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Description
discrim knn performs 𝑘th-nearest-neighbor discriminant analysis. Awide selection of similarity and

dissimilarity measures is available.

𝑘th-nearest neighbor must retain the training data and search through the data for the 𝑘 nearest obser-

vations each time a classification or prediction is performed. Consequently for large datasets, 𝑘th-nearest
neighbor is slow and uses a lot of memory.

See [MV] discrim for other discrimination commands.

Quick start
𝑘th-nearest-neighbor discriminant analysis of v1, v2, v3, and v4 for groups defined by catvar and 𝑘 = 5

discrim knn v1 v2 v3 v4, k(5) group(catvar)

Same as above, but use prior probabilities proportional to group size

discrim knn v1 v2 v3 v4, k(5) group(catvar) priors(proportional)

Display only the leave-one-out classification table

discrim knn v1 v2 v3 v4, k(5) group(catvar) lootable notable

Use absolute-value distance

discrim knn v1 v2 v3 v4, k(5) group(catvar) measure(absolute)

Assume v1 and v2 are factor variables, and use the Dice similarity coefficient

discrim knn ibn.v1 ibn.v2, k(5) group(catvar) measure(dice)

Menu
Statistics > Multivariate analysis > Discriminant analysis > Kth-nearest neighbor (KNN)
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Syntax
discrim knn varlist [ if ] [ in ] [weight ], group(groupvar) k(#) [ options ]

options Description

Model
∗ group(groupvar) variable specifying the groups
∗ k(#) number of nearest neighbors

priors(priors) group prior probabilities

ties(ties) how ties in classification are to be handled

Measure

measure(measure) similarity or dissimilarity measure; default is measure(L2)
s2d(standard) convert similarity to dissimilarity: 𝑑(𝑖𝑗) = √𝑠(𝑖𝑖) + 𝑠(𝑗𝑗) − 2𝑠(𝑖𝑗),

the default

s2d(oneminus) convert similarity to dissimilarity: 𝑑(𝑖𝑗) = 1 − 𝑠(𝑖𝑗)
mahalanobis Mahalanobis transform continuous data before computing dissimilarities

Reporting

notable suppress resubstitution classification table

lootable display leave-one-out classification table

priors Description

equal equal prior probabilities; the default

proportional group-size-proportional prior probabilities

matname row or column vector containing the group prior probabilities

matrix exp matrix expression providing a row or column vector of the group
prior probabilities

ties Description

missing ties in group classification produce missing values; the default

random ties in group classification are broken randomly

first ties in group classification are set to the first tied group

nearest ties in group classification are assigned based on the closest
observation, or missing if this still results in a tie

∗group() and k() are required.

varlist may contain factor variables; see [U] 11.4.3 Factor variables.

collect and statsby are allowed; see [U] 11.1.10 Prefix commands.

fweights are allowed; see [U] 11.1.6 weight.

See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.4inrange
https://www.stata.com/manuals/mvdiscrimknn.pdf#mvdiscrimknnSyntaxweight
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/mvdiscrimknn.pdf#mvdiscrimknnSyntaxpriors
https://www.stata.com/manuals/mvdiscrimknn.pdf#mvdiscrimknnSyntaxties
https://www.stata.com/manuals/mvmeasure_option.pdf#mvmeasure_option
https://www.stata.com/manuals/u11.pdf#u11.4.3Factorvariables
https://www.stata.com/manuals/u11.pdf#u11.1.10Prefixcommands
https://www.stata.com/manuals/u11.pdf#u11.1.6weight
https://www.stata.com/manuals/u20.pdf#u20Estimationandpostestimationcommands
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Options

� � �
Model �

group(groupvar) is required and specifies the name of the grouping variable. groupvar must be a

numeric variable.

k(#) is required and specifies the number of nearest neighbors on which to base computations. In the

event of ties, the next largest value of k() is selected. Suppose that k(3) is selected. For a given

observation, one must go out a distance 𝑑 to find three nearest neighbors, but if, say, there are five

data points all within distance 𝑑, then the computation will be based on all five nearest points.
priors(priors) specifies the prior probabilities for group membership. The following priors are al-

lowed:

priors(equal) specifies equal prior probabilities. This is the default.

priors(proportional) specifies group-size-proportional prior probabilities.

priors(matname) specifies a row or column vector containing the group prior probabilities.

priors(matrix exp) specifies a matrix expression providing a row or column vector of the group

prior probabilities.

ties(ties) specifies how ties in group classification will be handled. The following ties are allowed:

ties(missing) specifies that ties in group classification produce missing values. This is the default.

ties(random) specifies that ties in group classification are broken randomly.

ties(first) specifies that ties in group classification are set to the first tied group.

ties(nearest) specifies that ties in group classification are assigned based on the closest observa-

tion, or missing if this still results in a tie.

� � �
Measure �

measure(measure) specifies the similarity or dissimilarity measure. The default is measure(L2); all
measures in [MV] measure option are supported except for measure(Gower).

s2d(standard | oneminus) specifies how similarities are converted into dissimilarities.

The available s2d() options, standard and oneminus, are defined as

standard 𝑑(𝑖𝑗) = √𝑠(𝑖𝑖) + 𝑠(𝑗𝑗) − 2𝑠(𝑖𝑗) = √2{1 − 𝑠(𝑖𝑗)}

oneminus 𝑑(𝑖𝑗) = 1 − 𝑠(𝑖𝑗)

s2d(standard) is the default.

mahalanobis specifies performing a Mahalanobis transformation on continuous data before computing

dissimilarities. The data are transformed via the Cholesky decomposition of the within-group co-

variance matrix, and then the selected dissimilarity measure is performed on the transformed data.

If the L2 (Euclidean) dissimilarity is chosen, this is the Mahalanobis distance. If the within-group

covariance matrix does not have sufficient rank, an error is returned.

https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/mvmeasure_option.pdf#mvmeasure_option
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� � �
Reporting �

notable suppresses the computation and display of the resubstitution classification table.

lootable displays the leave-one-out classification table.

Remarks and examples
Remarks are presented under the following headings:

Introduction
A first example
Mahalanobis transformation
Binary data

Introduction
𝑘th-nearest-neighbor (KNN) discriminant analysis dates at least as far back as Fix and Hodges (1951).

An introductory treatment is available in Rencher and Christensen (2012). More advanced treatments

are in Hastie, Tibshirani, and Friedman (2009) and McLachlan (2004).

KNN is a nonparametric discrimination method based on the 𝑘 nearest neighbors of each observation.

KNN can deal with binary data via one of the binary measures; see [MV] measure option.

A first example
What distinguishes 𝑘th-nearest-neighbor analysis from other methods of discriminant analysis is its

ability to distinguish irregular-shaped groups, including groups with multiple modes. We create a dataset

with unusual boundaries that lends itself to KNN analysis and graphical interpretation.

Example 1
We create a two-dimensional dataset on the plane with 𝑥 and 𝑦 values in [−4, 4]. In each quadrant we

consider points within a circle with a square root of two radii, centered around the points (2, 2), (−2, 2),
(−2, −2), and (2, −2). We set the group value to 1 to start and then replace it in the circles. In the first

and third circles we set the group value to 2, and in the second and fourth circles we set the group value

to 3. Outside the circles, the group value remains 1.

. set seed 98712321

. set obs 500
Number of observations (_N) was 0, now 500.
. generate x = 8*runiform() - 4
. generate y = 8*runiform() - 4
. generate group = 1
. replace group = 2 if (y+2)^2 + (x+2)^2 <= 2
(45 real changes made)
. replace group = 2 if (y-2)^2 + (x-2)^2 <= 2
(50 real changes made)
. replace group = 3 if (y+2)^2 + (x-2)^2 <= 2
(45 real changes made)
. replace group = 3 if (y-2)^2 + (x+2)^2 <= 2
(51 real changes made)

https://www.stata.com/manuals/mvmeasure_option.pdf#mvmeasure_option
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Next we define some local macros for function plots of the circles. This makes it easier to graph the

boundary circles on top of the data. We set the graph option aspectratio(1) to force the aspect ratio

to be 1; otherwise, the circles might appear to be ovals.

. local rp : di %12.10f 2+sqrt(2)

. local rm : di %12.10f 2-sqrt(2)

. local functionplot
> (function y = sqrt(2-(x+2)^2) - 2, lpat(solid) range(-‘rp’ -‘rm’))
> (function y = -sqrt(2-(x+2)^2) - 2, lpat(solid) range(-‘rp’ -‘rm’))
> (function y = sqrt(2-(x-2)^2) + 2, lpat(solid) range(-‘rm’ ‘rp’))
> (function y = -sqrt(2-(x-2)^2) + 2, lpat(solid) range(-‘rm’ ‘rp’))
> (function y = sqrt(2-(x+2)^2) + 2, lpat(solid) range(-‘rp’ -‘rm’))
> (function y = -sqrt(2-(x+2)^2) + 2, lpat(solid) range(-‘rp’ -‘rm’))
> (function y = sqrt(2-(x-2)^2) - 2, lpat(solid) range( ‘rm’ ‘rp’))
> (function y = -sqrt(2-(x-2)^2) - 2, lpat(solid) range( ‘rm’ ‘rp’))
. local graphopts
> aspectratio(1) legend(order(1 ”Group 1” 2 ”Group 2” 3 ”Group 3”))
. twoway (scatter y x if group==1)
> (scatter y x if group==2)
> (scatter y x if group==3)
> ‘functionplot’ , ‘graphopts’ name(original, replace)
> title(”Training data”)

-4

-2

0

2

4

y

-4 -2 0 2 4
x

Group 1
Group 2
Group 3

Training data

We perform three discriminant analyses on these data for comparison. We use linear discriminant

analysis (LDA), quadratic discriminant analysis (QDA) and KNN. The results from logistic discriminant

analysis are similar to those of LDA and are not included. With all three models, we use proportional

probabilities, priors(proportional). The probability of landing in a given group is proportional to

the geometric area of that group; they are certainly not equal. Rather than doing geometric calculations for

the prior probabilities, we use priors(proportional) to approximate this. We suppress the standard

classification table with notable. Instead we look at the lootable, that is, leave-one-out (LOO) table,
where the observation in question is omitted and its result is predicted from the rest of the data. Likewise,

we predict the LOO classification (looclass). With KNN we get to choose a measure(); here we want
the straight line distance between the points. This is the default, Euclidean distance, so we do not have

to specify measure().

We choose 𝑘 = 7 for this run with 500 observations. See Methods and formulas for more information

on choosing 𝑘.

https://www.stata.com/manuals/mvdiscrimknn.pdf#mvdiscrimknnMethodsandformulas
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. discrim lda x y, group(group) notable lootable priors(proportional)
Linear discriminant analysis
Leave-one-out classification summary

Key

Number
Percent

Classified
True group 1 2 3 Total

1 309 0 0 309
100.00 0.00 0.00 100.00

2 95 0 0 95
100.00 0.00 0.00 100.00

3 96 0 0 96
100.00 0.00 0.00 100.00

Total 500 0 0 500
100.00 0.00 0.00 100.00

Priors 0.6180 0.1900 0.1920

LDA classifies all observations into group one, the group with the highest prior probability.

. discrim qda x y, group(group) notable lootable priors(proportional)
Quadratic discriminant analysis
Leave-one-out classification summary

Key

Number
Percent

Classified
True group 1 2 3 Total

1 258 31 20 309
83.50 10.03 6.47 100.00

2 57 38 0 95
60.00 40.00 0.00 100.00

3 77 0 19 96
80.21 0.00 19.79 100.00

Total 392 69 39 500
78.40 13.80 7.80 100.00

Priors 0.6180 0.1900 0.1920

QDA has 185 (31 + 20 + 57 + 77) misclassified observations of 500, but it correctly classifies 38 of
the 95 observations from group 2 and 19 of the 96 observations from group 3.
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. discrim knn x y, group(group) k(7) notable lootable priors(proportional)
Kth-nearest-neighbor discriminant analysis
Leave-one-out classification summary

Key

Number
Percent

Classified
True group 1 2 3 Total

1 299 4 6 309
96.76 1.29 1.94 100.00

2 13 82 0 95
13.68 86.32 0.00 100.00

3 10 0 86 96
10.42 0.00 89.58 100.00

Total 322 86 92 500
64.40 17.20 18.40 100.00

Priors 0.6180 0.1900 0.1920

In contrast to the other two models, KNN has only 33 (4 + 6 + 13 + 10) misclassified observations.
We can see how points are classified by KNN by looking at the following graph.

. predict cknn, looclass

. twoway (scatter y x if cknn==1 )
> (scatter y x if cknn ==2)
> (scatter y x if cknn ==3)
> ‘functionplot’, ‘graphopts’ name(knn, replace)
> title(”KNN LOO classification”)
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KNN has some resolution of the circles and correctly classifies most of the points. Its misclassified

observations are near the boundaries of the circles, where nearest points fall on both sides of the boundary

line.

Mahalanobis transformation
The Mahalanobis transformation eliminates the correlation between the variables and standardizes

the variance of each variable, as demonstrated in example 2 of [MV] discrim lda. When the Maha-

lanobis transformation is used in conjunction with Euclidean distance, it is called Mahalanobis dis-

tance. The Mahalanobis transformation may be applied when any continuous measure is chosen, not

just measure(Euclidean). See [MV] measure option for a description of the available measures.

Example 2
We will reproduce an example from Rencher and Christensen (2012, 290–292) that uses the Maha-

lanobis distance. Rencher and Christensen present data collected by G. R. Bryce and R. M. Barker of

BrighamYoungUniversity as part of a preliminary study of a possible link between football helmet design

and neck injuries. Six head dimensions were measured for each subject. Thirty subjects were sampled in

each of three groups: high school football players (group 1), college football players (group 2), and non-

football players (group 3). The six variables are wdim, head width at its widest dimension; circum, head
circumference; fbeye, front-to-back measurement at eye level; eyehd, eye to top of head measurement;
earhd, ear to top of head measurement; and jaw, jaw width.

These measurements will not have the same ranges. For example, the head circumference should

be much larger than eye to top of head measurement. Mahalanobis distance is used to standardize the

measurements.

https://www.stata.com/manuals/mvdiscrimlda.pdf#mvdiscrimldaRemarksandexamplesex2_dlda
https://www.stata.com/manuals/mvdiscrimlda.pdf#mvdiscrimlda
https://www.stata.com/manuals/mvmeasure_option.pdf#mvmeasure_option
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. use https://www.stata-press.com/data/r19/head, clear
(Table 8.3. Head measurements, Rencher and Christensen (2012))
. discrim knn wdim-jaw, k(5) group(group) mahalanobis
Kth-nearest-neighbor discriminant analysis
Resubstitution classification summary

Key

Number
Percent

Classified
True group High school College Nonplayer Unclassified

High school 26 0 1 3
86.67 0.00 3.33 10.00

College 1 19 9 1
3.33 63.33 30.00 3.33

Nonplayer 1 4 22 3
3.33 13.33 73.33 10.00

Total 28 23 32 7
31.11 25.56 35.56 7.78

Priors 0.3333 0.3333 0.3333
Classified

True group Total

High school 30
100.00

College 30
100.00

Nonplayer 30
100.00

Total 90
100.00

Priors

Asubset of this result is in Rencher and Christensen (2012, 331–332). Of the 90 original observations,

16 were misclassified and 7 observations were unclassified. Rencher and Christensen also state the error

rate for this example is 0.193. We use estat errorrate to get the error rate.

. estat errorrate
Error rate estimated by error count

group
High school College Nonplayer Total

Error rate .037037037 .344827586 .185185185 .189016603

Priors .333333333 .333333333 .333333333
Note: 7 observations were not classified and are not included in the table.
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Our error rate of 0.189 does not match that of Rencher and Christensen. Why is this? Rencher and

Christensen calculates the error rate as the number of misclassified observations over the total number of

observations classified. This is 16/83 ≈ 0.193. We use the standard error-rate definition that takes into

account the prior probabilities. From the high school group, there is one misclassified observation of 27

total observations classified from this group, so its error rate is (1/27) ≈ 0.037, and its contribution to the

total is (1/27)(1/3). Likewise, the error rates for the college and nonplayer group are (10/29) ≈ 0.345

and (5/27) ≈ 0.185 respectively, with contributions of (10/29)(1/3) and (5/27)(1/3). Adding all

contributions, we get the displayed error rate of 0.189. See

Methods and formulas of [MV] discrim estat for details.

The unclassified observations are those that resulted in ties. We can force ties to be classified by

changing the ties() option. The default is ties(missing), which says that ties are to be classified as
missing values. Here we choose ties(nearest), which breaks the tie by classifying to the group of the
nearest tied observation.

. discrim knn wdim-jaw, k(5) group(group) mahalanobis ties(nearest)
Kth-nearest-neighbor discriminant analysis
Resubstitution classification summary

Key

Number
Percent

Classified
True group High school College Nonplayer Total

High school 28 0 2 30
93.33 0.00 6.67 100.00

College 1 20 9 30
3.33 66.67 30.00 100.00

Nonplayer 1 4 25 30
3.33 13.33 83.33 100.00

Total 30 24 36 90
33.33 26.67 40.00 100.00

Priors 0.3333 0.3333 0.3333

Compare this with example 1 in [MV] candisc, example 3 in [MV] discrim estat, and example 2 of

[MV] discrim logistic.

Binary data
In addition to the measures for continuous data, a variety of binary measures are available for KNN.

Binary data can be created from any categorical dataset by using xi; see [R] xi.

Example 3
You have invited some scientist friends over for dinner, includingMr. Mushroom (see vignette below),

a real “fun guy”. Mr. Mushroom is not only a researcher in mycology who enjoys studying mushrooms

but also an enthusiastic mushroom gourmand who likes nothing better than to combine his interests in

https://www.stata.com/manuals/mvdiscrimestat.pdf#mvdiscrimestatMethodsandformulas
https://www.stata.com/manuals/mvdiscrimestat.pdf#mvdiscrimestat
https://www.stata.com/manuals/mvcandisc.pdf#mvcandiscRemarksandexamplesex1_candisc
https://www.stata.com/manuals/mvcandisc.pdf#mvcandisc
https://www.stata.com/manuals/mvdiscrimestat.pdf#mvdiscrimestatRemarksandexamplesex3_discrimestat
https://www.stata.com/manuals/mvdiscrimestat.pdf#mvdiscrimestat
https://www.stata.com/manuals/mvdiscrimlogistic.pdf#mvdiscrimlogisticRemarksandexamplesex2
https://www.stata.com/manuals/mvdiscrimlogistic.pdf#mvdiscrimlogistic
https://www.stata.com/manuals/rxi.pdf#rxi
https://www.stata.com/manuals/mvdiscrimknn.pdf#mvdiscrimknnRemarksandexamplesvignette
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classification and cookery. His current research is identification of poisonous mushrooms from pho-

tographs. From the photographs, he can identify the shape of a mushroom’s cap, the cap’s surface, the

cap’s color, the population of mushrooms, and, with some careful attention to detail in the surrounding

area, the habitat.� �
WilliamAlphonso Murrill (1867–1957) was a famous mycologist, taxonomist, and writer from the

New York Botanical Gardens and was nicknamed “Mr. Mushroom”. Although we borrowed his

nickname, Mr. Mushroom and the events portrayed in this example are entirely fictitious. William

Murrill’s many scientific accomplishments include the 1916 book Edible and Poisonous Mush-

rooms.� �
Knowing your friend, you imagine that he will insist on bringing a mushroom dish to be unveiled

and served at dinnertime—perhaps his experimental subjects. Although you know that he is a careful

scientist and a gifted cook, you are stalked with worries about poisoning your other guests.

Late at night you cannot sleep for worrying about poisonous mushrooms, and you decide to do a

little research into mushroom classification. You do a Google search online and find mushroom data at

http://archive.ics.uci.edu/ml/datasets/Mushroom. For reference, these records are drawn from Lincoff

(1981).

This is a large dataset of 8,124 observations on the Agaricus and Lepiota. Each species is identified

as definitely edible, definitely poisonous, or of unknown edibility and not recommended. This last class

was combined with the poisonous one. Lincoff (1981) clearly states that there is no simple rule for deter-

mining the edibility of a mushroom; no rule like “leaflets three, let it be” for Poison Oak and Ivy, a fact

that does not seem comforting. Twenty-two attributes are collected, including those that Mr. Mushroom

can identify from his photographs.

Themushroom data is a set of 23 variables that describe the cap of the mushroom, whether or not it has

bruises, the gills, the veil, the stalk, the ring, the spores, the population, and the habitat. The variables that

describe the cap, for example, are capshape, capsurface, and capcolor. The capshape variable, for

example, has categories bell, conical, convex, flat, knobbed, and sunken. Other variables and categories

are similar.

You read in this dataset by using infile and make some modifications, attaching notes to this dataset

to describe what you did to the original mushroom data. Modifications include dropping categories of the

variables of interest that completely determine whether a mushroom is poisonous. The full mushroom

data are also available; webuse mushroom full to obtain it.

. use https://www.stata-press.com/data/r19/mushroom
(Lincoff (1981) Audubon Guide; http://archive.ics.uci.edu/ml/datasets/Mushroom)
. tabulate habitat poison

poison
habitat edible poisonous Total

grasses 752 680 1,432
leaves 240 585 825

meadows 128 24 152
paths 136 1,008 1,144
urban 64 224 288
woods 1,848 1,268 3,116

Total 3,168 3,789 6,957

http://archive.ics.uci.edu/ml/datasets/Mushroom


discrim knn — kth-nearest-neighbor discriminant analysis 12

You can see by tabulating two of the variables, habitat and poison, that in each habitat you have

some mushrooms that are poisonous as well as some that are edible. The other descriptive variables of

interest produce similar results.

Each variable is a set of unordered categories. Thus, you can treat them as factor variables. Because

your goal is to account for all categories, you will apply the factor-variable base operator ibn. to the

categorical variables. For details, see [U] 11.4.3 Factor variables.

With KNN you can choose a measure that is suited to these data. You expect data with many zeroes and

few ones. A match of two ones is far more significant than two matching zeroes. Looking through the

binary similarity measures in [MV]measure option, you see that the Jaccard binary similarity coefficient

reports the proportion of matches of ones when at least one of the observations contains a one, and the

Dice binary similarity measure weighs matches of ones twice as heavily as the Jaccard measure. Either

suits the situation, and you choose the Dice measure. The conversion from a similarity to a dissimilarity

measure will be s2d(standard) by default.

The poisonous and edible mushrooms are split about half and half in the original dataset, and in the

current subset of these data the ratio is still approximately half and half, so you do not specify priors,

obtaining priors(equal), the default.

Because of the size of the dataset and the number of indicator variables created by the factor-variable

base operator ibn., KNN analysis is slow. You decide to discriminate based on 2,000 points selected at

random, approximately a third of the data.

. set seed 12345678

. generate u = runiform()

. sort u

. discrim knn ibn.population ibn.habitat ibn.bruises ibn.capshape
> ibn.capsurface ibn.capcolor in 1/2000, k(15) group(poison) measure(dice)
Kth-nearest-neighbor discriminant analysis
Resubstitution classification summary

Key

Number
Percent

Classified
True poison edible poisonous Total

edible 848 65 913
92.88 7.12 100.00

poisonous 29 1,058 1,087
2.67 97.33 100.00

Total 877 1,123 2,000
43.85 56.15 100.00

Priors 0.5000 0.5000

In some settings, these results would be considered good. Of the original 2,000 mushrooms, you see

that only 29 poisonous mushrooms have been misclassified as edible. However, even sporadic classifica-

tion of a poisonous mushroom as edible is a much bigger problem than classifying an edible mushroom

as poisonous. This does not take the cost of misclassification into account. You decide that calling a

poisonous mushroom edible is at least 10 times worse than calling an edible mushroom poisonous. In

https://www.stata.com/manuals/u11.pdf#u11.4.3Factorvariables
https://www.stata.com/manuals/mvmeasure_option.pdf#mvmeasure_option
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the two-group case, you can easily use the priors() option to factor in this cost; see [MV] discrim or

McLachlan (2004, 9). We set the prior probability of poisonous mushrooms 10 times higher than that of

the edible mushrooms.

. estat classtable in 1/2000, priors(.09, .91)
Resubstitution classification table

Key

Number
Percent

Classified
True poison edible poisonous Total

edible 728 185 913
79.74 20.26 100.00

poisonous 0 1,087 1,087
0.00 100.00 100.00

Total 728 1,272 2,000
36.40 63.60 100.00

Priors 0.0900 0.9100

These results are reassuring. There are no misclassified poisonous mushrooms, although 185 edible

mushrooms of the total 2,000 mushrooms in our model are misclassified.

You now check to see how this subsample of the data performs in predicting the poison status of the

rest of the data. This takes a few minutes of computer time, but unlike using estat classtable above,

the variable predicted will stay with your dataset until you drop it. tabulate can be used instead of

estat classtable.

. predict cpoison, classification priors(.09, .91)

. label values cpoison poison

. tabulate poison cpoison
classification

poison edible poisonous Total

edible 2,450 718 3,168
poisonous 0 3,789 3,789

Total 2,450 4,507 6,957

This is altogether reassuring. Again, no poisonous mushrooms were misclassified. Perhaps there is

no need to worry about dinnertime disasters, even with a fungus among us. You are so relieved that you

plan on serving a Jello dessert to cap off the evening—your guests will enjoy a mold to behold. Under

the circumstances, you think doing so might just be a “morel” imperative.

https://www.stata.com/manuals/mvdiscrim.pdf#mvdiscrim
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Stored results
discrim knn stores the following in e():

Scalars

e(N) number of observations

e(N groups) number of groups

e(k nn) number of nearest neighbors

e(k) number of discriminating variables

Macros

e(cmd) discrim
e(subcmd) knn
e(cmdline) command as typed

e(groupvar) name of group variable

e(grouplabels) labels for the groups

e(measure) similarity or dissimilarity measure

e(measure type) dissimilarity or similarity
e(measure binary) binary, if binary measure specified
e(s2d) standard or oneminus, if s2d() specified

e(varlist) discriminating variables

e(wtype) weight type

e(wexp) weight expression

e(title) title in estimation output

e(ties) how ties are to be handled

e(mahalanobis) mahalanobis, if Mahalanobis transform is performed

e(properties) nob noV
e(estat cmd) program used to implement estat
e(predict) program used to implement predict
e(marginsnotok) predictions disallowed by margins

Matrices

e(groupcounts) number of observations for each group

e(grouppriors) prior probabilities for each group

e(groupvalues) numeric value for each group

e(SSCP W) pooled within-group SSCPmatrix

e(W eigvals) eigenvalues of e(SSCP W)
e(W eigvecs) eigenvectors of e(SSCP W)
e(S) pooled within-group covariance matrix

e(Sinv) inverse of e(S)
e(sqrtSinv) Cholesky (square root) of e(Sinv)
e(community) community of neighbors for prediction

Functions

e(sample) marks estimation sample

Methods and formulas
Let 𝑔 be the number of groups, 𝑛𝑖 the number of observations for group 𝑖, and 𝑞𝑖 the prior probability

for group 𝑖. Let x denote an observationmeasured on 𝑝 discriminating variables. For consistency with the
discriminant analysis literature, xwill be a column vector, though it corresponds to a row in your dataset.

Let 𝑓𝑖(x) represent the density function for group 𝑖, and let 𝑃(x|𝐺𝑖) denote the probability of observing
x conditional on belonging to group 𝑖. Denote the posterior probability of group 𝑖 given observation x as
𝑃(𝐺𝑖|x). With Bayes’s theorem, we have

𝑃(𝐺𝑖|x) = 𝑞𝑖𝑓𝑖(x)
∑𝑔

𝑗=1 𝑞𝑗𝑓𝑗(x)
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Substituting 𝑃(x|𝐺𝑖) for 𝑓𝑖(x), we have

𝑃(𝐺𝑖|x) = 𝑞𝑖𝑃(x|𝐺𝑖)
∑𝑔

𝑗=1 𝑞𝑗𝑃(x|𝐺𝑗)

For KNN discrimination, we let 𝑘𝑖 be the number of the 𝑘 nearest neighbors from group 𝑖, and the

posterior-probability formula becomes

𝑃(𝐺𝑖|x) =

𝑞𝑖𝑘𝑖
𝑛𝑖

𝑔

∑
𝑗=1

𝑞𝑗𝑘𝑗

𝑛𝑗

In the event that there are ties among the nearest neighbors, 𝑘 is increased to accommodate the ties.

If five points are all nearest and equidistant from a given x, then an attempt to calculate the three nearest

neighbors of x will actually obtain five nearest neighbors.

Determining the nearest neighbors depends on a dissimilarity or distance calculation. The available

dissimilarity measures are described in [MV] measure option. Continuous and binary measures are

available. If a similarity measure is selected, it will be converted to a dissimilarity by either

standard 𝑑(𝑖𝑗) = √𝑠(𝑖𝑖) + 𝑠(𝑗𝑗) − 2𝑠(𝑖𝑗) = √2{1 − 𝑠(𝑖𝑗)}

oneminus 𝑑(𝑖𝑗) = 1 − 𝑠(𝑖𝑗)

With any of the continuous measures, a Mahalanobis transformation may be performed before com-

puting the dissimilarities. For details on the Mahalanobis transformation, see Methods and formulas

of [MV] discrim lda. The Mahalanobis transformation with Euclidean distance is called Mahalanobis

distance.

Optimal choice of 𝑘 for KNN is not an exact science. With two groups, 𝑘 should be chosen as an

odd integer to avoid ties. Rencher and Christensen (2012, 331) cites the research of Loftsgaarden and

Quesenberry (1965), which suggests that an optimal 𝑘 is
√𝑛𝑖, where 𝑛𝑖 is a typical group size. Rencher

and Christensen also suggest running with several different values of 𝑘 and choosing the one that gives

the best error rate. McLachlan (2004) cites Enas and Choi (1986), which suggests that when there are

two groups of comparable size that 𝑘 should be chosen approximately between 𝑁3/8 or 𝑁2/8, where 𝑁
is the number of observations.
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