
mi impute mvn — Impute using multivariate normal regression

Description Menu Syntax Options
Remarks and examples Stored results Methods and formulas References
Also see

Description
mi impute mvn fills in missing values of one or more continuous variables using multivariate normal

regression. It accommodates arbitrary missing-value patterns. You can perform separate imputations on

different subsets of the data by specifying the by() option. mi impute mvn uses an iterative Markov

chain Monte Carlo (MCMC) method to impute missing values. See Remarks and examples for details.

Menu
Statistics > Multiple imputation

Syntax
mi impute mvn ivars [ = indepvars ] [ if ] [ , impute options options ]

impute options Description

Main
∗ add(#) specify number of imputations to add; required when no imputations exist
∗ replace replace imputed values in existing imputations

rseed(#) specify random-number seed

double store imputed values in double precision; the default is to store them
as float

by(varlist[ , byopts ]) impute separately on each group formed by varlist

Reporting

dots display dots as imputations are performed

noisily display intermediate output

nolegend suppress all table legends

Advanced

force proceed with imputation, even when missing imputed values are
encountered

noupdate do not perform mi update; see [MI] noupdate option

∗add(#) is required when no imputations exist; add(#) or replace is required if imputations exist.

noupdate does not appear in the dialog box.
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https://www.stata.com/manuals/mimiimputemvn.pdf#mimiimputemvnRemarksandexamples
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/mimiimpute.pdf#mimiimputeOptionsbyopts
https://www.stata.com/manuals/minoupdateoption.pdf#minoupdateoption
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options Description

Main

noconstant suppress constant term

MCMC options

burnin(#) specify number of iterations for the burn-in period;
default is burnin(100)

burnbetween(#) specify number of iterations between imputations;
default is burnbetween(100)

prior(prior spec) specify a prior distribution; default is prior(uniform)
mcmconly perform MCMC for the length of the burn-in period without imputing

missing values

initmcmc(init mcmc) specify initial values for the MCMC procedure; default is
initmcmc(em) using the EM estimates for initial values

wlfwgt(matname) specify weights for the worst linear function

savewlf(filename[ , . . . ]) save the worst linear function from each iteration in filename.dta
saveptrace(fname[ , . . . ]) save MCMC parameter estimates from each iteration in

fname.stptrace; see [MI] mi ptrace

Reporting

emlog display iteration log from EM

emoutput display intermediate output from EM estimation

mcmcdots display dots as MCMC iterations are performed

alldots display dots as intermediate iterations are performed

nolog do not display information about the EM or MCMC procedures

Advanced

emonly[ (em options) ] perform EM estimation only

You must mi set your data before using mi impute mvn; see [MI] mi set.

You must mi register ivars as imputed before using mi impute mvn; see [MI] mi set.

indepvars may contain factor variables; see [U] 11.4.3 Factor variables.

collect is allowed; see [U] 11.1.10 Prefix commands.

prior spec Description

uniform use the uniform prior distribution; the default

jeffreys use the Jeffreys noninformative prior distribution

ridge, df(#) use a ridge prior distribution with degrees of freedom #

init mcmc Description

em[ , em options ] use EM to obtain starting values for MCMC; the default

initmatlist supply matrices containing initial values for MCMC

https://www.stata.com/manuals/mimiimputemvn.pdf#mimiimputemvnSyntaxprior_spec
https://www.stata.com/manuals/mimiimputemvn.pdf#mimiimputemvnSyntaxinit_mcmc
https://www.stata.com/manuals/u11.pdf#u11.6Filenamingconventions
https://www.stata.com/manuals/mimiptrace.pdf#mimiptrace
https://www.stata.com/manuals/mimiimputemvn.pdf#mimiimputemvnSyntaxem_options
https://www.stata.com/manuals/mimiset.pdf#mimiset
https://www.stata.com/manuals/mimiset.pdf#mimiset
https://www.stata.com/manuals/u11.pdf#u11.4.3Factorvariables
https://www.stata.com/manuals/u11.pdf#u11.1.10Prefixcommands
https://www.stata.com/manuals/mimiimputemvn.pdf#mimiimputemvnSyntaxem_options
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em options Description

iterate(#) specify the maximum number of iterations; default is iterate(100)
tolerance(#) specify tolerance for the changes in parameter estimates;

default is tolerance(1e-5)
init(init em) specify initial values for the EM algorithm; default is init(ac)
nolog do not show EM iteration log

saveptrace(fname[ , . . . ]) save EM parameter estimates from each iteration in
fname.stptrace; see [MI] mi ptrace

init em Description

ac use all available cases to obtain initial values for EM; the default

cc use only complete cases to obtain initial values for EM

initmatlist supply matrices containing initial values for EM

initmatlist is of the form initmat [ initmat [ . . . ] ]

initmat Description

betas(# |matname) specify coefficient vector; default is betas(0)
sds(# |matname) specify standard deviation vector; default is sds(1)
vars(# |matname) specify variance vector; default is vars(1)
corr(# |matname) specify correlation matrix; default is corr(0)
cov(matname) specify covariance matrix

In the above, # is understood to mean a vector containing all elements equal to #.

Options

� � �
Main �

noconstant; see [R] Estimation options.

add(), replace, rseed(), double, by(); see [MI] mi impute.

� � �
MCMC options �

burnin(#) specifies the number of iterations for the initial burn-in period. The default is burnin(100).
This option specifies the number of iterations necessary for theMCMC to reach approximate stationar-

ity or, equivalently, to converge to a stationary distribution. The required length of the burn-in period

will depend on the starting values used and the missing-data patterns observed in the data. It is impor-

tant to examine the chain for convergence to determine an adequate length of the burn-in period prior

to obtaining imputations; see Convergence of the MCMC method and examples 2 and 4. The pro-

vided default may be sufficient in many cases, but you are responsible for determining that sufficient

iterations are performed.

burnbetween(#) specifies a number of iterations of theMCMC to perform between imputations, the pur-

pose being to reduce correlation between sets of imputed values. The default is burnbetween(100).
As with burnin(), you are responsible for determining that sufficient iterations are performed. See
Convergence of the MCMC method and examples 2 and 4.

https://www.stata.com/manuals/mimiimputemvn.pdf#mimiimputemvnSyntaxinit_em
https://www.stata.com/manuals/mimiptrace.pdf#mimiptrace
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
https://www.stata.com/manuals/mimiimpute.pdf#mimiimpute
https://www.stata.com/manuals/mimiimputemvn.pdf#mimiimputemvnRemarksandexamplesConvergenceoftheMCMCmethod
https://www.stata.com/manuals/mimiimputemvn.pdf#mimiimputemvnRemarksandexamplesex2
https://www.stata.com/manuals/mimiimputemvn.pdf#mimiimputemvnRemarksandexamplesex4
https://www.stata.com/manuals/mimiimputemvn.pdf#mimiimputemvnRemarksandexamplesConvergenceoftheMCMCmethod
https://www.stata.com/manuals/mimiimputemvn.pdf#mimiimputemvnRemarksandexamplesex2
https://www.stata.com/manuals/mimiimputemvn.pdf#mimiimputemvnRemarksandexamplesex4
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prior(prior spec) specifies a prior distribution to be used by the MCMC procedure. The default is

prior(uniform). The alternative prior distributions are useful when the default estimation of the

parameters using maximum likelihood becomes unstable (for example, estimates on the boundary of

the parameter space) and introducing some prior information about parameters stabilizes the estima-

tion.

prior spec is

uniform | jeffreys | ridge, df(#)

uniform specifies the uniform (flat) prior distribution. Under this prior distribution, the posterior

distribution is proportional to the likelihood function and thus the estimate of the posterior mode

is the same as the maximum likelihood (ML) estimate.

jeffreys specifies the Jeffreys, noninformative prior distribution. This prior distribution can be

used when there is no strong prior knowledge about the model parameters.

ridge, df(#) specifies a ridge, informative prior distribution with the degrees of freedom #. This

prior introduces some information about the covariance matrix by smoothing the off-diagonal

elements (correlations) toward zero. The degrees of freedom, df(), which may be noninteger,
regulates the amount of smoothness—the larger this number, the closer the correlations are

to zero. A ridge prior is useful to stabilize inferences about the mean parameters when the

covariance matrix is poorly estimated, for example, when there are insufficient observations

to estimate correlations between some variables reliably because of missing data, causing the

estimated covariance matrix to become non–positive definite (see Schafer [1997, 155–157] for

details).

mcmconly specifies that mi impute mvn run theMCMC for the length of the burn-in period and then stop.

This option is useful in combination with savewlf() or saveptrace() to examine the convergence

of the MCMC prior to imputation. No imputation is performed when mcmconly is specified, so add()
or replace is not required with mi impute mvn, mcmconly, and they are ignored if specified. The
mcmconly option is not allowed with emonly.

initmcmc() may be specified as initmcmc(em [ , em options ]) or initmcmc(initmatlist).

initmcmc() specifies initial values for the regression coefficients and covariance matrix of the mul-

tivariate normal distribution to be used by theMCMC procedure. By default, initial values are obtained

from the EM algorithm, initmcmc(em).

initmcmc(em[ , em options ]) specifies that the initial values for theMCMC procedure be obtained from

EM. You can control the EM estimation by specifying em options. If the uniform prior is used, the

initial estimates correspond to the ML estimates computed using EM. Otherwise, the initial values are

the estimates of the posterior mode computed using EM.

em options are

iterate(#) specifies the maximum number of EM iterations to perform. The default is

iterate(100).

tolerance(#) specifies the convergence tolerance for the EM algorithm. The default is

tolerance(1e-5). Convergence is declared once the maximum of the relative changes be-

tween two successive estimates of all model parameters is less than #.

init() may be specified as init(ac), init(cc), or init(matlist)

init() specifies initial values for the regression coefficients and covariance matrix of the multi-

variate normal distribution to be used by the EM algorithm. init(ac) is the default.
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init(ac) specifies that initial estimates be obtained using all available cases. The initial values
for regression coefficients are obtained from separate univariate regressions of each impu-

tation variable on the independent variables. The corresponding estimates of the residual

mean-squared error are used as the initial values for the diagonal entries of the covariance

matrix (variances). The off-diagonal entries (correlations) are set to zero.

init(cc) specifies that initial estimates be obtained using only complete cases. The initial

values for regression coefficients and the covariance matrix are obtained from a multivariate

regression fit to the complete cases only.

init(initmatlist) specifies to use manually supplied initial values for the EM procedure and

syntactically is identical to mcmcinit(initmatlist), described below, except that you specify
init(initmatlist).

nolog suppresses the EM iteration log when emonly or emoutput is used.

saveptrace(fname[ , replace ]) specifies to save the parameter trace log from the EM algo-

rithm to a file called fname.stptrace. If the file already exists, the replace suboption spec-

ifies to overwrite the existing file. See [MI] mi ptrace for details about the saved file and how

to read it into Stata.

initmcmc(initmatlist), where initmatlist is

initmat [ initmat [ . . . ] ]

specifies manually supplied initial values for the MCMC procedure.

initmat is

betas(# |matname) specifies initial values for the regression coefficients. The default is

betas(0), implying a value of zero for all regression coefficients. If you specify betas(#),
then # will be used as the initial value for all regression coefficients. Alternatively, you can

specify the name of a Stata matrix, matname, containing values for each regression coefficient.

matname must be conformable with the dimensionality of the specified model. That is, it can

be one of the following dimensions: 𝑝 × 𝑞, 𝑞 × 𝑝, 1 × 𝑝𝑞, or 𝑝𝑞 × 1, where 𝑝 is the number of

imputation variables and 𝑞 is the number of independent variables.
sds(# |matname) specifies initial values for the standard deviations (square roots of the diagonal

elements of the covariance matrix). The default is sds(1), which sets all standard deviations
and thus variances to one. If you specify sds(#), then the squared # will be used as the initial

value for all variances. Alternatively, you can specify the name of a Stata matrix, matname,

containing individual values. matname must be conformable with the dimensionality of the

specified model. That is, it can be one of the following dimensions: 1 × 𝑝 or 𝑝 × 1, where 𝑝 is

the number of imputation variables. This option cannot be combined with cov() or vars().
The sds() option can be used in combination with corr() to provide initial values for the

covariance matrix.

vars(# |matname) specifies initial values for variances (diagonal elements of the covariance

matrix). The default is vars(1), which sets all variances to one. If you specify vars(#), then
# will be used as the initial value for all variances. Alternatively, you can specify the name of a

Stata matrix, matname, containing individual values. matname must be conformable with the

dimensionality of the specified model. That is, it can be one of the following dimensions: 1×𝑝
or 𝑝 × 1, where 𝑝 is the number of imputation variables. This option cannot be combined with

cov() or sds(). The vars() option can be used in combination with corr() to provide initial
values for the covariance matrix.

https://www.stata.com/manuals/mimiptrace.pdf#mimiptrace
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corr(# |matname) specifies initial values for the correlations (off-diagonal elements of the cor-

relation matrix). The default is corr(0), which sets all correlations and, thus, covariances to
zero. If you specify corr(#), then all correlation coefficients will be set to #. Alternatively, you
can specify the name of a Stata matrix, matname, containing individual values. matname can

be a square 𝑝×𝑝 matrix with diagonal elements equal to one or it can contain the corresponding
lower (upper) triangular matrix in a vector of dimension 𝑝(𝑝 + 1)/2, where 𝑝 is the number of

imputation variables. This option cannot be combined with cov(). The corr() option can be

used in combination with sds() or vars() to provide initial values for the covariance matrix.

cov(matname) specifies initial values for the covariance matrix. matnamemust contain the name

of a Stata matrix. matname can be a square 𝑝 × 𝑝 matrix or it can contain the corresponding

lower (upper) triangular matrix in a vector of dimension 𝑝(𝑝 + 1)/2, where 𝑝 is the number of

imputation variables. This option cannot be combined with corr(), sds(), or vars().

wlfwgt(matname) specifies the weights (coefficients) to use when computing the worst linear function

(WLF). The coefficients must be saved in a Stata matrix, matname, of dimension 1 × 𝑑, where 𝑑 =
𝑝𝑞 + 𝑝(𝑝 + 1)/2, 𝑝 is the number of imputation variables, and 𝑞 is the number of predictors. This

option is useful when initial values from the EM estimation are supplied to data augmentation (DA) as

matrices. This option can also be used to obtain the estimates of linear functions other than the default

WLF. This option cannot be combined with by().

savewlf(filename[ , replace ]) specifies to save the estimates of theWLF from each iteration ofMCMC

to a Stata dataset called filename.dta. If the file already exists, the replace suboption specifies to

overwrite the existing file. This option is useful for monitoring convergence of theMCMC. savewlf()
is allowed with initmcmc(em), when the initial values are obtained using the EM estimation, or with

wlfwgt(). This option cannot be combined with by().

saveptrace(fname[ , replace ]) specifies to save the parameter trace log from the MCMC to a file

called fname.stptrace. If the file already exists, the replace suboption specifies to overwrite the

existing file. See [MI] mi ptrace for details about the saved file and how to read it into Stata. This

option is useful for monitoring convergence of theMCMC. This option cannot be combined with by().

� � �
Reporting �

dots, noisily, nolegend; see [MI]mi impute. Also, noisily is a synonym for emoutput. nolegend
suppresses group legends that may appear when the by() option is used. It is a synonym for by(,
nolegend).

emlog specifies that the EM iteration log be shown. The EM iteration log is not displayed unless emonly
or emoutput is specified.

emoutput specifies that the EM output be shown. This option is implied with emonly.

mcmcdots specifies to display all MCMC iterations as dots.

alldots specifies to display all intermediate iterations as dots in addition to the imputation dots. These

iterations include the EM iterations and the MCMC burn-in iterations. This option implies mcmcdots.

nolog suppresses all output from EM or MCMC that is usually displayed by default.

� � �
Advanced �

force; see [MI] mi impute.

https://www.stata.com/manuals/u11.pdf#u11.6Filenamingconventions
https://www.stata.com/manuals/mimiptrace.pdf#mimiptrace
https://www.stata.com/manuals/mimiimpute.pdf#mimiimpute
https://www.stata.com/manuals/mimiimpute.pdf#mimiimpute
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emonly[ (em options) ] specifies that mi impute mvn perform EM estimation and then stop. You can

control the EM process by specifying em options. This option is useful at the preliminary stage to

obtain insight about the length of the burn-in period as well as to choose a prior specification. No

imputation is performed, so add() or replace is not required with mi impute mvn, emonly, and
they are ignored if specified. The emonly option is not allowed with mcmconly.

The following option is available with mi impute but is not shown in the dialog box:

noupdate; see [MI] noupdate option.

Remarks and examples
Remarks are presented under the following headings:

Incomplete continuous data with arbitrary pattern of missing values
Multivariate imputation using data augmentation
Convergence of the MCMC method
Using mi impute mvn
Examples

See [MI] mi impute for a general description and details about options common to all imputation

methods, impute options. Also see [MI]Workflow for general advice on working with mi.

Incomplete continuous data with arbitrary pattern of missing values
As we described in detail in Multivariate imputation in [MI] mi impute, imputation of multiple vari-

ables with an arbitrary pattern of missing values is more challenging than when the missing-data pattern

is monotone.

One approach for dealing with an arbitrary missing-value pattern is to assume an explicit tractable

parametric model for the data and draw imputed values from the resulting distribution of the missing

data given observed data. One of the more popular parametric models is the Gaussian normal model;

see Rubin (1987) for other recommendations. Although a multivariate normal model is straightforward,

difficulty arises in the simulation from the corresponding, more complicated, distribution of the missing

data. One solution is to use one of the Bayesian iterative Markov chain Monte Carlo (MCMC) procedures

to approximate the distribution of missing data.

Multivariate imputation using data augmentation
mi impute mvn uses data augmentation (DA) —an iterative MCMC procedure—to generate imputed

values assuming an underlying multivariate normal model. For details about DA as a general MCMC

procedure, see Gelman et al. (2014), Tanner and Wong (1987), and Li (1988), among others. For ap-

plications of DA to incomplete multivariate normal data, see, for example, Little and Rubin (2020) and

Schafer (1997). Below we briefly describe the idea behind DA; see Methods and formulas for details.

Consider multivariate dataX = (X𝑜,X𝑚), decomposed into the observed partX𝑜 and the missing part

X𝑚, from a normal distribution Pr(X|θ) = 𝑁(β, 𝚺), where θ denotes the unknown model parameters

(regression coefficientsβ and unique elements of the covariancematrix𝚺). The goal is to replacemissing

values in X𝑚 with draws from the distribution (or the predictive distribution in Bayesian terminology)

of the missing data given observed data, Pr(X𝑚|X𝑜). The actual predictive distribution Pr(X𝑚|X𝑜) is
difficult to draw from directly because of an underlying dependence on the posterior distribution of the

unknown parameters θ, Pr(θ|X𝑜).

https://www.stata.com/manuals/mimiimputemvn.pdf#mimiimputemvnOptionsem_options
https://www.stata.com/manuals/minoupdateoption.pdf#minoupdateoption
https://www.stata.com/manuals/mimiimpute.pdf#mimiimpute
https://www.stata.com/manuals/miworkflow.pdf#miWorkflow
https://www.stata.com/manuals/mimiimpute.pdf#mimiimputeRemarksandexamplesMultivariateimputation
https://www.stata.com/manuals/mimiimpute.pdf#mimiimpute
https://www.stata.com/manuals/mimiimputemvn.pdf#mimiimputemvnMethodsandformulas
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Originally, DAwas used to approximate the posterior distribution of the model parameters, Pr(θ|X𝑜),
in Bayesian applications with incomplete data. The idea of DA is to augment the observed data, X𝑜, with

the latent (unobserved) data, X𝑚, such that the conditional posterior distribution Pr(θ|X𝑜,X𝑚) becomes
more tractable and easier to simulate from. Then the procedure becomes as follows. For a current θ(𝑡),

draw X
(𝑡+1)
𝑚 from its conditional predictive distribution given the observed data and θ, Pr(X𝑚|X𝑜,θ(𝑡)).

Next draw θ(𝑡+1) from its conditional posterior distribution given the augmented data, Pr(θ|X𝑜,X(𝑡+1)
𝑚 ).

Continue to iterate until the sequence {(X(𝑡)
𝑚 ,θ(𝑡)) ∶ 𝑡 = 1, 2, . . . }, an MCMC sequence, converges

to a stationary distribution Pr(θ,X𝑚|X𝑜). This way a complicated task of simulating from Pr(θ|X𝑜)
is replaced by a sequence of simpler simulation tasks of iteratively sampling from Pr(θ|X𝑜,X𝑚) and
Pr(X𝑚|X𝑜,θ). How is this procedure related to imputation? The sequence {X(𝑡)

𝑚 ∶ 𝑡 = 1, 2, . . . } contains
draws from an approximate predictive distribution Pr(X𝑚|X𝑜), and thus X(𝑡)

𝑚 ’s are, in fact, imputations.

The convergence of this procedure was studied by Li (1988).

The functional forms of the conditional distributions Pr(θ|X𝑜,X𝑚) and Pr(X𝑚|X𝑜,θ) are determined
from the assumed distribution of the data, X, and a prior distribution for the model parameters, θ, Pr(θ).
mi impute mvn assumes a normal distribution for the data and supports three prior distributions: uniform,
Jeffreys, and ridge.

The prior distributions are categorized into noninformative (or also vague, diffuse, flat, reference)

and informative prior distributions. The noninformative priors provide no extra information about model

parameters beyond that already contained in the data. These priors are recommended when no strong

prior knowledge is available about the parameters. Informative prior distributions are used when there is

some a priori knowledge about the distribution of the parameters. For example, prior information about

cancer mortality rates in a Poisson model can be assigned based on the available worldwide estimate.

The uniform and Jeffreys priors are noninformative priors. The ridge prior is an informative prior.

The uniform prior assumes that all values of the parameters are equally probable. Under this prior

specification, the posterior distribution of the parameters is equivalent to the likelihood function, and so

the Bayesian and frequentist methods coincide. The Jeffreys prior is another widely used noninformative

prior distribution, and with small samples, it may be preferable to the uniform prior. A ridge prior is often

used when the estimated covariance matrix becomes singular (or nearly singular), as may occur with

sparse missing data if there are not enough observations to estimate reliably all aspects of the covariance

matrix. Aridge prior smooths the estimate of the covariancematrix toward a diagonal structure depending

on the chosen degrees of freedom; the larger the degrees of freedom, the closer is the estimated covariance

matrix to the diagonal matrix (see Schafer [1997, 155–157] for details).

Convergence of the MCMC method
For a brief overview of convergence of MCMC, see Convergence of iterative methods in [MI] mi

impute.

The MCMC procedure DA is iterated until an MCMC sequence {(X(𝑡)
𝑚 ,θ(𝑡)) ∶ 𝑡 = 1, 2, . . . } converges

to a stationary distribution. Unlike maximum likelihood, EM, or other optimization-based procedures,

the DA procedure does not have a simple stopping rule that guarantees the convergence of the chain to

a stationary distribution. Thus the question of how long to iterate to achieve convergence arises. In

addition to determining convergence of MCMC, we must also investigate the serial dependence known to

exist among the MCMC draws to obtain independent imputations.

https://www.stata.com/manuals/mimiimpute.pdf#mimiimputeRemarksandexamplesConvergenceofiterativemethods
https://www.stata.com/manuals/mimiimpute.pdf#mimiimpute
https://www.stata.com/manuals/mimiimpute.pdf#mimiimpute
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Suppose that after an initial burn-in period, 𝑏, the sequence {(X(𝑏+𝑡)
𝑚 ) ∶ 𝑡 = 1, 2, . . . } (imputations)

can be regarded as an approximate sample from Pr(X𝑚|X𝑜). In general, this sample will not contain

independent observations because the successive iterates of the MCMC tend to be correlated. To achieve

independence among imputations, we can sample the chain. To do that, we need to determine the number

of iterations, 𝑘, such that X
(𝑡)
𝑚 and X

(𝑡+𝑘)
𝑚 are approximately independent. Then imputations can be

obtained as the chain values of X𝑚 from iterations 𝑏, 𝑏 + 𝑘, 𝑏 + 2𝑘, . . . , 𝑏 + 𝑚𝑘, where 𝑚 is the required

number of imputations. In our definition, 𝑏 is the number of iterations necessary for the chain to achieve
stationarity and 𝑘 is the number of iterations between imputations necessary to achieve independent

values of the chain.

Before we proceed, we notice that from the properties of MCMC, the convergence of the chain

{(X(𝑡)
𝑚 ,θ(𝑡)) ∶ 𝑡 = 1, 2, . . . } to Pr(θ,X𝑚|X𝑜) is equivalent to the convergence of {(θ(𝑡)) ∶ 𝑡 = 1, 2, . . . }

to Pr(θ|X𝑜) or, alternatively, of {(X(𝑡)
𝑚 ) ∶ 𝑡 = 1, 2, . . . } to Pr(X𝑚|X𝑜). Because the parameter series

are usually of lower dimension, we examine convergence using the series of parameter estimates rather

than the series of imputations.

How to determine convergence and, in particular, to choose values for 𝑏 and 𝑘, has received much

attention in the MCMC literature. In practice, convergence is often examined visually from the trace

and autocorrelation plots of the estimated parameters. Trace plots are plots of estimated parameters

against iteration numbers. Long-term trends in trace plots and high serial dependence in autocorrelation

plots are indicative of a slow convergence to stationarity. A value of 𝑏 can be inferred from a trace plot

as the earliest iteration after which the chain does not exhibit a visible trend and the parameter series

stabilize, which is to say the fluctuations in values become more regular. A value of 𝑘 can be chosen

from autocorrelation plots as the lag 𝑘 for which autocorrelations of all parameters decrease to zero.

When the initial values are close to the posterior mode, the initial number of iterations, 𝑏, and number

of iterations between imputations, 𝑘, will be similar. When the initial values are far off in the tails of the

posterior distribution, the initial number of iterations will generally be larger.

In practice, when the number of parameters in the model is large, it may not be feasible to monitor

the convergence of all the individual series. One solution is to find a function of the parameters that

would be the slowest to converge to stationarity. The convergence of the series for this function will

then be indicative of the convergence of other functions and, in particular, individual parameter series.

Schafer (1997, 129–131) suggests the worst linear function (WLF), the function corresponding to the

linear combination of the parameter estimates where the coefficients are chosen such that this function has

the highest asymptotic rate of missing information; see Methods and formulas for computational details.

He found that when the observed-data posterior distribution is nearly normal, this function is among the

slowest to approach stationarity. Thus we can determine 𝑏 and 𝑘 by monitoring the convergence of the

WLF.When the observed-data posterior is not normal and some aspects of the model are poorly estimated,

the WLF may not be the slowest to converge. In such cases, we recommend exploring convergence of

other functions or of individual parameter series.

The number of iterations necessary for DA to converge depends on the rate of convergence of DA. The

rate of convergence of DAmainly depends on the fractions of missing information and initial values. The

higher the fractions of missing information and the farther the initial values are from the posterior mode,

the slower the convergence, and thus the larger the number of iterations required. Initial values for the

DA procedure can be obtained from the EM algorithm for incomplete data (for example, Dempster, Laird,

and Rubin [1977]). In addition, the number of iterations necessary for the DA procedure to converge can

be inferred based on the number of iterations that the EM algorithm took to converge (Schafer 1997).

https://www.stata.com/manuals/mimiimputemvn.pdf#mimiimputemvnMethodsandformulas


mi impute mvn — Impute using multivariate normal regression 10

The convergence of the chain and the required number of iterations can be also inferred by running

multiple independent MCMC sequences using overdispersed initial values, that is, initial values from

a distribution with greater variability than that of the posterior distribution (Gelman and Rubin 1992;

Schafer 1997, 126–128). Then the number of iterations can be taken to be the largest iteration number

for which the series in all the chains stabilize.

Although the graphical summaries described above are useful in checking convergence, they must be

used with caution. They can be deceptive in cases when the observed-data posterior has an odd shape or

has multiple modes, which may happen with small sample sizes or sparse missing data. Examination of

the data and missing-data patterns, as well as the behavior of the EM algorithm, are highly recommended

when investigating theMCMC convergence. How one checks for convergence will be shown in examples

2 and 4.

Using mi impute mvn
mi impute mvn imputes missing data using DA, an iterativeMCMCmethod, assuming the multivariate

normal distribution for the data. For the discussion of options, such as add() and replace, common to
all imputation methods, see [MI] mi impute. Here we focus on the options and functionality specific to

mi impute mvn.

The twomain options are burnin() (which specifies the number of iterations necessary for theMCMC

to converge, 𝑏) and burnbetween() (which specifies the number of iterations between imputations, 𝑘).
We discussed how to choose these values in the previous section. By default, these values are arbitrarily

set to be 100 each.

You can choose from the three prior specifications. You can use prior(uniform) (the default) to

specify the uniform prior, prior(jeffreys) to specify the Jeffreys prior, or prior(ridge, df()) to

specify a ridge prior. You must also choose the degrees of freedom with a ridge prior.

For initial values, mi impute mvn uses the estimates from the EM algorithm for incomplete data

(initmcmc(em)). When the uniform prior distribution is used, the estimates obtained from EM areMLEs.

Under other prior specifications, the estimates from EM correspond to the posterior mode of the respec-

tive posterior distribution of the model parameters. Using the estimates from EM as initial values in

general accelerates the convergence of MCMC. To determine convergence, it may also be useful to try

different sets of initial values. You can do this by creating Stata matrices containing the initial values and

supplying them in the respective initmcmc() suboptions betas(), cov(), etc.

You can save the estimates of the WLF and parameter series from MCMC iterations by using the

savewlf() and saveptrace() options. These options are useful when examining convergence of

MCMC, as we will demonstrate in examples 2 and 4. You can use mi impute mvn to run the MCMC

without imputing the data if you specify the mcmconly option. This option is useful in combination with

savewlf() or saveptrace() when examining convergence of MCMC. When mcmconly is specified,

the DA procedure is performed for the number of iterations as specified in burnin() and no imputations

are performed.

You can also perform the EM estimation withoutMCMC iterations if you specify the emonly() option.

This option is useful for detecting convergence problems prior to runningMCMC. The number of iterations

EM takes to converge can be used as an approximation for the burn-in period. Also, slow convergence of

the EM algorithm can reveal problems with estimability of certain model parameters.

https://www.stata.com/manuals/mimiimputemvn.pdf#mimiimputemvnRemarksandexamplesex2
https://www.stata.com/manuals/mimiimputemvn.pdf#mimiimputemvnRemarksandexamplesex4
https://www.stata.com/manuals/mimiimpute.pdf#mimiimpute
https://www.stata.com/manuals/mimiimputemvn.pdf#mimiimputemvnRemarksandexamplesex2
https://www.stata.com/manuals/mimiimputemvn.pdf#mimiimputemvnRemarksandexamplesex4
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Examples

Example 1: Monotone-missing data
Recall the heart attack example from Multivariate imputation in [MI] mi impute, where we used mi

impute mvn to impute missing values for age and bmi that follow a monotone-missing pattern:

. use https://www.stata-press.com/data/r19/mheart5s0
(Fictional heart attack data)
. mi impute mvn age bmi = attack smokes hsgrad female, add(10)
Performing EM optimization:
note: 12 observations omitted from EM estimation because of all imputation

variables missing.
observed log likelihood = -651.75868 at iteration 7

Performing MCMC data augmentation ...
Multivariate imputation Imputations = 10
Multivariate normal regression added = 10
Imputed: m=1 through m=10 updated = 0
Prior: uniform Iterations = 1000

burn-in = 100
between = 100

Observations per m

Variable Complete Incomplete Imputed Total

age 142 12 12 154
bmi 126 28 28 154

(Complete + Incomplete = Total; Imputed is the minimum across m
of the number of filled-in observations.)

In the above, we omitted the nolog option that was present in the example in [MI] mi impute.

In addition to the output reported by all imputation methods, mi impute mvn also provides some

specific information.

As we previously explained, mi impute mvn uses an iterative MCMC technique to impute missing

values. The two phases of mi impute mvn are 1) obtaining initial values (unless supplied directly) and

2) performing the MCMC procedure from which imputations are obtained. These two phases are noted in

the output header.

In this example, the initial values are obtained using the EM method (the default). We see from the

output that EM converged in seven iterations. A note displayed thereafter reports that 12 observations

contain missing values for both bmi and age and were omitted. The note is just explanatory and should

not cause you concern. Those 12 observations would contribute nothing to the likelihood function even

if they were included, although the algorithm would take longer to converge.

The estimates from EM are used as initial values for DA. The first part of the table header, containing

the information about the method used and the number of imputations, was described in detail in [MI]mi

impute. The second part of the table header is specific to mi impute mvn. From the output, a total of

1,000 iterations ofMCMC are performed. The first 100 iterations (the default) are used for the burn-in pe-

riod (burn-in = 100), the first imputation calculated from the last iteration; thereafter, each subsequent

https://www.stata.com/manuals/mimiimpute.pdf#mimiimputeRemarksandexamplesMultivariateimputation
https://www.stata.com/manuals/mimiimpute.pdf#mimiimpute
https://www.stata.com/manuals/mimiimpute.pdf#mimiimputeRemarksandexamplesage_ex
https://www.stata.com/manuals/mimiimpute.pdf#mimiimpute
https://www.stata.com/manuals/mimiimpute.pdf#mimiimpute
https://www.stata.com/manuals/mimiimpute.pdf#mimiimpute
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imputation is calculated after performing another 100 iterations. The default uniform prior is used for

both the EM estimation and the MCMC procedure. Under this prior, the parameter estimates obtained are

MLEs.

Example 2: Checking convergence of MCMC
In example 1, the monotone missingness of age and bmi as well as the quick convergence of EM

suggest that the MCMC must converge rapidly. In fact, we know that under a monotone-missing pattern,

no iterations are needed to obtain imputed values (see [MI] mi impute monotone). Let’s examine the

convergence of the MCMC procedure for the above heart attack data, the point being to see what quick

convergence looks like.

As we discussed earlier, convergence is often assessed from the trace plots of the MCMC parameter

estimates. Because of a possibly large number of estimated parameters, this approach may be tedious.

Alternatively, we can plot theWLF for which the convergence is generally the slowest.

We use the savewlf(wlf) option to save estimates of the WLF to a Stata dataset called wlf.dta.
To examine the convergence of MCMC, we do not need imputation, and so we use the mcmconly option

to perform the MCMC procedure without subsequent imputation. We use a total of 1000 = 10 × 100

iterations (burnin(1000) option), corresponding to the length of the MCMC to obtain 10 imputations:

. mi impute mvn age bmi = attack smokes hsgrad female, mcmconly burnin(1000)
> rseed(2232) savewlf(wlf)
Performing EM optimization:
note: 12 observations omitted from EM estimation because of all imputation

variables missing.
observed log likelihood = -651.75868 at iteration 7

Performing MCMC data augmentation ...
Note: No imputation performed.

We also specified the rseed(2232) option so that we can reproduce our results.

The created dataset contains three variables: iter, m, and wlf. The iter variable records iterations

(the burn-in iterations are recorded as negative integers). The m variable records imputation numbers to

which the iteration sequence corresponds (m contains 0 if mcmconly is used). The wlf variable records

theWLF estimates.

. use wlf, clear

. describe
Contains data from wlf.dta
Observations: 1,000

Variables: 3 4 Mar 2025 08:52

Variable Storage Display Value
name type format label Variable label

iter long %12.0g
m long %12.0g
wlf double %10.0g

Sorted by:

We use the time-series commands tsline and ac (see [TS] tsline and [TS] corrgram) to plot the

estimates and autocorrelations of wlf with respect to the iteration number. We first use tsset to set

iter as the “time” variable and then use tsline to obtain a trace plot:

https://www.stata.com/manuals/mimiimputemvn.pdf#mimiimputemvnRemarksandexamplesex1
https://www.stata.com/manuals/mimiimputemonotone.pdf#mimiimputemonotone
https://www.stata.com/manuals/tstsline.pdf#tstsline
https://www.stata.com/manuals/tscorrgram.pdf#tscorrgram
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. tsset iter
Time variable: iter, -999 to 0

Delta: 1 unit
. tsline wlf, ytitle(Worst linear function) xtitle(Burn-in period)
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The graph shows no visible trend in the estimates of theWLF, just as we expected. Convergence ofMCMC

by the 100th iteration should be assured. In fact, taking into account the declared convergence of the EM

algorithm in only seven iterations, we would be comfortable with using a much smaller burn-in period

of, say, 10 iterations.

We next examine the autocorrelation in the WLF to obtain an idea of how many iterations to use

between imputations to ensure their approximate independence:

. ac wlf, title(Worst linear function) ytitle(Autocorrelations)
> ciopts(astyle(none)) note(””)
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From the graphical output, the autocorrelations die off quickly. This suggests that we can use a smaller

number, say, 10 or 20, rather than the default 100 iterations for the burn-between period.

We considered an example with a monotone-missing pattern. mi impute mvn is designed to accom-

modate arbitrary missing-data patterns, so let’s consider an example with them.
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Example 3: Arbitrary missing-data pattern
Consider data on house resale prices provided by the Albuquerque Board of Realtors and dis-

tributed by the Data and Story Library. You can find a detailed description of the data at

http://www.pmean.com/00files/housing.htm.

. use https://www.stata-press.com/data/r19/mhouses1993
(Albuquerque home prices Feb15--Apr30, 1993)
. describe
Contains data from https://www.stata-press.com/data/r19/mhouses1993.dta
Observations: 117 Albuquerque home prices

Feb15--Apr30, 1993
Variables: 8 19 Jun 2024 10:50

(_dta has notes)

Variable Storage Display Value
name type format label Variable label

price int %8.0g Sale price (hundreds)
sqft int %8.0g Square footage of living space
age byte %10.0g Home age (years)
nfeatures byte %8.0g Number of certain features
ne byte %8.0g Located in northeast (largest

residential) sector of the city
custom byte %8.0g Custom build
corner byte %8.0g Corner location
tax int %10.0g Tax amount (dollars)

Sorted by:

The dataset includes eight variables. The primary variable of interest is price, and other variables are
used as its predictors.

We investigate the missing-data patterns of these data using misstable:

. misstable pattern
Missing-value patterns

(1 means complete)
Pattern

Percent 1 2

56% 1 1

35 1 0
7 0 0
2 0 1

100%
Variables are (1) tax (2) age

. misstable nested
1. tax(10)
2. age(49)

We see from the output only 56% of observations are complete; the remaining 44% contain missing

values of age or tax. The tax variable contains 10 missing values, and the age variable contains 49

missing values. misstable nested reports that missing values of age and tax are not nested because

there are two statements describing the missing-value pattern; see [R] misstable for details.

http://www.pmean.com/00files/housing.htm
https://www.stata.com/manuals/rmisstable.pdf#rmisstable


mi impute mvn — Impute using multivariate normal regression 15

Let’s use mi impute mvn to impute missing values of age and tax. Before we do that, a quick ex-

amination of the data revealed that the distribution for age and tax are somewhat skewed. As such, we

choose to impute the variables on a log-transformed scale.

Following the steps as described in Imputing transformations of incomplete variables of [MI]mi im-

pute, we create new variables containing the log values,

. generate lnage = ln(age)
(49 missing values generated)
. generate lntax = ln(tax)
(10 missing values generated)

and register them as imputed variables,

. mi set mlong

. mi register imputed lnage lntax
(51 m=0 obs now marked as incomplete)
. mi register regular price sqft nfeatures ne custom corner

We mi set our data as mlong and register the complete variables as regular. For the purpose of this

analysis, we leave passive variables age and tax unregistered. (Note that all missing values of the

created lnage and lntax variables are eligible for imputation; see [MI] mi impute for details.)

We now use mi impute mvn to impute values of lnage and lntax:

. mi impute mvn lnage lntax = price sqft nfeatures ne custom corner, add(20)
Performing EM optimization:
note: 8 observations omitted from EM estimation because of all imputation

variables missing.
observed log likelihood = 112.1464 at iteration 48

Performing MCMC data augmentation ...
Multivariate imputation Imputations = 20
Multivariate normal regression added = 20
Imputed: m=1 through m=20 updated = 0
Prior: uniform Iterations = 2000

burn-in = 100
between = 100

Observations per m

Variable Complete Incomplete Imputed Total

lnage 68 49 49 117
lntax 107 10 10 117

(Complete + Incomplete = Total; Imputed is the minimum across m
of the number of filled-in observations.)

Example 4: Checking convergence of MCMC
In the above example, we arbitrarily created 20 imputations. The output is similar to that of the earlier

example. Here the EM algorithm converges by the 48th iteration. This suggests that, again, the default

100 iterations for the burn-in period should be sufficient for the convergence ofMCMC. Nevertheless, we

choose to confirm this visually by repeating the steps from example 2.

https://www.stata.com/manuals/mimiimpute.pdf#mimiimputeRemarksandexamplesImputingtransformationsofincompletevariables
https://www.stata.com/manuals/mimiimpute.pdf#mimiimpute
https://www.stata.com/manuals/mimiimpute.pdf#mimiimpute
https://www.stata.com/manuals/mimiimpute.pdf#mimiimpute
https://www.stata.com/manuals/mimiimputemvn.pdf#mimiimputemvnRemarksandexamplesex2
https://www.stata.com/manuals/mimiimputemvn.pdf#mimiimputemvnRemarksandexamplesex2
https://www.stata.com/manuals/mimiimputemvn.pdf#mimiimputemvnRemarksandexamplesex2
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We run the MCMC for a total of 2,000 iterations (as would be necessary to obtain 20 imputations)

without imputing data and set the seed for reproducibility. We overwrite the existing wlf.dta file to

contain the new estimates of theWLF by specifying replace within savelwf():

. mi impute mvn lnage lntax = price sqft nfeatures ne custom corner,
> mcmconly burnin(2000) rseed(23) savewlf(wlf, replace)
Performing EM optimization:
note: 8 observations omitted from EM estimation because of all imputation

variables missing.
observed log likelihood = 112.1464 at iteration 48

Performing MCMC data augmentation ...
Note: No imputation performed.

We generate the same graphs as in example 2, this time using the new estimates of theWLF:

. preserve

. use wlf, clear

. tsset iter
Time variable: iter, -1999 to 0

Delta: 1 unit
. tsline wlf, ytitle(Worst linear function) xtitle(Burn-in period)
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https://www.stata.com/manuals/mimiimputemvn.pdf#mimiimputemvnRemarksandexamplesex2
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. ac wlf, title(Worst linear function) ytitle(Autocorrelations)
> ciopts(astyle(none)) note(””)
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Compared with the earlier graphs, the time-series graphs do not reveal any apparent trend, but the auto-

correlation dies out more slowly. The default values of 100 for the initial burn-in and between-imputation

iterations should be sufficient.

Example 5: Alternative prior distribution
Consider some hypothetical data:

. use https://www.stata-press.com/data/r19/mvnexample0
(Fictional data for -mi impute mvn-)
. mi describe
Style: mlong

last mi update 04feb2025 12:58:57, 11 days ago
Observations:

Complete 3
Incomplete 17 (M = 0 imputations)

Total 20
Variables:

Imputed: 3; x1(16) x2(5) x3(17)
Passive: 0
Regular: 0
System: 3; _mi_m _mi_id _mi_miss
(there are no unregistered variables)

Continuous normally distributed variables x1, x2, and x3 contain missing values. For illustration pur-

poses, we consider an extreme case when some variables (x1 and x3 here) contain only a few complete

observations.
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We use mi impute mvn to impute missing values and create 30 imputations. Notice that in this ex-

ample, we do not have complete predictors, and so the right-hand-side specification is empty:

. mi imp mvn x1-x3, add(30) rseed(332247)
Performing EM optimization:
note: 4 observations omitted from EM estimation because of all imputation

variables missing.
observed log likelihood = 6.5368927 at iteration 100
(EM did not converge)

Performing MCMC data augmentation ...
Iteration 145: variance--covariance matrix (Sigma) became not
positive definite posterior distribution is not proper
error occurred during imputation of x1 x2 x3 on m = 2

r(498);

mi impute mvn terminates with an error reporting that the estimated variance–covariance matrix became
non–positive definite. mi impute mvn terminated because the posterior predictive distribution ofmissing
data is not proper, but notice also that EM did not converge after the default 100 iterations.

There are two issues here. First, because EM did not converge after 100 iterations, we suspect that

the default 100 iterations used for the burn-in period may not be large enough for MCMC to converge.

Second, the observed missing-data pattern presents difficulties with estimating the covariance matrix

reliably, which leads to a non–positive-definite estimate during the MCMC iteration.

The first issue may be resolved by increasing the maximum number of iterations for EM by using EM’s

iterate() suboption. Convergence of EM, however, does not guarantee convergence of the MCMC by

the same number of iterations. For one, the convergence of EM is relative to the specified tolerance, and

more stringent conditions may lead to a nonconvergent result. As such, we recommend that you always

examine the obtained MCMC results.

The second issue is not surprising. Recall that x1 and x3 have very few complete observations. So

the aspects of the covariance structure involving those variables (for example, the covariance between

x1 and x2) are difficult to estimate reliably based on the information from the observed data only. The

default uniform prior may not be viable here.

One solution is to introduce prior information to stabilize the estimation of the covariance matrix. We

can do this by specifying a ridge prior using the prior() option. We introduce only a small amount of

information by using a degrees of freedom value of 0.1:

https://www.stata.com/manuals/perror.pdf#perrorRemarksandexamplesr(498)
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. mi imp mvn x1-x3, add(30) prior(ridge, df(0.1)) rseed(332247)
Performing EM optimization:
note: 4 observations omitted from EM estimation because of all imputation

variables missing.
observed log posterior = -1.13422 at iteration 100
(EM did not converge)

Performing MCMC data augmentation ...
Multivariate imputation Imputations = 30
Multivariate normal regression added = 30
Imputed: m=1 through m=30 updated = 0
Prior: ridge, df=.1 Iterations = 3000

burn-in = 100
between = 100

Observations per m

Variable Complete Incomplete Imputed Total

x1 4 16 16 20
x2 15 5 5 20
x3 3 17 17 20

(Complete + Incomplete = Total; Imputed is the minimum across m
of the number of filled-in observations.)

This appears to be enough to alleviate the problem of a non–positive-definite estimate of the covariance

matrix. Still, EM did not converge.

We will fix that and examine the resulting MCMC sequence. We will use the same random-number

seed and this time save the WLF. Rather than imputing the data as before, we will simply run the MCMC

for the same number of iterations it takes to obtain 30 imputations using the default settings, namely,

30 × 100 = 3000.

. mi imp mvn x1-x3, mcmconly prior(ridge, df(0.1))
> initmcmc(em, iter(200) nolog) burnin(3000) savewlf(wlf, replace)
> rseed(332242)
Performing EM optimization:
note: 4 observations omitted from EM estimation because of all imputation

variables missing.
observed log posterior = -1.1341806 at iteration 152

Performing MCMC data augmentation ...
Note: No imputation performed.

We increased the maximum number of iterations for the EM algorithm to 200; it converged in iteration

152.
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We use the results from wlf.dta to obtain the trace and autocorrelation plots as we did in the earlier

examples:
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The serial correlation decreases slowly. There is no obvious trend in the WLF estimates, but we notice

high variability and several spikes, some distinctive. The high variability and spikes are not surprising

considering that certain model parameters could not be estimated reliably from the observed data and

considering that we did not introduce enough prior information to obtain less variable estimates; we

introduced only enough to achieve nonsingularity.

We could decrease the variability of the estimates by obtaining more data or introducing stronger

prior information. For example, we could increase the number of degrees of freedom with a ridge prior

to constrain the covariance matrix toward a diagonal structure:

. mi imp mvn x1-x3, replace prior(ridge, df(10)) burnin(300) rseed(332247)

If we create and examine the trace plots and autocorrelations of theWLF under the new prior specification,

we find that variability of the estimates and serial dependence decrease greatly at a cost of bias if the prior

assumptions are false.
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Example 6: Saving all parameter series
The examples above used theWLF to monitor convergence ofMCMC because in most applications it is

sufficient. Although theWLF series often behave as the worst-case scenario, exceptions exist in practice.

Sometimes, examining individual parameter series may be necessary.

We can save all parameter series from MCMC by using the saveptrace() option. These parameter

series are saved in a parameter-trace file, a special file with extension .stptrace. Although the resulting
file is not a Stata dataset, it can easily be loaded into Stata using mi ptrace use; see [MI]mi ptrace for

details.

Let’s look at several parameter series from the above example.

. use https://www.stata-press.com/data/r19/mvnexample0, clear

. mi imp mvn x1-x3, mcmconly prior(ridge, df(0.1)) initmcmc(em, iter(200) nolog)
> burnin(3000) rseed(332247) saveptrace(parms)

We save all parameter series to a file called parms by using stptrace(parms).

We first describe the contents of the parms file and then read it into Stata:

. mi ptrace describe parms
file parms.stptrace created on 4 Mar 2025 08:52 contains 3,000 records
(obs) on

m 1 variable
iter 1 variable
b[y, x] 3 variables (3 x 1)
v[y, y] 6 variables (3 x 3, symmetric)

where y and x are
y: (1) x1 (2) x2 (3) x3
x: (1) _cons

. mi ptrace use parms, clear

The output from mi ptrace describe reports that the file contains imputation numbers, iteration num-

bers, estimates of three regression coefficients (b[x1, cons], b[x2, cons], and b[x3, cons], which
are effectively the means of x1, x2, and x3), and estimates of six covariances (v[x1,x1], v[x2,x1],
v[x2,x2], and so on).

Because x1 and x3 contain the least number of complete observations, we examine the series con-

taining their variance and covariance estimates. We generate graphs separately for each series and then

combine them in one graph by using graph combine; see [G-2] graph combine.

. tsset iter
Time variable: iter, -2999 to 0

Delta: 1 unit
. tsline v_y1y1, name(gr1) nodraw ytitle(Var(x1)) xtitle(””) ylabel(#4)
. tsline v_y3y1, name(gr2) nodraw ytitle(Cov(x3,x1)) xtitle(””) ylabel(#4)
. tsline v_y3y3, name(gr3) nodraw ytitle(Var(x3)) xtitle(””) ylabel(#4)
. graph combine gr1 gr2 gr3, xcommon cols(1) b1title(Iteration)

https://www.stata.com/manuals/mimiptrace.pdf#mimiptrace
https://www.stata.com/manuals/g-2graphcombine.pdf#g-2graphcombine
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Iteration

We repeat the same for the autocorrelation graphs:

. ac v_y1y1, ytitle(Var(x1)) xtitle(””) ciopts(astyle(none)) note(””)
> name(gr1, replace) nodraw ylabel(#4)
. ac v_y3y1, ytitle(Cov(x3,x1)) xtitle(””) ciopts(astyle(none)) note(””)
> name(gr2, replace) nodraw ylabel(#4)
. ac v_y3y3, ytitle(Var(x3)) xtitle(””) ciopts(astyle(none)) note(””)
> name(gr3, replace) nodraw ylabel(#4)
. graph combine gr1 gr2 gr3, xcommon cols(1) title(Autocorrelations) b1title(Lag)
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We can see that the trace plot and autocorrelations corresponding to the variance of x1 resemble the

patterns of the earlier WLF estimates. We also notice that all series have high serial dependence within

the first 20 iterations.
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Again, if we switch to using a ridge prior with 10 degrees of freedom and repeat the steps above, the

obtained trace plots will be more precise and more regular. The serial dependence in the series will be

lower.

Stored results
mi impute mvn stores the following in r():

Scalars

r(M) total number of imputations

r(M add) number of added imputations

r(M update) number of updated imputations

r(k ivars) number of imputed variables

r(burnin) number of burn-in iterations

r(burnbetween) number of burn-between iterations

r(df prior) prior degrees of freedom (stored only with prior(ridge))
r(N em) number of observations used by EM (including omitted missing observations)

r(N e em) number of observations used by EM in estimation (excluding omitted missing observations)

r(N mis em) number of incomplete observations within the EM estimation sample

r(N S em) number of unique missing-value patterns

r(niter em) number of iterations EM takes to converge

r(llobs em) observed log likelihood (stored with prior(uniform))
r(lpobs em) observed log posterior (stored with priors other than uniform)
r(converged em) convergence flag for EM

r(emonly) 1 if performed EM estimation only, 0 otherwise

r(mcmconly) 1 if performedMCMC only without imputing data, 0 otherwise

r(N g) number of imputed groups (1 if by() is not specified)

Macros

r(method) name of imputation method (mvn)
r(ivars) names of imputation variables

r(rngstate) random-number state used

r(prior) prior distribution

r(init mcmc) type of initial values (em or user)
r(ivarsorder) names of imputation variables in the order used in the computation

r(init em) type of initial values used by EM (ac, cc, or user)
r(by) names of variables specified within by()

Matrices

r(N) number of observations in imputation sample in each group (per variable)

r(N complete) number of complete observations in imputation sample in each group (per variable)

r(N incomplete) number of incomplete observations in imputation sample in each group (per variable)

r(N imputed) number of imputed observations in imputation sample in each group (per variable)

r(Beta0) initial values for regression coefficients used by DA

r(Sigma0) initial variance–covariance matrix used by DA

r(wlf wgt) coefficients for theWLF (stored with initmcmc(em) or if wlfwgt() is used)

r(Beta em) estimated regression coefficients from EM

r(Sigma em) estimated variance–covariance matrix from EM

r(Beta0 em) initial values for regression coefficients used by EM

r(Sigma0 em) initial variance–covariance matrix used by EM

r(N pat) minimum, average, and maximum numbers of observations per missing-value pattern

r(N pat) and results with the em suffix are stored only when the EM algorithm is used (with emonly
or initmcmc(em)).
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Methods and formulas
Let x1, x2, . . . , x𝑁 be a random sample from a 𝑝-variate normal distribution recording values of 𝑝

imputation variables. Consider a multivariate normal regression

x𝑖 = 𝚯′
z𝑖 + ε𝑖, 𝑖 = 1, . . . , 𝑁

where z𝑖 is a 𝑞 × 1 vector of independent (complete) variables from observation 𝑖, 𝚯 is a 𝑞 × 𝑝 matrix

of regression coefficients, and ε𝑖 is a 𝑝 × 1 vector of random errors from a 𝑝-variate normal distribution
with a zero mean vector and a 𝑝×𝑝 positive-definite covariance matrix𝚺. We refer to𝚯 and𝚺 as model

parameters. Consider the partition x𝑖 = (x𝑖(𝑚), x𝑖(𝑜)) corresponding to missing and observed values of
imputation variables in observation 𝑖 for 𝑖 = 1, . . . , 𝑁.

Methods and formulas are presented under the following headings:

Data augmentation
Prior distribution
Initial values: EM algorithm
Worst linear function

Data augmentation
mi impute mvn uses data augmentation (DA) to fill in missing values in x𝑖 independently for each

observation 𝑖 = 1, . . . , 𝑁. Data augmentation consists of two steps, an I step (imputation step) and a

P step (posterior step), performed at each iteration 𝑡 = 0, 1, . . . , 𝑇. At iteration 𝑡 of the I step, missing
values in x𝑖 are replaced with draws from the conditional posterior distribution of x𝑖(𝑚) given observed

data and current values of model parameters independently for each 𝑖 = 1, . . . , 𝑁. During the P step, new

values of model parameters are drawn from their conditional posterior distribution given the observed

data and the data imputed in the previous I step. Mathematically, this process can be described as follows:

I step:

x
(𝑡+1)
𝑖(𝑚) ∼ 𝑃 (x𝑖(𝑚)|z𝑖, x𝑖(𝑜), 𝚯(𝑡), 𝚺(𝑡)) , 𝑖 = 1, . . . , 𝑁 (1)

P step:

𝚺(𝑡+1) ∼ 𝑃 (𝚺|z𝑖, x𝑖(𝑜), x
(𝑡+1)
𝑖(𝑚) )

𝚯(𝑡+1) ∼ 𝑃 (𝚯|z𝑖, x𝑖(𝑜), x
(𝑡+1)
𝑖(𝑚) , 𝚺(𝑡+1))

(2)

The above two steps are repeated until the specified number of iterations, 𝑇, is reached. The total
number of iterations, 𝑇, is determined by the length of the initial burn-in period, 𝑏, and the number of

iterations between imputations, 𝑘. Specifically, 𝑇 = 𝑏 + 𝑀𝑛𝑒𝑤 × 𝑘, where 𝑀new contains the number of

added and updated imputations. mi impute mvn saves imputed values x
(𝑡1)
𝑖(𝑚), x

(𝑡2)
𝑖(𝑚), . . . , x

(𝑡𝑀new
)

𝑖(𝑚) as final

imputations, where iteration 𝑡𝑖 = 𝑏 + (𝑖 − 1)𝑘.
By default, mi impute mvn uses default values of 100 for 𝑏 and 𝑘. These values may be adequate in

some applications and may be too low in others. In general, 𝑏 and 𝑘 must be determined based on the

properties of the observedMarkov chain (X(1)
𝑚 , 𝚯(1), 𝚺(1)) , (X(2)

𝑚 , 𝚯(2), 𝚺(2)) , . . . , whereX(𝑡)
𝑚 denotes

all values imputed at iteration 𝑡. 𝑏must be large enough so that the above chain converges to the stationary
distribution 𝑃(X𝑚, 𝚯, 𝚺|Z,X𝑜) by iteration 𝑡 = 𝑏. 𝑘 must be large enough so that random draws

(imputations) x
(𝑡1)
𝑖(𝑚), x

(𝑡2)
𝑖(𝑚), . . . are approximately independent. See Convergence of the MCMC method

for more details.

https://www.stata.com/manuals/mimiimputemvn.pdf#mimiimputemvnRemarksandexamplesConvergenceoftheMCMCmethod
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The functional form of the conditional posterior distributions (1) and (2) depends on the distribution

of the data and a prior distribution of the model parameters. mi impute mvn assumes an improper uni-

form prior distribution for 𝚯 and an inverted Wishart distribution (Mardia, Kent, and Taylor 2024, 92)

𝑊 −1
𝑝 (Λ, 𝜆) for 𝚺 under which the prior joint density function is

𝑓(𝚯, 𝚺) ∝ |𝚺|−( 𝜆+𝑝+1
2 ) exp(−1

2
trΛ−1𝚺−1)

Under the multivariate normal model and the above prior distribution, the I and P steps become

(Schafer 2008; Schafer 1997, 181–185) the following:

I step: x
(𝑡+1)
𝑖(𝑚) ∼ 𝑁𝑝𝑖

(µ(𝑡)
𝑚⋅𝑜, 𝚺(𝑡)

𝑚𝑚⋅𝑜) , 𝑖 = 1, . . . , 𝑁

P step: 𝚺(𝑡+1) ∼ 𝑊 −1(Λ(𝑡+1)
⋆ , 𝜆⋆)

vec (𝚯(𝑡+1)) ∼ 𝑁𝑝𝑞 {vec(𝚯̂
(𝑡+1)

) , 𝚺(𝑡+1) ⊗ (Z′Z)−1}

where 𝑝𝑖 is the number of imputation variables containing missing values in observation 𝑖 and ⊗ is the

Kronecker product. Submatrices µ(𝑡)
𝑚⋅𝑜 and 𝚺(𝑡)

𝑚𝑚⋅𝑜 are the mean and variance of the conditional normal

distribution of x𝑖(𝑚) given x𝑖(𝑜) based on (x𝑖(𝑚), x𝑖(𝑜)|z𝑖) ∼ 𝑁𝑝 (𝚯(𝑡)′z𝑖, 𝚺(𝑡)). See, for example, Mar-

dia, Kent, and Taylor (2024, 74–75) for the corresponding formulas of the conditional mean and variance

of the multivariate normal distribution. The matrix 𝚯̂
(𝑡+1)

= (Z′Z)−1Z′X(𝑡+1) is the OLS estimate of

the regression coefficients based on the augmented data X(𝑡+1) = (X𝑜,X(𝑡+1)
𝑚 ) from iteration 𝑡. The

posterior cross-product matrix Λ(𝑡+1)
⋆ and the posterior degrees of freedom 𝜆⋆ are defined as follows:

Λ(𝑡+1)
⋆ = {Λ−1 + (X(𝑡+1) − Z𝚯̂

(𝑡+1)
)′(X(𝑡+1) − Z𝚯̂

(𝑡+1)
)}

−1

and

𝜆⋆ = 𝜆 + 𝑁 − 𝑞

Prior distribution
As we already mentioned, mi impute mvn assumes an improper uniform prior distribution for 𝚯 and

an inverted Wishart distribution for 𝚺 under which the prior joint density function is

𝑓(𝚯, 𝚺) ∝ |𝚺|−( 𝜆+𝑝+1
2 ) exp(−1

2
trΛ−1𝚺−1)

Parameters of the inverted Wishart prior distribution, the prior cross-product matrix Λ, and the prior

degrees of freedom 𝜆 are determined based on the requested prior distribution.

By default, mi impute mvn uses the uniform prior distribution under which 𝜆 = −(𝑝+1) and Λ−1 =
0𝑝×𝑝. Under the uniform prior, the log-likelihood and log-posterior functions are equivalent, and so the

ML estimates of the parameters are equal to the posterior mode.

Under the noninformative Jeffreys prior distribution, 𝜆 = 0 and Λ−1 = 0𝑝×𝑝.

Under a ridge prior distribution, 𝜆 is equal to the user-specified value, and Λ−1 = 𝜆𝚺⋆, where the

diagonal matrix 𝚺⋆ contains the diagonal elements of the estimate of the covariance matrix using all

available cases. The variances (diagonal estimates) are the estimates of the mean squared error from

regression of each imputation variable on the complete predictors. See Schafer (1997, 155–157) for

details. With 𝜆 = 0, this prior specification reduces to the Jeffreys prior.

https://www.stata.com/manuals/mimiimputemvn.pdf#mimiimputemvnMethodsandformulaseq1-2
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Initial values: EM algorithm

Initial values𝚯(0) and𝚺(0) forDAare obtained from the EM algorithm for the incomplete multivariate

normal data (for example, Dempster, Laird, and Rubin [1977], Little and Rubin [2020], Schafer [1997]).

The EM algorithm iterates between the expectation step (E step) and the maximization step (M step) to

maximize the log-likelihood (or log-posterior) function.

The observed-data log likelihood is

𝑙𝑙(𝚯, 𝚺|X𝑜) =
𝑆

∑
𝑠=1

∑
𝑖∈𝐼(𝑠)

{−0.5 ln(|𝚺𝑠|) − 0.5(x𝑖(𝑜) − 𝚯′
𝑠z𝑖)′𝚺−1

𝑠 (x𝑖(𝑜) − 𝚯′
𝑠z𝑖)}

where 𝑆 is the number of unique missing-value patterns, 𝐼(𝑠) is the set of observations from the same

missing-value pattern 𝑠, and𝚯𝑠 and𝚺𝑠 are the submatrices of𝚯 and𝚺 that correspond to the imputation

variables, which are observed in pattern 𝑠.
The observed-data log posterior is

𝑙𝑝(𝚯, 𝚺|X𝑜) = 𝑙𝑙(𝚯, 𝚺|X𝑜) + ln{𝑓(𝚯, 𝚺)} = 𝑙𝑙(𝚯, 𝚺|X𝑜) − 𝜆 + 𝑝 + 1
2

ln(|𝚺|) − tr(Λ−1𝚺−1)

The E step and M step of the EM algorithm are defined as follows (see Schafer [2008; 1997, 163–175]

for details).

Let 𝑇1 = ∑𝑁
𝑖=1 z𝑖x

′
𝑖 and 𝑇2 = ∑𝑁

𝑖=1 x𝑖x
′
𝑖 denote the sufficient statistics for the multivariate normal

model. Consider the submatrices𝚯𝑖(𝑜) and𝚯𝑖(𝑚) of𝚯, and the submatrices𝚺𝑖(𝑚𝑚), 𝚺𝑖(𝑚𝑜), and𝚺𝑖(𝑜𝑜)
of 𝚺 corresponding to the observed and missing columns of x𝑖. Let 𝑂(𝑠) and 𝑀(𝑠) correspond to the
column indexes of the observed and missing parts of x𝑖 for each missing-values pattern 𝑠.

During the E step, the expectations 𝐸(𝑇1) and 𝐸(𝑇2) are computed with respect to the conditional

distribution Pr(X𝑚|X𝑜, 𝚯(𝑡), 𝚺(𝑡)) using the following relations:

𝐸(𝑥𝑖𝑗|X𝑜, 𝚯(𝑡), 𝚺(𝑡)) = {
𝑥𝑖𝑗, for 𝑗 ∈ 𝑂(𝑠)
𝑥⋆

𝑖𝑗, for 𝑗 ∈ 𝑀(𝑠)

and

𝐸(𝑥𝑖𝑗𝑥𝑖𝑙|X𝑜, 𝚯(𝑡), 𝚺(𝑡)) =
⎧{
⎨{⎩

𝑥𝑖𝑗𝑥𝑖𝑙, for 𝑗, 𝑙 ∈ 𝑂(𝑠)
𝑥⋆

𝑖𝑗𝑥𝑖𝑙, for 𝑗 ∈ 𝑀(𝑠), 𝑙 ∈ 𝑂(𝑠)
𝑐𝑖𝑗 + 𝑥⋆

𝑖𝑗𝑥⋆
𝑖𝑙, for 𝑗, 𝑙 ∈ 𝑀(𝑠)

where 𝑥⋆
𝑖𝑗 is the 𝑗th element of the vector𝚯′

𝑖(𝑚)z𝑖+𝚺𝑖(𝑚𝑜)𝚺
−1
𝑖(𝑜𝑜) (x𝑖(𝑜) − 𝚯′

𝑖(𝑜)z𝑖), and 𝑐𝑖𝑗 is the element

of the matrix 𝚺𝑖(𝑚𝑚) − 𝚺𝑖(𝑚𝑜)𝚺−1
𝑖(𝑜𝑜)𝚺

′
𝑖(𝑚𝑜).

During theM step, themodel parameters are updated using the computed expectations of the sufficient

statistics:

𝚯(𝑡+1) = (Z′Z)−1𝐸(𝑇1)

𝚺(𝑡+1) = 1
𝑁 + 𝜆 + 𝑝 + 1

{𝐸(𝑇2) − 𝐸(𝑇1)′(Z′Z)−1𝐸(𝑇1) + Λ−1}
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EM iterates between the E step and the M step until the maximum relative difference between the

two successive values of all parameters is less than the default tolerance of 1e–5 (or the specified

tolerance()).

Worst linear function
The worst linear function (WLF) is defined as follows (Schafer 1997, 129–131):

𝜉(𝜃) = ̂𝑣′
1(𝜃 − ̂𝜃)

where 𝜃 and ̂𝜃 are column vectors of the unique model parameters and their respective EM estimates; ̂𝑣1 =
𝜃(𝑡) − 𝜃(𝑡−1), where 𝜃(𝑡) = ̂𝜃 and 𝜃(𝑡−1) are the estimates from the last and one before the last iterations

of the EM algorithm. This function is regarded to be the WLF because it has the highest asymptotic rate

of missing information among all linear functions. This function is derived based on the convergence

properties of the EM algorithm (see Schafer [1997, 55–59] for details).
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