
Intro substantive — Introduction to multiple-imputation analysis

Description Remarks and examples References Also see

Description
Missing data arise frequently. Various procedures have been suggested in the literature over the last

several decades to deal with missing data (for example, Anderson [1957]; Hartley and Hocking [1971];

Rubin [1972, 1987]; and Dempster, Laird, and Rubin [1977]). The technique of multiple imputation,

which originated in early 1970 in application to survey nonresponse (Rubin 1976), has gained popularity

increasingly over the years as indicated by literature (for example, Rubin [1976, 1987, 1996]; Little

[1992]; Meng [1994]; Schafer [1997]; van Buuren, Boshuizen, and Knook [1999]; Little and Rubin

[2020]; Carlin et al. [2003]; Royston [2004, 2005a, 2005b, 2007, 2009]; Reiter and Raghunathan [2007];

Carlin, Galati, and Royston [2008]; Royston, Carlin, and White [2009]; White, Royston, and Wood

[2011]; and Carpenter and Kenward [2013]).

This entry presents a general introduction to multiple imputation and describes relevant statistical

terminology used throughout the manual. The discussion here, as well as other statistical entries in this

manual, is based on the concepts developed in Rubin (1987) and Schafer (1997).

Remarks and examples
Remarks are presented under the following headings:

Motivating example
What is multiple imputation?
Theory underlying multiple imputation
How large should M be?
Assumptions about missing data
Patterns of missing data
Proper imputation methods
Analysis of multiply imputed data
A brief introduction to MI using Stata
Summary

We will use the following definitions and notation.

An imputation represents one set of plausible values for missing data, and so multiple imputations

represent multiple sets of plausible values. With a slight abuse of the terminology, we will use the term

imputation to mean the data where missing values are replaced with one set of plausible values.

We use 𝑀 to refer to the number of imputations and 𝑚 to refer to each individual imputation; that is,

𝑚 = 1 means the first imputation, 𝑚 = 2 means the second imputation, and so on.

Motivating example
Consider a fictional case–control study examining a relationship between smoking and heart attacks.

1
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. use https://www.stata-press.com/data/r19/mheart0
(Fictional heart attack data; BMI missing)
. describe
Contains data from https://www.stata-press.com/data/r19/mheart0.dta
Observations: 154 Fictional heart attack data;

BMI missing
Variables: 9 19 Jun 2024 10:50

Variable Storage Display Value
name type format label Variable label

attack byte %9.0g Outcome (heart attack)
smokes byte %9.0g Current smoker
age float %9.0g Age, in years
bmi float %9.0g Body mass index, kg/m^2
female byte %9.0g Gender
hsgrad byte %9.0g High school graduate
marstatus byte %9.0g mar Marital status: single, married,

divorced
alcohol byte %24.0g alc Alcohol consumption: none, <2

drinks/day, >=2 drinks/day
hightar byte %9.0g Smokes high tar cigarettes

Sorted by:

In addition to the primary variables attack and smokes, the dataset contains information about sub-
jects’ ages, body mass indexes (BMIs), genders, educational statuses, marital statuses, alcohol consump-

tions, and the types of cigarettes smoked (low/high tar).

We will use logistic regression to study the relationship between attack, recording heart attacks, and
smokes:

. logit attack smokes age bmi hsgrad female
Iteration 0: Log likelihood = -91.359017
Iteration 1: Log likelihood = -79.374749
Iteration 2: Log likelihood = -79.342218
Iteration 3: Log likelihood = -79.34221
Logistic regression Number of obs = 132

LR chi2(5) = 24.03
Prob > chi2 = 0.0002

Log likelihood = -79.34221 Pseudo R2 = 0.1315

attack Coefficient Std. err. z P>|z| [95% conf. interval]

smokes 1.544053 .3998329 3.86 0.000 .7603945 2.327711
age .026112 .017042 1.53 0.125 -.0072898 .0595137
bmi .1129938 .0500061 2.26 0.024 .0149837 .211004

hsgrad .4048251 .4446019 0.91 0.363 -.4665786 1.276229
female .2255301 .4527558 0.50 0.618 -.6618549 1.112915
_cons -5.408398 1.810603 -2.99 0.003 -8.957115 -1.85968

The above analysis used 132 observations out of the available 154 because some of the covariates contain

missing values. Let’s examine the data for missing values, something we could have done first:



Intro substantive — Introduction to multiple-imputation analysis 3

. misstable summarize
Obs<.

Unique
Variable Obs=. Obs>. Obs<. values Min Max

bmi 22 132 132 17.22643 38.24214

We discover that bmi is missing in 22 observations. Our analysis ignored the information about the other

covariates in these 22 observations. Can we somehow preserve this information in the analysis? The

answer is yes, and one solution is to use multiple imputation.

What is multiple imputation?
Multiple imputation (MI) is a flexible, simulation-based statistical technique for handling missing

data. Multiple imputation consists of three steps:

1. Imputation step. 𝑀 imputations (completed datasets) are generated under some chosen impu-

tation model.

2. Completed-data analysis (estimation) step. The desired analysis is performed separately on

each imputation 𝑚 = 1, . . . , 𝑀. This is called completed-data analysis and is the primary

analysis to be performed once missing data have been imputed.

3. Pooling step. The results obtained from 𝑀 completed-data analyses are combined into a single

multiple-imputation result.

The completed-data analysis step and the pooling step can be combined and thought of generally as

the analysis step.

MI as a missing-data technique has two appealing main features: 1) the ability to perform a wide

variety of completed-data analyses using existing statistical methods; and 2) separation of the imputation

step from the analysis step. We discuss these two features in more detail in what follows.

Among other commonly used missing-data techniques that allow a variety of completed-data analyses

are complete-case analysis or listwise (casewise) deletion, available-case analysis, and single-imputation

methods. Although these procedures share one of MI’s appealing properties, they lack some of MI’s

statistical properties.

For example, listwise deletion discards all observations with missing values and thus all information

contained in the nonmissing values of these observations. With a large number of missing observations,

this may lead to results that will be less efficient (larger standard errors, wider confidence intervals, less

power) than MI results. In situations when the remaining complete cases are not representative of the

population of interest, listwise deletion may also lead to biased parameter estimates.

In our opening logistic analysis of heart attacks, we used listwise deletion. The effect of age was

not statistically significant based on the reduced sample. The MI analysis of these data (see A brief

introduction to MI using Stata below) will reveal the statistical significance of age by using all available

observations after imputing missing values for BMI.

Unlike listwise deletion, single-imputation methods do not discard missing values. They treat the im-

puted values as known in the analysis. This underestimates the variance of the estimates and so overstates

precision and results in confidence intervals and significance tests that are too optimistic. MI rectifies

https://www.stata.com/manuals/miintrosubstantive.pdf#miIntrosubstantiveRemarksandexamplesAbriefintroductiontoMIusingStata
https://www.stata.com/manuals/miintrosubstantive.pdf#miIntrosubstantiveRemarksandexamplesAbriefintroductiontoMIusingStata
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this problem by creating multiple imputations and taking into account the sampling variability due to the

missing data (between-imputation variability). See Little and Rubin (2020) and Allison (2001), among

others, for a more detailed comparison of the methods.

The independence of the imputation step from the analysis step is the property MI shares with other

imputation methods. The imputation step fills in missing values. The analysis step provides inference

about multiply imputed results and does not require any information about the missing-data aspect of the

problem.

The separation of the two steps allows different individuals, a data collector/imputer and a data analyst,

to perform these steps independently of one another. The advantage is that the data collector/imputer

usually has access to more information about the data than may be disclosed to the data analyst and thus

can create more accurate imputations. The data analyst can use the imputed data released by the data

collector in a number of different analyses. Of course, it is crucial that the imputer make the imputation

model as general as possible to accommodate a wide variety of analyses that the data analyst might

choose to perform; see Proper imputation methods below for details.

In our heart attack example, the imputer would create multiple imputations of missing values of BMI

using, for example, a linear regression method, and then release the resulting data to the analyst. The

analyst could then analyze these multiply imputed data using an ordinary logistic regression. That is, no

adjustment is needed to the analysis model itself to account for missing BMI—the pooling portion of the

analysis will account for the increased variability because of imputed missing data.

Theory underlying multiple imputation
MIwas derived using the Bayesian paradigm yet was proved to be statistically valid from the frequen-

tist (randomization-based) perspective. We use the definition from Rubin (1996) of statistical validity

that implies approximately unbiased point estimates and implies confidence intervals achieving their

nominal coverages when averaged over the randomization distributions induced by the known sampling

and the posited missing-data mechanisms.

To explain the role the Bayesian and frequentist concepts play in MI, we need to consider the MI

procedure inmore detail. MI requires specification of twomodels—the imputationmodel and the analysis

model. The imputation model is the model used to create imputations in the imputation step. The analysis

model is the completed-data model used during the analysis step to obtain completed-data estimates, 𝑄,

of parameters of interest, 𝑄, and the estimate, 𝑈, of sampling variability associated with 𝑄. During the

pooling step, the individual completed-data estimates (𝑄, 𝑈) are combined into (𝑄MI, 𝑇 ) to form one

repeated-imputation inference. The statistical validity of the repeated-imputation inference is of interest.

Consider the case when both the imputation model and the analysis model are the same Bayesian

models. Then the repeated imputations (multiple imputations) are repeated draws from the posterior

predictive distribution of the missing data under a posited Bayesian model. The combined parameter

estimates, 𝑄MI, and their associated sampling variance estimate, 𝑇 = 𝑊 + 𝐵, are the approximations

to the posterior mean and variance of 𝑄. Here 𝑊 represents the within-imputation variability (aver-

age of the completed-data variance estimates, 𝑈), and 𝐵 represents the between-imputation variability

(variance estimate of 𝑄MI over repeated imputations). Provided that the posterior mean and variance

are adequate summaries of the posterior distribution, the repeated-imputation inference based on these

combined estimates can be justified either from a purely Bayesian standpoint or from a purely frequen-

tist standpoint. Thus a Bayesian apparatus is used to create imputations and also underlies the rules for

combining parameter estimates.

https://www.stata.com/manuals/miintrosubstantive.pdf#miIntrosubstantiveRemarksandexamplesProperimputationmethods
https://www.stata.com/manuals/miintrosubstantive.pdf#miIntrosubstantiveRemarksandexamplesMotivatingexample
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In reality, the analysis model is rarely the same as the imputation model, and neither of them is an

explicit Bayesian model. Repeated-imputation inference is still statistically valid in those cases. The

rigorous justification is given in chapters 3 and 4 of Rubin (1987) from the frequentist perspective. Below

we briefly summarize the conditions under which the repeated-imputation inference from the pooling step

is statistically valid; also see Rubin (1987, 117–119) for more detail.

The repeated-imputation inference is statistically valid if 1) the multiple imputations from the impu-

tation step are proper (see Proper imputation methods below) and 2) the completed-data inference based

on (𝑄, 𝑈) from the analysis step is randomization valid. Completed-data inference based on (𝑄, 𝑈) is
randomization valid if 𝑄 ∼ 𝑁{𝑄,Var(𝑄)} and 𝑈 is a consistent estimate ofVar(𝑄) over the distribution
of the sampling mechanism.

The randomization validity of MI was derived under the assumption of an infinite number of imputa-

tions. In practice, however, the number of imputations tends to be small and so the finite-𝑀 properties

of the MI estimators must be explored. Rubin (1987) derives the fundamental result underlying the MI

inference based on a finite 𝑀. We restate it below for a scalar 𝑄:

𝑇 −1/2
𝑀 (𝑄 − 𝑄𝑀) ∼ 𝑡𝜈𝑀

where 𝑄𝑀 is the average of 𝑀 completed-data estimates of 𝑄, 𝑇𝑀 = 𝑊 + (1 + 1/𝑀)𝐵, and 𝑡𝜈𝑀
is a

Student’s 𝑡 distribution with degrees of freedom 𝜈𝑀 that depend on the number of imputations and rates

of missing information (or the fraction of information missing because of nonresponse that measures the

influence of the missing data on parameter estimates). Later, Li, Raghunathan, and Rubin (1991) derived

an improved procedure for multiple testing, and Barnard and Rubin (1999) and Reiter (2007) extended

the MI inference to account for small samples. For computation details, see Methods and formulas in

[MI] mi estimate.

How large should M be?
The theory underlying the validity ofMI relies on an infinite number of imputations,𝑀. The procedure

is also known to have good statistical properties with finite 𝑀, but what values of 𝑀 should we use in

practice? Rubin (1987, 114) answers this question: the asymptotic relative efficiency (RE) of the MI

procedure with finite 𝑀 compared with infinite 𝑀 is roughly 90% with only two imputations for a

missing-information rate as high as 50%.

Most literature (for example, Rubin [1987] and van Buuren, Boshuizen, and Knook [1999]) suggests

that 𝑀 = 5 (corresponding to RE of 95% for 50% of information missing) should be sufficient to obtain

valid inference. In general, however, the actual number of imputations necessary for MI to perform

satisfactorily depends not only on the amount of information missing due to nonresponse but also on the

analysis model and the data. Some analyses may require 𝑀 to be 50 or more to obtain stable results

(Kenward and Carpenter 2007; Horton and Lipsitz 2001).

Literature with formal recommendations on how to choose 𝑀 is very sparse. Royston (2004), Roys-

ton, Carlin, and White (2009), and White, Royston, and Wood (2011) discuss the impact of the number

of imputations on the precision of estimates and suggest ways of determining the required number of

imputations by evaluating the sampling error of the MI estimates.

Because it is computationally feasible to obtain more imputations, we recommend using at least 20

imputations to reduce the sampling error due to imputations.

https://www.stata.com/manuals/miintrosubstantive.pdf#miIntrosubstantiveRemarksandexamplesProperimputationmethods
https://www.stata.com/manuals/mimiestimate.pdf#mimiestimateMethodsandformulas
https://www.stata.com/manuals/mimiestimate.pdf#mimiestimate
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Assumptions about missing data
The theory underlying MI methodology makes no assumption about the missing-data mechanism.

However, many imputation methods (including those provided by Stata) require that the missing-data

mechanism be ignorable. Before we discuss the ignorability conditions, consider the following defini-

tions.

Missing data are said to be missing completely at random (MCAR) if the probability that data are

missing does not depend on observed or unobserved data. Under MCAR, the missing-data values are a

simple random sample of all data values, and so any analysis that discards the missing values remains

consistent, albeit perhaps inefficient.

Consider a hypothetical longitudinal study comparing different blood-pressure treatments. Suppose

that the follow-up blood-pressure measurements were not collected from some subjects because they

moved to a different area. These missing blood-pressure measurements can be viewed as MCAR as long

as subjects’ decisions to move were unrelated to any item in the study.

Missing data are said to be missing at random (MAR) if the probability that data are missing does not

depend on unobserved data but may depend on observed data. Under MAR, the missing-data values do

not contain any additional information given observed data about the missing-data mechanism. Note that

MCAR can be viewed as a particular case ofMAR. When missing data areMAR, listwise deletion may lead

to biased results.

Suppose that some subjects decided to leave the study because of severe side effects from the assigned

treatment of a high dosage of a medicine. Here it is unlikely that missing blood-pressure measurements

areMCAR because the subjects who received a higher dosage of the medicine are more likely to suffer se-

vere side effects than those who received a lower dosage and thus are more likely to drop out of the study.

Missing blood-pressure measurements depend on the dosage of the received treatment and therefore are

MAR.

On the other hand, if the subjects are withdrawn from the study for ethical reasons because of ex-

tremely high blood pressures, missing blood-pressure measurements would not be MAR. The measure-

ments for the subjects with very high blood pressures will be missing and thus the reason for drop out

will depend on the missing blood pressures. This type of missing-data mechanism is called missing not

at random (MNAR). For such missing data, the reasons for its missingness must be accounted for in the

model to obtain valid results.

Model parameters are said to be distinct from a Bayesian standpoint if their joint prior distribution

can be factorized into independent marginal prior distributions.

The missing-data mechanism is said to be ignorable if missing data are MAR and the parameters of

the data model and the parameters of the missing-data mechanism are distinct (Rubin 1976).

The ignorability assumption makes it possible to ignore the process that causes missing data in the

imputation model—something not possible withMNAR—which simplifies the imputation step while still

ensuring correct inference. The provided imputation methods assume that missing data are MAR.

In practice, it is difficult to test the ignorability assumption formally because the MAR mechanism

can be distinguished from the MNAR mechanism only through the missing data that are not observed.

Thus careful consideration is necessary before accepting this assumption. If in doubt, sensitivity analy-

sis—analysis repeated under various missing-data models—needs to be performed to verify the stability

of inference. In the context of MI, sensitivity analysis can be performed by modifying the imputation

step to accommodate the nonignorable missing-data mechanism (for example, Kenward and Carpenter

[2007], van Buuren, Boshuizen, and Knook [1999], and Cro, Kenward, Morris, and Carpenter [2016]).
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Patterns of missing data
Another issue we need to consider related to missing data is a pattern of missingness (or missing-data

pattern).

Consider an 𝑁 × 𝑝 data matrix 𝑌 = (𝑌1, 𝑌2, . . . , 𝑌𝑝)′ with 𝑝 variables and 𝑁 observations. Consider

a permutation of column indices (𝑖1, 𝑖2, . . . , 𝑖𝑝) such that 𝑌𝑖1
is at least as observed as 𝑌𝑖2

, which is at

least as observed as 𝑌𝑖3
, and so on. In other words, 𝑌𝑖2

has missing values in the same observations (and

possibly more) as 𝑌𝑖1
, 𝑌𝑖3

has missing values (and possibly more) in the same observations as 𝑌𝑖2
, and

so on. If such a permutation exists, then the pattern of missingness in 𝑌 is said to be monotone. If the

pattern of missingness is not monotone, it is assumed to be arbitrary. Loss to follow-up often leads to a

monotone-missing pattern in the data.

For example, consider the following indicator matrix recording the missing pattern in 𝑌:

𝑅1 =
⎛⎜⎜⎜
⎝

1 1 1
0 0 1
0 1 1
0 1 1

⎞⎟⎟⎟
⎠

where 𝑅𝑖𝑗
1 is 1 if variable 𝑌𝑗 is observed (complete) in observation 𝑖 and 0 otherwise. We can see that

𝑌 has a monotone-missing pattern if we interchange the first and the third columns of 𝑅1. In fact, if we

also rearrange the rows such that

𝑅1 =
⎛⎜⎜⎜
⎝

1 1 1
1 1 0
1 1 0
1 0 0

⎞⎟⎟⎟
⎠

then the monotonicity of missing values becomes even more evident. An example of a nonmonotone

missing-value pattern is

𝑅2 =
⎛⎜⎜⎜
⎝

1 1 1
1 1 0
0 1 0
1 0 0

⎞⎟⎟⎟
⎠

There is no ordering of the first two columns of 𝑅2 such that the missing values in one column imply

missing values in the other column.

Why is it important to consider the monotone missing-value pattern? A monotone-missing pattern

greatly simplifies the imputation task. Under a monotone-missing pattern, a multivariate imputation task

can be formulated as a sequence of independent univariate (conditional) imputation tasks, which allows

the creation of a flexible imputation model; see [MI] mi impute monotone for details, and see Rubin

(1987, 174) for more technical conditions under which such a formulation is applicable.

Proper imputation methods
As we mentioned earlier, a key concept underlying the randomization-based evaluations of the

repeated-imputation inference is proper multiple imputation.

A multiple-imputation method is said to be proper if it produces proper multiple imputations, which

we are about to define. Rubin (1987, 118–119) gives a full technical definition for proper multiple

imputations. Ignoring the more technical definition, Rubin (1996) states the following main conditions.

The multiple imputations are said to be proper if

https://www.stata.com/manuals/mimiimputemonotone.pdf#mimiimputemonotone
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1. MI estimates𝑄MI are asymptotically normal with mean𝑄 and a consistent variance–covariance

estimate 𝐵.

2. The within-imputation variance estimate 𝑊 is a consistent estimate of the variance–covariance

estimate 𝑈 with variability of a lower order than Var(𝑄MI).
The above statements assume a large number of imputations and the randomization distribution in-

duced by the missing-data mechanism.

In general, it is difficult to determine if an imputation method is proper using the above definition.

Rubin (1987, sec. 4.3) and Binder and Sun (1996) describe several examples of proper and improper im-

putation methods. Rubin (1987, 125–127) recommends drawing imputations from a Bayesian posterior

predictive distribution (or an appropriate approximation to it) of missing values under the chosen model

for the data and the missing-data mechanism. The chosen imputation model must also be appropriate for

the completed-data statistics likely to be used at the analysis stage. Schafer (1997, 145) points out that

from a practical standpoint, it is more important that the chosen imputation model performs well over

the repeated samples than that it be technically proper. This can be checked via simulation.

With the exception of predictive mean matching and chained equations, the imputation methods avail-

able in Stata obtain imputations by simulating from a Bayesian posterior predictive distribution of the

missing data (or its approximation) under the conventional (or chosen) prior distribution; see Imputation

methods in [MI] mi impute for details. To ensure that the multiple imputations are proper, you must

choose an appropriate imputation model, which we briefly discuss next.

The imputation model must include all predictors relevant to the missing-data mechanism, and it must

preserve all data characteristics likely to be explored at the analysis stage. For example, if the analysis

model explores a correlation between two variables, then omitting either of those variables from the

imputation model will lead to estimates of the correlation biased toward zero. Another common mistake

that may lead to biased estimates is when an outcome variable of the analysis model is not used in the

imputation model. In the survey context, all structural variables such as sampling weights, strata, and

cluster identifiers (or at least main strata and main clusters) need to be included in the imputation model.

In general, any predictors involved in the definition of the completed-data estimators and the sampling

design should be included in the imputation model. If you intend to use the multiply imputed data in an

analysis involving a wide range of completed-data estimators, you should include as many variables as

possible.

Using our heart attack data, if we were to release the multiply imputed version of the dataset for

general analyses, we would have included all available covariates as predictors in the regression model

used to impute BMI and not only the subset of covariates (heart attacks, smoking status, age, gender, and

educational status) used in our specific data analysis.

The severity of the effect of a misspecified imputation model will typically depend on the amount of

imputed data relative to the observed data—a small number of observations with improperly imputed

values may not affect the inference greatly if there is a large number of observations with complete data.

For more details about imputation modeling, see Rubin (1996), Schafer (1997, 139–144), Schafer

and Olsen (1998), Allison (2001), Schafer and Graham (2002), Kenward and Carpenter (2007), Graham

(2009), andWhite, Royston, andWood (2011), among others. For imputation modeling of large surveys,

see, for example, Schafer, Khare, and Ezzati-Rice (1993) and Ezzati-Rice et al. (1995).

https://www.stata.com/manuals/mimiimpute.pdf#mimiimputeRemarksandexamplesImputationmethods
https://www.stata.com/manuals/mimiimpute.pdf#mimiimputeRemarksandexamplesImputationmethods
https://www.stata.com/manuals/mimiimpute.pdf#mimiimpute
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Analysis of multiply imputed data
Once we have multiply imputed data, we perform our primary analysis on each completed dataset

and then use Rubin’s combination rules to form one set of results. Assuming that the underlying impu-

tation model is properly specified (see, for example, Abayomi, Gelman, and Levy [2008] and Gelman

et al. [2005] for multiple-imputation diagnostics), we can choose from a variety of statistical methods.

For example, the methods can include maximum likelihood methods, survey methods, nonparametric

methods, and any other method appropriate for the type of data we have.

Each of the methods have certain concepts associated with them. For example, maximum likelihood

methods use a likelihood function, whereas a deviance is associated with generalized linear models.

While these concepts are well defined within each individual completed-data analysis, they may not

have a clear interpretation when the individual analyses are combined in the pooling step. (Only in the

special case when the imputation and analysis models are compatible Bayesian models can the estimated

parameters be viewed as approximations to the mode of the posterior distribution.)

As a result, various statistical (postestimation) procedures based on these concepts, such as likelihood-

ratio tests, goodness-of-fit tests, etc., are not directly applicable toMI results. Instead, their “MI” versions

are being studied in the literature (Li et al. 1991; Meng and Rubin 1992). Another concept that is not

uniquely defined within MI is that of prediction; see Carlin, Galati, and Royston (2008) and White,

Royston, and Wood (2011) for one definition.� �
Donald Bruce Rubin (1943– ) was born in Washington, DC. He entered Princeton intending to be-

come a physicist but ended up majoring in psychology. He entered Harvard intending to continue

as a psychologist, but in the event, gained further degrees in computer science and statistics. After

periods at the Educational Testing Service and the University of Chicago, Rubin returned to Har-

vard in 1984. He has had many visiting appointments and has carried out extensive consultancy

work. Rubin has long been a leader in research on causal inference in experiments and observa-

tional studies, and problems of nonresponse and missing data. Among many major contributions is

his formalization of the expectation-maximization algorithm with Arthur Dempster and Nan Laird.

Rubin’s work ranges over a wide variety of sciences and is often Bayesian in style. Rubin was

elected a member of the National Academy of Sciences in 2010.� �
A brief introduction to MI using Stata

Stata offers full support for MI analysis from the imputation step to the pooling step.

The imputation step can be performed for one variable or multiple variables. A number of imputation

methods, including flexible methods accommodating variables of different types and an iterativeMarkov

chain Monte Carlo method based on multivariate normal, are available; see [MI] mi impute for details.

The analysis and pooling steps are combined into one step and performed by mi estimate; see
[MI] mi estimate. You can fit many commonly used models and obtain combined estimates of coef-

ficients (or transformed coefficients) (see [MI] Estimation for a list of supported estimation commands),

or you can create your own estimation command and use it with the mi estimate prefix.

In addition to the conventional estimation steps, Stata facilitates many data-manipulation routines for

managing your multiply imputed data and verifying its integrity over the imputations; see [MI] Intro for

a full list of commands.

https://www.stata.com/manuals/mimiimpute.pdf#mimiimpute
https://www.stata.com/manuals/mimiestimate.pdf#mimiestimate
https://www.stata.com/manuals/miestimation.pdf#miEstimation
https://www.stata.com/manuals/miintro.pdf#miIntro
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As a short demonstration of mi, let’s analyze the heart attack data introduced earlier using MI; see

[MI]Workflow for more thorough guidelines.

The goals are 1) to fill in missing values of bmi using, for example, a linear regression imputation

method (mi impute regress) to obtain multiply imputed data and 2) to analyze the multiply imputed

data using logistic regression, which we will do using mi estimate. Before we can accomplish these

two steps, we need to prepare the data so they can be used with mi. First, we declare the data to be mi
data:

. use https://www.stata-press.com/data/r19/mheart0
(Fictional heart attack data; BMI missing)
. mi set mlong

We choose to use the data in the marginal long style (mlong) because it is a memory-efficient style; see
[MI] Styles for details.

To use mi impute, we must first register imputation variables. In general, we recommend that you

register all variables relevant to the analysis as imputed, passive, or regular with mi register (see

[MI] mi set), especially if you plan on doing any data management of your multiply imputed data.

. mi register imputed bmi
(22 m=0 obs now marked as incomplete)
. mi register regular attack smokes age hsgrad female

We are now ready to use mi impute. To lessen the simulation (Monte Carlo) error, we arbitrarily

choose to create 20 imputations (add(20) option). We also specify the rseed() option for reproducibil-

ity:

. mi impute regress bmi attack smokes age hsgrad female, add(20) rseed(2232)
Univariate imputation Imputations = 20
Linear regression added = 20
Imputed: m=1 through m=20 updated = 0

Observations per m

Variable Complete Incomplete Imputed Total

bmi 132 22 22 154

(Complete + Incomplete = Total; Imputed is the minimum across m
of the number of filled-in observations.)

From the output, we see that all 22 incomplete values of bmi were successfully imputed. You may want

to examine your imputations to verify that nothing abnormal occurred during imputation. For example,

as a quick check, we can compare main descriptive statistics from some imputations (say, the first and the

last one) to those from the observed data. We use mi xeq (see [MI]mi xeq) to execute Stata’s summarize
command on the original data (𝑚 = 0), the first imputation (𝑚 = 1), and the last imputation (𝑚 = 20):

https://www.stata.com/manuals/miworkflow.pdf#miWorkflow
https://www.stata.com/manuals/mistyles.pdf#miStyles
https://www.stata.com/manuals/mimiset.pdf#mimiset
https://www.stata.com/manuals/mimixeq.pdf#mimixeq
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. mi xeq 0 1 20: summarize bmi
m=0 data:
-> summarize bmi

Variable Obs Mean Std. dev. Min Max

bmi 132 25.24136 4.027137 17.22643 38.24214
m=1 data:
-> summarize bmi

Variable Obs Mean Std. dev. Min Max

bmi 154 25.28134 3.969649 17.22643 38.24214
m=20 data:
-> summarize bmi

Variable Obs Mean Std. dev. Min Max

bmi 154 25.30992 4.05665 16.44644 38.24214

The summary statistics of the imputed datasets look reasonable.

We now fit the logistic regression using the mi estimate prefix command:

. mi estimate, dots: logit attack smokes age bmi hsgrad female
Imputations (20):

.........10.........20 done
Multiple-imputation estimates Imputations = 20
Logistic regression Number of obs = 154

Average RVI = 0.0611
Largest FMI = 0.2518

DF adjustment: Large sample DF: min = 311.30
avg = 116,139.89
max = 252,553.06

Model F test: Equal FMI F( 5,19590.7) = 3.52
Within VCE type: OIM Prob > F = 0.0035

attack Coefficient Std. err. t P>|t| [95% conf. interval]

smokes 1.222431 .3608138 3.39 0.001 .5152409 1.92962
age .0358403 .0154631 2.32 0.020 .0055329 .0661476
bmi .1094125 .0518803 2.11 0.036 .0073322 .2114929

hsgrad .1740094 .4055789 0.43 0.668 -.6209156 .9689344
female -.0985455 .4191946 -0.24 0.814 -.9201594 .7230684
_cons -5.625926 1.782136 -3.16 0.002 -9.124984 -2.126867

Compared with the earlier logit analysis (using listwise deletion), we detect the significance of age,
whose effect was apparently disguised by the missing data. See [MI] mi estimate for details.

We will be using variations of these data throughout the mi documentation.

Summary
• MI is a simulation-based procedure. Its purpose is not to re-create the individual missing values

as close as possible to the true ones but to handle missing data in a way resulting in valid

statistical inference (Rubin 1987, 1996).

• MI yields valid inference if 1) the imputation method is proper with respect to the posited

missing-data mechanism (see Proper imputation methods above) and 2) completed-data analy-

sis is valid in the absence of missing data.

https://www.stata.com/manuals/miintrosubstantive.pdf#miIntrosubstantiveRemarksandexamplesanalysis
https://www.stata.com/manuals/mimiestimate.pdf#mimiestimate
https://www.stata.com/manuals/miintrosubstantive.pdf#miIntrosubstantiveRemarksandexamplesProperimputationmethods
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• A small number of imputations (5 to 20) may be sufficient when fractions of missing data are

low. High fractions of missing data as well as particular data structures may require up to 100

(or more) imputations. Whenever feasible to do so, we recommend that you vary the number

of imputations to see if this affects your results.

• With a small number of imputations, the reference distribution for the MI inference is Student’s

𝑡 (or 𝐹 in multiple-hypothesis testing). The residual degrees of freedom depend on 𝑀 and the

rates of missing information and thus are different for each parameter of interest.

• With a large number of imputations, the reference distribution forMI inference is approximately

normal (or 𝜒2 in multiple-hypothesis testing).

• When the imputer’s model is more restrictive than the analyst’s model, the MI inference can

be invalid if the imputer’s assumptions are not true. On the other hand, when the analyst’s

model is more restrictive than the imputer’s model, the MI results will be valid but somewhat

conservative if the analyst’s assumptions are true. If the analyst’s assumptions are false, the

results can be biased; see, for example, Schafer (1997) for details.

• MI is relatively robust to departures from the correct specification of the imputation model,

provided the rates of missing information are low and the correct completed-data model is used

in the analysis.

• Certain concepts, for example, likelihood and deviance, do not have clear interpretation within

the MI framework. As such, various statistical (postestimation) procedures based on these con-

cepts (for example, likelihood-ratio tests, goodness-of-fit tests) are not directly applicable toMI

results.
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