
cluster programming subroutines — Add cluster-analysis routines

Description Remarks and examples Reference Also see

Description
This entry describes how to extend Stata’s cluster command; see [MV] cluster. Programmers can

add subcommands to cluster, add functions to cluster generate (see [MV] cluster generate), add

stopping rules to cluster stop (see [MV] cluster stop), and set up an alternative command to be exe-

cuted when cluster dendrogram is called (see [MV] cluster dendrogram).

The cluster command also provides utilities for programmers; see [MV] cluster programming

utilities to learn more.

Remarks and examples
Remarks are presented under the following headings:

Adding a cluster subroutine
Adding a cluster generate function
Adding a cluster stopping rule
Applying an alternate cluster dendrogram routine

Adding a cluster subroutine
You add a cluster subroutine by creating a Stata program with the name cluster subcmdname.

For example, to add the subcommand xyz to cluster, create cluster xyz.ado. Users could then

execute the xyz subcommand with

cluster xyz . . .

Everything entered on the command line after cluster xyz is passed to the cluster xyz command.

You can add new clustering methods, new cluster-management tools, and new postclustering pro-

grams. The cluster command has subcommands that can be helpful to cluster-analysis programmers;

see [MV] cluster programming utilities.

Example 1
We will add a cluster subroutine by writing a simple postcluster-analysis routine that provides a

cross-tabulation of two cluster-analysis grouping variables. The syntax of the new command will be

cluster mycrosstab clname1 clname2 [, tabulate options]

Here is the program:

program cluster_mycrosstab
version 19.5 // (or version 19 if you do not have StataNow)
gettoken clname1 0 : 0 , parse(” ,”)
gettoken clname2 rest : 0 , parse(” ,”)
cluster query ‘clname1’
local groupvar1 ‘r(groupvar)’
cluster query ‘clname2’
local groupvar2 ‘r(groupvar)’
tabulate ‘groupvar1’ ‘groupvar2’ ‘rest’

end

1

https://www.stata.com/manuals/mvcluster.pdf#mvcluster
https://www.stata.com/manuals/mvclustergenerate.pdf#mvclustergenerate
https://www.stata.com/manuals/mvclusterstop.pdf#mvclusterstop
https://www.stata.com/manuals/mvclusterdendrogram.pdf#mvclusterdendrogram
https://www.stata.com/manuals/mvclusterprogrammingutilities.pdf#mvclusterprogrammingutilities
https://www.stata.com/manuals/mvclusterprogrammingutilities.pdf#mvclusterprogrammingutilities
https://www.stata.com/manuals/mvclusterprogrammingutilities.pdf#mvclusterprogrammingutilities

cluster programming subroutines — Add cluster-analysis routines 2

See [P] gettoken for information on the gettoken command, and see [R] tabulate twoway for infor-

mation on the tabulate command. The cluster query command is one of the cluster programming

utilities that is documented in [MV] cluster programming utilities.

We can demonstrate cluster mycrosstab in action. This example starts with two cluster analyses,

cl1 and cl2. The dissimilarity measure and the variables included in the two cluster analyses differ. We

want to see how closely the two cluster analyses match.

. use https://www.stata-press.com/data/r19/auto
(1978 automobile data)
. cluster kmeans gear head tr, L1 k(5) name(cl1) start(krandom(55234))
> gen(cl1gvar)
. cluster kmeans tr tu mpg, L(1.5) k(5) name(cl2) start(krandom(22132))
> gen(gvar2)
. cluster list, type method dissim var
cl2 (type: partition, method: kmeans, dissimilarity: L(1.5))

vars: gvar2 (group variable)
cl1 (type: partition, method: kmeans, dissimilarity: L1)

vars: cl1gvar (group variable)

. cluster mycrosstab cl1 cl2, chi2
Cluster ID

Cluster ID 1 2 3 4 5 Total

1 10 7 0 0 4 21
2 10 0 0 0 0 10
3 0 0 4 5 2 11
4 0 1 6 4 8 19
5 0 11 1 0 1 13

Total 20 19 11 9 15 74
Pearson chi2(16) = 97.3723 Pr = 0.000

The chi2 option was included to demonstrate that we were able to exploit the existing options of

tabulate with little programming effort. We just pass along to tabulate any of the extra arguments

received by cluster mycrosstab.

Adding a cluster generate function
Programmers can add functions to the cluster generate command (see [MV] cluster generate) by

creating a command called clusgen name. For example, to add a function called abc() to cluster
generate, you could create clusgen abc.ado. Users could then execute

cluster generate newvar = abc(. . .) . . .

Everything entered on the command line following cluster generate is passed to clusgen abc.

Example 2
Here is the beginning of a clusgen abc program that expects an integer argument and has one option

called name(clname), which gives the name of the cluster. If name() is not specified, the name defaults

to that of the most recently performed cluster analysis. We will assume, for illustration purposes, that the

cluster analysis must be hierarchical and will check for this in the clusgen abc program.

https://www.stata.com/manuals/pgettoken.pdf#pgettoken
https://www.stata.com/manuals/rtabulatetwoway.pdf#rtabulatetwoway
https://www.stata.com/manuals/mvclusterprogrammingutilities.pdf#mvclusterprogrammingutilities
https://www.stata.com/manuals/mvclustergenerate.pdf#mvclustergenerate

cluster programming subroutines — Add cluster-analysis routines 3

program clusgen_abc
version 19.5 // (or version 19 if you do not have StataNow)
// we use gettoken to work our way through the parsing
gettoken newvar 0 : 0 , parse(” =”)
gettoken temp 0 : 0 , parse(” =”)
if ‘”‘temp’”’ != ”=” {

error 198
}
gettoken temp 0 : 0 , parse(” (”)
if ‘”‘temp’”’ != ”abc” {

error 198
}
gettoken funcarg 0 : 0 , parse(” (”) match(temp)
if ‘”‘temp’”’ != ”(” {

error 198
}
// funcarg holds the integer argument to abc()
confirm integer number ‘funcarg’
// we can now use syntax to parse the option
syntax [, Name(str)]
// cluster query will give us the list of cluster names
if ‘”‘name’”’ == ”” {

cluster query
local clnames ‘r(names)’
if ”‘clnames’” == ”” {

di as err ”no cluster solutions defined”
exit 198

}
// first name in the list is the latest clustering
local name : word 1 of ‘clnames’

}
// cluster query followed by name will tell us the type
cluster query ‘name’
if ”‘r(type)’” != ”hierarchical” {

di as err ”only allowed with hierarchical clustering”
exit 198

}
/*

you would now pull more information from the call of
cluster query ‘name’

and do your computations and generate ‘newvar’
*/
...

end

See [MV] cluster programming utilities for details on the cluster query command.

Adding a cluster stopping rule
Programmers can add stopping rules to the rule() option of the cluster stop command (see

[MV] cluster stop) by creating a Stata program with the name clstop name. For example, to add a

stopping rule named mystop so that cluster stop would now have a rule(mystop) option, you could

create clstop mystop.ado defining the clstop mystop program. Users could then execute

cluster stop [clname], rule(mystop) . . .

https://www.stata.com/manuals/mvclusterprogrammingutilities.pdf#mvclusterprogrammingutilities
https://www.stata.com/manuals/mvclusterstop.pdf#mvclusterstop

cluster programming subroutines — Add cluster-analysis routines 4

The clstop mystop program is passed the cluster name (clname) provided by the user (or the name of

the current cluster result if no name is specified), followed by a comma and all the options entered by

the user except for the rule(mystop) option.

Example 3
We will add a rule(stepsize) option to cluster stop. This option implements the simple step-

size stopping rule (see Milligan and Cooper 1985), which computes the difference in fusion values be-

tween levels in a hierarchical cluster analysis. (A fusion value is the similarity or dissimilarity measure

at which clusters are fused or split in the hierarchical cluster structure.) Large values of the step-size

stopping rule indicate groupings with more distinct cluster structure.

Examining cluster dendrograms (see [MV] cluster dendrogram) to visually determine the number of

clusters is equivalent to using a visual approximation to the step-size stopping rule.

Here is the clstop stepsize program:

program clstop_stepsize, sortpreserve rclass
version 19.5 // (or version 19 if you do not have StataNow)
syntax anything(name=clname) [, Depth(integer -1)]
cluster query ‘clname’
if ”‘r(type)’” != ”hierarchical” {

di as error ///
”rule(stepsize) only allowed with hierarchical clustering”

exit 198
}
if ”‘r(pseudo_heightvar)’” != ”” {

di as error ”dendrogram reversals encountered”
exit 198

}
local hgtvar ‘r(heightvar)’
if ‘”‘r(similarity)’”’ != ”” {

sort ‘hgtvar’
local negsign ”-”

}
else if ‘”‘r(dissimilarity)’”’ != ”” {

gsort -‘hgtvar’
}
else {

di as error ”dissimilarity or similarity not set”
exit 198

}
quietly count if !missing(‘hgtvar’)
local depth = cond(‘depth’<=1, r(N), min(‘depth’,r(N)))
tempvar diff
qui gen double ‘diff’=‘negsign’(‘hgtvar’-‘hgtvar’[_n+1]) if _n<‘depth’
di
di as txt ”Depth” _col(10) ”Stepsize”
di as txt ”{hline 17}”
forvalues i = 1/‘= ‘depth’-1’ {

local j = ‘i’ + 1
di as res ‘j’ _col(10) %8.0g ‘diff’[‘i’]
return scalar stepsize_‘j’ = ‘diff’[‘i’]

}
return local rule ”stepsize”

end

https://www.stata.com/manuals/mvclusterdendrogram.pdf#mvclusterdendrogram

cluster programming subroutines — Add cluster-analysis routines 5

See [P] syntax for information about the syntax command, [P] forvalues for information about the

forvalues looping command, and [P] macro for information about the ‘= . . . ’ macro function. The

cluster query command is one of the cluster programming utilities that is documented in [MV] cluster

programming utilities.

With this program, users can obtain the step-size stopping rule. We demonstrate this process by using

an average-linkage hierarchical cluster analysis on the data found in the second example of [MV] cluster

linkage. The dataset contains 30 observations on 60 binary variables. The simple matching coefficient

is used as the similarity measure in the average-linkage clustering.

. use https://www.stata-press.com/data/r19/homework, clear

. cluster a a1-a60, measure(match) name(alink)

. cluster stop alink, rule(stepsize) depth(15)
Depth Stepsize

2 .065167
3 .187333
4 .00625
5 .007639
6 .002778
7 .005952
8 .002381
9 .008333
10 .005556
11 .002778
12 0
13 0
14 .006667
15 .01

In the clstop stepsize program, we included a depth() option. cluster stop, when called with
the new rule(stepsize) option, can also have the depth() option. Here we specified that it stop at a

depth of 15.

The largest step size, 0.187, happens at the three-group level of the hierarchy. This number, 0.187,

represents the difference between the matching coefficient created when two groups are formed and that

created when three groups are formed in this hierarchical cluster analysis.

The clstop stepsize program could be enhanced by using a better output table format. An option

could also be added that stores the results in a matrix.

Applying an alternate cluster dendrogram routine
Programmers can change the behavior of the cluster dendrogram command (alias cluster tree);

see [MV] cluster dendrogram. This task is accomplished by using the other() option of the cluster
set command (see [MV] cluster programming utilities) with a tag of treeprogram andwith text giving
the name of the command to be used in place of the standard Stata program for cluster dendrogram.
For example, if you had created a new hierarchical cluster-analysis method for Stata that needed a dif-

ferent algorithm for producing dendrograms, you would use the command

cluster set clname, other(treeprogram progname)

to set progname as the program to be executed when cluster dendrogram is called.

https://www.stata.com/manuals/psyntax.pdf#psyntax
https://www.stata.com/manuals/pforvalues.pdf#pforvalues
https://www.stata.com/manuals/pmacro.pdf#pmacro
https://www.stata.com/manuals/mvclusterprogrammingutilities.pdf#mvclusterprogrammingutilities
https://www.stata.com/manuals/mvclusterprogrammingutilities.pdf#mvclusterprogrammingutilities
https://www.stata.com/manuals/mvclusterlinkage.pdf#mvclusterlinkage
https://www.stata.com/manuals/mvclusterlinkage.pdf#mvclusterlinkage
https://www.stata.com/manuals/mvclusterdendrogram.pdf#mvclusterdendrogram
https://www.stata.com/manuals/mvclusterprogrammingutilities.pdf#mvclusterprogrammingutilities

cluster programming subroutines — Add cluster-analysis routines 6

Example 4
If we were creating a new hierarchical cluster-analysis method called myclus, we could create a

program called cluster myclus (see Adding a cluster subroutine). If myclus needed a different

dendrogram routine from the standard one used within Stata, we could include the following line in

cluster myclus.ado at the point where we set the cluster attributes.

cluster set ‘clname’, other(treeprogram myclustree)

We could then create a program called myclustree in a file called myclustree.ado that implements
the particular dendrogram program needed by myclus.

Reference
Milligan, G. W., and M. C. Cooper. 1985. An examination of procedures for determining the number of clusters in a

dataset. Psychometrika 50: 159–179. https://doi.org/10.1007/BF02294245.

Also see
[MV] cluster — Introduction to cluster-analysis commands

[MV] clustermat — Introduction to clustermat commands

[MV] cluster programming utilities — Cluster-analysis programming utilities

Stata, Stata Press, and Mata are registered trademarks of StataCorp LLC. Stata and Stata
Press are registered trademarks with the World Intellectual Property Organization of the
United Nations. StataNow and NetCourseNow are trademarks of StataCorp LLC. Other
brand and product names are registered trademarks or trademarks of their respective com-
panies. Copyright © 1985–2025 StataCorp LLC, College Station, TX, USA. All rights
reserved.

®

For suggested citations, see the FAQ on citing Stata documentation.

https://www.stata.com/manuals/mvclusterprogrammingsubroutines.pdf#mvclusterprogrammingsubroutinesRemarksandexamplesAddingaclustersubroutine
https://doi.org/10.1007/BF02294245
https://www.stata.com/manuals/mvcluster.pdf#mvcluster
https://www.stata.com/manuals/mvclustermat.pdf#mvclustermat
https://www.stata.com/manuals/mvclusterprogrammingutilities.pdf#mvclusterprogrammingutilities
https://www.stata.com/support/faqs/resources/citing-software-documentation-faqs/

