
mi select — Programmer’s alternative to mi extract

Description Syntax Option Remarks and examples
Stored results Also see

Description
mi select is a programmer’s command. It is a faster, more dangerous version of mi extract; see

[MI] mi extract. Before using mi select, the mi data must be preserved; see [P] preserve.

mi select init initializes mi select # and must be used before the first call to mi select #.

mi select # replaces the data in memory with a copy of the data for 𝑚 = #. The data are not mi set.

Syntax
mi select init [, fast]

mi select #

where 0 ≤ # ≤ 𝑀, and where typical usage is

quietly mi query
local M = r(M)

preserve
mi select init
local priorcmd ”‘r(priorcmd)’”

forvalues m=1(1)‘M’ {
mi select ‘m’
...
‘priorcmd’

}

restore
collect is allowed; see [U] 11.1.10 Prefix commands.

Option
fast, specified with mi select init, specifies that the data delivered by mi select # commands not

be changed except for sort order. Then mi select can operate more quickly. fast is allowed with

all styles but currently affects the performance with the wide style only.

If fast is not specified, the data delivered by mi select #may be modified freely before the next mi
select # call. However, the data may not be dropped. mi select uses characteristics (see [P] char)

stored in dta[] to know its state.

1

https://www.stata.com/manuals/mimiextract.pdf#mimiextract
https://www.stata.com/manuals/ppreserve.pdf#ppreserve
https://www.stata.com/manuals/u11.pdf#u11.1.10Prefixcommands
https://www.stata.com/manuals/pchar.pdf#pchar

mi select — Programmer’s alternative to mi extract 2

Remarks and examples
The two mi select commands work in tandem. mi select init initializes mi select #.

mi select init returns macro r(priorcmd), which you are to issue as a command between each mi
select # call. r(priorcmd) is not required to be issued before the first call to mi select #, although
you may issue it if that is convenient. mi select # calls can be made in any order, and the same 𝑚 may

be selected repeatedly.

The data delivered by mi select # differ from those delivered by mi extract in that there may be

extra variables in the dataset. One of the extra variables, mi id, is a unique observation identifier.

If youwant to post changesmade in the selected data back to the mi data, you canwrite a file containing
mi id and the updated variables and then use mi id to match that to the mi data after your final

restore. By default, changes to the selected data will not be posted back to the underlying mi data.

In the case of wide data, the mi data have no mi id variable. mi id in the selected data is reflected

in the current order of the mi data.

Stored results
mi select init returns the following in r():

Macros

r(priorcmd) command to be issued prior to calling mi select #; this command will be either restore,
preserve or nothing

Also see
[MI] Intro — Introduction to mi

[MI] mi extract — Extract original or imputed data from mi data

[MI] Technical — Details for programmers

Stata, Stata Press, and Mata are registered trademarks of StataCorp LLC. Stata and Stata
Press are registered trademarks with the World Intellectual Property Organization of the
United Nations. StataNow and NetCourseNow are trademarks of StataCorp LLC. Other
brand and product names are registered trademarks or trademarks of their respective com-
panies. Copyright © 1985–2025 StataCorp LLC, College Station, TX, USA. All rights
reserved.

®

For suggested citations, see the FAQ on citing Stata documentation.

https://www.stata.com/manuals/miintro.pdf#miIntro
https://www.stata.com/manuals/mimiextract.pdf#mimiextract
https://www.stata.com/manuals/mitechnical.pdf#miTechnical
https://www.stata.com/support/faqs/resources/citing-software-documentation-faqs/

