
Title stata.com

mi impute usermethod — User-defined imputation methods

Description Syntax Options Remarks and examples
Stored results Acknowledgment Also see

Description
This entry describes how to add your own imputation methods to the mi impute command.

Syntax
mi impute usermethod userspec

[
, options

]
usermethod is the name of the method you would like to add to the mi impute command. When

naming an mi impute method, you should follow the same convention as for naming the programs
you add to Stata—do not pick “nice” names that may later be used by Stata’s official methods.

userspec is a specification of an imputation model as supported by the user-defined method usermethod.
It must include imputation variables ivars. It may also include independent variables indepvars,
weights, and an if qualifier if those things are also supported by usermethod. The actual syntax of
userspec will be specific to usermethod. We encourage users who are adding their own methods to
mi impute to follow mi impute’s syntax or Stata’s general syntax when designing their methods.

options Description

impute options any option of mi impute except noupdate and by()

orderasis impute variables in the specified order
user options additional options supported by usermethod

You must mi set your data before using mi impute usermethod; see [MI] mi set.
You must mi register imputation variables as imputed before using mi impute usermethod; see [MI] mi set.

Options
impute options include add(), replace, rseed(), double, dots, noisily, nolegend, force;

see [MI] mi impute for details.

orderasis requests that the variables be imputed in the specified order. By default, variables are
imputed in order from the most observed to the least observed.

user options specify any additional options supported by usermethod.

Remarks and examples stata.com

Adding your own methods to mi impute is rather straightforward. Suppose that you want to add
a method called mymethod to mi impute.

1. Write an ado-file that contains a program called mi impute cmd mymethod parse to parse
your imputation model.

1

http://stata.com
https://www.stata.com/manuals/u11.pdf#u11.1.6weight
https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/mimiimpute.pdf#mimiimpute
https://www.stata.com/manuals/psyntax.pdf#psyntax
https://www.stata.com/manuals/mimiimpute.pdf#mimiimputeSyntaximpute_options
https://www.stata.com/manuals/mimiset.pdf#mimiset
https://www.stata.com/manuals/mimiset.pdf#mimiset
https://www.stata.com/manuals/mimiimpute.pdf#mimiimpute
http://stata.com
https://www.stata.com/manuals/pprogram.pdf#pprogram

2 mi impute usermethod — User-defined imputation methods

2. Write an ado-file that contains a program called mi impute cmd mymethod, which will perform
a single imputation on all of your imputation variables.

3. Place the ado-files where Stata can find them.

You are done. You can now use mymethod within mi impute like any other official mi impute
method. mi impute will take care of performing your imputation step multiple times and will do it
properly for any mi style.

Remarks are presented under the following headings:

Toy example: Naive regression imputation
Steps for adding a new method to mi impute

Writing an imputation parser
Writing an initializer
Writing an imputer
Storing additional results
Writing a cleanup program

Examples
Naive regression imputation
Univariate regression imputation
Multivariate monotone imputation

Global macros

Toy example: Naive regression imputation

As a quick example, let’s write a method called naivereg to perform a naive regression imputation,
also known as stochastic regression imputation, of a single variable ivar based on independent variables
xvars.

First, let’s describe our imputation procedure.

1. Regress ivar on xvars using the observed data.

2. Obtain the linear predictor, xb.

3. Replace missing values in ivar with xb plus a random error generated from N(0, sigma mle),
where sigma mle is the estimated error standard deviation.

Let’s now write our imputation program. We create an ado-file called
mi impute cmd naivereg.ado that contains the following Stata program:

// imputer
program mi_impute_cmd_naivereg

version 18.0
/* step 1: run regression on observed data */
quietly regress $MI_IMPUTE_user_ivar $MI_IMPUTE_user_xvars
/* step 2: compute linear prediction */
tempvar xb
quietly predict double ‘xb’, xb
/* step 3: replace missing values */
quietly replace $MI_IMPUTE_user_ivar = ‘xb’ + rnormal(0,e(rmse)) ///

if $MI_IMPUTE_user_miss==1
end

Global macros MI IMPUTE user ivar and MI IMPUTE user xvars contain the names of the
imputation and independent variables, respectively, and MI IMPUTE user miss contains the indicator
for missing values in the imputation variable. ereturn scalar e(rmse) contains the estimated error
standard deviation from the regress command used in step 1. The rnormal() function is used to
generate values from a normal distribution.

https://www.stata.com/manuals/pprogram.pdf#pprogram
https://www.stata.com/manuals/mistyles.pdf#miStyles
https://www.stata.com/manuals/pereturn.pdf#pereturn
https://www.stata.com/manuals/rregress.pdf#rregress
https://www.stata.com/manuals/fnrandom-numberfunctions.pdf#fnRandom-numberfunctionsrnormal()

mi impute usermethod — User-defined imputation methods 3

In addition to the imputer, we also need to write a parser program that passes the imputation model
specification to mi impute. We create an ado-file called mi impute cmd naivereg parse.ado
that contains the following simple program:

// parser
program mi_impute_cmd_naivereg_parse

version 18.0
syntax anything [, *]
gettoken ivar xvars : anything
u_mi_impute_user_setup, ivars(‘ivar’) xvars(‘xvars’) ‘options’

end

The parser retrieves the information about imputation and independent variables to be supplied by
the user and passes it to mi impute via the utility program u mi impute user setup, which will
be discussed later.

We can now use naivereg with mi impute. For demonstration purposes only, let’s use our new
method to impute missing values of variable rep78 from the auto dataset. We will use complete
variables mpg and weight as predictors.

We load the data, declare the mi style, and register rep78 as an imputation variable.

. sysuse auto, clear
(1978 automobile data)

. mi set wide

. mi register imputed rep78

We now use our new method naivereg within mi impute.

. mi impute naivereg rep78 mpg weight, add(2)

Multiple imputation Imputations = 2
User method naivereg added = 2
Imputed: m=1 through m=2 updated = 0

Observations per m

Variable Complete Incomplete Imputed Total

rep78 69 5 5 74

(Complete + Incomplete = Total; Imputed is the minimum across m
of the number of filled-in observations.)

We created two imputations using mi impute’s option add() and obtained the standard output
from mi impute. We imputed all five missing values of variable rep78 using the new naivereg
method.

This is just a simple example. Your imputation model can be as complicated as you would like.
See Examples for more complicated imputation models.

Steps for adding a new method to mi impute

Suppose you want to add your own method, usermethod, to the mi impute command. Here is an
outline of the steps to follow:

1. Create a parser, a program called mi impute cmd usermethod parse and defined by the
ado-file mi impute cmd usermethod parse.ado that parses the imputation model and checks
the syntax of user-specific options, user options. See Writing an imputation parser.

https://www.stata.com/manuals/pprogram.pdf#pprogram

4 mi impute usermethod — User-defined imputation methods

2. Optionally, create an initializer, a program called mi impute cmd usermethod init and defined
by the ado-file mi impute cmd usermethod init.ado that performs certain tasks to be executed
once on the observed data. For example, during monotone imputation, the estimation of model
parameters can be done just once using the observed data. See Writing an initializer.

3. Create an imputer, a program called mi impute cmd usermethod and defined by the ado-file
mi impute cmd usermethod.ado that performs one round of imputation for all imputation
variables. See Writing an imputer.

4. Optionally, create a program for storing additional r() results called
mi impute cmd usermethod return and defined by the ado-file
mi impute cmd usermethod return.ado. See Storing additional results.

5. Optionally, create a cleanup program (or garbage collector), a program called
mi impute cmd usermethod cleanup and defined by the ado-file
mi impute cmd usermethod cleanup.ado that removes all the intermediate variables, global
macros, etc., you created during parsing, initialization, or imputation. See Writing a cleanup
program.

6. Place all of your programs where Stata can find them.

You can now use your usermethod with mi impute,

. mi impute usermethod . . .

and access any of mi impute’s options (except by() and noupdate).

Writing an imputation parser

A parser is a program that parses the imputation model specification userspec, passes the necessary
information to mi impute, and checks user-specified options. It must be defined within an ado file
with the name mi impute cmd usermethod parse.ado. You can use any of Stata’s parsing utilities
such as the syntax command to write your parser. It may be more convenient for users if you follow
the syntax of mi impute when designing your imputation methods.

At a minimum, your parser must supply information about the imputation variables to mi impute.
This is done via the ivars() option of the utility command u mi impute user setup:

u_mi_impute_user_setup, ivars(varlist) . . .

You may supply other information such as independent variables (complete predictors) in option
xvars(), weights, an if qualifier, and so on.

A simple univariate parser may look as follows.

program mi_impute_cmd_usermethod_parse
version . . .
syntax anything [if] [fw iw] [, *]
gettoken ivar xvars : anything
u_mi_impute_user_setup ‘if’ [‘weight’‘exp’], ///

ivars(‘ivar’) xvars(‘xvars’) ‘options’
end

The above parser corresponds to the following userspec,

ivar
[

indepvars
] [

if
] [

weight
]

where only fweights and iweights are allowed.

https://www.stata.com/manuals/pprogram.pdf#pprogram
https://www.stata.com/manuals/pprogram.pdf#pprogram
https://www.stata.com/manuals/pprogram.pdf#pprogram
https://www.stata.com/manuals/preturn.pdf#preturn
https://www.stata.com/manuals/pprogram.pdf#pprogram
https://www.stata.com/manuals/pmacro.pdf#pmacro
https://www.stata.com/manuals/pmacro.pdf#pmacro
https://www.stata.com/manuals/mimiimpute.pdf#mimiimputeOptions
https://www.stata.com/manuals/psyntax.pdf#psyntax
https://www.stata.com/manuals/mimiimpute.pdf#mimiimpute
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.6weight

mi impute usermethod — User-defined imputation methods 5

A simple multivariate parser may look as follows.

program mi_impute_cmd_usermethod_parse
version . . .
syntax anything(equalok) [if] [fw iw] [, *]
gettoken ivars xvars : anything, parse("=")
gettoken eq xvars : xvars, parse("=")
u_mi_impute_user_setup ‘if’ [‘weight’‘exp’], ///

ivars(‘ivars’) xvars(‘xvars’) ‘options’
end

This parser corresponds to the following userspec,

ivars
[
= indepvars

] [
if
] [

weight
]

where only fweights and iweights are allowed.

You may also supply complete predictors, if qualifiers, and weights specific to each imputation
variable or control the order in which variables are imputed. Here is the full syntax of the utility
program.

u mi impute user setup
[

if
] [

weight
] [

, setup options
]

setup options Description

Main
∗ ivars(varlist) specify imputation variables
xvars(varlist) specify complete predictors for all imputation variables
xvars#(varlist) specify complete predictors for the #th imputation variable; overrides

xvars()

if#(if) specify an if qualifier for the #th imputation variable (in addition to the
global if)

weight#(weight) specify weights for the #th imputation variable; overrides global weights
orderasis impute variables in the specified order[
no

]
fillmissing do not replace current imputed data with missing values

title1(string) specify the main title
title2(string) specify the secondary title

∗ ivars(varlist) is required.

ivars(varlist) specifies the names of the imputation variables. This option is required.

xvars(varlist) specifies the names of the independent variables (complete predictors) for all imputation
variables. You may use xvars#() to override the complete predictors for the #th imputation variable.

xvars#(varlist) specifies the names of the independent variables for the #th imputation variable.
This option overrides the xvars() option for that variable. If xvars#() is not specified, then
xvars() (if specified) is assumed for that variable.

if#(if) specifies an if qualifier for the #th imputation variable. This option is used in conjunction
with the global if qualifier specified with the program to define an imputation sample for that
variable.

weight#(weight) specifies weights for the #th imputation variable. This option overrides the global
weight specified with the program. If weight#() is not specified, then the global weight (if
specified) is used for that variable.

orderasis requests that the variables be imputed in the specified order. By default, variables are
imputed in order from the most observed to the least observed.

https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.6weight
https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.6weight
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.6weight
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp

6 mi impute usermethod — User-defined imputation methods

fillmissing or nofillmissing requests that the imputed data be filled in or not filled in with
missing values prior to the imputation. The default is fillmissing. This option is rarely used.

title1(string) specifies the main title. The default is “Multiple imputation”.

title2(string) specifies the secondary title. The default is “User method: usermethod”.

u mi impute user setup sets certain global macros used by mi impute; see Global macros
for details.

Writing an initializer

An initializer (in the context of mi impute) is a program that is executed once on the observed
data, m = 0, before imputation. This program is optional. If you choose to write an initializer, it must
be defined within an ado-file with the name mi impute cmd usermethod init.ado. This program
is useful if you have an estimation task that needs to be performed only once on the observed data.

For example, a univariate regression imputation requires that the regression be performed on the
observed data prior to imputation. A simple initializer for such imputation may look as follows.

program mi_impute_cmd_usermethod_init
version ...
quietly regress $MI_IMPUTE_user_ivar $MI_IMPUTE_user_xvars ///

if $MI_IMPUTE_user_touse
end

Writing an imputer

An imputer is a program that imputes missing values of all specified imputation vari-
ables once. This program is required and must be defined within an ado-file with the name
mi impute cmd usermethod.ado. mi impute will execute this program multiple times to pro-
duce multiply imputed datasets.

A simple univariate imputer may look as follows.

program mi_impute_cmd_usermethod
version ...
quietly replace $MI_IMPUTE_user_ivar = ... ///

if $MI_IMPUTE_user_miss
end

Storing additional results

To store results in addition to those provided by mi impute (see Stored results), you need to
create a r-class program called mi impute cmd usermethod return. Here is an example.

program mi_impute_cmd_ usermethod_return, rclass
version ...
syntax [, myopt(real 0) *]
return scalar myopt = ‘myopt’

end

https://www.stata.com/manuals/pprogram.pdf#pprogram

mi impute usermethod — User-defined imputation methods 7

Writing a cleanup program

A “cleanup” program or garbage collector is a program that is called at the end of the imputation
process to remove any intermediate results you created in your parser, initializer, or imputer that will
not be removed automatically upon program completion. For example, such results may include new
variables (except temporary variables), global macros, global names for estimation results, and so on.
This program is optional but highly recommended when you have intermediate results that need to
be cleared manually.

Examples

Naive regression imputation

Recall our introductory example from Toy example: Naive regression imputation of a naive (or
stochastic) regression imputation.

Initializer. We can make our imputer more computationally efficient by separating the estimation and
imputation tasks. Currently, regression is performed in each imputation. We can move this step into
the initializer.

// initializer (naivereg)
program mi_impute_cmd_naivereg_init

version 18.0
/* step 1: run regression on observed data */
quietly regress $MI_IMPUTE_user_ivar $MI_IMPUTE_user_xvars

end

Here is the updated imputer.

// imputer (naivereg)
program mi_impute_cmd_naivereg

version 18.0
/* step 2: compute linear prediction */
tempvar xb
quietly predict double ‘xb’, xb
/* step 3: replace missing values */
quietly replace $MI_IMPUTE_user_ivar = ‘xb’+rnormal(0,e(rmse)) ///

if $MI_IMPUTE_user_miss==1
end

If we now run mi impute naivereg, the regress command will be run only once, on the
observed data m = 0.

If qualifier and weights. We can also extend our method to allow the specification of an if qualifier
and, say, frequency weights.

// parser (naivereg, if and weights)
program mi_impute_cmd_naivereg_parse

version 18.0
syntax anything [if] [fw] [, *]
gettoken ivar xvars : anything
u_mi_impute_user_setup ‘if’ [‘weight’‘exp’] , ///

ivars(‘ivar’) xvars(‘xvars’) ‘options’
end

https://www.stata.com/manuals/pmacro.pdf#pmacro

8 mi impute usermethod — User-defined imputation methods

We updated the syntax statement to allow if and frequency weights and passed that information
to the utility program u mi impute user setup.

// initializer (naivereg, if and weights)
program mi_impute_cmd_naivereg_init

version 18.0
step 1: run regression on observed data */
quietly regress $MI_IMPUTE_user_ivar $MI_IMPUTE_user_xvars ///

$MI_IMPUTE_user_weight if $MI_IMPUTE_user_touse
end

We included the global macros containing the information about weights and the imputation sample
in our regress command.

// imputer (naivereg, if and weights)
program mi_impute_cmd_naivereg

version 18.0
/* step 2: compute linear prediction */
tempvar xb
quietly predict double ‘xb’ if $MI_IMPUTE_user_touse, xb
/* step 3: replace missing values */
quietly replace $MI_IMPUTE_user_ivar = ‘xb’+rnormal(0,e(rmse)) ///

if $MI_IMPUTE_user_miss==1
end

We restricted the computation of the linear predictor for the sample determined by the specified if
qualifier. A more efficient approach would be to also restrict the computation of the linear predictor for
missing values only. This can be done by replacing if $MI IMPUTE user touse in the predict
line above with if $MI IMPUTE user miss.

For example, we can now impute rep78 separately for foreign and domestic cars and incorporate
frequency weights. For the purpose of demonstration, we will use turn as a frequency weight.

. sysuse auto, clear
(1978 automobile data)

. mi set wide

. mi register imputed rep78

. mi impute naivereg rep78 mpg weight [fweight=turn] if foreign==1, add(2)

Multiple imputation Imputations = 2
User method naivereg added = 2
Imputed: m=1 through m=2 updated = 0

Observations per m

Variable Complete Incomplete Imputed Total

rep78 741 38 38 779

(Complete + Incomplete = Total; Imputed is the minimum across m
of the number of filled-in observations.)

mi impute usermethod — User-defined imputation methods 9

. mi impute naivereg rep78 mpg weight [fweight=turn] if foreign==0, replace

Multiple imputation Imputations = 2
User method naivereg added = 0
Imputed: m=1 through m=2 updated = 2

Observations per m

Variable Complete Incomplete Imputed Total

rep78 2005 150 150 2155

(Complete + Incomplete = Total; Imputed is the minimum across m
of the number of filled-in observations.)

Univariate regression imputation

In Naive regression imputation, we added a new method, naivereg. The reason we called this
imputation method naive is that it did not incorporate the uncertainty about the estimates of coefficients
and error standard deviation when computing the linear predictor and simulating the imputed values.

Let’s add a new method, myregress, that improves the naivereg method. The parser and the
initializer stay the same (except they need to be renamed to mi impute cmd myregress parse
and mi impute cmd myregress init, respectively). The imputer, however, changes substantially.
Before we move on to the programming task, let’s revisit the imputation procedure described in Toy
example: Naive regression imputation.

The linear predictor from step 2 is computed using the maximum likelihood estimates of regression
coefficients, beta mle, from step 1. Also, the random normal variates are generated using the maximum
likelihood estimate of the error standard deviation, sigma mle. The proper regression imputation
simulates a new set of parameters, beta and sigma, from their respective posterior distributions and
uses them to compute results in steps 2 and 3. Let’s update our imputation procedure.

1. Regress ivar on xvars using the observed data.

2. Simulate new regression coefficients beta and error standard deviation sigma from their respective
posterior distributions, which are based on their maximum likelihood estimates, beta mle and
sigma mle.

3. Obtain the linear predictor, xb, using the new regression coefficients beta.

4. Replace missing values in ivar with xb plus a random error generated from N(0, sigma).

Let’s now update our imputer.

// imputer (myregress)
program mi_impute_cmd_myregress, eclass

version 18.0
/* step 2: simulate new beta and sigma */
tempname sigma beta sigma_mle beta_mle vce_chol rnorm
matrix ‘beta_mle’ = e(b)
scalar ‘sigma_mle’ = e(rmse)
matrix ‘vce_chol’ = cholesky(e(V))/‘sigma_mle’
local ncols = colsof(‘beta_mle’)
/* draw beta and sigma from the posterior distribution */
scalar ‘sigma’ = ‘sigma_mle’*sqrt(e(df_r)/rchi2(e(df_r)))
mata: st_matrix("‘rnorm’", rnormal(‘ncols’,1,0,1))
matrix ‘beta’ = ‘beta_mle’+(‘sigma’*(‘vce_chol’*‘rnorm’))’
/* step 3: compute linear prediction */
ereturn repost b = ‘beta’ // repost new beta
tempvar xb

10 mi impute usermethod — User-defined imputation methods

quietly predict double ‘xb’ if $MI_IMPUTE_user_miss, xb
ereturn repost b = ‘beta_mle’ // repost back beta_mle
/* step 4: replace missing values */
quietly replace $MI_IMPUTE_user_ivar = ‘xb’+‘sigma’*rnormal() ///

if $MI_IMPUTE_user_miss==1
end

Our new imputer is much more involved. In step 2, we generate a new (temporary) matrix
of coefficients, ‘beta’, and a temporary scalar containing new error standard deviation. The new
parameters are simulated from their posterior distribution. In step 3, we repost new coefficients to
e() results to obtain the proper linear predictor, and we repost the old coefficients back to be used
in the next imputation. In step 4, we use a new ‘sigma’ to generate random errors.

We can check that we obtain the same imputed values as Stata’s official mi impute regress
command, provided that we use the same random-number seed. For example,

. sysuse auto, clear
(1978 automobile data)

. mi set wide

. mi register imputed rep78

. mi impute myregress rep78 mpg weight, add(1) rseed(234)

Multiple imputation Imputations = 1
User method myregress added = 1
Imputed: m=1 updated = 0

Observations per m

Variable Complete Incomplete Imputed Total

rep78 69 5 5 74

(Complete + Incomplete = Total; Imputed is the minimum across m
of the number of filled-in observations.)

. mi impute regress rep78 mpg weight, add(1) rseed(234)

Univariate imputation Imputations = 2
Linear regression added = 1
Imputed: m=2 updated = 0

Observations per m

Variable Complete Incomplete Imputed Total

rep78 69 5 5 74

(Complete + Incomplete = Total; Imputed is the minimum across m
of the number of filled-in observations.)

. mi xeq 1 2: summarize rep78

m=1 data:
-> summarize rep78

Variable Obs Mean Std. dev. Min Max

rep78 74 3.37852 .9965215 1 5

m=2 data:
-> summarize rep78

Variable Obs Mean Std. dev. Min Max

rep78 74 3.37852 .9965215 1 5

https://www.stata.com/manuals/pereturn.pdf#pereturn
https://www.stata.com/manuals/mimiimputeregress.pdf#mimiimputeregress

mi impute usermethod — User-defined imputation methods 11

Multivariate monotone imputation

Our previous examples demonstrated univariate imputation—imputation of a single variable. Here
we demonstrate an example of multivariate imputation for variables with a monotone missing-value
pattern. For simplicity, we will consider imputation of two variables using a new method, mymonreg.

We start with a parser.

// imputer (mymonreg)
program mi_impute_cmd_mymonreg_parse

version 18.0
syntax anything(equalok) [if] [, *]
gettoken ivars xvars : anything, parse("=")
gettoken eq xvars : xvars, parse("=")
u_mi_impute_user_setup ‘if’, ivars(‘ivars’) xvars(‘xvars’) ‘options’

end

We separate multiple-imputation variables from the complete predictors with the equality (=) sign.
The same set of complete predictors will be used to impute all imputation variables.

// initializer (mymonreg)
program mi_impute_cmd_mymonreg_init

version 18.0
/* run regression on observed data for each imputation variable and

store estimation results */
quietly regress $MI_IMPUTE_user_ivar1 ///

$MI_IMPUTE_user_xvars1 if $MI_IMPUTE_user_touse1
quietly estimates store myreg1
quietly regress $MI_IMPUTE_user_ivar2 ///

$MI_IMPUTE_user_ivar1 $MI_IMPUTE_user_xvars2 ///
if $MI_IMPUTE_user_touse2

quietly estimates store myreg2
end

With multiple imputation variables, mi impute automatically orders them from the least missing to
the most missing. In our example, MI IMPUTE user ivar1 will contain the name of the imputation
variable with the least number of missing values, and MI IMPUTE user ivar2 with the most number.
You can use the orderasis option to prevent mi impute from ordering the variables. Notice that
during monotone imputation, the previously imputed variables are used as predictors of the subsequent
imputation variables in addition to the complete predictors. So we used MI IMPUTE user ivar1
as an additional predictor of MI IMPUTE user ivar2.

To avoid refitting models on each imputed dataset, we store estimation results as myreg1 and
myreg2. It is our responsibility to drop these estimation results from memory at the end of the
imputation.

During imputation, we will need to apply the steps of the regression imputation described in
Univariate regression imputation to each imputation variable. To simplify this task, we can create a
subprogram within our imputer that performs these steps, ImputeIvar. Then, our imputer may look
like this.

12 mi impute usermethod — User-defined imputation methods

// imputer (mymonreg)
program mi_impute_cmd_mymonreg

version 18.0
ImputeIvar 1 myreg1
ImputeIvar 2 myreg2

end

// subprogram defined within mi_impute_cmd_mymonreg.ado
program ImputeIvar, eclass

args index estres
/* load the appropriate estimation results */
quietly estimates restore ‘estres’
/* step 2: simulate new beta and sigma */
tempname sigma beta sigma_mle beta_mle vce_chol rnorm
matrix ‘beta_mle’ = e(b)
scalar ‘sigma_mle’ = e(rmse)
matrix ‘vce_chol’ = cholesky(e(V))/‘sigma_mle’
local ncols = colsof(‘beta_mle’)
/* draw beta and sigma from the posterior distribution */
scalar ‘sigma’ = ‘sigma_mle’*sqrt(e(df_r)/rchi2(e(df_r)))
mata: st_matrix("‘rnorm’", rnormal(‘ncols’,1,0,1))
matrix ‘beta’ = ‘beta_mle’+(‘sigma’*(‘vce_chol’*‘rnorm’))’
/* step 3: compute linear prediction */
ereturn repost b = ‘beta’ // repost new beta
tempvar xb
quietly predict double ‘xb’ if ${MI_IMPUTE_user_miss‘index’}, xb
ereturn repost b = ‘beta_mle’ // repost back beta_mle
/* step 4: replace missing values */
quietly replace ${MI_IMPUTE_user_ivar‘index’} = ‘xb’ + ///

rnormal(0,‘sigma’) if ${MI_IMPUTE_user_miss‘index’}==1
end

The ImputeIvar subprogram is almost the same as the imputer from the univariate regression
imputation, except we replaced global macros with their analogs specific to each imputation variable.
For example, we replaced MI IMPUTE user ivar with MI IMPUTE user ivar‘index’, where
local macro ‘index’ will contain a value of 1 or 2. We also passed to the subprogram the corresponding
names of the estimation results.

Finally, we write a cleanup program to drop the estimation results we created during initialization
from memory.

// cleanup program (mymonreg)
program mi_impute_cmd_mymonreg_cleanup

version 18.0
capture estimates drop myreg1 myreg2

end

mi impute usermethod — User-defined imputation methods 13

Returning to our auto example, we can replace missing values in rep78 and mpg.

. sysuse auto, clear
(1978 automobile data)

. quietly replace mpg = . in 3

. mi set wide

. mi register imputed rep78 mpg

. mi impute mymonreg rep78 mpg = weight, add(1)

Multiple imputation Imputations = 1
User method mymonreg added = 1
Imputed: m=1 updated = 0

Observations per m

Variable Complete Incomplete Imputed Total

rep78 69 5 5 74
mpg 73 1 1 74

(Complete + Incomplete = Total; Imputed is the minimum across m
of the number of filled-in observations.)

Global macros

mi impute usermethod stores global macros that can be consumed by the programmers of
imputation methods. The global macros are MI IMPUTE user name, where name is defined below.
Global macro MI IMPUTE user is set to 1 for all user-defined imputation methods and to 0 for all
official imputation methods.

14 mi impute usermethod — User-defined imputation methods

name Description

method name of the imputation method
user options method-specific options
k ivars total number of specified imputation variables (complete and incomplete)
allivars names of all specified imputation variables (complete and incomplete)
k ivarsinc number of incomplete imputation variables
ivarsinc names of incomplete imputation variables in the original order
ivars synonym for ivarsinc
ivarscomplete names of complete imputation variables in the original order
ivarsincord names of incomplete imputation variables ordered from the least missing

to the most missing
ordind indices of ordered imputation variables
incordind indices for ordered incomplete imputation variables
pattern monotone or nonmonotone pattern among all specified imputation vari-

ables with respect to the global imputation sample
ivar# name of the #th incomplete imputation variable
ivar synonym for ivar1; stored only with one imputation variable
xvars names of complete predictors for all incomplete imputation variables
xvars# names of the complete predictors for the #th incomplete imputation variable
weight global weight expression
weight# weight expression for the #th imputation variable
touse indicator for the global imputation sample
touse# indicator for the imputation sample for the #th imputation variable
tousevars names of all imputation-sample indicators
miss# missing-value indicator for the #th imputation variable
miss synonym for miss1; stored only with one imputation variable
missvars names of all missing-value indicators
m current imputation number
quietly contains quietly unless mi impute’s option noisily was specified
opt add content of option add()
opt replace content of option replace
opt rseed content of option rseed()
opt double content of option double
opt dots content of option dots
opt noisily content of option noisily
opt nolegend content of option nolegend
opt force content of option force
opt orderasis content of option orderasis

You may need to define your own global macros. In that case, you need to use the prefix
MI IMPUTE userdef for all of your global macros to avoid collision with mi impute’s internal
global macros.

mi impute usermethod — User-defined imputation methods 15

Stored results
mi impute usermethod stores the following in r():

Scalars
r(M) total number of imputations
r(M add) number of added imputations
r(M update) number of updated imputations
r(k ivars) number of imputed variables
r(N g) number of imputed groups

Macros
r(method) name of imputation method (usermethod)
r(ivars) names of imputation variables
r(rngstate) random-number state used

Matrices
r(N) number of observations in imputation sample
r(N complete) number of complete observations in imputation sample
r(N incomplete) number of incomplete observations in imputation sample
r(N imputed) number of imputed observations in imputation sample

You may also store your own results; see Storing additional results for details.

Acknowledgment
The development of this functionality was partially supported by the World Bank.

Also see
[MI] mi impute — Impute missing values

[MI] mi estimate — Estimation using multiple imputations

[MI] Intro — Introduction to mi

[MI] Intro substantive — Introduction to multiple-imputation analysis

Stata, Stata Press, and Mata are registered trademarks of StataCorp LLC. Stata and
Stata Press are registered trademarks with the World Intellectual Property Organization
of the United Nations. Other brand and product names are registered trademarks or
trademarks of their respective companies. Copyright c© 1985–2023 StataCorp LLC,
College Station, TX, USA. All rights reserved.

®

https://www.stata.com/manuals/mimiimpute.pdf#mimiimpute
https://www.stata.com/manuals/mimiestimate.pdf#mimiestimate
https://www.stata.com/manuals/miintro.pdf#miIntro
https://www.stata.com/manuals/miintrosubstantive.pdf#miIntrosubstantive

