.com/manuals/semintro5.pdf#semIntro5
https://www.stata.com/manuals/semexample1.pdf#semExample1
https://www.stata.com/manuals/semexample3.pdf#semExample3
https://www.stata.com/manuals/u20.pdf#u20Estimationandpostestimationcommands
https://www.stata.com/support/faqs/resources/citing-software-documentation-faqs/

