
Technical — Details for programmers

Description Remarks and examples Also see

Description
Technical information for programmers who wish to extend mi is provided below.

Remarks and examples
Remarks are presented under the following headings:

Notation
Definition of styles

Style all
Style wide
Style mlong
Style flong
Style flongsep
Style flongsep sub

Adding new commands to mi
Outline for new commands
Utility routines

u mi assert set
u mi certify data
u mi no sys vars and u mi no wide vars
u mi zap chars

u mi xeq on tmp flongsep
u mi get flongsep tmpname
mata: u mi flongsep erase()

u mi sortback
u mi save and u mi use
mata: u mi wide swapvars()

u mi fixchars
mata: u mi cpchars get() and mata: u mi cpchars put()
mata: u mi get mata instanced var()

mata: u mi ptrace *()
How to write other set commands to work with mi

Notation

𝑀 = # of imputations

𝑚 = imputation number

0. original data with missing values

1. first imputation dataset

.

.

𝑀. last imputation dataset

𝑁 = number of observations in 𝑚 = 0

1

Technical — Details for programmers 2

Definition of styles
Style describes how the mi data are stored. There are four styles: wide, mlong, flong, and flongsep.

Style all
Characteristics:

dta[mi marker] “ mi ds 1”

Description: dta[mi marker] is set with all styles, including flongsep sub. The definitions below
apply only if ”‘ dta[mi marker]’” = ” mi ds 1”.

Style wide
Characteristics:

dta[mi style] “wide”
dta[mi M] 𝑀
dta[mi ivars] imputed variables; variable list

dta[mi pvars] passive variables; variable list

dta[mi rvars] regular variables; variable list

dta[mi update] time last updated; %tc value/1000

Variables:

mi miss whether incomplete; 0 or 1

varname varname for 𝑚 = #, defined for each

‘ dta[mi ivars]’ and ‘ dta[mi pvars]’

Description: 𝑚 = 0, 𝑚 = 1, . . . , 𝑚 = 𝑀 are stored in one dataset with 𝑁 = 𝑁 observations. Each

imputed and passive variable has 𝑀 additional variables associated with it. If variable bp contains the

values in 𝑚 = 0, then values for 𝑚 = 1 are contained in variable 1 bp, values for 𝑚 = 2 in 2 bp,
and so on. wide stands for wide.

Style mlong
Characteristics:

dta[mi style] “mlong”
dta[mi M] 𝑀
dta[mi N] 𝑁
dta[mi n] # of observations in marginal

dta[mi ivars] imputed variables; variable list

dta[mi pvars] passive variables; variable list

dta[mi rvars] regular variables; variable list

dta[mi update] time last updated; %tc value/1000

Variables:

mi m 𝑚; 0, 1, . . . , 𝑀
mi id ID; 1, . . . , 𝑁
mi miss whether incomplete; 0 or 1 if mi m = 0, else .

Description: 𝑚 = 0, 𝑚 = 1, . . . , 𝑚 = 𝑀 are stored in one dataset with 𝑁 = 𝑁 +𝑀 ×𝑛 observations,

where 𝑛 is the number of incomplete observations in 𝑚 = 0. mlong stands for marginal long.

https://www.stata.com/manuals/mitechnical.pdf#miTechnicalRemarksandexamplesStylewide
https://www.stata.com/manuals/mitechnical.pdf#miTechnicalRemarksandexamplesStylemlong
https://www.stata.com/manuals/mitechnical.pdf#miTechnicalRemarksandexamplesStyleflong
https://www.stata.com/manuals/mitechnical.pdf#miTechnicalRemarksandexamplesStyleflongsep

Technical — Details for programmers 3

Style flong
Characteristics:

dta[mi style] “flong”
dta[mi M] 𝑀
dta[mi N] 𝑁
dta[mi ivars] imputed variables; variable list

dta[mi pvars] passive variables; variable list

dta[mi rvars] regular variables; variable list

dta[mi update] time last updated; %tc value/1000

Variables:

mi m 𝑚; 0, 1, . . . , 𝑀
mi id ID; 1, . . . , 𝑁
mi miss whether incomplete; 0 or 1 if mi m = 0, else .

Description: 𝑚 = 0, 𝑚 = 1, . . . , 𝑚 = 𝑀 are stored in one dataset with 𝑁 = 𝑁 +𝑀 ×𝑁 observations,

where 𝑁 is the number of observations in 𝑚 = 0. flong stands for full long.

Style flongsep
Characteristics:

dta[mi style] “flongsep”
dta[mi name] name

dta[mi M] 𝑀
dta[mi N] 𝑁
dta[mi ivars] imputed variables; variable list

dta[mi pvars] passive variables; variable list

dta[mi rvars] regular variables; variable list

dta[mi update] time last updated; %tc value/1000

Variables:

mi id ID; 1, . . . , 𝑁
mi miss whether incomplete; 0 or 1

Description: 𝑚 = 0, 𝑚 = 1, . . . , 𝑚 = 𝑀 are each separate .dta datasets. If 𝑚 = 0 data are stored in

pat.dta, then 𝑚 = 1 data are stored in 1 pat.dta, 𝑚 = 2 in 2 pat.dta, and so on.

The definitions above apply only to 𝑚 = 0, the dataset named ‘ dta[mi name]’.dta. See Style
flongsep sub directly below for 𝑚 > 0. flongsep stands for full long and separate.

Style flongsep sub
Characteristics:

dta[mi style] “flongsep sub”
dta[mi name] name

dta[mi m] 𝑚; 0, 1, . . . , 𝑀

Variables:

mi id ID; 1, . . . , 𝑁

Description: The description above applies to the ‘ dta[mi m]’ ‘ dta[mi name]’.dta datasets.
There are 𝑀 such datasets recording 𝑚 = 1, . . . , 𝑀 used by the flongsep style directly above.

Technical — Details for programmers 4

Adding new commands to mi
New commands are written in ado. Name the new command mi cmd newcmd and store it in

mi cmd newcmd.ado. When the user types mi newcmd . . . , mi cmd newcmd.ado will be executed.

SeeWriting programs for use withmi of [P] programproperties for details on how towrite estimation

commands for use with the mi estimate prefix.

Outline for new commands
program mi_cmd_newcmd, rclass (1)

version 19.5 // (or version 19 if you do not have StataNow)

u_mi_assert_set (2)

syntax ... [, ... noUPdate ...] (3)

...

u_mi_certify_data, acceptable (4)

...

if (”‘update’”==””) {
u_mi_certify_data, proper (5)

}

...
end

Notes:

1. The command may be rclass; that is not required. It may be eclass instead if you wish.

2. u mi assert set verifies that the data are mi data; see u mi assert set below.

3. If you intend for your command to use mi update to update the data before performing its

intended task, include a noupdate option; see [MI] noupdate option. Some commands instead

or in addition run mi update to perform cleanup after performing their task. Such use does not

require a noupdate option.

4. u mi certify data is the internal routine that performs mi update. An update is divided

into two parts, called acceptable and proper. All commands should verify that the data are

acceptable; see u mi certify data below.

5. u mi certify data, proper performs the second step of mi update; it verifies that ac-
ceptable data are proper. Whether you verify properness is up to you, but if you do, you are

supposed to include a noupdate option to skip running the check.

Utility routines
The only information you absolutely need to know is that already revealed. Using the utility rou-

tines described below, however, will simplify your programming task and make your code appear more

professional to the end user.

https://www.stata.com/manuals/pprogramproperties.pdf#pprogrampropertiesRemarksandexamplesWritingprogramsforusewithmi
https://www.stata.com/manuals/pprogramproperties.pdf#pprogramproperties
https://www.stata.com/manuals/mitechnical.pdf#miTechnicalRemarksandexamplesu_mi_assert_set
https://www.stata.com/manuals/minoupdateoption.pdf#minoupdateoption
https://www.stata.com/manuals/mitechnical.pdf#miTechnicalRemarksandexamplesu_mi_certify_data

Technical — Details for programmers 5

As you read what follows, remember that you may review the source code for the routines by using

viewsource; see [P] viewsource. If you wanted to see the source for u mi assert set, you would

type viewsource u mi assert set.ado. If you do this, you will sometimes see that the routines

allow options not documented below. Ignore those options; they may not appear in future releases.

Using viewsource, you may also review examples of the utility commands being used by view-

ing the source of the mi commands we have written. Each mi command appears in the file

mi cmd command.ado. Also remember that other mi commands make useful utility routines. For in-

stance, if your new command makes passive variables, use mi register to register them. Always call

existing mi commands through mi; code mi passive and not mi cmd passive.

u mi assert set

u mi assert set [desired style]
This utility verifies that data are mi and optionally of the desired style; it issues the appropriate error

message and stops execution if not. The optional argument desired style can be wide, mlong, flong,
or flongsep, but is seldom specified. When not specified, any style is allowed.

u mi certify data

u mi certify data [, acceptable proper noupdate sortok]
This command performs mi update. mi update is equivalent to u mi certify data, acceptable

proper sortok.

Specify one or both of acceptable and proper. If the noupdate option is specified, then proper is

specified. The sortok option specifies that u mi certify data need not spend extra time to preserve

and restore the original sort order of the data.

An update is divided into two parts. In the first part, called acceptable, 𝑚 = 0 and the dta[mi *]
characteristics are certified. Your program will use the information recorded in those characteristics,

and before that information can be trusted, the data must be certified as acceptable. Do not trust any

dta[mi *] characteristics until you have run u mi certify data, acceptable.

u mi certify data, proper verifies that data known to be acceptable are proper. In practice, this

means that in addition to trusting 𝑚 = 0, you can trust 𝑚 > 0.

Running u mi certify data, acceptable might actually result in the data being certified as

proper, although you cannot depend on that. When you run u mi certify data, acceptable and

certain problems are observed in 𝑚 = 0, they are fixed in all 𝑚, which can lead to other problems being

detected, and by the time the whole process is through, the data are proper.

u mi no sys vars and u mi no wide vars

u mi no sys vars ”variable list” [”word”]
u mi no wide vars ”variable list” [”word”]
These routines are for use in parsing user input.

u mi no sys vars verifies that the specified list of variable names does not include any mi system

variables such as mi m, mi id, mi miss, etc.

https://www.stata.com/manuals/pviewsource.pdf#pviewsource

Technical — Details for programmers 6

u mi no wide vars verifies that the specified list of variable names does not include any style wide

𝑚 > 0 variables of the form # varname. u mi no wide vars may be called with any style of data

but does nothing if the style is not wide.

Both functions issue appropriate error messages if problems are found. If word is specified, the error

message will be “word may not include . . .”. Otherwise, the error message is “may not specify . . .”.

u mi zap chars

u mi zap chars

u mi zap chars deletes all dta[mi *] characteristics from the data in memory.

u mi xeq on tmp flongsep

u mi xeq on tmp flongsep [, nopreserve]: command

u mi xeq on tmp flongsep executes command on the data in memory, said data converted to

style flongsep, and then converts the flongsep result back to the original style. If the data already are

flongsep, a temporary copy is made and, at the end, posted back to the original. Either way, command is

run on a temporary copy of the data. If anything goes wrong, the user’s original data are restored; that

is, they are restored unless nopreserve is specified. If command completes without error, the flongsep

data in memory are converted back to the original style and the original data are discarded.

It is not uncommon to write commands that can deal only with flongsep data, and yet these seem to

users as if they work with all styles. That is because the routines use u mi xeq on tmp flongsep.
They start by allowing any style, but the guts of the routine are written assuming flongsep. mi
stjoin is implemented in this way. There are two parts to mi stjoin: mi cmd stjoin.ado and

mi sub stjoin flongsep.ado. mi cmd stjoin.ado ends with

u_mi_xeq_on_tmp_flongsep: mi_sub_stjoin_flongsep ‘if’, ‘options’

mi sub stjoin flongsep does all the work, while u mi xeq on tmp flongsep handles the is-

sue of converting to flongsep and back again. The mi sub stjoin flongsep subroutine must ap-

pear in its own ado-file because u mi xeq on tmp flongsep is itself implemented as an ado-file.

u mi xeq on tmp flongsep would be unable to find the subroutine otherwise.

u mi get flongsep tmpname

u mi get flongsep tmpname macname : basename

u mi get flongsep tmpname creates a temporary flongsep name based on basename and stores it

in the local macro macname. u mi xeq on tmp flongsep, for your information, obtains the tempo-

rary name it uses from this routine.

u mi get flongsep tmpname is seldom used directly because u mi xeq on tmp flongsep
works well for shifting temporarily into flongsep mode, and u mi xeq on tmp flongsep does a

lot more than just getting a name under which the data should be temporarily stored. There are in-

stances, however, when one needs to be more involved in the conversion. For examples, see the source

mi cmd append.ado and mi cmd merge.ado. The issue these two routines face is that they need to

shift two input datasets to flongsep, then they create a third from them, and that is the only one that needs

to be shifted back to the original style. So these two commands handle the conversions themselves using

u mi get flongsep tmpname and mi convert (see [MI] mi convert).

https://www.stata.com/manuals/mimiconvert.pdf#mimiconvert

Technical — Details for programmers 7

For instance, they start with something like

u_mi_get_flongsep_tmpname master : __mimaster

That creates a temporary name suitable for usewith mi convert and stores it in ‘master’. The suggested
name is mimaster, but if that name is in use, then u mi get flongsep tmpname will form from

it mimaster1, or mimaster2, etc. We recommend that you specify a basename that begins with

mi, which is to say, two underscores followed by mi.

Next you must appreciate that it is your responsibility to eliminate the temporary files. You do that

by coding something like

...
local origstyle ”‘_dta[_mi_style]’”
if (”‘origstyle’”==”flongsep”) {

local origstyle ”‘origstyle’ ‘_dta[_mi_name]’”
}
u_mi_get_flongsep_tmpname master : __mimaster
capture {

quietly mi convert flongsep ‘master’
...
...
quietly mi convert ‘origstyle’, clear replace

{
nobreak {

local rc = _rc
mata: u_mi_flongsep_erase(”‘master’”, 0, 0)
if (‘rc’) {

exit ‘rc’
}

}

The other thing to note above is our use of mi convert ‘master’ to convert our data to flongsep

under the name ‘master’. What, you might wonder, happens if our data already is flongsep? A nice

feature of mi convert is that when run on data that are already flongsep, it performs an mi copy; see
[MI] mi copy.

mata: u mi flongsep erase()

mata: u mi flongsep erase(”name”, from [, output])
where

name string; flongsep name

from #; where to begin erasing

output 0|1; whether to produce output

mata: u mi flongsep erase() is the internal version of mi erase (see [MI] mi erase); use

whichever is more convenient.

Input from is usually specified as 0 and then mata: u mi flongsep erase() erases name.dta,
1 name.dta, 2 name.dta, and so on. frommay be specified as a number greater than zero, however,

and then erased are <from> name.dta, <from+1> name.dta, <from+2> name.dta,

If output is 0, no output is produced; otherwise, the erased files are also listed. If output is not

specified, files are listed.

See viewsource u mi.mata for the source code for this routine.

https://www.stata.com/manuals/mimicopy.pdf#mimicopy
https://www.stata.com/manuals/mimierase.pdf#mimierase

Technical — Details for programmers 8

u mi sortback

u mi sortback varlist

u mi sortback removes dropped variables from varlist and sorts the data on the remaining variables.

The routine is for dealing with sort-preserve problems when program name, sortpreserve is not

adequate, such as when the data might be subjected to substantial editing between the preserving of the

sort order and the restoring of it. To use u mi sortback, first record the order of the data:
local sortedby : sortedby
tempvar recnum
gen long ‘recnum’ = _n
quietly compress ‘recnum’

Later, when you want to restore the sort order, you code

u_mi_sortback ‘sortedby’ ‘recnum’

u mi save and u mi use

u mi save macname : filename [, save options]

u mi use ‘”‘macname’”’ filename [, clear nolabel]

save options are as described in [D] save. clear and nolabel are as described in [D] use. In both

commands, filename must be specified in quotes if it contains any special characters or blanks.

It is sometimes necessary to save data in a temporary file and reload them later. In such cases, when

the data are reloaded, youwould like to have the original c(filename), c(filedate), and c(changed)
restored. u mi save saves that information in macname. u mi use restores the information from the

information saved in macname. Note the use of compound quotes around ‘macname’ in u mi use;
they are not optional.

mata: u mi wide swapvars()

mata: u mi wide swapvars(m, tmpvarname)

where
m #; 1 ≤ # ≤ 𝑀
tmpvarname string; name from tempvar

This utility is for use with wide data only. For each variable name contained in dta[mi ivars]
and dta[mi pvars], mata: u mi wide swapvars() swaps the contents of varname with

m varname. Argument tmpvarname must be the name of a temporary variable obtained from com-

mand tempvar, and the variable must not exist. mata: u mi wide swapvars() will use this variable

while swapping. See [P] macro for more information on tempvar.

This function is its own inverse, assuming dta[mi ivars] and dta[mi pvars] have not

changed.

See viewsource u mi.mata for the source code for this routine.

https://www.stata.com/manuals/dsave.pdf#dsave
https://www.stata.com/manuals/duse.pdf#duse
https://www.stata.com/manuals/pmacro.pdf#pmacro

Technical — Details for programmers 9

u mi fixchars

u mi fixchars [, acceptable proper]
u mi fixchars makes the data and variable characteristics the same in 𝑚 = 1, 𝑚 = 2, . . . , 𝑚 = 𝑀

as they are in 𝑚 = 0. The options specify what is already known to be true about the data, that the data

are known to be acceptable or known to be proper. If neither is specified, you are stating that you do not

know whether the data are even acceptable. That is okay. u mi fixchars handles performing whatever

certification is required. Specifying the options makes u mi fixchars run faster.

This stabilizing of the characteristics is not about mi’s characteristics; that is handled by

u mi certify data. Other commands of Stata set and use characteristics, while u mi fixchars
ensures that those characteristics are the same across all 𝑚.

mata: u mi cpchars get() and mata: u mi cpchars put()

mata: u mi cpchars get(matavar)

mata: u mi cpchars put(matavar, {0 | 1 | 2})

where matavar is a Mata transmorphic variable. Obtain matavar from

u mi get mata instanced var() when using these functions from Stata.

These routines replace the characteristics in one dataset with those of another. They are used to

implement u mi fixchars.

mata: u mi cpchars get(matavar) stores in matavar the characteristics of the data in memory.

The data in memory remain unchanged.

mata: u mi cpchars put(matavar, #) replaces the characteristics of the data in memory with

those previously recorded in matavar. The second argument specifies the treatment of dta[mi *]
characteristics:

0 delete them in the destination data

1 copy them from the source just like any other characteristic

2 retain them as-is from the destination data.

mata: u mi get mata instanced var()

mata: u mi get mata instanced var(”macname”, ”basename” [, i value])
where

macname name of local macro

basename suggested name for instanced variable

i value initial value for instanced variable

mata: u mi get mata instanced var() creates a new Mata global variable, initializes it with

i value or as a 0 × 0 real, and places its name in local macro macname. Typical usage is

https://www.stata.com/manuals/m-6glossary.pdf#m-6GlossaryMataglossarytransmorphic
https://www.stata.com/manuals/mitechnical.pdf#miTechnicalRemarksandexamplesmatau_mi_get_mata_instanced_var()

Technical — Details for programmers 10

local var
capture noisily {

mata: u_mi_get_mata_instanced_var(”var”, ”myvar”)
...
... use ‘var’ however you wish ...
...

}
nobreak {

local rc = _rc
capture mata: mata drop ‘var’
if (‘rc’) {

exit ‘rc’
}

}

mata: u mi ptrace *()

h = u mi ptrace open(”filename”, {”r” | ”w”} [, {0 | 1}])

u mi ptrace write stripes(h, id, ynames, xnames)

u mi ptrace write iter(h, m, iter, B, V)

u mi ptrace close(h)

u mi ptrace safeclose(h)

The above are Mata functions, where

h, if it is declared, should be declared transmorphic

id is a string scalar

ynames and xnames are string scalars

m and iter are real scalars

B and V are real matrices; V must be symmetric

These routines write parameter-trace files; see [MI] mi ptrace. The procedure is 1) open the file; 2)

write the stripes; 3) repeatedly write iteration information; and 4) close the file.

1. Open the file: filename may be specified with or without a file suffix. Specify the second

argument as ”w”. The third argument should be 1 if the file may be replaced when it exists, and

0 otherwise.

2. Write the stripes: Specify id as the name of your routine or as ””; mi ptrace describe will

show this string as the creator of the file if the string is not ””. ynames and xnames are both

string scalars containing space-separated names or, possibly, op.names.

3. Repeatedly write iteration information: Written are 𝑚, the imputation number; iter, the itera-

tion number; 𝐵, the matrix of coefficients; and 𝑉, the variance matrix. 𝐵 must be 𝑛𝑦 × 𝑛𝑥
and 𝑉 must be 𝑛𝑦 × 𝑛𝑦 and symmetric, where 𝑛𝑥 = length(tokens(xnames)) and 𝑛𝑦 =
length(tokens(ynames)).

https://www.stata.com/manuals/mimiptrace.pdf#mimiptrace

Technical — Details for programmers 11

4. Close the file: In Mata, use u mi ptrace close(h). It is highly recommended

that, before step 1, h be obtained from inside Stata (not Mata) using mata:
u mi get mata instanced var(”h”, ”myvar”). If you follow this advice, include

a mata: u mi ptrace safeclose(‘h’) in the ado-file cleanup code. This will ensure

that open files are closed if the user presses Break or something else causes your routine

to exit before the file is closed. A correctly written program will have two closes, one

in Mata and another in the ado-file, although you could omit the one in Mata. See mata:

u mi get mata instanced var() directly above.

Also included in u mi ptrace *() are routines to read parameter-trace files. You should not need

these routines because users will use Stata command mi ptrace use to load the file you have written. If

you are interested, however, then type viewsource u mi ptrace.mata.

How to write other set commands to work with mi
This section concerns the writing of other set commands such as [ST] stset or [XT] xtset—set com-

mands having nothing to do with mi—so that they properly work with mi.

The definition of a set command is any command that creates characteristics in the data, and possibly

creates variables in the data, that other commands in the suite will subsequently access. Making such

set commands work with mi is mostly mi’s responsibility, but there is a little you need to do to assist mi.
Before dealing with that, however, write and debug your set command ignoring mi. Once that is done,
go back and add a few lines to your code. We will pretend your set command is named mynewset and

your original code looks something like this:

program mynewset
...
syntax ... [, ...]
...

end

Our goal is to make it so that mynewset will not run on mi data while simultaneously making it so

that mi can call it (the user types mi mynewset). When the user types mi mynewset, mi will 1) give

mynewset a clean, 𝑚 = 0 dataset on which it can run and 2) duplicate whatever mynewset does to

𝑚 = 0 on 𝑚 = 1, 𝑚 = 2, . . . , 𝑚 = 𝑀.

To achieve this, modify your code to look like this:

program mynewset
...
syntax ... [, ... MI] (1)
if (”‘mi’”==””) { (2)

u_mi_not_mi_set ”mynewset”
local checkvars ”*” (3)

}
else {

local checkvars ”u_mi_check_setvars settime” (3)
}
...
‘checkvars’ ‘varlist’ (4)
...

end

https://www.stata.com/manuals/mitechnical.pdf#miTechnicalRemarksandexamplesmatau_mi_get_mata_instanced_var()
https://www.stata.com/manuals/mitechnical.pdf#miTechnicalRemarksandexamplesmatau_mi_get_mata_instanced_var()
https://www.stata.com/manuals/ststset.pdf#ststset
https://www.stata.com/manuals/xtxtset.pdf#xtxtset

Technical — Details for programmers 12

That is,

1. Add the mi option to any options you already have.

2. If the mi option is not specified, execute u mi not mi set, passing to it the name of your set

command. If the data are not mi, then u mi not mi set will do nothing. If the data are mi,
then u mi not mi set will issue an error telling the user to run mi mynewset.

3. Set new local macro checkvars to * if the mi option is not specified, and otherwise to

u mi check setvars. We should mention that the mi option will be specified when mi
mynewset calls mynewset.

4. Run ‘checkvars’ on any input variables mynewset uses that must not vary across 𝑚. mi does

not care about other variables or even about new variables mynewset might create; it cares only

about existing variables that should not vary across 𝑚.

Let’s understand what “‘checkvars’ varlist” does. If the mi option was not specified, the

line expands to “* varlist”, which is a comment, and does nothing. If the mi option was speci-

fied, the line expands to “u mi check setvars settime varlist”. We are calling mi routine

u mi check setvars, telling it that we are calling at set time, and passing along varlist.

u mi check setvars will verify that varlist does not contain mi system variables or vari-

ables that vary across 𝑚. Within mynewset, you may call ‘checkvars’ repeatedly if that is

convenient.

You have completed the changes to mynewset. You finally need to write one short program that reads

program mi_cmd_mynewset
version 19.5 // (or version 19 if you do not have StataNow)
mi_cmd_genericset ‘”mynewset ‘0’”’ ”_mynewset_x _mynewset_y”

end

In the above, we assume that mynewset might add one or two variables to the data named mynewset x
and mynewset y. List in the second argument all variables mynewset might create. If mynewset never

creates new variables, then the program should read

program mi_cmd_mynewset
version 19.5 // (or version 19 if you do not have StataNow)
mi_cmd_genericset ‘”mynewset ‘0’”’

end

You are done.

Also see
[MI] Intro — Introduction to mi

Stata, Stata Press, Mata, NetCourse, and NetCourseNow are registered trademarks of StataCorp
LLC. Stata and Stata Press are registered trademarks with the World Intellectual Property Or-
ganization of the United Nations. StataNow is a trademark of StataCorp LLC. Other brand and
product names are registered trademarks or trademarks of their respective companies. Copyright
© 1985–2025 StataCorp LLC, College Station, TX, USA. All rights reserved.

®

For suggested citations, see the FAQ on citing Stata documentation.

https://www.stata.com/manuals/miintro.pdf#miIntro
https://www.stata.com/support/faqs/resources/citing-software-documentation-faqs/

