
mi impute — Impute missing values

Description Menu Syntax Options
Remarks and examples Stored results Methods and formulas References
Also see

Description
mi impute fills in missing values (.) of a single variable or of multiple variables using the specified

method. The available methods (by variable type and missing-data pattern) are summarized in the tables

below.
Single imputation variable (univariate imputation)

Pattern Type Imputation method

continuous regress, pmm,
truncreg, intreg

always monotone binary logit
categorical ologit, mlogit

count poisson, nbreg

Multiple imputation variables (multivariate imputation)

Pattern Type Imputation method

monotone missing mixture monotone
arbitrary missing mixture chained
arbitrary missing continuous mvn

The suggested reading order of mi impute’s subentries is

[MI] mi impute regress [MI] mi impute monotone

[MI] mi impute pmm [MI] mi impute chained

[MI] mi impute truncreg [MI] mi impute mvn

[MI] mi impute intreg [MI] mi impute usermethod

[MI] mi impute logit

[MI] mi impute ologit

[MI] mi impute mlogit

[MI] mi impute poisson

[MI] mi impute nbreg

1

https://www.stata.com/manuals/mimiimputeregress.pdf#mimiimputeregress
https://www.stata.com/manuals/mimiimputemonotone.pdf#mimiimputemonotone
https://www.stata.com/manuals/mimiimputepmm.pdf#mimiimputepmm
https://www.stata.com/manuals/mimiimputechained.pdf#mimiimputechained
https://www.stata.com/manuals/mimiimputetruncreg.pdf#mimiimputetruncreg
https://www.stata.com/manuals/mimiimputemvn.pdf#mimiimputemvn
https://www.stata.com/manuals/mimiimputeintreg.pdf#mimiimputeintreg
https://www.stata.com/manuals/mimiimputeusermethod.pdf#mimiimputeusermethod
https://www.stata.com/manuals/mimiimputelogit.pdf#mimiimputelogit
https://www.stata.com/manuals/mimiimputeologit.pdf#mimiimputeologit
https://www.stata.com/manuals/mimiimputemlogit.pdf#mimiimputemlogit
https://www.stata.com/manuals/mimiimputepoisson.pdf#mimiimputepoisson
https://www.stata.com/manuals/mimiimputenbreg.pdf#mimiimputenbreg

mi impute — Impute missing values 2

Menu
Statistics > Multiple imputation

Syntax
mi impute method ... [, impute options ...]

method Description

Univariate

regress linear regression for a continuous variable

pmm predictive mean matching for a continuous variable

truncreg truncated regression for a continuous variable with a restricted range

intreg interval regression for a continuous partially observed (censored) variable

logit logistic regression for a binary variable

ologit ordered logistic regression for an ordinal variable

mlogit multinomial logistic regression for a nominal variable

poisson Poisson regression for a count variable

nbreg negative binomial regression for an overdispersed count variable

Multivariate

monotone sequential imputation using a monotone-missing pattern

chained sequential imputation using chained equations

mvn multivariate normal regression

User-defined

usermethod user-defined imputation methods

impute options Description

Main
∗ add(#) specify number of imputations to add; required when no imputations exist
∗ replace replace imputed values in existing imputations

rseed(#) specify random-number seed

double store imputed values in double precision; the default is to store them
as float

by(varlist[, byopts]) impute separately on each group formed by varlist (not allowed with
usermethod)

Reporting

dots display dots as imputations are performed

noisily display intermediate output

nolegend suppress all table legends

Advanced

force proceed with imputation, even when missing imputed values are
encountered

noupdate do not perform mi update (not allowed with usermethod); see
[MI] noupdate option

https://www.stata.com/manuals/mimiimputeregress.pdf#mimiimputeregress
https://www.stata.com/manuals/mimiimputepmm.pdf#mimiimputepmm
https://www.stata.com/manuals/mimiimputetruncreg.pdf#mimiimputetruncreg
https://www.stata.com/manuals/mimiimputeintreg.pdf#mimiimputeintreg
https://www.stata.com/manuals/mimiimputelogit.pdf#mimiimputelogit
https://www.stata.com/manuals/mimiimputeologit.pdf#mimiimputeologit
https://www.stata.com/manuals/mimiimputemlogit.pdf#mimiimputemlogit
https://www.stata.com/manuals/mimiimputepoisson.pdf#mimiimputepoisson
https://www.stata.com/manuals/mimiimputenbreg.pdf#mimiimputenbreg
https://www.stata.com/manuals/mimiimputemonotone.pdf#mimiimputemonotone
https://www.stata.com/manuals/mimiimputechained.pdf#mimiimputechained
https://www.stata.com/manuals/mimiimputemvn.pdf#mimiimputemvn
https://www.stata.com/manuals/mimiimputeusermethod.pdf#mimiimputeusermethod
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/mimiimpute.pdf#mimiimputeOptionsbyopts
https://www.stata.com/manuals/minoupdateoption.pdf#minoupdateoption

mi impute — Impute missing values 3

∗add(#) is required when no imputations exist; add(#) or replace is required if imputations exist.

You must mi set your data before using mi impute; see [MI] mi set.

collect is allowed; see [U] 11.1.10 Prefix commands.

The mi suite of commands does not allow alias variables; see [D] frunalias for advice on how to get around this restriction.

noupdate does not appear in the dialog box.

Options

� � �
Main �

add(#) specifies the number of imputations to add to the mi data. This option is required if there are no

imputations in the data. If imputations exist, then add() is optional. The total number of imputations

cannot exceed 1,000.

replace specifies to replace existing imputed values with new ones. One of replace or add() must

be specified when mi data already have imputations.

rseed(#) sets the random-number seed. This option can be used to reproduce results. rseed(#) is

equivalent to typing set seed # prior to calling mi impute; see [R] set seed. You may also need

to use the same stable ordering of the data prior to executing mi impute to reproduce results; see

[D] sort.

double specifies that the imputed values be stored as doubles. By default, they are stored as floats.
mi impute makes this distinction only when necessary. For example, if the logit method is used,

the imputed values are stored as bytes.

by(varlist[, byopts]) specifies that imputation be performed separately for each by-group. By-groups

are identified by equal values of the variables in varlist in the original data (m = 0). Missing categories

in varlist are omitted, unless the missing suboption is specified within by(). Imputed and passive
variables may not be specified within by(). This option is not allowed with user-defined imputation
methods, usermethod. byopts are missing, noreport, nolegend, and nostop.

missing specifies that missing categories in varlist are not omitted.

noreport suppresses reporting of intermediate information about each group.

nolegend suppresses the display of group legends that appear before the imputation table when

long group descriptions are encountered.

nostop specifies to proceed with imputation when imputation fails in some groups. By default,

mi impute terminates with error when this happens.

� � �
Reporting �

dots specifies to display dots as imputations are successfully completed. An x is displayed if any of the

specified imputation variables still have missing values.

noisily specifies that intermediate output from mi impute be displayed.

nolegend suppresses the display of all legends that appear before the imputation table.

� � �
Advanced �

force specifies to proceed with imputation even when missing imputed values are encountered. By

default, mi impute terminates with error if missing imputed values are encountered.

https://www.stata.com/manuals/mimiset.pdf#mimiset
https://www.stata.com/manuals/u11.pdf#u11.1.10Prefixcommands
https://www.stata.com/manuals/dfrunalias.pdf#dfrunalias
https://www.stata.com/manuals/rsetseed.pdf#rsetseed
https://www.stata.com/manuals/dsort.pdf#dsort
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/miglossary.pdf#miGlossaryoriginal_data

mi impute — Impute missing values 4

The following option is available with mi impute but is not shown in the dialog box:

noupdate in some cases suppresses the automatic mi update this command might perform; see

[MI] noupdate option. This option is rarely used and is not allowed with user-defined imputation

methods, usermethod.

Remarks and examples
Remarks are presented under the following headings:

Imputation methods
Imputation modeling

Model building
Outcome variables
Transformations
Categorical variables
The issue of perfect prediction during imputation of categorical data
Convergence of iterative methods
Imputation diagnostics

Using mi impute
Univariate imputation
Multivariate imputation
Imputing on subsamples
Conditional imputation
Imputation and estimation samples
Imputing transformations of incomplete variables

Imputation methods
mi impute supports both univariate andmultivariate imputation under the missing at random assump-

tion (see Assumptions about missing data under Remarks and examples in [MI] Intro substantive).

Univariate imputation is used to impute a single variable. It can be used repeatedly to impute multiple

variables only when the variables are independent and will be used in separate analyses. To impute a

single variable, you can choose from the following methods: regress, pmm, truncreg, intreg, logit,
ologit, mlogit, poisson, and nbreg; see [MI] mi impute regress, [MI] mi impute pmm, [MI] mi

impute truncreg, [MI]mi impute intreg, [MI]mi impute logit, [MI]mi impute ologit, [MI]mi impute

mlogit, [MI] mi impute poisson, and [MI] mi impute nbreg.

For a continuous variable, either regress or pmm can be used (for example, Rubin [1987] and

Schenker and Taylor [1996]). For a continuous variable with a restricted range, a truncated variable,

either pmm or truncreg (Raghunathan et al. 2001) can be used. For a continuous partially observed or

censored variable, intreg can be used (Royston 2007). For a binary variable, logit can be used (Rubin
1987). For a categorical variable, ologit can be used to impute missing categories if they are ordered,

and mlogit can be used to impute missing categories if they are unordered (Raghunathan et al. 2001).

For a count variable, either poisson (Raghunathan et al. 2001) or nbreg (Royston 2009), in the pres-

ence of overdispersion, is often suggested. Also see van Buuren (2007) for a detailed list of univariate

imputation methods.

Theory dictates that multiple variables usually must be imputed simultaneously, and that requires

using a multivariate imputation method. The choice of an imputation method in this case also depends

on the pattern of missing values.

https://www.stata.com/manuals/minoupdateoption.pdf#minoupdateoption
https://www.stata.com/manuals/miintrosubstantive.pdf#miIntrosubstantiveRemarksandexamplesAssumptionsaboutmissingdata
https://www.stata.com/manuals/miintrosubstantive.pdf#miIntrosubstantive
https://www.stata.com/manuals/mimiimputeregress.pdf#mimiimputeregress
https://www.stata.com/manuals/mimiimputepmm.pdf#mimiimputepmm
https://www.stata.com/manuals/mimiimputetruncreg.pdf#mimiimputetruncreg
https://www.stata.com/manuals/mimiimputetruncreg.pdf#mimiimputetruncreg
https://www.stata.com/manuals/mimiimputeintreg.pdf#mimiimputeintreg
https://www.stata.com/manuals/mimiimputelogit.pdf#mimiimputelogit
https://www.stata.com/manuals/mimiimputeologit.pdf#mimiimputeologit
https://www.stata.com/manuals/mimiimputemlogit.pdf#mimiimputemlogit
https://www.stata.com/manuals/mimiimputemlogit.pdf#mimiimputemlogit
https://www.stata.com/manuals/mimiimputepoisson.pdf#mimiimputepoisson
https://www.stata.com/manuals/mimiimputenbreg.pdf#mimiimputenbreg

mi impute — Impute missing values 5

If variables follow a monotone-missing pattern (see Patterns of missing data under Remarks and ex-

amples in [MI] Intro substantive), they can be imputed sequentially using univariate conditional distri-

butions, which is implemented in the monotone method (see [MI] mi impute monotone). A separate

univariate imputation model can be specified for each imputation variable, which allows simultaneous

imputation of variables of different types (Rubin 1987).

When a pattern of missing values is arbitrary, iterative methods are used to fill in missing values. The

mvn method (see [MI] mi impute mvn) uses multivariate normal data augmentation to impute missing

values of continuous imputation variables (Schafer 1997). Allison (2001), for example, also discusses

how to use this method to impute binary and categorical variables.

Another multivariate imputation method that accommodates arbitrary missing-value patterns is mul-

tivariate imputation using chained equations (MICE), also known as imputation using fully conditional

specifications (van Buuren, Boshuizen, and Knook 1999) and as sequential regression multivariate im-

putation (Raghunathan et al. 2001) in the literature. The MICE method is implemented in the chained
method (see [MI] mi impute chained) and uses a Gibbs-like algorithm to impute multiple variables

sequentially using univariate fully conditional specifications. Despite a lack of rigorous theoretical jus-

tification, the flexibility of MICE has made it one of the most popular choices used in practice.

For a comparison of MICE and multivariate normal imputation, see Lee and Carlin (2010).

Imputation modeling
As discussed in [MI] Intro substantive, imputation modeling is important to obtain proper imputa-

tions. Imputationmodeling is not confined to the specification of an imputationmethod and an imputation

model. It also requires careful consideration of how to handle complex data structures, such as survey

or longitudinal data, and how to preserve existing relationships in the data during the imputation step.

Rubin (1987), Meng (1994), Schafer (1997), Allison (2001), Royston (2007), Graham (2009), White,

Royston, and Wood (2011), and others provide guidelines about imputation modeling. We summarize

some of them below.

As with any statistical procedure, choosing an appropriate imputation approach is an art, and the

choice should ultimately be determined by your data and research objectives. Regardless of which im-

putation approach you decide to pursue, it is good practice to check that your imputations are sensible

before performing primary data analysis (see Imputation diagnostics) and to perform sensitivity analysis

(for example, Kenward and Carpenter [2007]).

Model building

Perhaps the most important component of imputation modeling is the construction of an imputation

model that preserves all the main characteristics of the observed data. This includes the following:

1. Use as many predictors as possible in the model to avoid making incorrect assumptions about

the relationships between the variables. Omitting key predictors from the imputation model

may lead to biased estimates for these predictors in the analysis. On the other hand, including

insignificant predictors will result in less efficient yet still statistically valid results.

2. Include design variables representing the structure of the data in your imputation model. For

example, sampling weights, strata and cluster identifiers of survey data, repeated-measures

identifiers of longitudinal data must be included in the imputation model.

https://www.stata.com/manuals/miglossary.pdf#miGlossarydef_monotone
https://www.stata.com/manuals/miintrosubstantive.pdf#miIntrosubstantiveRemarksandexamplesPatternsofmissingdata
https://www.stata.com/manuals/miintrosubstantive.pdf#miIntrosubstantive
https://www.stata.com/manuals/mimiimputemonotone.pdf#mimiimputemonotone
https://www.stata.com/manuals/mimiimputemvn.pdf#mimiimputemvn
https://www.stata.com/manuals/mimiimputechained.pdf#mimiimputechained
https://www.stata.com/manuals/miintrosubstantive.pdf#miIntrosubstantive
https://www.stata.com/manuals/mimiimpute.pdf#mimiimputeRemarksandexamplesImputationdiagnostics

mi impute — Impute missing values 6

3. Specify the correct functional form of an imputation model. For example, include interactions

of variables (or impute missing values separately using different subsamples; see Imputing on

subsamples) to preserve higher-order dependencies.

The imputation model must be compatible with anymodel that can be used for the analysis. If variable

𝑋 is to be included in the analysis model, it should also be used in the imputation model. If the analysis

model estimates a correlation of 𝑋1 and 𝑋2, then both variables should be present in the imputation

model. Accordingly, the outcome variable should always be present in the imputation model. Also, in

addition to all the variables that may be used in the analysis model, you should include any auxiliary

variables that may contain information about missing data. This will make the MAR assumption more

plausible and will improve the quality of the imputed values. For more information about congeniality

between the imputation and complete-data models, see Meng (1994).

As we mentioned above, it is important to specify the correct functional form of an imputation model

to obtain proper imputations. The failure to accommodate suchmodel features as interactions and nonlin-

earities during imputation may lead to severely biased results. There is no definitive recommendation for

the best way to incorporate various functional forms into the imputation model. Currently, two main ap-

proaches are the joint modeling of all functional terms and modeling using passive variables (variables

derived from imputation variables) also known as passive imputation. The joint modeling approach

simply treats all functional terms as separate variables and imputes them together with the underlying

imputation variables using a multivariate model, often a multivariate normal model. On the other hand,

passive imputation—available within theMICE framework—fills in only the underlying imputation vari-

ables and computes the respective functional terms from the imputed variables, maintaining functional

dependencies between the imputed and derived variables. The joint modeling approach imposes a rather

stringent assumption ofmultivariate normality for possibly highly nonlinear terms and does not recognize

functional dependencies between the imputed and derived variables. The naíve application of passive

imputation, however, may omit certain functional relationships and thus lead to biased results. So, care-

ful consideration for the specification of each conditional model is important. See White, Royston, and

Wood (2011) for more details and some guidelines.

Outcome variables

Imputing outcome variables receive special attention in the literature because of the controversy about

whether they should be imputed. Aswe alreadymentioned, it is important to include the outcome variable

in the imputationmodel to obtain valid results. But what if the outcome variable itself hasmissing values?

Should it be imputed? Should missing values be discarded from the analysis? There is no definitive

answer to this question. The answer ultimately comes down to whether the specified imputation model

describes the missing data adequately. When the percentage of missing values is low, using an incorrect

imputation model may have little effect on the resulting repeated-imputation inference. With a large

fraction of missing observations, a misspecified imputation model may distort the observed relationship

between the outcome and predictor variables. In general, with large fractions of missing observations on

any variable, the imputed values have more influence on the results, and thus more careful consideration

of the imputation probability model is needed.

Transformations

Although the choice of an imputation method may not have significant impact on the results with

low fractions of missing data, it may with larger fractions. A number of different imputation methods

are available to model various types of imputation variables: continuous, categorical, count, and so on.

However, in practice, these methods in no way cover all possible distributions that imputation variables

https://www.stata.com/manuals/mimiimpute.pdf#mimiimputeRemarksandexamplesImputingonsubsamples
https://www.stata.com/manuals/mimiimpute.pdf#mimiimputeRemarksandexamplesImputingonsubsamples

mi impute — Impute missing values 7

may have. Often, the imputation variables can be transformed to the scale appropriate for an imputation

method. For example, a log transformation (or, more generally, a Box–Cox transformation) can be used

for highly skewed continuous variables to make them suitable for imputation using the linear regression

method. If desired, the imputed values can be transformed back after the imputation. Transformations

are useful when a variable has a restricted range. For instance, a preimputation logit transformation and

a postimputation inverse-logit transformation can be used to ensure that the imputed values are between

0 and 1.

It is important to remember that although the choice of a transformation is often determined based on

the variable of interest alone, it is the conditional distribution of that variable given other predictors that

is being modeled, and so the transformation must be suitable for it.

Categorical variables

To impute one categorical variable, you can use one of the categorical imputation methods: logistic,

ordered logistic, or multinomial logistic regressions (see [MI]mi impute logit, [MI]mi impute ologit, or

[MI]mi impute mlogit). These methods can also be used to impute multiple categorical variables with a

monotone missing-data pattern using monotone imputation (see [MI]mi impute monotone) and with an

arbitrary missing-data pattern using MICE (see [MI] mi impute chained). Also, for multiple categorical

variables with only two categories (binary or dummy variables), a multivariate normal approach (see

[MI]mi impute mvn) can be used to impute missing values and then, if needed, the imputed values can

be rounded to 0 if the value is smaller than 0.5, or 1 otherwise. For categorical variables with more than

two categories, Allison (2001) describes how to use the normal model to impute missing values.

The issue of perfect prediction during imputation of categorical data

Perfect prediction (or separation—for example, see Albert and Anderson [1984]) occurs often in the

analysis of categorical data. The issue of perfect prediction is inherent to the discrete nature of categorical

data and arises in the presence of covariate patterns for which outcomes of a categorical variable can be

predicted almost perfectly. Perfect prediction usually leads to infinite coefficients with infinite standard

errors and often causes numerical instability during estimation. This issue is often resolved by discard-

ing the observations corresponding to offending covariate patterns as well as the independent variables

perfectly predicting outcomes during estimation; see, for example, Model identification in [R] logit.

Perfect prediction is even more likely to arise during imputation because imputation models, per im-

putation modeling guidelines, tend to include many variables and thus may include many categorical

variables. Perfect prediction may arise when variables are imputed using one of these imputation meth-

ods: logit, ologit, or mlogit.

Let’s discuss how perfect prediction affects imputation. Recall that to obtain proper imputations

(Proper imputation methods in [MI] Intro substantive), imputed values must be simulated from the pos-

terior predictive distribution of missing data given observed data. The categorical imputation methods

achieve this by first drawing a new set of regression coefficients from a normal distribution (a large-

sample approximation to their posterior distribution) with mean and variance determined by the maxi-

mum likelihood estimates of the coefficients from the observed data and their variance–covariance ma-

trix. The imputed values are then obtained using the new set of coefficients; see Methods and formulas

in the method-specific manual entries for details.

In the presence of perfect prediction, very large estimates of coefficients and their standard errors

arise during estimation. As a result, new coefficients, drawn from the corresponding asymptotic normal

distribution, will either be large and positive or large and negative. As such, missing values—say, of a

https://www.stata.com/manuals/mimiimputelogit.pdf#mimiimputelogit
https://www.stata.com/manuals/mimiimputeologit.pdf#mimiimputeologit
https://www.stata.com/manuals/mimiimputemlogit.pdf#mimiimputemlogit
https://www.stata.com/manuals/mimiimputemonotone.pdf#mimiimputemonotone
https://www.stata.com/manuals/mimiimputechained.pdf#mimiimputechained
https://www.stata.com/manuals/mimiimputemvn.pdf#mimiimputemvn
https://www.stata.com/manuals/rlogit.pdf#rlogitRemarksandexamplesModelidentification
https://www.stata.com/manuals/rlogit.pdf#rlogit
https://www.stata.com/manuals/miintrosubstantive.pdf#miIntrosubstantiveRemarksandexamplesProperimputationmethods
https://www.stata.com/manuals/miintrosubstantive.pdf#miIntrosubstantive

mi impute — Impute missing values 8

binary imputation variable—may all be imputed as ones in some imputations and may all be imputed as

zeros in other imputations. This will clearly bias the multiple-imputation estimate of the proportion of

ones (or zeros) in the sample of perfectly predicted cases.

To eliminate the issue of perfect prediction during imputation, we cannot, unfortunately, drop obser-

vations and variables when estimating model parameters as is normally done during estimation using,

for example, the logit command. Doing so would violate one of the main requirements of imputation

modeling: all variables and cases that may be used during primary, completed-data analysis must be

included in the imputation model. So, what can you do?

When perfect prediction is detected, mi impute issues an error message:

. mi impute logit x1 z1 z2 ..., ...
mi impute logit: perfect predictor(s) detected

Variables that perfectly predict an outcome were detected when logit
executed on the observed data. First, specify mi impute’s option noisily
to identify the problem covariates. Then either remove perfect predictors
from the model or specify mi impute logit’s option augment to perform
augmented regression; see The issue of perfect prediction during imputation
of categorical data in [MI] mi impute for details.

r(498);

You have two alternatives at this point.

You can fit the specified imputation model to the observed data using the corresponding command (in

our example, logit) to identify the observations and variables causing perfect prediction in your data.
Depending on the research objective and specifics of the data collection process, it may be reasonable to

omit the offending covariate patterns and perfect predictors from your analysis. If you do so, you must

carefully document which observations and variables were removed and adjust your inferential conclu-

sions accordingly. Once offending instances are removed, you can proceed with imputation followed by

your primary data analysis. Make sure that the instances you removed from the imputation model are

not used in your further analysis.

The above approach may be difficult to pursue when imputing a large number of variables, among

which are many categorical variables. Another option is to handle perfect prediction directly during

imputation via the augment option, which is available for all categorical imputation methods: logit,
ologit, and mlogit.

mi impute . . ., augment . . . implements an augmented-regression approach, an ad hoc but compu-

tationally convenient approach suggested by White, Daniel, and Royston (2010). According to this ap-

proach, a few extra observations with small weights are added to the data during estimation of model

parameters in a way that prevents perfect prediction. See White, Daniel, and Royston (2010) for simu-

lation results and computational details.

Convergence of iterative methods

When the missing-value pattern is arbitrary, iterative Markov chain Monte Carlo (MCMC-like) impu-

tation methods are used to simulate imputed values from the posterior predictive distribution of the miss-

ing data given the observed data; also see Multivariate imputation. In this case, the resulting sequences

(chains) of simulated parameters or imputed values should be examined to verify the convergence of the

algorithm. The modeling task may be influenced by the convergence process of the algorithm given the

data. For example, a different prior distribution for the model parameters may be needed with mi impute
mvn when some aspects of the model cannot be estimated because of the sparseness of the missing data.

https://www.stata.com/manuals/mimiimpute.pdf#mimiimputeRemarksandexamplesTheissueofperfectpredictionduringimputationofcategoricaldata
https://www.stata.com/manuals/mimiimpute.pdf#mimiimputeRemarksandexamplesTheissueofperfectpredictionduringimputationofcategoricaldata
https://www.stata.com/manuals/perror.pdf#perrorRemarksandexamplesr(498)
https://www.stata.com/manuals/mimiimpute.pdf#mimiimputeRemarksandexamplesMultivariateimputation

mi impute — Impute missing values 9

Markov chain simulation is often done in one of two ways: subsampling a single chain or run-

ning multiple independent chains. Subsampling a chain involves running a single chain for a pre-

specified number of iterations 𝑇, discarding the first 𝑏 iterations until the chain reaches stationarity

(the burn-in period), and sampling the chain each 𝑘th iteration to produce a final sequence of inde-

pendent draws {X(𝑏),X(𝑏+𝑘),X(𝑏+2𝑘), . . .} from the target distribution. The number of between iter-

ations 𝑘 is chosen such that draws X(𝑡) and X(𝑡+𝑘) are approximately independent. Alternatively, one

can obtain independent draws by running multiple independent chains using different starting values

{X(𝑖,𝑡) ∶ 𝑡 = 0, 1, . . . }, 𝑖 = 1, 2, . . . , and discarding the first 𝑏 iterations of each to obtain a final sample
{X(1,𝑏),X(2,𝑏),X(3,𝑏), . . .} from the target distribution.

mi impute mvn subsamples the chain, whereas mi impute chained runs multiple independent

chains; see [MI] mi impute mvn and [MI] mi impute chained for details on how to monitor conver-

gence of each method.

Imputation diagnostics

After imputation, it is important to examine the sensibility of the obtained imputed values. If any

abnormalities are detected, the imputation model must be revised. Diagnostics for imputations is still

an ongoing research topic, but two general recommendations are to check model fit of the specified im-

putation model to the observed data and to compare distributions of the imputed and observed data. To

check model fit of an imputation model to the observed data, you can use any standard postestimation

tools usually used with that type of model. Also see, for example, [R] mfp to help determine an appro-

priate functional form of the imputation model. The differences (if any) between the distributions of

the observed and of the imputed data should be plausible within the context of your study. For more

information, see for example, Gelman et al. (2005), Abayomi, Gelman, and Levy (2008), Eddings and

Marchenko (2012), and Marchenko and Eddings (2011) for how to perform multiple-imputation diag-

nostics in Stata.

Using mi impute
To use mi impute, you first mi set your data; see [MI]mi set. Next you register all variables whose

missing values are to be imputed; see mi register in [MI] mi set.

mi impute has two main options: add() and replace. If you do not have imputations, use add()
to create them. If you already have imputations, you have three choices:

1. Add new imputations to the existing ones by specifying the add() option.

2. Add new imputations and also replace the existing ones by specifying both the add() and the

replace options.

3. Replace existing imputed values by specifying the replace option.

add() is required if no imputations exist in the mi data, and either add() or replace must be specified

if imputations exist. See Univariate imputation for examples. Note that with replace, only imputed

values of the specified imputation variables within the specified subsample will be updated.

For reproducibility, use the rseed() option to set the random-number seed, or equivalently, set the

seed by using set seed immediately before calling mi impute. If you forget and still have mi impute’s
stored results in memory, you can retrieve the seed from the stored result r(rngstate); see Stored

results below. If you sort your data prior to imputation, you may also need to ensure that your sorting is

stable for reproducibility of your results; see [D] sort.

https://www.stata.com/manuals/miglossary.pdf#miGlossarydef_burnin
https://www.stata.com/manuals/mimiimputemvn.pdf#mimiimputemvn
https://www.stata.com/manuals/mimiimputechained.pdf#mimiimputechained
https://www.stata.com/manuals/rmfp.pdf#rmfp
https://www.stata.com/manuals/mimiset.pdf#mimiset
https://www.stata.com/manuals/mimiset.pdf#mimiset
https://www.stata.com/manuals/mimiimpute.pdf#mimiimputeRemarksandexamplesUnivariateimputation
https://www.stata.com/manuals/mimiimpute.pdf#mimiimputeStoredresults
https://www.stata.com/manuals/mimiimpute.pdf#mimiimputeStoredresults
https://www.stata.com/manuals/dsort.pdf#dsort

mi impute — Impute missing values 10

By default, mi impute stores the imputed values using float precision. If you need more accuracy,

you can specify the double option. Depending on the mi data style, the type of the imputed variable may
change in the original data, 𝑚 = 0. For example, if your data are in the mlong (or flong) style and you

are imputing a binary variable using the regression method, the type of the variable will become float.
If you are using the logistic method, the type of the variable may become byte even if originally your

variable was declared as float or int. mi impute will never demote a variable if that would result in

loss of precision.

Use the by(varlist) option to perform imputation separately on each group formed by varlist. Speci-

fying by() is equivalent to the repeated use of an if condition with mi impute to restrict the imputation

sample to each of the categories formed by varlist. Use the missing option within by() to prevent mi
impute from omitting missing categories in varlist. By default, mi impute terminates with error if im-

putation fails in any of the groups; use by()’s nostop option to proceed with imputation. You may not

specify imputation and passive variables within by().

mi impute terminates with error if the imputation procedure results in missing imputed values. This

may happen if you include variables containing missing values as predictors in your imputation model.

If desired, you can override this behavior with the force option.

mi impute may change the sort order of the data.

Univariate imputation
Univariate imputation by itself has limited application in practice. The situations in which only one

variable needs to be imputed or in which multiple incomplete variables can be imputed independently

are rare in real-data applications. Univariate imputation is most useful when it is used as a building block

of sequential multivariate imputation methods; see Multivariate imputation. It is thus beneficial to first

become familiar with univariate imputation.

Consider the heart attack data in which bmi contains missing values, as described in A brief introduc-

tion to MI using Stata of [MI] Intro substantive. Here we use the already mi set version of the data

with a subset of covariates of interest:

. use https://www.stata-press.com/data/r19/mheart1s0
(Fictional heart attack data; BMI missing)
. mi describe
Style: mlong

last mi update 04feb2025 12:58:57, 11 days ago
Observations:

Complete 132
Incomplete 22 (M = 0 imputations)

Total 154
Variables:

Imputed: 1; bmi(22)
Passive: 0
Regular: 5; attack smokes age female hsgrad
System: 3; _mi_m _mi_id _mi_miss
(there are no unregistered variables)

According to mi describe, the mi data style is mlong, and the dataset contains no imputations and 22
incomplete observations. The only registered imputed variable is bmi containing the 22 missing values.

The other variables are registered as regular. See [MI] mi describe for details.

https://www.stata.com/manuals/mimiimpute.pdf#mimiimputeRemarksandexamplesMultivariateimputation
https://www.stata.com/manuals/miintrosubstantive.pdf#miIntrosubstantiveRemarksandexamplesAbriefintroductiontoMIusingStata
https://www.stata.com/manuals/miintrosubstantive.pdf#miIntrosubstantiveRemarksandexamplesAbriefintroductiontoMIusingStata
https://www.stata.com/manuals/miintrosubstantive.pdf#miIntrosubstantive
https://www.stata.com/manuals/mimidescribe.pdf#mimidescribe

mi impute — Impute missing values 11

In the example in [MI] Intro substantive, we used mi impute regress to impute missing values of

bmi. Let’s concentrate on the imputation step in more detail here:

. mi impute regress bmi attack smokes age female hsgrad, add(20)
Univariate imputation Imputations = 20
Linear regression added = 20
Imputed: m=1 through m=20 updated = 0

Observations per m

Variable Complete Incomplete Imputed Total

bmi 132 22 22 154

(Complete + Incomplete = Total; Imputed is the minimum across m
of the number of filled-in observations.)

The above output is common to all imputation methods of mi impute. In the left column, mi impute
reports information about which imputation method was used and which imputations were created or

updated. The right column contains the total number of imputations, and how many of them are new and

how many are updated. The table contains the number of complete, incomplete, and imputed observa-

tions, and the total number of observations in the imputation sample, per imputation for each variable

(see Imputation and estimation samples below). As indicated by the note, complete and incomplete ob-

servations sum to the total number of observations. The imputed column reports how many incomplete

observations were actually imputed. This number represents the minimum across all imputations used

(𝑚 = 1 through 𝑚 = 20 in our example).

In the above example, we used add(20) to create 20 new imputations. Suppose that we decided that

20 is not enough and we want to add 30 more:

. mi impute regress bmi attack smokes age female hsgrad, add(30)
Univariate imputation Imputations = 50
Linear regression added = 30
Imputed: m=21 through m=50 updated = 0

Observations per m

Variable Complete Incomplete Imputed Total

bmi 132 22 22 154

(Complete + Incomplete = Total; Imputed is the minimum across m
of the number of filled-in observations.)

The table output is unchanged, but the header reports that total number of imputations is now 50.

Thirty new imputations (from 𝑚 = 21 to 𝑚 = 50) were added, and the existing 20 imputations were left

unchanged.

https://www.stata.com/manuals/miintrosubstantive.pdf#miIntrosubstantiveRemarksandexamplesmi_imputereg
https://www.stata.com/manuals/miintrosubstantive.pdf#miIntrosubstantive
https://www.stata.com/manuals/mimiimpute.pdf#mimiimputeRemarksandexamplesImputationandestimationsamples

mi impute — Impute missing values 12

Suppose that we decide we want to impute bmi using the predictive mean matching (PMM) imputation

method instead of the regression method. We use mi impute pmmwith five nearest neighbors and specify
the replace option to update all existing imputations with new ones:

. mi impute pmm bmi attack smokes age female hsgrad, replace knn(5)
Univariate imputation Imputations = 50
Predictive mean matching added = 0
Imputed: m=1 through m=50 updated = 50

Nearest neighbors = 5

Observations per m

Variable Complete Incomplete Imputed Total

bmi 132 22 22 154

(Complete + Incomplete = Total; Imputed is the minimum across m
of the number of filled-in observations.)

The header reports that all 50 existing imputations, from 𝑚 = 1 to 𝑚 = 50, are replaced with new

ones.

Later we decide to use more nearest neighbors with mi impute pmm and also add 15more imputations.
We can do the latter by combining replace and add(). We specify replace to update the existing

imputations with imputations from PMM with ten nearest neighbors (knn(10)) and use add(15) to add

15 more imputations.

. mi impute pmm bmi attack smokes age female hsgrad, add(15) replace knn(10) dots
Imputing m=1 through m=65:

.........10.........20.........30.........40.........50.........60..... done
Univariate imputation Imputations = 65
Predictive mean matching added = 15
Imputed: m=1 through m=65 updated = 50

Nearest neighbors = 10

Observations per m

Variable Complete Incomplete Imputed Total

bmi 132 22 22 154

(Complete + Incomplete = Total; Imputed is the minimum across m
of the number of filled-in observations.)

The header reports a total of 65 imputations, among which 15 are new and 50 are updated. In this

example, we also used the dots option to see the imputation progress. This option is useful with larger

datasets to monitor the imputation process.

See Imputing on subsamples for other usage of add() and replace.

Multivariate imputation
When imputing multiple variables, their missing-data pattern must first be considered. As we briefly

mentioned in Patterns of missing data in [MI] Intro substantive, when amissing-data pattern is monotone

distinct, multiple variables can be imputed sequentially without iteration using univariate conditional

models (or monotone imputation). That is, a complicated multivariate imputation task can be replaced

with a sequence of simpler univariate imputation tasks; see [MI] mi impute monotone.

https://www.stata.com/manuals/mimiimpute.pdf#mimiimputeRemarksandexamplesImputingonsubsamples
https://www.stata.com/manuals/miintrosubstantive.pdf#miIntrosubstantiveRemarksandexamplesPatternsofmissingdata
https://www.stata.com/manuals/miintrosubstantive.pdf#miIntrosubstantive
https://www.stata.com/manuals/mimiimputemonotone.pdf#mimiimputemonotone

mi impute — Impute missing values 13

Monotone missing-data patterns rarely arise naturally in practice. As such, it is important to be able

to handle arbitrary missing-data patterns during imputation. Before we describe imputation methods

accommodating arbitrary missing-data patterns, we will first discuss the difficulties arising with such

patterns during imputation.

Monotone imputation is possible because variables can be ordered such that the complete observa-

tions of a variable being imputed are also complete in all prior imputed variables used to predict it. This

means that the estimates of the parameters, which are obtained from complete data, do not depend on any

previously imputed values (see Rubin [1987] for details). With an arbitrary pattern of missing data, such

an ordering may not be possible because some variables may contain incomplete values in observations

for which other variables are complete (and vice versa), resulting in estimated parameters being depen-

dent on imputed values. The simultaneous imputation of multiple variables becomes more challenging

when missingness is nonmonotone.

Consider the following example. Variable 𝑋1 is complete in observation 1 and missing in observa-

tion 2, and variable 𝑋2 is missing in observation 1 and complete in observation 2. We need to impute the

two variables simultaneously. Suppose that we impute variable 𝑋2 using previously imputed variable

𝑋1. Observation 1, which contains an imputed value of 𝑋1, is used to estimate the model parameters for

𝑋2. As a result, the model parameters are obtained by treating the imputed value of 𝑋1 as if it were true,

thus ignoring the imputation variability in 𝑋1. To account for the uncertainty in the imputed values dur-

ing estimation, we need to iterate between the estimation step and the imputation step until the estimates

of the model parameters depend only on the observed data.

Two main approaches for multivariate imputation with arbitrary missing-data patterns are joint mod-

eling (JM) and fully conditional specification (FCS).

The JM approach assumes a genuine multivariate distribution for all imputation variables and imputes

missing values as draws from the resulting posterior predictive distribution of the missing data given the

observed data. The predictive distribution is often difficult to draw from directly, so the imputed values

are often obtained by approximating this distribution using one of the MCMC methods. One such JM

approach for continuous data is based on the multivariate normal distribution, the MVN method (Schafer

1997). The MVN method is implemented in [MI]mi impute mvn and uses the data augmentation MCMC

method.

The FCS approach does not assume an explicit multivariate distribution for all imputation variables.

Instead, it provides a set of chained equations, that is, univariate conditional distributions of each variable

with fully conditional specifications of prediction equations. This approach is also known as MICE (van

Buuren, Boshuizen, and Knook 1999) or sequential regression multivariate imputation (SRMI; Raghu-

nathan et al. 2001). We will be using the terms MICE, FCS, and SRMI interchangeably throughout the

documentation. MICE is similar in spirit to the Gibbs sampler, a popular MCMC method for simulating

data from complicated multivariate distributions. Unlike the Gibbs sampler, however, conditional speci-

fications within the MICEmethod are not guaranteed to correspond to a genuine multivariate distribution

because MICE does not start from an explicit multivariate density. Regardless, MICE remains one of the

popular imputation methods in practice. The MICE method is implemented in [MI] mi impute chained.

Currently, there is no definitive recommendation in the literature as to which approach, JM or FCS, is

preferable. The JM approach ensures that imputed values are drawn from a genuine multivariate distri-

bution, and it thus may be more attractive from a theoretical standpoint. However, except for simpler

cases such as a multivariate normal model for continuous data, it may not be feasible to formulate a joint

model for general data structures. In this regard, the FCS approach is more appealing because it not only

can accommodate mixtures of different types of variables, but also can preserve some important charac-

https://www.stata.com/manuals/mimiimputemvn.pdf#mimiimputemvn
https://www.stata.com/manuals/miglossary.pdf#miGlossarydef_FCS
https://www.stata.com/manuals/mimiimputechained.pdf#mimiimputechained

mi impute — Impute missing values 14

teristics often observed in real data, such as restrictions to subpopulations for certain variables and range

restrictions. The tradeoff for such flexibility is a current lack of theoretical justification. See Lee and

Carlin (2010) and references therein for more discussion about the two approaches.

Consider the heart attack data in which both bmi and age contain missing values. Again we will use

data that have already been mi set.
. use https://www.stata-press.com/data/r19/mheart5s0, clear
(Fictional heart attack data)
. mi describe
Style: mlong

last mi update 04feb2025 12:58:57, 11 days ago
Observations:

Complete 126
Incomplete 28 (M = 0 imputations)

Total 154
Variables:

Imputed: 2; bmi(28) age(12)
Passive: 0
Regular: 4; attack smokes female hsgrad
System: 3; _mi_m _mi_id _mi_miss
(there are no unregistered variables)

There are 28 incomplete observations in the dataset. The bmi variable contains 28 missing values

and the age variable contains 12 missing values. Both bmi and age are registered as imputed. If we

assume that age and BMI are independent, we can impute each of them separately by using the previously

described univariate imputation methods. It is likely, however, that these variables are related, and so we

use multivariate imputation.

First, we examine missing-value patterns of the data.

. mi misstable patterns
Missing-value patterns

(1 means complete)
Pattern

Percent 1 2

82% 1 1

10 1 0
8 0 0

100%
Variables are (1) age (2) bmi

From the output, 82% of observations are complete, 10% of observations contain missing values for

bmi, and 8% of observations have both bmi and agemissing. We can see that the dataset has a monotone-

missing pattern (see [MI] Intro substantive), that is, missing values of age are nested within missing

values of bmi. Another way to see if the pattern of missingness is monotone is to use mi misstable
nested ([MI] mi misstable):

. mi misstable nested
1. age(12) -> bmi(28)

https://www.stata.com/manuals/miintrosubstantive.pdf#miIntrosubstantive
https://www.stata.com/manuals/mimimisstable.pdf#mimimisstable

mi impute — Impute missing values 15

Because the missing-data pattern is monotone, we can use mi impute monotone to impute missing

values of bmi and age simultaneously:

. mi impute monotone (regress) age bmi = attack smokes hsgrad female, add(10)
Conditional models:

age: regress age attack smokes hsgrad female
bmi: regress bmi age attack smokes hsgrad female

Multivariate imputation Imputations = 10
Monotone method added = 10
Imputed: m=1 through m=10 updated = 0

age: linear regression
bmi: linear regression

Observations per m

Variable Complete Incomplete Imputed Total

age 142 12 12 154
bmi 126 28 28 154

(Complete + Incomplete = Total; Imputed is the minimum across m
of the number of filled-in observations.)

Without going into detail, mi impute monotone imputes missing values of multiple variables by per-

forming a sequence of independent univariate conditional imputations. In the above example, the regres-

sion method is used to impute missing values of both variables. age is imputed first from the observed

variables attack, smokes, hsgrad, and female. Then bmi is imputed using the imputed age variable

in addition to other observed variables. The output is consistent with that of the univariate imputation

methods described earlier, with some additional information. See [MI]mi impute monotone for details.

We can also impute missing values of bmi and age simultaneously using either mi impute mvn

. mi impute mvn age bmi = attack smokes hsgrad female, replace nolog
Multivariate imputation Imputations = 10
Multivariate normal regression added = 0
Imputed: m=1 through m=10 updated = 10
Prior: uniform Iterations = 1000

burn-in = 100
between = 100

Observations per m

Variable Complete Incomplete Imputed Total

age 142 12 12 154
bmi 126 28 28 154

(Complete + Incomplete = Total; Imputed is the minimum across m
of the number of filled-in observations.)

https://www.stata.com/manuals/mimiimputemonotone.pdf#mimiimputemonotone

mi impute — Impute missing values 16

or mi impute chained

. mi impute chained (regress) age bmi = attack smokes hsgrad female, replace
note: missing-value pattern is monotone; no iteration performed.
Conditional models (monotone):

age: regress age attack smokes hsgrad female
bmi: regress bmi age attack smokes hsgrad female

Performing chained iterations ...
Multivariate imputation Imputations = 10
Chained equations added = 0
Imputed: m=1 through m=10 updated = 10
Initialization: monotone Iterations = 0

burn-in = 0
age: linear regression
bmi: linear regression

Observations per m

Variable Complete Incomplete Imputed Total

age 142 12 12 154
bmi 126 28 28 154

(Complete + Incomplete = Total; Imputed is the minimum across m
of the number of filled-in observations.)

Neither mi impute mvn nor mi impute chained requires the missing-data pattern to be monotone.

mi impute mvn iterates to produce imputations. When the data are monotone missing, however, no iter-

ation is required, and because mi impute monotone executes more quickly, it is preferred. mi impute
chained also iterates to produce imputations, unless the missing-data pattern is monotone. However, mi
impute monotone is still faster because it performs estimation only once on the original data, whereas mi
impute chained performs estimation on each imputation. Use mi impute mvn and mi impute chained
when there is an arbitrary missing-data pattern. See [MI] mi impute mvn and [MI] mi impute chained

for details.

Imputing on subsamples
Consider the earlier example of the univariate imputation of bmi. Suppose that we want to perform

imputation separately for females and males. Imputation on subsamples is useful when the imputation

model must accommodate the interaction effects (see, for example, Allison [2001]). For example, if we

want the effect of bmi on attack to vary by gender, we can perform imputation of bmi separately for

females and males.

https://www.stata.com/manuals/mimiimputemvn.pdf#mimiimputemvn
https://www.stata.com/manuals/mimiimputechained.pdf#mimiimputechained
https://www.stata.com/manuals/mimiimpute.pdf#mimiimputeRemarksandexamplesmi_impute_regress_ex

mi impute — Impute missing values 17

We first show how to do it manually using if and the add() and replace options:

. use https://www.stata-press.com/data/r19/mheart1s0, clear
(Fictional heart attack data; BMI missing)
. mi impute regress bmi attack smokes age hsgrad if female==1, add(20)
Univariate imputation Imputations = 20
Linear regression added = 20
Imputed: m=1 through m=20 updated = 0

Observations per m

Variable Complete Incomplete Imputed Total

bmi 33 5 5 38

(Complete + Incomplete = Total; Imputed is the minimum across m
of the number of filled-in observations.)

. mi impute regress bmi attack smokes age hsgrad if female==0, replace
Univariate imputation Imputations = 20
Linear regression added = 0
Imputed: m=1 through m=20 updated = 20

Observations per m

Variable Complete Incomplete Imputed Total

bmi 99 17 17 116

(Complete + Incomplete = Total; Imputed is the minimum across m
of the number of filled-in observations.)

First, we created 20 imputations and filled in the missing values of bmi for females by using the

corresponding subset of observations. Then we filled in the remaining missing values of bmi for males

in the existing imputations by using the subset of male observations. We will now be able to include the

interaction between bmi and female in our logistic model.

mi impute — Impute missing values 18

Amuch easier way to do the above is to use by():

. use https://www.stata-press.com/data/r19/mheart1s0, clear
(Fictional heart attack data; BMI missing)
. mi impute regress bmi attack smokes age hsgrad, add(20) by(female)
Performing setup for each by() group:

-> female = 0
-> female = 1

Univariate imputation Imputations = 20
Linear regression added = 20
Imputed: m=1 through m=20 updated = 0

Observations per m
by()

Variable Complete Incomplete Imputed Total

female = 0
bmi 99 17 17 116

female = 1
bmi 33 5 5 38

Overall
bmi 132 22 22 154

(Complete + Incomplete = Total; Imputed is the minimum across m
of the number of filled-in observations.)

Conditional imputation
Often in practice, some variables are defined only within what we call a conditional sample, a subset

of observations satisfying certain restrictions (Raghunathan et al. 2001, Royston 2009). For example, the

number of cigarettes smoked is relevant to smokers only, the number of pregnancies is relevant to females

only, etc. Outside the conditional sample, such variables are assumed to contain soft missing values and a

nonmissing constant value, further referred to as a conditional constant, which represents a known value

or an inadmissible value. We will refer to conditional imputation as imputation of such variables. So,

the task of conditional imputation is to impute missing values of a variable within a conditional sample

using only observations from that sample and to replace missing values outside the conditional sample

with a conditional constant.

In the previous section, we learned that we can specify an if condition with mi impute to restrict

imputation of variables to a subset of observations. Is this sufficient to accommodate conditional impu-

tation? To answer this question, let’s consider several examples.

We use our heart attack data as an example. Suppose that our only variable containing missing values

is hightar, the indicator for smoking high-tar cigarettes. We want to impute missing values in hightar
and use it among other predictors in the logistic analysis of heart attacks. Because hightar is relevant

to smokers only, we want to impute hightar using the subset of observations with smokes==1.

Thus to impute hightar, we restrict our imputation sample to smokers:
. mi impute logit hightar attack age bmi ... if smokes==1, ...

mi impute — Impute missing values 19

Arewe now ready to proceedwith our primary logistic analysis of heart attacks? Not quite. Recall that

we wish to use all observations of hightar in our analysis. If hightar contains missing values only in

the conditional sample, smokes==1, we are finished. Otherwise, we need to replace all remainingmissing
values outside the conditional sample, for smokes==0, with the conditional constant, the nonmissing

value of hightar in observations with smokes==0. In our example, this value is zero, so our final step
is

. mi xeq: replace hightar = 0 if smokes==0

What if we have several imputation variables? Suppose now that age and bmi also contain missing

values. Without making any assumptions about a missing-data pattern, we use mi impute chained to

impute variables of different types: age, bmi, and hightar. We need to impute hightar for smokes==1
but use the unrestricted sample to impute age and bmi. Can we still accomplish this by specifying an if
condition? The answer is yes, but we need to replace missing values of hightar for smokes==0 before

imputation to ensure that age and bmi are imputed properly, using all observations, when hightar is

used in their prediction equations:

. mi xeq: replace hightar = 0 if smokes==0

. mi impute chained (regress) bmi age (logit if smokes==1) hightar = ..., ...

It seems that we can get away with using if to perform conditional imputation. What is the catch?

So far, we assumed that smokes does not contain any missing values. Let’s see what happens if it does.

Because hightar depends on smokes, we must first impute missing values of smokes before we can

impute missing values of hightar. As such, the set of observations for which smokes==1 will vary

from imputation to imputation and, in the case of mi impute chained, from iteration to iteration. The

replacement of missing values of hightar outside the conditional sample should be performed each

time a new set of imputed values is obtained for smokes, and thus must be directly incorporated into the
imputation procedure.

The answer to our earlier question about using an if condition to perform conditional imputation is

no, in general. To perform conditional imputation, use the conditional() option:

. mi imp chained (reg) bmi age (logit) smokes (logit, conditional(if smokes==1))
> hightar ...

Every univariate imputation method supports option conditional(). This option is most useful

within specifications of univariate methods when multiple variables are being imputed using mi impute
monotone or mi impute chained, as we showed above. Although in some cases, as we saw earlier,

specifying an if condition in combination with manual replacement of missing values outside the condi-

tional sample may produce equivalent results, such use should generally be avoided and conditional()
should be used instead.

When you specify option conditional(), mi impute performs checks necessary for proper condi-

tional imputation. For example, the imputed variable is verified to be constant outside the conditional

sample and an error message is issued if it is not:

. mi impute logit hightar age bmi ..., conditional(if smokes==1)
conditional(): imputation variable not constant outside conditional sample;

hightar is not constant outside the subset identified by (smokes==1)
within the imputation sample. This may happen when missing values of
conditioning variables are not nested within missing values of hightar.

r(459);

https://www.stata.com/manuals/perror.pdf#perrorRemarksandexamplesr(459)

mi impute — Impute missing values 20

mi impute also requires that missing values of all variables involved in conditional specifications (re-
strictions)—that is, conditioning variables—be nested within missing values of the conditional variable

being imputed. If this does not hold true, mi impute issues an error message:

. mi impute logit hightar age bmi ..., conditional(if smokes==1)
conditional(): conditioning variables not nested;

conditioning variable smokes is not nested within hightar
r(459);

Because missing values of all conditioning variables are assumed to be nested within missing values

of a conditional variable, that conditional variable is not included in the prediction equations of the

corresponding conditioning variables.

As an example, let’s continue with our heart attack data, in which variables hightar and smokes
contain missing values, as do age and bmi:

. use https://www.stata-press.com/data/r19/mheart7s0, clear
(Fictional heart attack data; BMI, age, hightar, and smokes missing)
. mi describe
Style: mlong

last mi update 04feb2025 12:58:57, 11 days ago
Observations:

Complete 124
Incomplete 30 (M = 0 imputations)

Total 154
Variables:

Imputed: 4; bmi(24) age(30) hightar(8) smokes(5)
Passive: 0
Regular: 3; attack female hsgrad
System: 3; _mi_m _mi_id _mi_miss
(there are no unregistered variables)

. mi misstable nested
1. smokes(5) -> hightar(8) -> bmi(24) -> age(30)

https://www.stata.com/manuals/perror.pdf#perrorRemarksandexamplesr(459)

mi impute — Impute missing values 21

Our data are already mi set, so we proceed with imputation. According to mi misstable nested,
all imputation variables are monotone missing, so we use mi impute monotone for imputation. For the

purpose of illustration, we create only two imputations:

. mi impute monotone (regress) bmi age
> (logit, conditional(if smokes==1)) hightar
> (logit) smokes
> = attack hsgrad female, add(2)
Conditional models:

smokes: logit smokes attack hsgrad female
hightar: logit hightar i.smokes attack hsgrad female ,

conditional(if smokes==1)
bmi: regress bmi i.hightar i.smokes attack hsgrad female
age: regress age bmi i.hightar i.smokes attack hsgrad female

note: 1.smokes omitted because of collinearity.
Multivariate imputation Imputations = 2
Monotone method added = 2
Imputed: m=1 through m=2 updated = 0
Conditional imputation:

hightar: incomplete out-of-sample obs replaced with value 0
bmi: linear regression
age: linear regression

hightar: logistic regression
smokes: logistic regression

Observations per m

Variable Complete Incomplete Imputed Total

bmi 130 24 24 154
age 124 30 30 154

hightar 146 8 8 154
smokes 149 5 5 154

(Complete + Incomplete = Total; Imputed is the minimum across m
of the number of filled-in observations.)

For each variable that was imputed conditionally, mi impute reports the conditional value used to

replace all missing observations outside the conditional sample in a legend about conditional imputation.

In our example, all missing values of hightar outside smokes==1 are replaced with zero. The reported

numbers of complete, incomplete, and imputed observations for hightar correspond to the entire im-

putation sample (see Imputation and estimation samples) and not only to the conditional sample. For

example, there are 146 complete and 8 incomplete observations of hightar in the combined sample of

smokers and nonsmokers. The minimum number of imputed values across imputations is 8, so all in-

complete observations of hightar were filled in—either imputed directly or replaced with a conditional

value—in both imputations. Because smokes is being imputed, the numbers of incomplete and imputed

observations of hightar for smokers and nonsmokers will vary across imputations.

https://www.stata.com/manuals/mimiimpute.pdf#mimiimputeRemarksandexamplesImputationandestimationsamples

mi impute — Impute missing values 22

You can accommodate more complicated restrictions or skip patterns, which often arise with ques-

tionnaire data, by specifying more elaborate restrictions within conditional() or by specifying

the conditional() option with other variables. For example, suppose that the information about

cigarette tar level (hightar) was collected only for heavy smokers, identified by an indicator variable
heavysmoker. The heavysmoker variable contains missing values and needs to be imputed before

hightar can be imputed. To impute heavysmoker, we need to restrict our sample to smokers only.

Then to impute hightar, we need to use only heavy smokers among all smokers. We can do so as

follows:

. mi impute chained (logit) smokes ///
(logit, conditional(if smokes==1)) heavysmoker ///
(logit, conditional(if smokes==1 & heavysmoker==1)) ///

hightar ...

Imputation and estimation samples
Rubin (1987, 160–166) describes the imputation process as three tasks: modeling, estimation, and

imputation. We concentrate on the latter two tasks here. The posterior distribution of the model param-

eters is estimated during the estimation task. This posterior distribution is used in the imputation task

to simulate the parameters of the posterior predictive distribution of the missing data from which an im-

puted value is drawn. Accordingly, mi impute distinguishes between two main samples: imputation and

estimation.

The imputation sample is determined by the imputation variables used in the imputation task. It is

comprised of all observations for which the imputation variables contain no hard missing values (or no

extended missing values). In other words, the imputation sample consists of the complete and incomplete

observations as identified by the specified imputation variables. The estimation sample is comprised of

all observations used by the model fit to the observed data during the estimation task.

mi impute — Impute missing values 23

For example,

. use https://www.stata-press.com/data/r19/mheart1s0, clear
(Fictional heart attack data; BMI missing)
. mi impute regress bmi attack smokes age hsgrad female, add(1) noisily
Running regress on observed data:

Source SS df MS Number of obs = 132
F(5, 126) = 1.24

Model 99.5998228 5 19.9199646 Prob > F = 0.2946
Residual 2024.93667 126 16.070926 R-squared = 0.0469

Adj R-squared = 0.0091
Total 2124.5365 131 16.2178358 Root MSE = 4.0089

bmi Coefficient Std. err. t P>|t| [95% conf. interval]

attack 1.71356 .7515229 2.28 0.024 .2263179 3.200801
smokes -.5153181 .761685 -0.68 0.500 -2.02267 .9920341

age -.033553 .0305745 -1.10 0.275 -.0940591 .026953
hsgrad -.4674308 .8112327 -0.58 0.566 -2.072836 1.137975
female -.3072767 .8074763 -0.38 0.704 -1.905249 1.290695
_cons 26.96559 1.884309 14.31 0.000 23.2366 30.69458

Univariate imputation Imputations = 1
Linear regression added = 1
Imputed: m=1 updated = 0

Observations per m

Variable Complete Incomplete Imputed Total

bmi 132 22 22 154

(Complete + Incomplete = Total; Imputed is the minimum across m
of the number of filled-in observations.)

The imputation sample contains 154 observations and the estimation sample contains 132 observations

(from the regression output). The estimation task of mi impute regress consists of fitting a linear re-

gression of bmi on other variables to the observed data. We specified the noisily option to see results

from the estimation task. Usually, the number of complete observations in the imputation sample (132 in

this example) will be equal to the number of observations used in the estimation. Sometimes, however,

observations may be dropped from the estimation—for example, if independent variables contain miss-

ing values. In this case, the number of complete observations in the imputation sample and the number

of observations used in the estimation will be different, and the following note will appear following the

table output:

Note: Right-hand-side variables (or weights) have missing values;
model parameters estimated using listwise deletion.

You should evaluate such cases to verify that results are as expected.

In general, missing values in independent variables (or in a weighting variable) do not affect the

imputation sample but they may lead to missing imputed values. In the above example, if age contained

missing values in incomplete observations of bmi, the linear prediction for those observations would

have been missing and thus the resulting imputed values would have been missing, too.

https://www.stata.com/manuals/mimiimpute.pdf#mimiimputeRemarksandexamplesimp_est_samples

mi impute — Impute missing values 24

Imputing on subsamples, or in other words, using an if condition with mi impute, restricts both im-
putation and estimation samples to include only observations satisfying the if condition. Conditional

imputation (the conditional() option), on the other hand, affects only the estimation sample. All val-

ues, within and outside of a conditional sample, except extended missing values, are included in the

imputation sample. With conditional imputation, the reported number of complete observations will

almost always be different from the number of observations in the estimation sample, unless the condi-

tional sample coincides with the imputation sample. In the case of observations being dropped from a

conditional sample during estimation, a note as shown above will appear following the table output.

Imputing transformations of incomplete variables
Continuing with the univariate example above, say that we discover that the distribution of bmi is

skewed to the right, and thus we decide to impute bmi on the logarithmic scale instead of the original

one. We can do this by creating a new variable, lnbmi, and imputing it instead of bmi.

What we will do is create lnbmi, register it as imputed, impute it, and then create bmi as a passive

variable based on the formula bmi = exp(lnbmi).
We need to be careful when we create lnbmi to get its missing values right. mi respects two kinds

of missing values, called soft and hard missing. Soft missing values are missing values eligible for

imputation. Hard missing values are missing values that are to remain missing even in the imputed data.

Soft missing are recorded as ordinary missing (.), and hard missing are recorded as any of extended

missing (.a–.z).

The issue here is that missing values could arise because of our application of the transform lnbmi =
ln(bmi). In the case of the ln() transform, missing values will be created whenever bmi ≤ 0. (In general,

transformations leading to undefined values should be avoided so that all available observed data are used

during imputation.) Body mass index does not contain such values, but let’s pretend it did. Here is what

we would do:

1. Create lnbmi = ln(bmi).
2. Replace lnbmi to contain .z in observations for which lnbmi contains missing but bmi does

not.

3. Register lnbmi as an imputed variable and impute it.

4. Create passive variable newbmi = exp(lnbmi).
5. Replace newbmi equal to bmi in observations for which newbmi is missing and bmi is not.

Alternatively, to avoid creating hard missing values in step 2, we could consider a different transfor-

mation; see, for example, [R] lnskew0.

As we said, for lnbmi = ln(bmi) we need not perform all the steps above because bmi > 0. In the

bmi case, all we need to do is

1. Create lnbmi = ln(bmi).
2. Register lnbmi as an imputed variable and impute it.

3. Create passive variable newbmi = exp(lnbmi).
If all we wanted to do was impute lnbmi = ln(bmi) and, from that point on, just work with lnbmi,

we would perform only the first two steps of the three-step procedure.

https://www.stata.com/manuals/mimiimpute.pdf#mimiimputeRemarksandexamplesnote
https://www.stata.com/manuals/mimiimpute.pdf#mimiimputeRemarksandexamplesImputationandestimationsamples
https://www.stata.com/manuals/rlnskew0.pdf#rlnskew0

mi impute — Impute missing values 25

All that said, we are going to perform the five-step procedure because it will always work. We will

continue from where we left off in the last example, so we will discard our previous imputation efforts

by typing mi set M = 0. (Instead of typing mi set M = 0, we could just as easily begin by typing use
https://www.stata-press.com/data/r19/mheart1s0.)

. mi set M = 0 // start again

. mi unregister bmi // we do not impute bmi

. generate lnbmi = ln(bmi) // create lnbmi

. replace lnbmi = .z if lnbmi==. & bmi!=.

. mi register imputed lnbmi

. mi impute regress lnbmi attack smokes age hsgrad female, add(5)

. mi passive: generate newbmi = exp(lnbmi)

. mi passive: replace newbmi = bmi if bmi!=.

The important thing about the above is the mechanical definition of an imputed variable. An imputed

variable is a variable we actually impute, not a variable we desire to impute. In this case, we imputed

lnbmi and derived bmi from it. Thus the variable we desired to impute became, mechanically, a passive

variable.

Stored results
mi impute stores the following in r():

Scalars

r(M) total number of imputations

r(M add) number of added imputations

r(M update) number of updated imputations

r(k ivars) number of imputed variables

r(N g) number of imputed groups (1 if by() is not specified)

Macros

r(method) name of imputation method

r(ivars) names of imputation variables

r(rngstate) random-number state used

r(by) names of variables specified within by()

Matrices

r(N) number of observations in imputation sample in each group (per variable)

r(N complete) number of complete observations in imputation sample in each group (per variable)

r(N incomplete) number of incomplete observations in imputation sample in each group (per variable)

r(N imputed) number of imputed observations in imputation sample in each group (per variable)

Also see Stored results in the method-specific manual entries for additional stored results.

Methods and formulas
All imputation methods (except predictive mean matching) are based on simulating from a Bayesian

(approximate) posterior predictive distribution of missing data. Univariate imputation methods and the

sequential monotone method use noniterative techniques for simulating from the posterior predictive

distribution of missing data. The imputation method based on multivariate normal regression uses an

iterative MCMC technique to simulate from the posterior predictive distribution of missing data. The

MICE method uses a Gibbs-like algorithm to obtain imputed values.

See Methods and formulas in the method-specific manual entries for details.

https://www.stata.com/manuals/mimiimpute.pdf#mimiimputeRemarksandexamplesimp_est_samples

mi impute — Impute missing values 26

� �
HermanOttoHartley (1912–1980) was born inGermany asHermanOttoHirschfeld and immigrated

to England in 1934 after completing his PhD in mathematics at Berlin University. He completed a

second PhD in mathematical statistics under JohnWishart at Cambridge in 1940 and went on to hold

positions at Harper Adams Agricultural College, Scientific Computing Services (London), Univer-

sity College (London), Iowa State College, Texas A&M University, and Duke University. Among

other awards he received and distinguished titles he held, Professor Hartley served as the president of

theAmerican StatisticalAssociation in 1979. Known affectionately as HOH by almost all who knew

him, he founded the Institute of Statistics, later to become the Department of Statistics, at Texas

A&MUniversity. His contributions to statistical computing are particularly notable considering the

available equipment at the time. Professor Hartley is best known for his two-volume Biometrika

Tables for Statisticians (jointly written with Egon Pearson) and for his fundamental contributions

to sampling theory, missing-data methodology, variance-component estimation, and computational

statistics.� �
References
Abayomi, K.A., A. Gelman, and M. Levy. 2008. Diagnostics for multivariate imputations. Journal of the Royal Statistical

Society, C ser., 57: 273–291. https://doi.org/10.1111/j.1467-9876.2007.00613.x.

Albert, A., and J. A. Anderson. 1984. On the existence of maximum likelihood estimates in logistic regression models.

Biometrika 71: 1–10. https://doi.org/10.2307/2336390.

Allison, P. D. 2001.Missing Data. Thousand Oaks, CA: Sage.

Aloisio, K. M., N. Micali, S. A. Swanson, A. Field, and N. J. Horton. 2014. Analysis of partially observed clustered data

using generalized estimating equations and multiple imputation. Stata Journal 14: 863–883.

Bartlett, J.W., andT. P.Morris. 2015.Multiple imputation of covariates by substantive-model compatible fully conditional

specification. Stata Journal 15: 437–456.

Eddings, W. D., and Y. V. Marchenko. 2012. Diagnostics for multiple imputation in Stata. Stata Journal 12: 353–367.

Gelman,A., I. VanMechelen, G. Verbeke, D. F. Heitjan, andM.Meulders. 2005.Multiple imputation for model checking:

Completed-data plots with missing and latent data. Biometrics 61: 74–85. https://doi.org/10.1111/j.0006-341X.2005.

031010.x.

Graham, J. W. 2009. Missing data analysis: Making it work in the real world.Annual Review of Psychology 60: 549–576.

https://doi.org/10.1146/annurev.psych.58.110405.085530.

Halpin, B. 2016. Multiple imputation for categorical time series. Stata Journal 16: 590–612.

Kenward, M. G., and J. R. Carpenter. 2007. Multiple imputation: Current perspectives. Statistical Methods in Medical

Research 16: 199–218. https://doi.org/10.1177/0962280206075304.

Lee, K. J., and J. B. Carlin. 2010.Multiple imputation for missing data: Fully conditional specification versusmultivariate

normal imputation.American Journal of Epidemiology 171: 624–632. https://doi.org/10.1093/aje/kwp425.

Marchenko, Y. V., and W. D. Eddings. 2011. A note on how to perform multiple-imputation diagnostics in Stata. https:

//www.stata.com/users/ymarchenko/midiagnote.pdf.

Meng, X.-L. 1994.Multiple-imputation inferences with uncongenial sources of input (with discussion). Statistical Science

9: 538–573. https://doi.org/10.1214/ss/1177010269.

Raghunathan, T. E., J. M. Lepkowski, J. Van Hoewyk, and P. Solenberger. 2001. A multivariate technique for multiply

imputing missing values using a sequence of regression models. Survey Methodology 27: 85–95.

Royston, P. 2007. Multiple imputation of missing values: Further update of ice, with an emphasis on interval censoring.

Stata Journal 7: 445–464.

———. 2009. Multiple imputation of missing values: Further update of ice, with an emphasis on categorical variables.

Stata Journal 9: 466–477.

Rubin, D. B. 1987.Multiple Imputation for Nonresponse in Surveys. New York: Wiley.

https://www.stata.com/giftshop/bookmarks/series3/hartley/
https://doi.org/10.1111/j.1467-9876.2007.00613.x
https://doi.org/10.2307/2336390
https://www.stata-journal.com/article.html?article=st0363
https://www.stata-journal.com/article.html?article=st0363
https://www.stata-journal.com/article.html?article=st0387
https://www.stata-journal.com/article.html?article=st0387
https://www.stata-journal.com/article.html?article=st0263
https://doi.org/10.1111/j.0006-341X.2005.031010.x
https://doi.org/10.1111/j.0006-341X.2005.031010.x
https://doi.org/10.1146/annurev.psych.58.110405.085530
https://www.stata-journal.com/article.html?article=st0445
https://doi.org/10.1177/0962280206075304
https://doi.org/10.1093/aje/kwp425
https://www.stata.com/users/ymarchenko/midiagnote.pdf
https://www.stata.com/users/ymarchenko/midiagnote.pdf
https://doi.org/10.1214/ss/1177010269
https://www.stata-journal.com/article.html?article=st0067_3
https://www.stata-journal.com/article.html?article=st0067_4

mi impute — Impute missing values 27

Schafer, J. L. 1997.Analysis of Incomplete Multivariate Data. Boca Raton, FL: Chapman and Hall/CRC.

Schenker, N., and J. M. G. Taylor. 1996. Partially parametric techniques for multiple imputation. Computational Statistics

and Data Analysis 22: 425–446. https://doi.org/10.1016/0167-9473(95)00057-7.

van Buuren, S. 2007. Multiple imputation of discrete and continuous data by fully conditional specification. Statistical

Methods in Medical Research 16: 219–242. https://doi.org/10.1177/0962280206074463.

van Buuren, S., H. C. Boshuizen, and D. L. Knook. 1999. Multiple imputation of missing blood pressure covariates in

survival analysis. Statistics in Medicine 18: 681–694. https://doi.org/10.1002/(SICI)1097-0258(19990330)18:6<681::

AID-SIM71>3.0.CO;2-R.

White, I. R., R. M. Daniel, and P. Royston. 2010. Avoiding bias due to perfect prediction in multiple imputation of

incomplete categorical data. Computational Statistics and Data Analysis 54: 2267–2275. https://doi.org/10.1016/j.

csda.2010.04.005.

White, I. R., P. Royston, and A. M. Wood. 2011. Multiple imputation using chained equations: Issues and guidance for

practice. Statistics in Medicine 30: 377–399. https://doi.org/10.1002/sim.4067.

Also see
[MI] mi estimate — Estimation using multiple imputations

[MI] Intro — Introduction to mi

[MI] Intro substantive — Introduction to multiple-imputation analysis

[MI] Glossary

[D] frunalias — Change storage type of alias variables

Stata, Stata Press, Mata, NetCourse, and NetCourseNow are registered trademarks of StataCorp
LLC. Stata and Stata Press are registered trademarks with the World Intellectual Property Or-
ganization of the United Nations. StataNow is a trademark of StataCorp LLC. Other brand and
product names are registered trademarks or trademarks of their respective companies. Copyright
© 1985–2025 StataCorp LLC, College Station, TX, USA. All rights reserved.

®

For suggested citations, see the FAQ on citing Stata documentation.

https://doi.org/10.1016/0167-9473(95)00057-7
https://doi.org/10.1177/0962280206074463
https://doi.org/10.1002/(SICI)1097-0258(19990330)18:6<681::AID-SIM71>3.0.CO;2-R
https://doi.org/10.1002/(SICI)1097-0258(19990330)18:6<681::AID-SIM71>3.0.CO;2-R
https://doi.org/10.1016/j.csda.2010.04.005
https://doi.org/10.1016/j.csda.2010.04.005
https://doi.org/10.1002/sim.4067
https://www.stata.com/manuals/mimiestimate.pdf#mimiestimate
https://www.stata.com/manuals/miintro.pdf#miIntro
https://www.stata.com/manuals/miintrosubstantive.pdf#miIntrosubstantive
https://www.stata.com/manuals/miglossary.pdf#miGlossary
https://www.stata.com/manuals/dfrunalias.pdf#dfrunalias
https://www.stata.com/support/faqs/resources/citing-software-documentation-faqs/

