mi impute pmm — Impute using predictive mean matching

Description

mi impute pmm fills in missing values of a continuous variable by using the predictive mean matching imputation method. You can perform separate imputations on different subsets of the data by specifying the by() option. You can also account for analytic, frequency, importance, and sampling weights.

Menu

Statistics > Multiple imputation

Syntax

mi impute pmm ivar [indepvars] [if] [weight], knn(#) [impute_options options]

impute_options Description

Main
*add(#) specify number of imputations to add; required when no imputations exist
*replace replace imputed values in existing imputations
rseed(#) specify random-number seed
double store imputed values in double precision; the default is to store them as float
by(varlist[, byopts]) impute separately on each group formed by varlist

Reporting
dots display dots as imputations are performed
noisily display intermediate output
nolegend suppress all table legends

Advanced
force proceed with imputation, even when missing imputed values are encountered
noupdate do not perform mi update; see [MI] noupdate option

*add(#) is required when no imputations exist; add(#) or replace is required if imputations exist.
noupdate does not appear in the dialog box.
options

| Description |
|---|---|
| **Main** | |
| noconstant | suppress constant term |
| *knn(#) | specify # of closest observations (nearest neighbors) to draw from |
| conditional(if) | perform conditional imputation |
| bootstrap | estimate model parameters using sampling with replacement |

"knn(#) is required.

You must `mi set` your data before using `mi impute pmm`; see [MI] `mi set`.

You must `mi register` `ivar` as imputed before using `mi impute pmm`; see [MI] `mi set`.

`indepvars` may contain factor variables; see [U] 11.4.3 Factor variables.

`aweights`, `fweights`, `iweights`, and `pweights` are allowed; see [U] 11.1.6 weight.

Options

- **Main**
 - noconstant; see [R] Estimation options.
 - add(), replace, rseed(), double, by(); see [MI] `mi impute`.
 - `knn(#)` specifies the number of closest observations (nearest neighbors) from which to draw imputed values. This option is required. The closeness is determined based on the absolute difference between the linear prediction for the missing value and that for the complete values. The closest observation is the observation with the smallest difference. This option regulates the correlation among multiple imputations that affects the bias and the variability of the resulting multiple-imputation point estimates; see Remarks and examples for details.
 - `conditional(if)` specifies that the imputation variable be imputed conditionally on observations satisfying `exp`; see [U] 11.1.3 if exp. That is, missing values in a conditional sample, the sample identified by the `exp` expression, are imputed based only on data in that conditional sample. Missing values outside the conditional sample are replaced with a conditional constant, the value of the imputation variable in observations outside the conditional sample. As such, the imputation variable is required to be constant outside the conditional sample. Also, if any conditioning variables (variables involved in the conditional specification `if exp`) contain soft missing values (.), their missing values must be nested within missing values of the imputation variables. See Conditional imputation under Remarks and examples in [MI] `mi impute`.
 - `bootstrap` specifies that posterior estimates of model parameters be obtained using sampling with replacement; that is, posterior estimates are estimated from a bootstrap sample. The default is to sample the estimates from the posterior distribution of model parameters or from the large-sample normal approximation of the posterior distribution. This option is useful when asymptotic normality of parameter estimates is suspect.

- **Reporting**
 - dots, noisily, nolegend; see [MI] `mi impute`. noisily specifies that the output from the linear regression fit to the observed data be displayed. nolegend suppresses all legends that appear before the imputation table. Such legends include a legend about conditional imputation that appears when the `conditional()` option is specified and group legends that may appear when the `by()` option is specified.
mi impute pmm — Impute using predictive mean matching

force; see [MI] mi impute.

The following option is available with mi impute but is not shown in the dialog box:
noupdate; see [MI] noupdate option.

Remarks and examples

Remarks are presented under the following headings:

Univariate imputation using predictive mean matching
Using mi impute pmm
Video example

See [MI] mi impute for a general description and details about options common to all imputation methods, impute_options. Also see [MI] Workflow for general advice on working with mi.

Univariate imputation using predictive mean matching

Either predictive mean matching (pmm) or normal linear regression (regress) imputation methods can be used to fill in missing values of a continuous variable (Rubin 1987; Schenker and Taylor 1996). Predictive mean matching may be preferable to linear regression when the normality of the underlying model is suspect.

Predictive mean matching (PMM) is a partially parametric method that matches the missing value to the observed value with the closest predicted mean (or linear prediction). It was introduced by Little (1988) based on Rubin’s (1986) ideas applied to statistical file matching. PMM combines the standard linear regression and the nearest-neighbor imputation approaches. It uses the normal linear regression to obtain linear predictions. It then uses the linear prediction as a distance measure to form the set of nearest neighbors (possible donors) consisting of the complete values. Finally, it randomly draws an imputed value from this set. By drawing from the observed data, PMM preserves the distribution of the observed values in the missing part of the data, which makes it more robust than the fully parametric linear regression approach.

With PMM, you need to decide how many nearest neighbors to include in the set of possible donors. The number of nearest neighbors must be specified in mi impute pmm’s option kNN(). The number of nearest neighbors affects the correlation among imputations—the smaller the number, the higher the correlation. High correlation in turn increases the variability of the MI point estimates. Including too many possible donors may result in increased bias of the MI point estimates. Thus the number of nearest neighbors regulates the tradeoff between the bias and the variance of the point estimators in repeated sampling. The literature does not provide a definitive recommendation on how to choose this number in practice; see Schenker and Taylor (1996) and Morris, White, and Royston (2014) for some insight into this issue.

Using mi impute pmm

Recall the heart attack data from Univariate imputation in [MI] mi impute. We wish to fit a logistic regression of attack on some predictors, one of which, bmi, has missing values. To avoid losing information contained in complete observations of the other predictors, we impute bmi.
We showed one way of imputing bmi in [MI] mi impute regress. Suppose, however, that we want to restrict the imputed values of bmi to be within the range observed for bmi. We can use the PMM imputation method to restrict the values. This method may also be preferable to the regression imputation of bmi because the distribution of bmi is slightly skewed.

```
. use https://www.stata-press.com/data/r16/mheart0
(Fictional heart attack data; bmi missing)
. mi set mlong
. mi register imputed bmi
(22 m=0 obs. now marked as incomplete)
. mi impute pmm bmi attack smokes age hsgrad female, add(20) knn(1)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Complete</th>
<th>Incomplete</th>
<th>Imputed</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>bmi</td>
<td>132</td>
<td>22</td>
<td>22</td>
<td>154</td>
</tr>
</tbody>
</table>

(complete + incomplete = total; imputed is the minimum across m of the number of filled-in observations.)
```

In the above, mi impute pmm used one nearest neighbor to draw from. That is, it replaced missing values with an observed value whose linear prediction was the closest to that of the missing value. Using only one nearest neighbor will typically result in high variability of the MI estimates. You can increase the number of nearest neighbors from which the imputed value is drawn. For example, we use 5 below:

```
. mi impute pmm bmi attack smokes age hsgrad female, replace knn(5)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Complete</th>
<th>Incomplete</th>
<th>Imputed</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>bmi</td>
<td>132</td>
<td>22</td>
<td>22</td>
<td>154</td>
</tr>
</tbody>
</table>

(complete + incomplete = total; imputed is the minimum across m of the number of filled-in observations.)
```

See Morris, White, and Royston (2014) for recommendations on choosing the number of nearest neighbors with predictive mean matching.

You can now refit the logistic model and examine the effect of using more neighbors:

```
. mi estimate: logit attack smokes age bmi hsgrad female
(output omitted)
```

See [MI] mi impute, [MI] mi impute regress, and [MI] mi estimate for more details.
Video example

Multiple imputation: Setup, imputation, estimation—predictive mean matching

Stored results

mi impute pmm stores the following in r():

Scalars
- r(M) total number of imputations
- r(M_add) number of added imputations
- r(M_update) number of updated imputations
- r(knn) number of \(k \) nearest neighbors
- r(k_ivars) number of imputed variables (always 1)
- r(N_g) number of imputed groups (1 if by() is not specified)

Macros
- r(method) name of imputation method (pmm)
- r(ivars) names of imputation variables
- r(rngstate) random-number state used
- r(by) names of variables specified within by()

Matrices
- r(N) number of observations in imputation sample in each group
- r(N_complete) number of complete observations in imputation sample in each group
- r(N_incomplete) number of incomplete observations in imputation sample in each group
- r(N_imputed) number of imputed observations in imputation sample in each group

Methods and formulas

mi impute pmm follows the steps as described in Methods and formulas of [MI] mi impute regress with the exception of step 3.

Consider a univariate variable \(\mathbf{x} = (x_1, x_2, \ldots, x_n)' \) that follows a normal linear regression model

\[
 x_i | \mathbf{z}_i \sim N(\mathbf{z}_i' \beta, \sigma^2)
\]

where \(\mathbf{z}_i = (z_{i1}, z_{i2}, \ldots, z_{iq})' \) records values of predictors of \(\mathbf{x} \) for observation \(i \), \(\beta \) is the \(q \times 1 \) vector of unknown regression coefficients, and \(\sigma^2 \) is the unknown scalar variance. (Note that when a constant is included in the model—the default—\(z_{i1} = 1, \ i = 1, \ldots, n. \))

\(\mathbf{x} \) contains missing values that are to be filled in. Consider the partition of \(\mathbf{x} = (\mathbf{x}_o', \mathbf{x}_m') \) into \(n_0 \times 1 \) and \(n_1 \times 1 \) vectors containing the complete and the incomplete observations. Consider a similar partition of \(\mathbf{Z} = (\mathbf{Z}_o, \mathbf{Z}_m) \) into \(n_0 \times q \) and \(n_1 \times q \) submatrices.

mi impute pmm follows the steps below to fill in \(\mathbf{x}_m \) (for simplicity, we omit the conditioning on the observed data in what follows):

1. Fit a regression model (1) to the observed data \((\mathbf{x}_o, \mathbf{Z}_o) \) to obtain estimates \(\hat{\beta} \) and \(\hat{\sigma}^2 \) of the model parameters.

2. Simulate new parameters \(\beta_* \) and \(\sigma_*^2 \) from their joint posterior distribution under the conventional noninformative improper prior \(\Pr(\beta, \sigma^2) \propto 1/\sigma^2 \). This is done in two steps:

\[
 \sigma_*^2 \sim \hat{\sigma}^2 (n_0 - q)/\chi_{n_0-q}^2
\]
\[
 \beta_* | \sigma_*^2 \sim N \left\{ \hat{\beta}, \sigma_*^2 (\mathbf{Z}_o' \mathbf{Z}_o)^{-1} \right\}
\]
3. Generate the imputed values, x_{im}^j, as follows. Let \hat{x}_i be the linear prediction of x based on predictors Z for observation i. Then for any missing observation i of x, $x_i = x_{j_{\text{min}}}^j$, where j_{min} is randomly drawn from the set of indices \{i_1, i_2, \ldots, i_k\} corresponding to the first k minimums determined based on the absolute differences between the linear prediction for incomplete observation i and linear predictions for all complete observations, $|\hat{x}_i - \hat{x}_j|$, $j \in \text{obs}$. For example, if $k = 1$ (the default), j_{min} is determined based on $|\hat{x}_i - \hat{x}_{j_{\text{min}}}^j| = \min_{j \in \text{obs}} |\hat{x}_i - \hat{x}_j|$.

4. Repeat steps 2 and 3 to obtain M sets of imputed values, $x_{1m}, x_{2m}, \ldots, x_{Mm}$.

If weights are specified, a weighted linear regression model is fit to the observed data in step 1 (see [R] regress for details).

References

Also see

[MI] **mi impute** — Impute missing values
[MI] **mi impute intreg** — Impute using interval regression
[MI] **mi impute regress** — Impute using linear regression
[MI] **mi impute truncreg** — Impute using truncated regression
[MI] **mi estimate** — Estimation using multiple imputations
[MI] **Intro** — Introduction to mi
[MI] **Intro substantive** — Introduction to multiple-imputation analysis