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Description

mi impute fills in missing values (.) of a single variable or of multiple variables using the
specified method. The available methods (by variable type and missing-data pattern) are summarized
in the tables below.

Single imputation variable (univariate imputation)

Pattern Type Imputation method

continuous regress, pmm,
truncreg, intreg

always monotone binary logit

categorical ologit, mlogit
count poisson, nbreg

Multiple imputation variables (multivariate imputation)

Pattern Type Imputation method

monotone missing mixture monotone

arbitrary missing mixture chained

arbitrary missing continuous mvn

The suggested reading order of mi impute’s subentries is

[MI] mi impute regress [MI] mi impute monotone
[MI] mi impute pmm [MI] mi impute chained
[MI] mi impute truncreg [MI] mi impute mvn
[MI] mi impute intreg [MI] mi impute usermethod
[MI] mi impute logit
[MI] mi impute ologit
[MI] mi impute mlogit
[MI] mi impute poisson
[MI] mi impute nbreg
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Menu
Statistics > Multiple imputation

Syntax
mi impute method . . .

[
, impute options . . .

]
method Description

Univariate

regress linear regression for a continuous variable
pmm predictive mean matching for a continuous variable
truncreg truncated regression for a continuous variable with a restricted range
intreg interval regression for a continuous partially observed (censored) variable
logit logistic regression for a binary variable
ologit ordered logistic regression for an ordinal variable
mlogit multinomial logistic regression for a nominal variable
poisson Poisson regression for a count variable
nbreg negative binomial regression for an overdispersed count variable

Multivariate

monotone sequential imputation using a monotone-missing pattern
chained sequential imputation using chained equations
mvn multivariate normal regression

User-defined

usermethod user-defined imputation methods

impute options Description

Main
∗add(#) specify number of imputations to add; required when no imputations exist
∗replace replace imputed values in existing imputations
rseed(#) specify random-number seed
double store imputed values in double precision; the default is to store them

as float

by(varlist
[
, byopts

]
) impute separately on each group formed by varlist (not allowed with

usermethod)

Reporting

dots display dots as imputations are performed
noisily display intermediate output
nolegend suppress all table legends

Advanced

force proceed with imputation, even when missing imputed values are
encountered

noupdate do not perform mi update (not allowed with usermethod); see
[MI] noupdate option

https://www.stata.com/manuals/mimiimputeregress.pdf#mimiimputeregress
https://www.stata.com/manuals/mimiimputepmm.pdf#mimiimputepmm
https://www.stata.com/manuals/mimiimputetruncreg.pdf#mimiimputetruncreg
https://www.stata.com/manuals/mimiimputeintreg.pdf#mimiimputeintreg
https://www.stata.com/manuals/mimiimputelogit.pdf#mimiimputelogit
https://www.stata.com/manuals/mimiimputeologit.pdf#mimiimputeologit
https://www.stata.com/manuals/mimiimputemlogit.pdf#mimiimputemlogit
https://www.stata.com/manuals/mimiimputepoisson.pdf#mimiimputepoisson
https://www.stata.com/manuals/mimiimputenbreg.pdf#mimiimputenbreg
https://www.stata.com/manuals/mimiimputemonotone.pdf#mimiimputemonotone
https://www.stata.com/manuals/mimiimputechained.pdf#mimiimputechained
https://www.stata.com/manuals/mimiimputemvn.pdf#mimiimputemvn
https://www.stata.com/manuals/mimiimputeusermethod.pdf#mimiimputeusermethod
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/minoupdateoption.pdf#minoupdateoption
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∗add(#) is required when no imputations exist; add(#) or replace is required if imputations exist.
You must mi set your data before using mi impute; see [MI] mi set.
collect is allowed; see [U] 11.1.10 Prefix commands.
The mi suite of commands does not allow alias variables; see [D] frunalias for advice on how to get around this

restriction.
noupdate does not appear in the dialog box.

Options

� � �
Main �

add(#) specifies the number of imputations to add to the mi data. This option is required if there
are no imputations in the data. If imputations exist, then add() is optional. The total number of
imputations cannot exceed 1,000.

replace specifies to replace existing imputed values with new ones. One of replace or add() must
be specified when mi data already have imputations.

rseed(#) sets the random-number seed. This option can be used to reproduce results. rseed(#) is
equivalent to typing set seed # prior to calling mi impute; see [R] set seed. You may also need
to use the same stable ordering of the data prior to executing mi impute to reproduce results; see
[D] sort.

double specifies that the imputed values be stored as doubles. By default, they are stored as floats.
mi impute makes this distinction only when necessary. For example, if the logit method is used,
the imputed values are stored as bytes.

by(varlist
[
, byopts

]
) specifies that imputation be performed separately for each by-group. By-

groups are identified by equal values of the variables in varlist in the original data (m = 0).
Missing categories in varlist are omitted, unless the missing suboption is specified within by().
Imputed and passive variables may not be specified within by(). This option is not allowed with
user-defined imputation methods, usermethod.

byopts are missing, noreport, nolegend, and nostop.

missing specifies that missing categories in varlist are not omitted.

noreport suppresses reporting of intermediate information about each group.

nolegend suppresses the display of group legends that appear before the imputation table
when long group descriptions are encountered.

nostop specifies to proceed with imputation when imputation fails in some groups. By default,
mi impute terminates with error when this happens.

� � �
Reporting �

dots specifies to display dots as imputations are successfully completed. An x is displayed if any of
the specified imputation variables still have missing values.

noisily specifies that intermediate output from mi impute be displayed.

nolegend suppresses the display of all legends that appear before the imputation table.

� � �
Advanced �

force specifies to proceed with imputation even when missing imputed values are encountered. By
default, mi impute terminates with error if missing imputed values are encountered.

https://www.stata.com/manuals/mimiset.pdf#mimiset
https://www.stata.com/manuals/u11.pdf#u11.1.10Prefixcommands
https://www.stata.com/manuals/dfrunalias.pdf#dfrunalias
https://www.stata.com/manuals/rsetseed.pdf#rsetseed
https://www.stata.com/manuals/dsort.pdf#dsort
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/miglossary.pdf#miGlossaryoriginal_data
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The following option is available with mi impute but is not shown in the dialog box:

noupdate in some cases suppresses the automatic mi update this command might perform; see
[MI] noupdate option. This option is rarely used and is not allowed with user-defined imputation
methods, usermethod.

Remarks and examples stata.com

Remarks are presented under the following headings:

Imputation methods
Imputation modeling

Model building
Outcome variables
Transformations
Categorical variables
The issue of perfect prediction during imputation of categorical data
Convergence of iterative methods
Imputation diagnostics

Using mi impute
Univariate imputation
Multivariate imputation
Imputing on subsamples
Conditional imputation
Imputation and estimation samples
Imputing transformations of incomplete variables

Imputation methods

mi impute supports both univariate and multivariate imputation under the missing at random
assumption (see Assumptions about missing data under Remarks and examples in [MI] Intro sub-
stantive).

Univariate imputation is used to impute a single variable. It can be used repeatedly to impute
multiple variables only when the variables are independent and will be used in separate analyses. To
impute a single variable, you can choose from the following methods: regress, pmm, truncreg,
intreg, logit, ologit, mlogit, poisson, and nbreg; see [MI] mi impute regress, [MI] mi impute
pmm, [MI] mi impute truncreg, [MI] mi impute intreg, [MI] mi impute logit, [MI] mi impute ologit,
[MI] mi impute mlogit, [MI] mi impute poisson, and [MI] mi impute nbreg.

For a continuous variable, either regress or pmm can be used (for example, Rubin [1987] and
Schenker and Taylor [1996]). For a continuous variable with a restricted range, a truncated variable,
either pmm or truncreg (Raghunathan et al. 2001) can be used. For a continuous partially observed
or censored variable, intreg can be used (Royston 2007). For a binary variable, logit can be
used (Rubin 1987). For a categorical variable, ologit can be used to impute missing categories
if they are ordered, and mlogit can be used to impute missing categories if they are unordered
(Raghunathan et al. 2001). For a count variable, either poisson (Raghunathan et al. 2001) or nbreg
(Royston 2009), in the presence of overdispersion, is often suggested. Also see van Buuren (2007)
for a detailed list of univariate imputation methods.

Theory dictates that multiple variables usually must be imputed simultaneously, and that requires
using a multivariate imputation method. The choice of an imputation method in this case also depends
on the pattern of missing values.

If variables follow a monotone-missing pattern (see Patterns of missing data under Remarks and
examples in [MI] Intro substantive), they can be imputed sequentially using univariate conditional

https://www.stata.com/manuals/minoupdateoption.pdf#minoupdateoption
http://stata.com
https://www.stata.com/manuals/miintrosubstantive.pdf#miIntrosubstantiveRemarksandexamplesAssumptionsaboutmissingdata
https://www.stata.com/manuals/miintrosubstantive.pdf#miIntrosubstantive
https://www.stata.com/manuals/miintrosubstantive.pdf#miIntrosubstantive
https://www.stata.com/manuals/mimiimputeregress.pdf#mimiimputeregress
https://www.stata.com/manuals/mimiimputepmm.pdf#mimiimputepmm
https://www.stata.com/manuals/mimiimputepmm.pdf#mimiimputepmm
https://www.stata.com/manuals/mimiimputetruncreg.pdf#mimiimputetruncreg
https://www.stata.com/manuals/mimiimputeintreg.pdf#mimiimputeintreg
https://www.stata.com/manuals/mimiimputelogit.pdf#mimiimputelogit
https://www.stata.com/manuals/mimiimputeologit.pdf#mimiimputeologit
https://www.stata.com/manuals/mimiimputemlogit.pdf#mimiimputemlogit
https://www.stata.com/manuals/mimiimputepoisson.pdf#mimiimputepoisson
https://www.stata.com/manuals/mimiimputenbreg.pdf#mimiimputenbreg
https://www.stata.com/manuals/miglossary.pdf#miGlossarydef_monotone
https://www.stata.com/manuals/miintrosubstantive.pdf#miIntrosubstantiveRemarksandexamplesPatternsofmissingdata
https://www.stata.com/manuals/miintrosubstantive.pdf#miIntrosubstantive
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distributions, which is implemented in the monotone method (see [MI] mi impute monotone). A
separate univariate imputation model can be specified for each imputation variable, which allows
simultaneous imputation of variables of different types (Rubin 1987).

When a pattern of missing values is arbitrary, iterative methods are used to fill in missing values.
The mvn method (see [MI] mi impute mvn) uses multivariate normal data augmentation to impute
missing values of continuous imputation variables (Schafer 1997). Allison (2001), for example, also
discusses how to use this method to impute binary and categorical variables.

Another multivariate imputation method that accommodates arbitrary missing-value patterns is mul-
tivariate imputation using chained equations (MICE), also known as imputation using fully conditional
specifications (van Buuren, Boshuizen, and Knook 1999) and as sequential regression multivariate im-
putation (Raghunathan et al. 2001) in the literature. The MICE method is implemented in the chained
method (see [MI] mi impute chained) and uses a Gibbs-like algorithm to impute multiple variables
sequentially using univariate fully conditional specifications. Despite a lack of rigorous theoretical
justification, the flexibility of MICE has made it one of the most popular choices used in practice.

For a comparison of MICE and multivariate normal imputation, see Lee and Carlin (2010).

Imputation modeling

As discussed in [MI] Intro substantive, imputation modeling is important to obtain proper
imputations. Imputation modeling is not confined to the specification of an imputation method and
an imputation model. It also requires careful consideration of how to handle complex data structures,
such as survey or longitudinal data, and how to preserve existing relationships in the data during
the imputation step. Rubin (1987), Meng (1994), Schafer (1997), Allison (2001), Royston (2007),
Graham (2009), White, Royston, and Wood (2011), and others provide guidelines about imputation
modeling. We summarize some of them below.

As with any statistical procedure, choosing an appropriate imputation approach is an art, and the
choice should ultimately be determined by your data and research objectives. Regardless of which
imputation approach you decide to pursue, it is good practice to check that your imputations are
sensible before performing primary data analysis (see Imputation diagnostics) and to perform sensitivity
analysis (for example, Kenward and Carpenter [2007]).

Model building

Perhaps the most important component of imputation modeling is the construction of an imputation
model that preserves all the main characteristics of the observed data. This includes the following:

1. Use as many predictors as possible in the model to avoid making incorrect assumptions
about the relationships between the variables. Omitting key predictors from the imputation
model may lead to biased estimates for these predictors in the analysis. On the other hand,
including insignificant predictors will result in less efficient yet still statistically valid results.

2. Include design variables representing the structure of the data in your imputation model. For
example, sampling weights, strata and cluster identifiers of survey data, repeated-measures
identifiers of longitudinal data must be included in the imputation model.

3. Specify the correct functional form of an imputation model. For example, include interactions
of variables (or impute missing values separately using different subsamples; see Imputing
on subsamples) to preserve higher-order dependencies.

https://www.stata.com/manuals/mimiimputemonotone.pdf#mimiimputemonotone
https://www.stata.com/manuals/mimiimputemvn.pdf#mimiimputemvn
https://www.stata.com/manuals/mimiimputechained.pdf#mimiimputechained
https://www.stata.com/manuals/miintrosubstantive.pdf#miIntrosubstantive
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The imputation model must be compatible with any model that can be used for the analysis. If
variable X is to be included in the analysis model, it should also be used in the imputation model.
If the analysis model estimates a correlation of X1 and X2, then both variables should be present in
the imputation model. Accordingly, the outcome variable should always be present in the imputation
model. Also, in addition to all the variables that may be used in the analysis model, you should
include any auxiliary variables that may contain information about missing data. This will make
the MAR assumption more plausible and will improve the quality of the imputed values. For more
information about congeniality between the imputation and complete-data models, see Meng (1994).

As we mentioned above, it is important to specify the correct functional form of an imputation
model to obtain proper imputations. The failure to accommodate such model features as interactions
and nonlinearities during imputation may lead to severely biased results. There is no definitive
recommendation for the best way to incorporate various functional forms into the imputation model.
Currently, two main approaches are the joint modeling of all functional terms and modeling using
passive variables (variables derived from imputation variables) also known as passive imputation. The
joint modeling approach simply treats all functional terms as separate variables and imputes them
together with the underlying imputation variables using a multivariate model, often a multivariate
normal model. On the other hand, passive imputation—available within the MICE framework—fills in
only the underlying imputation variables and computes the respective functional terms from the imputed
variables, maintaining functional dependencies between the imputed and derived variables. The joint
modeling approach imposes a rather stringent assumption of multivariate normality for possibly
highly nonlinear terms and does not recognize functional dependencies between the imputed and
derived variables. The naı́ve application of passive imputation, however, may omit certain functional
relationships and thus lead to biased results. So, careful consideration for the specification of each
conditional model is important. See White, Royston, and Wood (2011) for more details and some
guidelines.

Outcome variables

Imputing outcome variables receive special attention in the literature because of the controversy
about whether they should be imputed. As we already mentioned, it is important to include the outcome
variable in the imputation model to obtain valid results. But what if the outcome variable itself has
missing values? Should it be imputed? Should missing values be discarded from the analysis? There
is no definitive answer to this question. The answer ultimately comes down to whether the specified
imputation model describes the missing data adequately. When the percentage of missing values is
low, using an incorrect imputation model may have little effect on the resulting repeated-imputation
inference. With a large fraction of missing observations, a misspecified imputation model may distort
the observed relationship between the outcome and predictor variables. In general, with large fractions
of missing observations on any variable, the imputed values have more influence on the results, and
thus more careful consideration of the imputation probability model is needed.

Transformations

Although the choice of an imputation method may not have significant impact on the results with
low fractions of missing data, it may with larger fractions. A number of different imputation methods
are available to model various types of imputation variables: continuous, categorical, count, and so
on. However, in practice, these methods in no way cover all possible distributions that imputation
variables may have. Often, the imputation variables can be transformed to the scale appropriate for an
imputation method. For example, a log transformation (or, more generally, a Box–Cox transformation)
can be used for highly skewed continuous variables to make them suitable for imputation using the
linear regression method. If desired, the imputed values can be transformed back after the imputation.



mi impute — Impute missing values 7

Transformations are useful when a variable has a restricted range. For instance, a preimputation
logit transformation and a postimputation inverse-logit transformation can be used to ensure that the
imputed values are between 0 and 1.

It is important to remember that although the choice of a transformation is often determined based
on the variable of interest alone, it is the conditional distribution of that variable given other predictors
that is being modeled, and so the transformation must be suitable for it.

Categorical variables

To impute one categorical variable, you can use one of the categorical imputation methods: logistic,
ordered logistic, or multinomial logistic regressions (see [MI] mi impute logit, [MI] mi impute ologit,
or [MI] mi impute mlogit). These methods can also be used to impute multiple categorical variables
with a monotone missing-data pattern using monotone imputation (see [MI] mi impute monotone) and
with an arbitrary missing-data pattern using MICE (see [MI] mi impute chained). Also, for multiple
categorical variables with only two categories (binary or dummy variables), a multivariate normal
approach (see [MI] mi impute mvn) can be used to impute missing values and then, if needed, the
imputed values can be rounded to 0 if the value is smaller than 0.5, or 1 otherwise. For categorical
variables with more than two categories, Allison (2001) describes how to use the normal model to
impute missing values.

The issue of perfect prediction during imputation of categorical data

Perfect prediction (or separation—for example, see Albert and Anderson [1984]) occurs often in
the analysis of categorical data. The issue of perfect prediction is inherent to the discrete nature of
categorical data and arises in the presence of covariate patterns for which outcomes of a categorical
variable can be predicted almost perfectly. Perfect prediction usually leads to infinite coefficients
with infinite standard errors and often causes numerical instability during estimation. This issue is
often resolved by discarding the observations corresponding to offending covariate patterns as well as
the independent variables perfectly predicting outcomes during estimation; see, for example, Model
identification in [R] logit.

Perfect prediction is even more likely to arise during imputation because imputation models, per
imputation modeling guidelines, tend to include many variables and thus may include many categorical
variables. Perfect prediction may arise when variables are imputed using one of these imputation
methods: logit, ologit, or mlogit.

Let’s discuss how perfect prediction affects imputation. Recall that to obtain proper imputations
(Proper imputation methods in [MI] Intro substantive), imputed values must be simulated from
the posterior predictive distribution of missing data given observed data. The categorical imputation
methods achieve this by first drawing a new set of regression coefficients from a normal distribution (a
large-sample approximation to their posterior distribution) with mean and variance determined by the
maximum likelihood estimates of the coefficients from the observed data and their variance–covariance
matrix. The imputed values are then obtained using the new set of coefficients; see Methods and
formulas in the method-specific manual entries for details.

In the presence of perfect prediction, very large estimates of coefficients and their standard errors
arise during estimation. As a result, new coefficients, drawn from the corresponding asymptotic normal
distribution, will either be large and positive or large and negative. As such, missing values—say,
of a binary imputation variable—may all be imputed as ones in some imputations and may all be
imputed as zeros in other imputations. This will clearly bias the multiple-imputation estimate of the
proportion of ones (or zeros) in the sample of perfectly predicted cases.

https://www.stata.com/manuals/mimiimputelogit.pdf#mimiimputelogit
https://www.stata.com/manuals/mimiimputeologit.pdf#mimiimputeologit
https://www.stata.com/manuals/mimiimputemlogit.pdf#mimiimputemlogit
https://www.stata.com/manuals/mimiimputemonotone.pdf#mimiimputemonotone
https://www.stata.com/manuals/mimiimputechained.pdf#mimiimputechained
https://www.stata.com/manuals/mimiimputemvn.pdf#mimiimputemvn
https://www.stata.com/manuals/rlogit.pdf#rlogitRemarksandexamplesModelidentification
https://www.stata.com/manuals/rlogit.pdf#rlogitRemarksandexamplesModelidentification
https://www.stata.com/manuals/rlogit.pdf#rlogit
https://www.stata.com/manuals/miintrosubstantive.pdf#miIntrosubstantiveRemarksandexamplesProperimputationmethods
https://www.stata.com/manuals/miintrosubstantive.pdf#miIntrosubstantive
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To eliminate the issue of perfect prediction during imputation, we cannot, unfortunately, drop
observations and variables when estimating model parameters as is normally done during estimation
using, for example, the logit command. Doing so would violate one of the main requirements of
imputation modeling: all variables and cases that may be used during primary, completed-data analysis
must be included in the imputation model. So, what can you do?

When perfect prediction is detected, mi impute issues an error message:

. mi impute logit x1 z1 z2 . . . , . . .
mi impute logit: perfect predictor(s) detected

Variables that perfectly predict an outcome were detected when logit
executed on the observed data. First, specify mi impute’s option noisily
to identify the problem covariates. Then either remove perfect predictors
from the model or specify mi impute logit’s option augment to perform
augmented regression; see The issue of perfect prediction during imputation
of categorical data in [MI] mi impute for details.

r(498);

You have two alternatives at this point.

You can fit the specified imputation model to the observed data using the corresponding command
(in our example, logit) to identify the observations and variables causing perfect prediction in your
data. Depending on the research objective and specifics of the data collection process, it may be
reasonable to omit the offending covariate patterns and perfect predictors from your analysis. If you
do so, you must carefully document which observations and variables were removed and adjust your
inferential conclusions accordingly. Once offending instances are removed, you can proceed with
imputation followed by your primary data analysis. Make sure that the instances you removed from
the imputation model are not used in your further analysis.

The above approach may be difficult to pursue when imputing a large number of variables, among
which are many categorical variables. Another option is to handle perfect prediction directly during
imputation via the augment option, which is available for all categorical imputation methods: logit,
ologit, and mlogit.

mi impute . . . , augment . . . implements an augmented-regression approach, an ad hoc but
computationally convenient approach suggested by White, Daniel, and Royston (2010). According to
this approach, a few extra observations with small weights are added to the data during estimation of
model parameters in a way that prevents perfect prediction. See White, Daniel, and Royston (2010)
for simulation results and computational details.

Convergence of iterative methods

When the missing-value pattern is arbitrary, iterative Markov chain Monte Carlo (MCMC-like)
imputation methods are used to simulate imputed values from the posterior predictive distribution of
the missing data given the observed data; also see Multivariate imputation. In this case, the resulting
sequences (chains) of simulated parameters or imputed values should be examined to verify the
convergence of the algorithm. The modeling task may be influenced by the convergence process of
the algorithm given the data. For example, a different prior distribution for the model parameters may
be needed with mi impute mvn when some aspects of the model cannot be estimated because of the
sparseness of the missing data.

Markov chain simulation is often done in one of two ways: subsampling a single chain or running
multiple independent chains. Subsampling a chain involves running a single chain for a prespecified
number of iterations T , discarding the first b iterations until the chain reaches stationarity (the
burn-in period), and sampling the chain each kth iteration to produce a final sequence of independent
draws

{
X(b),X(b+k),X(b+2k), . . .

}
from the target distribution. The number of between iterations

https://www.stata.com/manuals/perror.pdf#perrorRemarksandexamplesr(498)
https://www.stata.com/manuals/miglossary.pdf#miGlossarydef_burnin
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k is chosen such that draws X(t) and X(t+k) are approximately independent. Alternatively, one
can obtain independent draws by running multiple independent chains using different starting values
{X(i,t) : t = 0, 1, . . .}, i = 1, 2, . . ., and discarding the first b iterations of each to obtain a final
sample

{
X(1,b),X(2,b),X(3,b), . . .

}
from the target distribution.

mi impute mvn subsamples the chain, whereas mi impute chained runs multiple independent
chains; see [MI] mi impute mvn and [MI] mi impute chained for details on how to monitor convergence
of each method.

Imputation diagnostics

After imputation, it is important to examine the sensibility of the obtained imputed values. If any
abnormalities are detected, the imputation model must be revised. Diagnostics for imputations is still
an ongoing research topic, but two general recommendations are to check model fit of the specified
imputation model to the observed data and to compare distributions of the imputed and observed
data. To check model fit of an imputation model to the observed data, you can use any standard
postestimation tools usually used with that type of model. Also see, for example, [R] mfp to help
determine an appropriate functional form of the imputation model. The differences (if any) between
the distributions of the observed and of the imputed data should be plausible within the context of
your study. For more information, see for example, Gelman et al. (2005), Abayomi, Gelman, and
Levy (2008), Eddings and Marchenko (2012), and Marchenko and Eddings (2011) for how to perform
multiple-imputation diagnostics in Stata.

Using mi impute

To use mi impute, you first mi set your data; see [MI] mi set. Next you register all variables
whose missing values are to be imputed; see mi register in [MI] mi set.

mi impute has two main options: add() and replace. If you do not have imputations, use add()
to create them. If you already have imputations, you have three choices:

1. Add new imputations to the existing ones by specifying the add() option.

2. Add new imputations and also replace the existing ones by specifying both the add() and
the replace options.

3. Replace existing imputed values by specifying the replace option.

add() is required if no imputations exist in the mi data, and either add() or replace must be
specified if imputations exist. See Univariate imputation for examples. Note that with replace, only
imputed values of the specified imputation variables within the specified subsample will be updated.

For reproducibility, use the rseed() option to set the random-number seed, or equivalently, set
the seed by using set seed immediately before calling mi impute. If you forget and still have mi
impute’s stored results in memory, you can retrieve the seed from the stored result r(rngstate);
see Stored results below. If you sort your data prior to imputation, you may also need to ensure that
your sorting is stable for reproducibility of your results; see [D] sort.

By default, mi impute stores the imputed values using float precision. If you need more accuracy,
you can specify the double option. Depending on the mi data style, the type of the imputed variable
may change in the original data, m = 0. For example, if your data are in the mlong (or flong) style
and you are imputing a binary variable using the regression method, the type of the variable will
become float. If you are using the logistic method, the type of the variable may become byte even
if originally your variable was declared as float or int. mi impute will never demote a variable
if that would result in loss of precision.

https://www.stata.com/manuals/mimiimputemvn.pdf#mimiimputemvn
https://www.stata.com/manuals/mimiimputechained.pdf#mimiimputechained
https://www.stata.com/manuals/rmfp.pdf#rmfp
https://www.stata.com/manuals/mimiset.pdf#mimiset
https://www.stata.com/manuals/mimiset.pdf#mimiset
https://www.stata.com/manuals/dsort.pdf#dsort
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Use the by(varlist) option to perform imputation separately on each group formed by varlist.
Specifying by() is equivalent to the repeated use of an if condition with mi impute to restrict
the imputation sample to each of the categories formed by varlist. Use the missing option within
by() to prevent mi impute from omitting missing categories in varlist. By default, mi impute
terminates with error if imputation fails in any of the groups; use by()’s nostop option to proceed
with imputation. You may not specify imputation and passive variables within by().

mi impute terminates with error if the imputation procedure results in missing imputed values.
This may happen if you include variables containing missing values as predictors in your imputation
model. If desired, you can override this behavior with the force option.

mi impute may change the sort order of the data.

Univariate imputation

Univariate imputation by itself has limited application in practice. The situations in which only one
variable needs to be imputed or in which multiple incomplete variables can be imputed independently
are rare in real-data applications. Univariate imputation is most useful when it is used as a building
block of sequential multivariate imputation methods; see Multivariate imputation. It is thus beneficial
to first become familiar with univariate imputation.

Consider the heart attack data in which bmi contains missing values, as described in A brief
introduction to MI using Stata of [MI] Intro substantive. Here we use the already mi set version of
the data with a subset of covariates of interest:

. use https://www.stata-press.com/data/r18/mheart1s0
(Fictional heart attack data; BMI missing)

. mi describe

Style: mlong
last mi update 31jan2023 09:23:53, 20 days ago

Observations:
Complete 132
Incomplete 22 (M = 0 imputations)

Total 154

Variables:
Imputed: 1; bmi(22)

Passive: 0

Regular: 5; attack smokes age female hsgrad

System: 3; _mi_m _mi_id _mi_miss

(there are no unregistered variables)

According to mi describe, the mi data style is mlong, and the dataset contains no imputations and
22 incomplete observations. The only registered imputed variable is bmi containing the 22 missing
values. The other variables are registered as regular. See [MI] mi describe for details.

https://www.stata.com/manuals/miintrosubstantive.pdf#miIntrosubstantiveRemarksandexamplesAbriefintroductiontoMIusingStata
https://www.stata.com/manuals/miintrosubstantive.pdf#miIntrosubstantiveRemarksandexamplesAbriefintroductiontoMIusingStata
https://www.stata.com/manuals/miintrosubstantive.pdf#miIntrosubstantive
https://www.stata.com/manuals/mimidescribe.pdf#mimidescribe
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In the example in [MI] Intro substantive, we used mi impute regress to impute missing values
of bmi. Let’s concentrate on the imputation step in more detail here:

. mi impute regress bmi attack smokes age female hsgrad, add(20)

Univariate imputation Imputations = 20
Linear regression added = 20
Imputed: m=1 through m=20 updated = 0

Observations per m

Variable Complete Incomplete Imputed Total

bmi 132 22 22 154

(Complete + Incomplete = Total; Imputed is the minimum across m
of the number of filled-in observations.)

The above output is common to all imputation methods of mi impute. In the left column, mi
impute reports information about which imputation method was used and which imputations were
created or updated. The right column contains the total number of imputations, and how many of
them are new and how many are updated. The table contains the number of complete, incomplete, and
imputed observations, and the total number of observations in the imputation sample, per imputation
for each variable (see Imputation and estimation samples below). As indicated by the note, complete
and incomplete observations sum to the total number of observations. The imputed column reports
how many incomplete observations were actually imputed. This number represents the minimum
across all imputations used (m = 1 through m = 20 in our example).

In the above example, we used add(20) to create 20 new imputations. Suppose that we decided
that 20 is not enough and we want to add 30 more:

. mi impute regress bmi attack smokes age female hsgrad, add(30)

Univariate imputation Imputations = 50
Linear regression added = 30
Imputed: m=21 through m=50 updated = 0

Observations per m

Variable Complete Incomplete Imputed Total

bmi 132 22 22 154

(Complete + Incomplete = Total; Imputed is the minimum across m
of the number of filled-in observations.)

The table output is unchanged, but the header reports that total number of imputations is now 50.
Thirty new imputations (from m = 21 to m = 50) were added, and the existing 20 imputations were
left unchanged.

https://www.stata.com/manuals/miintrosubstantive.pdf#miIntrosubstantiveRemarksandexamplesmi_imputereg
https://www.stata.com/manuals/miintrosubstantive.pdf#miIntrosubstantive
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Suppose that we decide we want to impute bmi using the predictive mean matching (PMM)
imputation method instead of the regression method. We use mi impute pmm with five nearest
neighbors and specify the replace option to update all existing imputations with new ones:

. mi impute pmm bmi attack smokes age female hsgrad, replace knn(5)

Univariate imputation Imputations = 50
Predictive mean matching added = 0
Imputed: m=1 through m=50 updated = 50

Nearest neighbors = 5

Observations per m

Variable Complete Incomplete Imputed Total

bmi 132 22 22 154

(Complete + Incomplete = Total; Imputed is the minimum across m
of the number of filled-in observations.)

The header reports that all 50 existing imputations, from m = 1 to m = 50, are replaced with
new ones.

Later we decide to use more nearest neighbors with mi impute pmm and also add 15 more
imputations. We can do the latter by combining replace and add(). We specify replace to update
the existing imputations with imputations from PMM with ten nearest neighbors (knn(10)) and use
add(15) to add 15 more imputations.

. mi impute pmm bmi attack smokes age female hsgrad, add(15) replace knn(10) dots

Imputing m=1 through m=65:
.........10.........20.........30.........40.........50.........60..... done

Univariate imputation Imputations = 65
Predictive mean matching added = 15
Imputed: m=1 through m=65 updated = 50

Nearest neighbors = 10

Observations per m

Variable Complete Incomplete Imputed Total

bmi 132 22 22 154

(Complete + Incomplete = Total; Imputed is the minimum across m
of the number of filled-in observations.)

The header reports a total of 65 imputations, among which 15 are new and 50 are updated. In this
example, we also used the dots option to see the imputation progress. This option is useful with
larger datasets to monitor the imputation process.

See Imputing on subsamples for other usage of add() and replace.

Multivariate imputation

When imputing multiple variables, their missing-data pattern must first be considered. As we
briefly mentioned in Patterns of missing data in [MI] Intro substantive, when a missing-data pattern
is monotone distinct, multiple variables can be imputed sequentially without iteration using univariate
conditional models (or monotone imputation). That is, a complicated multivariate imputation task can
be replaced with a sequence of simpler univariate imputation tasks; see [MI] mi impute monotone.

https://www.stata.com/manuals/miintrosubstantive.pdf#miIntrosubstantiveRemarksandexamplesPatternsofmissingdata
https://www.stata.com/manuals/miintrosubstantive.pdf#miIntrosubstantive
https://www.stata.com/manuals/mimiimputemonotone.pdf#mimiimputemonotone
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Monotone missing-data patterns rarely arise naturally in practice. As such, it is important to be able
to handle arbitrary missing-data patterns during imputation. Before we describe imputation methods
accommodating arbitrary missing-data patterns, we will first discuss the difficulties arising with such
patterns during imputation.

Monotone imputation is possible because variables can be ordered such that the complete observations
of a variable being imputed are also complete in all prior imputed variables used to predict it. This
means that the estimates of the parameters, which are obtained from complete data, do not depend
on any previously imputed values (see Rubin [1987] for details). With an arbitrary pattern of missing
data, such an ordering may not be possible because some variables may contain incomplete values in
observations for which other variables are complete (and vice versa), resulting in estimated parameters
being dependent on imputed values. The simultaneous imputation of multiple variables becomes more
challenging when missingness is nonmonotone.

Consider the following example. Variable X1 is complete in observation 1 and missing in ob-
servation 2, and variable X2 is missing in observation 1 and complete in observation 2. We need
to impute the two variables simultaneously. Suppose that we impute variable X2 using previously
imputed variable X1. Observation 1, which contains an imputed value of X1, is used to estimate the
model parameters for X2. As a result, the model parameters are obtained by treating the imputed
value of X1 as if it were true, thus ignoring the imputation variability in X1. To account for the
uncertainty in the imputed values during estimation, we need to iterate between the estimation step
and the imputation step until the estimates of the model parameters depend only on the observed data.

Two main approaches for multivariate imputation with arbitrary missing-data patterns are joint
modeling (JM) and fully conditional specification (FCS).

The JM approach assumes a genuine multivariate distribution for all imputation variables and
imputes missing values as draws from the resulting posterior predictive distribution of the missing
data given the observed data. The predictive distribution is often difficult to draw from directly, so the
imputed values are often obtained by approximating this distribution using one of the MCMC methods.
One such JM approach for continuous data is based on the multivariate normal distribution, the MVN
method (Schafer 1997). The MVN method is implemented in [MI] mi impute mvn and uses the data
augmentation MCMC method.

The FCS approach does not assume an explicit multivariate distribution for all imputation variables.
Instead, it provides a set of chained equations, that is, univariate conditional distributions of each
variable with fully conditional specifications of prediction equations. This approach is also known
as MICE (van Buuren, Boshuizen, and Knook 1999) or sequential regression multivariate imputation
(SRMI; Raghunathan et al. 2001). We will be using the terms MICE, FCS, and SRMI interchangeably
throughout the documentation. MICE is similar in spirit to the Gibbs sampler, a popular MCMC method
for simulating data from complicated multivariate distributions. Unlike the Gibbs sampler, however,
conditional specifications within the MICE method are not guaranteed to correspond to a genuine
multivariate distribution because MICE does not start from an explicit multivariate density. Regardless,
MICE remains one of the popular imputation methods in practice. The MICE method is implemented
in [MI] mi impute chained.

Currently, there is no definitive recommendation in the literature as to which approach, JM or FCS,
is preferable. The JM approach ensures that imputed values are drawn from a genuine multivariate
distribution, and it thus may be more attractive from a theoretical standpoint. However, except for
simpler cases such as a multivariate normal model for continuous data, it may not be feasible to
formulate a joint model for general data structures. In this regard, the FCS approach is more appealing
because it not only can accommodate mixtures of different types of variables, but also can preserve
some important characteristics often observed in real data, such as restrictions to subpopulations for
certain variables and range restrictions. The tradeoff for such flexibility is a current lack of theoretical

https://www.stata.com/manuals/mimiimputemvn.pdf#mimiimputemvn
https://www.stata.com/manuals/miglossary.pdf#miGlossarydef_FCS
https://www.stata.com/manuals/mimiimputechained.pdf#mimiimputechained
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justification. See Lee and Carlin (2010) and references therein for more discussion about the two
approaches.

Consider the heart attack data in which both bmi and age contain missing values. Again we will
use data that have already been mi set.

. use https://www.stata-press.com/data/r18/mheart5s0, clear
(Fictional heart attack data)

. mi describe

Style: mlong
last mi update 31jan2023 09:23:53, 20 days ago

Observations:
Complete 126
Incomplete 28 (M = 0 imputations)

Total 154

Variables:
Imputed: 2; bmi(28) age(12)

Passive: 0

Regular: 4; attack smokes female hsgrad

System: 3; _mi_m _mi_id _mi_miss

(there are no unregistered variables)

There are 28 incomplete observations in the dataset. The bmi variable contains 28 missing values
and the age variable contains 12 missing values. Both bmi and age are registered as imputed. If
we assume that age and BMI are independent, we can impute each of them separately by using the
previously described univariate imputation methods. It is likely, however, that these variables are
related, and so we use multivariate imputation.

First, we examine missing-value patterns of the data.

. mi misstable patterns

Missing-value patterns
(1 means complete)

Pattern
Percent 1 2

82% 1 1

10 1 0
8 0 0

100%

Variables are (1) age (2) bmi

From the output, 82% of observations are complete, 10% of observations contain missing values
for bmi, and 8% of observations have both bmi and age missing. We can see that the dataset has
a monotone-missing pattern (see [MI] Intro substantive), that is, missing values of age are nested
within missing values of bmi. Another way to see if the pattern of missingness is monotone is to use
mi misstable nested ([MI] mi misstable):

. mi misstable nested

1. age(12) -> bmi(28)

https://www.stata.com/manuals/miintrosubstantive.pdf#miIntrosubstantive
https://www.stata.com/manuals/mimimisstable.pdf#mimimisstable
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Because the missing-data pattern is monotone, we can use mi impute monotone to impute missing
values of bmi and age simultaneously:

. mi impute monotone (regress) age bmi = attack smokes hsgrad female, add(10)

Conditional models:
age: regress age attack smokes hsgrad female
bmi: regress bmi age attack smokes hsgrad female

Multivariate imputation Imputations = 10
Monotone method added = 10
Imputed: m=1 through m=10 updated = 0

age: linear regression
bmi: linear regression

Observations per m

Variable Complete Incomplete Imputed Total

age 142 12 12 154
bmi 126 28 28 154

(Complete + Incomplete = Total; Imputed is the minimum across m
of the number of filled-in observations.)

Without going into detail, mi impute monotone imputes missing values of multiple variables
by performing a sequence of independent univariate conditional imputations. In the above example,
the regression method is used to impute missing values of both variables. age is imputed first from
the observed variables attack, smokes, hsgrad, and female. Then bmi is imputed using the
imputed age variable in addition to other observed variables. The output is consistent with that of
the univariate imputation methods described earlier, with some additional information. See [MI] mi
impute monotone for details.

We can also impute missing values of bmi and age simultaneously using either mi impute mvn

. mi impute mvn age bmi = attack smokes hsgrad female, replace nolog

Multivariate imputation Imputations = 10
Multivariate normal regression added = 0
Imputed: m=1 through m=10 updated = 10

Prior: uniform Iterations = 1000
burn-in = 100
between = 100

Observations per m

Variable Complete Incomplete Imputed Total

age 142 12 12 154
bmi 126 28 28 154

(Complete + Incomplete = Total; Imputed is the minimum across m
of the number of filled-in observations.)

https://www.stata.com/manuals/mimiimputemonotone.pdf#mimiimputemonotone
https://www.stata.com/manuals/mimiimputemonotone.pdf#mimiimputemonotone
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or mi impute chained

. mi impute chained (regress) age bmi = attack smokes hsgrad female, replace
note: missing-value pattern is monotone; no iteration performed.

Conditional models (monotone):
age: regress age attack smokes hsgrad female
bmi: regress bmi age attack smokes hsgrad female

Performing chained iterations ...

Multivariate imputation Imputations = 10
Chained equations added = 0
Imputed: m=1 through m=10 updated = 10

Initialization: monotone Iterations = 0
burn-in = 0

age: linear regression
bmi: linear regression

Observations per m

Variable Complete Incomplete Imputed Total

age 142 12 12 154
bmi 126 28 28 154

(Complete + Incomplete = Total; Imputed is the minimum across m
of the number of filled-in observations.)

Neither mi impute mvn nor mi impute chained requires the missing-data pattern to be monotone.
mi impute mvn iterates to produce imputations. When the data are monotone missing, however, no
iteration is required, and because mi impute monotone executes more quickly, it is preferred. mi
impute chained also iterates to produce imputations, unless the missing-data pattern is monotone.
However, mi impute monotone is still faster because it performs estimation only once on the original
data, whereas mi impute chained performs estimation on each imputation. Use mi impute mvn
and mi impute chained when there is an arbitrary missing-data pattern. See [MI] mi impute mvn
and [MI] mi impute chained for details.

Imputing on subsamples

Consider the earlier example of the univariate imputation of bmi. Suppose that we want to perform
imputation separately for females and males. Imputation on subsamples is useful when the imputation
model must accommodate the interaction effects (see, for example, Allison [2001]). For example, if
we want the effect of bmi on attack to vary by gender, we can perform imputation of bmi separately
for females and males.

https://www.stata.com/manuals/mimiimputemvn.pdf#mimiimputemvn
https://www.stata.com/manuals/mimiimputechained.pdf#mimiimputechained
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We first show how to do it manually using if and the add() and replace options:

. use https://www.stata-press.com/data/r18/mheart1s0, clear
(Fictional heart attack data; BMI missing)

. mi impute regress bmi attack smokes age hsgrad if female==1, add(20)

Univariate imputation Imputations = 20
Linear regression added = 20
Imputed: m=1 through m=20 updated = 0

Observations per m

Variable Complete Incomplete Imputed Total

bmi 33 5 5 38

(Complete + Incomplete = Total; Imputed is the minimum across m
of the number of filled-in observations.)

. mi impute regress bmi attack smokes age hsgrad if female==0, replace

Univariate imputation Imputations = 20
Linear regression added = 0
Imputed: m=1 through m=20 updated = 20

Observations per m

Variable Complete Incomplete Imputed Total

bmi 99 17 17 116

(Complete + Incomplete = Total; Imputed is the minimum across m
of the number of filled-in observations.)

First, we created 20 imputations and filled in the missing values of bmi for females by using
the corresponding subset of observations. Then we filled in the remaining missing values of bmi for
males in the existing imputations by using the subset of male observations. We will now be able to
include the interaction between bmi and female in our logistic model.
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A much easier way to do the above is to use by():

. use https://www.stata-press.com/data/r18/mheart1s0, clear
(Fictional heart attack data; BMI missing)

. mi impute regress bmi attack smokes age hsgrad, add(20) by(female)

Performing setup for each by() group:

-> female = 0

-> female = 1

Univariate imputation Imputations = 20
Linear regression added = 20
Imputed: m=1 through m=20 updated = 0

Observations per m
by()

Variable Complete Incomplete Imputed Total

female = 0
bmi 99 17 17 116

female = 1
bmi 33 5 5 38

Overall
bmi 132 22 22 154

(Complete + Incomplete = Total; Imputed is the minimum across m
of the number of filled-in observations.)

Conditional imputation

Often in practice, some variables are defined only within what we call a conditional sample, a
subset of observations satisfying certain restrictions (Raghunathan et al. 2001, Royston 2009). For
example, the number of cigarettes smoked is relevant to smokers only, the number of pregnancies is
relevant to females only, etc. Outside the conditional sample, such variables are assumed to contain
soft missing values and a nonmissing constant value, further referred to as a conditional constant,
which represents a known value or an inadmissible value. We will refer to conditional imputation as
imputation of such variables. So, the task of conditional imputation is to impute missing values of a
variable within a conditional sample using only observations from that sample and to replace missing
values outside the conditional sample with a conditional constant.

In the previous section, we learned that we can specify an if condition with mi impute to restrict
imputation of variables to a subset of observations. Is this sufficient to accommodate conditional
imputation? To answer this question, let’s consider several examples.

We use our heart attack data as an example. Suppose that our only variable containing missing
values is hightar, the indicator for smoking high-tar cigarettes. We want to impute missing values
in hightar and use it among other predictors in the logistic analysis of heart attacks. Because
hightar is relevant to smokers only, we want to impute hightar using the subset of observations
with smokes==1.

Thus to impute hightar, we restrict our imputation sample to smokers:

. mi impute logit hightar attack age bmi . . . if smokes==1, . . .
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Are we now ready to proceed with our primary logistic analysis of heart attacks? Not quite.
Recall that we wish to use all observations of hightar in our analysis. If hightar contains missing
values only in the conditional sample, smokes==1, we are finished. Otherwise, we need to replace
all remaining missing values outside the conditional sample, for smokes==0, with the conditional
constant, the nonmissing value of hightar in observations with smokes==0. In our example, this
value is zero, so our final step is

. mi xeq: replace hightar = 0 if smokes==0

What if we have several imputation variables? Suppose now that age and bmi also contain missing
values. Without making any assumptions about a missing-data pattern, we use mi impute chained
to impute variables of different types: age, bmi, and hightar. We need to impute hightar for
smokes==1 but use the unrestricted sample to impute age and bmi. Can we still accomplish this by
specifying an if condition? The answer is yes, but we need to replace missing values of hightar for
smokes==0 before imputation to ensure that age and bmi are imputed properly, using all observations,
when hightar is used in their prediction equations:

. mi xeq: replace hightar = 0 if smokes==0

. mi impute chained (regress) bmi age (logit if smokes==1) hightar = . . . , . . .

It seems that we can get away with using if to perform conditional imputation. What is the catch?
So far, we assumed that smokes does not contain any missing values. Let’s see what happens if it
does.

Because hightar depends on smokes, we must first impute missing values of smokes before
we can impute missing values of hightar. As such, the set of observations for which smokes==1
will vary from imputation to imputation and, in the case of mi impute chained, from iteration to
iteration. The replacement of missing values of hightar outside the conditional sample should be
performed each time a new set of imputed values is obtained for smokes, and thus must be directly
incorporated into the imputation procedure.

The answer to our earlier question about using an if condition to perform conditional imputation
is no, in general. To perform conditional imputation, use the conditional() option:

. mi imp chained (reg) bmi age (logit) smokes (logit, conditional(if smokes==1))
> hightar . . .

Every univariate imputation method supports option conditional(). This option is most useful
within specifications of univariate methods when multiple variables are being imputed using mi
impute monotone or mi impute chained, as we showed above. Although in some cases, as we
saw earlier, specifying an if condition in combination with manual replacement of missing values
outside the conditional sample may produce equivalent results, such use should generally be avoided
and conditional() should be used instead.

When you specify option conditional(), mi impute performs checks necessary for proper
conditional imputation. For example, the imputed variable is verified to be constant outside the
conditional sample and an error message is issued if it is not:

. mi impute logit hightar age bmi . . . , conditional(if smokes==1)
conditional(): imputation variable not constant outside conditional sample;

hightar is not constant outside the subset identified by (smokes==1)
within the imputation sample. This may happen when missing values of
conditioning variables are not nested within missing values of hightar.

r(459);

https://www.stata.com/manuals/perror.pdf#perrorRemarksandexamplesr(459)
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mi impute also requires that missing values of all variables involved in conditional specifications
(restrictions)—that is, conditioning variables—be nested within missing values of the conditional
variable being imputed. If this does not hold true, mi impute issues an error message:

. mi impute logit hightar age bmi . . . , conditional(if smokes==1)
conditional(): conditioning variables not nested;

conditioning variable smokes is not nested within hightar
r(459);

Because missing values of all conditioning variables are assumed to be nested within missing
values of a conditional variable, that conditional variable is not included in the prediction equations
of the corresponding conditioning variables.

As an example, let’s continue with our heart attack data, in which variables hightar and smokes
contain missing values, as do age and bmi:

. use https://www.stata-press.com/data/r18/mheart7s0, clear
(Fictional heart attack data; BMI, age, hightar, and smokes missing)

. mi describe

Style: mlong
last mi update 31jan2023 09:23:53, 20 days ago

Observations:
Complete 124
Incomplete 30 (M = 0 imputations)

Total 154

Variables:
Imputed: 4; bmi(24) age(30) hightar(8) smokes(5)

Passive: 0

Regular: 3; attack female hsgrad

System: 3; _mi_m _mi_id _mi_miss

(there are no unregistered variables)

. mi misstable nested

1. smokes(5) -> hightar(8) -> bmi(24) -> age(30)

Our data are already mi set, so we proceed with imputation. According to mi misstable nested,
all imputation variables are monotone missing, so we use mi impute monotone for imputation. For
the purpose of illustration, we create only two imputations:

https://www.stata.com/manuals/perror.pdf#perrorRemarksandexamplesr(459)
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. mi impute monotone (regress) bmi age
> (logit, conditional(if smokes==1)) hightar
> (logit) smokes
> = attack hsgrad female, add(2)

Conditional models:
smokes: logit smokes attack hsgrad female
hightar: logit hightar i.smokes attack hsgrad female ,

conditional(if smokes==1)
bmi: regress bmi i.hightar i.smokes attack hsgrad female
age: regress age bmi i.hightar i.smokes attack hsgrad female

note: 1.smokes omitted because of collinearity.

Multivariate imputation Imputations = 2
Monotone method added = 2
Imputed: m=1 through m=2 updated = 0

Conditional imputation:
hightar: incomplete out-of-sample obs replaced with value 0

bmi: linear regression
age: linear regression

hightar: logistic regression
smokes: logistic regression

Observations per m

Variable Complete Incomplete Imputed Total

bmi 130 24 24 154
age 124 30 30 154

hightar 146 8 8 154
smokes 149 5 5 154

(Complete + Incomplete = Total; Imputed is the minimum across m
of the number of filled-in observations.)

For each variable that was imputed conditionally, mi impute reports the conditional value used to
replace all missing observations outside the conditional sample in a legend about conditional imputation.
In our example, all missing values of hightar outside smokes==1 are replaced with zero. The reported
numbers of complete, incomplete, and imputed observations for hightar correspond to the entire
imputation sample (see Imputation and estimation samples) and not only to the conditional sample.
For example, there are 146 complete and 8 incomplete observations of hightar in the combined
sample of smokers and nonsmokers. The minimum number of imputed values across imputations is 8,
so all incomplete observations of hightar were filled in—either imputed directly or replaced with a
conditional value—in both imputations. Because smokes is being imputed, the numbers of incomplete
and imputed observations of hightar for smokers and nonsmokers will vary across imputations.

You can accommodate more complicated restrictions or skip patterns, which often arise with
questionnaire data, by specifying more elaborate restrictions within conditional() or by specifying
the conditional() option with other variables. For example, suppose that the information about
cigarette tar level (hightar) was collected only for heavy smokers, identified by an indicator variable
heavysmoker. The heavysmoker variable contains missing values and needs to be imputed before
hightar can be imputed. To impute heavysmoker, we need to restrict our sample to smokers only.
Then to impute hightar, we need to use only heavy smokers among all smokers. We can do so as
follows:

. mi impute chained (logit) smokes ///
(logit, conditional(if smokes==1)) heavysmoker ///
(logit, conditional(if smokes==1 & heavysmoker==1)) ///

hightar . . .
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Imputation and estimation samples

Rubin (1987, 160–166) describes the imputation process as three tasks: modeling, estimation,
and imputation. We concentrate on the latter two tasks here. The posterior distribution of the model
parameters is estimated during the estimation task. This posterior distribution is used in the imputation
task to simulate the parameters of the posterior predictive distribution of the missing data from which an
imputed value is drawn. Accordingly, mi impute distinguishes between two main samples: imputation
and estimation.

The imputation sample is determined by the imputation variables used in the imputation task. It
is comprised of all observations for which the imputation variables contain no hard missing values
(or no extended missing values). In other words, the imputation sample consists of the complete and
incomplete observations as identified by the specified imputation variables. The estimation sample is
comprised of all observations used by the model fit to the observed data during the estimation task.

For example,

. use https://www.stata-press.com/data/r18/mheart1s0, clear
(Fictional heart attack data; BMI missing)

. mi impute regress bmi attack smokes age hsgrad female, add(1) noisily

Running regress on observed data:

Source SS df MS Number of obs = 132
F(5, 126) = 1.24

Model 99.5998228 5 19.9199646 Prob > F = 0.2946
Residual 2024.93667 126 16.070926 R-squared = 0.0469

Adj R-squared = 0.0091
Total 2124.5365 131 16.2178358 Root MSE = 4.0089

bmi Coefficient Std. err. t P>|t| [95% conf. interval]

attack 1.71356 .7515229 2.28 0.024 .2263179 3.200801
smokes -.5153181 .761685 -0.68 0.500 -2.02267 .9920341

age -.033553 .0305745 -1.10 0.275 -.0940591 .026953
hsgrad -.4674308 .8112327 -0.58 0.566 -2.072836 1.137975
female -.3072767 .8074763 -0.38 0.704 -1.905249 1.290695
_cons 26.96559 1.884309 14.31 0.000 23.2366 30.69458

Univariate imputation Imputations = 1
Linear regression added = 1
Imputed: m=1 updated = 0

Observations per m

Variable Complete Incomplete Imputed Total

bmi 132 22 22 154

(Complete + Incomplete = Total; Imputed is the minimum across m
of the number of filled-in observations.)

The imputation sample contains 154 observations and the estimation sample contains 132 observations
(from the regression output). The estimation task of mi impute regress consists of fitting a linear
regression of bmi on other variables to the observed data. We specified the noisily option to see
results from the estimation task. Usually, the number of complete observations in the imputation
sample (132 in this example) will be equal to the number of observations used in the estimation.
Sometimes, however, observations may be dropped from the estimation—for example, if independent
variables contain missing values. In this case, the number of complete observations in the imputation
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sample and the number of observations used in the estimation will be different, and the following
note will appear following the table output:

Note: Right-hand-side variables (or weights) have missing values;
model parameters estimated using listwise deletion.

You should evaluate such cases to verify that results are as expected.

In general, missing values in independent variables (or in a weighting variable) do not affect
the imputation sample but they may lead to missing imputed values. In the above example, if age
contained missing values in incomplete observations of bmi, the linear prediction for those observations
would have been missing and thus the resulting imputed values would have been missing, too.

Imputing on subsamples, or in other words, using an if condition with mi impute, restricts
both imputation and estimation samples to include only observations satisfying the if condition.
Conditional imputation (the conditional() option), on the other hand, affects only the estimation
sample. All values, within and outside of a conditional sample, except extended missing values, are
included in the imputation sample. With conditional imputation, the reported number of complete
observations will almost always be different from the number of observations in the estimation sample,
unless the conditional sample coincides with the imputation sample. In the case of observations being
dropped from a conditional sample during estimation, a note as shown above will appear following
the table output.

Imputing transformations of incomplete variables

Continuing with the univariate example above, say that we discover that the distribution of bmi
is skewed to the right, and thus we decide to impute bmi on the logarithmic scale instead of the
original one. We can do this by creating a new variable, lnbmi, and imputing it instead of bmi.

What we will do is create lnbmi, register it as imputed, impute it, and then create bmi as a passive
variable based on the formula bmi = exp(lnbmi).

We need to be careful when we create lnbmi to get its missing values right. mi respects two kinds
of missing values, called soft and hard missing. Soft missing values are missing values eligible for
imputation. Hard missing values are missing values that are to remain missing even in the imputed
data. Soft missing are recorded as ordinary missing (.), and hard missing are recorded as any of
extended missing (.a–.z).

The issue here is that missing values could arise because of our application of the transform
lnbmi = ln(bmi). In the case of the ln() transform, missing values will be created whenever
bmi ≤ 0. (In general, transformations leading to undefined values should be avoided so that all
available observed data are used during imputation.) Body mass index does not contain such values,
but let’s pretend it did. Here is what we would do:

1. Create lnbmi = ln(bmi).

2. Replace lnbmi to contain .z in observations for which lnbmi contains missing but bmi
does not.

3. Register lnbmi as an imputed variable and impute it.

4. Create passive variable newbmi = exp(lnbmi).

5. Replace newbmi equal to bmi in observations for which newbmi is missing and bmi is not.

Alternatively, to avoid creating hard missing values in step 2, we could consider a different
transformation; see, for example, [R] lnskew0.

https://www.stata.com/manuals/rlnskew0.pdf#rlnskew0
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As we said, for lnbmi = ln(bmi) we need not perform all the steps above because bmi > 0. In
the bmi case, all we need to do is

1. Create lnbmi = ln(bmi).

2. Register lnbmi as an imputed variable and impute it.

3. Create passive variable newbmi = exp(lnbmi).

If all we wanted to do was impute lnbmi = ln(bmi) and, from that point on, just work with
lnbmi, we would perform only the first two steps of the three-step procedure.

All that said, we are going to perform the five-step procedure because it will always work. We
will continue from where we left off in the last example, so we will discard our previous imputation
efforts by typing mi set M = 0. (Instead of typing mi set M = 0, we could just as easily begin by
typing use https://www.stata-press.com/data/r18/mheart1s0.)

. mi set M = 0 // start again

. mi unregister bmi // we do not impute bmi

. generate lnbmi = ln(bmi) // create lnbmi

. replace lnbmi = .z if lnbmi==. & bmi!=.

. mi register imputed lnbmi

. mi impute regress lnbmi attack smokes age hsgrad female, add(5)

. mi passive: generate newbmi = exp(lnbmi)

. mi passive: replace newbmi = bmi if bmi!=.

The important thing about the above is the mechanical definition of an imputed variable. An
imputed variable is a variable we actually impute, not a variable we desire to impute. In this case, we
imputed lnbmi and derived bmi from it. Thus the variable we desired to impute became, mechanically,
a passive variable.

Stored results
mi impute stores the following in r():

Scalars
r(M) total number of imputations
r(M add) number of added imputations
r(M update) number of updated imputations
r(k ivars) number of imputed variables
r(N g) number of imputed groups (1 if by() is not specified)

Macros
r(method) name of imputation method
r(ivars) names of imputation variables
r(rngstate) random-number state used
r(by) names of variables specified within by()

Matrices
r(N) number of observations in imputation sample in each group (per variable)
r(N complete) number of complete observations in imputation sample in each group (per variable)
r(N incomplete) number of incomplete observations in imputation sample in each group (per variable)
r(N imputed) number of imputed observations in imputation sample in each group (per variable)

Also see Stored results in the method-specific manual entries for additional stored results.
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Methods and formulas
All imputation methods (except predictive mean matching) are based on simulating from a Bayesian

(approximate) posterior predictive distribution of missing data. Univariate imputation methods and the
sequential monotone method use noniterative techniques for simulating from the posterior predictive
distribution of missing data. The imputation method based on multivariate normal regression uses an
iterative MCMC technique to simulate from the posterior predictive distribution of missing data. The
MICE method uses a Gibbs-like algorithm to obtain imputed values.

See Methods and formulas in the method-specific manual entries for details.

� �
Herman Otto Hartley (1912–1980) was born in Germany as Herman Otto Hirschfeld and
immigrated to England in 1934 after completing his PhD in mathematics at Berlin University. He
completed a second PhD in mathematical statistics under John Wishart at Cambridge in 1940 and
went on to hold positions at Harper Adams Agricultural College, Scientific Computing Services
(London), University College (London), Iowa State College, Texas A&M University, and Duke
University. Among other awards he received and distinguished titles he held, Professor Hartley
served as the president of the American Statistical Association in 1979. Known affectionately
as HOH by almost all who knew him, he founded the Institute of Statistics, later to become the
Department of Statistics, at Texas A&M University. His contributions to statistical computing
are particularly notable considering the available equipment at the time. Professor Hartley is
best known for his two-volume Biometrika Tables for Statisticians (jointly written with Egon
Pearson) and for his fundamental contributions to sampling theory, missing-data methodology,
variance-component estimation, and computational statistics.� �
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