Description

Multiple-imputation data analysis in Stata is similar to standard data analysis. The standard syntax applies, but you need to remember the following for MI data analysis:

1. The data must be declared as mi data.

 If you already have multiply imputed data (saved in Stata format), use `mi import` to import it into mi; see [MI] mi import.

 If you do not have multiply imputed data, use `mi set` (see [MI] mi set) to declare your original data to be mi data and use `mi impute` (see [MI] mi impute) to fill in missing values.

2. After you have declared mi data, commands such as `svyset`, `stset`, and `xtset` cannot be used. Instead use `mi svyset` to declare survey data, use `mi stset` to declare survival data, and use `mi xtset` to declare panel data. See [MI] mi XXXset.

3. Prefix the estimation command with `mi estimate:` (see [MI] mi estimate).

The following estimation commands support the `mi estimate` prefix.

<table>
<thead>
<tr>
<th>Command</th>
<th>Entry</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linear regression models</td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>regress</code></td>
<td>[R] <code>regress</code></td>
<td>Linear regression</td>
</tr>
<tr>
<td><code>cnsreg</code></td>
<td>[R] <code>cnsreg</code></td>
<td>Constrained linear regression</td>
</tr>
<tr>
<td><code>mvreg</code></td>
<td>[MV] <code>mvreg</code></td>
<td>Multivariate regression</td>
</tr>
<tr>
<td>Binary-response regression models</td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>logistic</code></td>
<td>[R] <code>logistic</code></td>
<td>Logistic regression, reporting odds ratios</td>
</tr>
<tr>
<td><code>logit</code></td>
<td>[R] <code>logit</code></td>
<td>Logistic regression, reporting coefficients</td>
</tr>
<tr>
<td><code>probit</code></td>
<td>[R] <code>probit</code></td>
<td>Probit regression</td>
</tr>
<tr>
<td><code>cloglog</code></td>
<td>[R] <code>cloglog</code></td>
<td>Complementary log-log regression</td>
</tr>
<tr>
<td><code>binreg</code></td>
<td>[R] <code>binreg</code></td>
<td>GLM for the binomial family</td>
</tr>
<tr>
<td>Count-response regression models</td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>poisson</code></td>
<td>[R] <code>poisson</code></td>
<td>Poisson regression</td>
</tr>
<tr>
<td><code>nbreg</code></td>
<td>[R] <code>nbreg</code></td>
<td>Negative binomial regression</td>
</tr>
<tr>
<td><code>gnbreg</code></td>
<td>[R] <code>nbreg</code></td>
<td>Generalized negative binomial regression</td>
</tr>
<tr>
<td>Ordinal-response regression models</td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>ologit</code></td>
<td>[R] <code>ologit</code></td>
<td>Ordered logistic regression</td>
</tr>
<tr>
<td><code>oprobit</code></td>
<td>[R] <code>oprobit</code></td>
<td>Ordered probit regression</td>
</tr>
<tr>
<td>Categorical-response regression models</td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>mlogit</code></td>
<td>[R] <code>mlogit</code></td>
<td>Multinomial (polytomous) logistic regression</td>
</tr>
<tr>
<td><code>mprobit</code></td>
<td>[R] <code>mprobit</code></td>
<td>Multinomial probit regression</td>
</tr>
<tr>
<td><code>clogit</code></td>
<td>[R] <code>clogit</code></td>
<td>Conditional (fixed-effects) logistic regression</td>
</tr>
</tbody>
</table>
Estimation — Estimation commands for use with `mi estimate`

Fractional-response regression models
- `fracreg`
 Fractional response regression

Quantile regression models
- `qreg`
 Quantile regression
- `iqreg`
 Interquantile range regression
- `sqreg`
 Simultaneous-quantile regression
- `bsqreg`
 Bootstrapped quantile regression

Survival regression models
- `stcox`
 Cox proportional hazards model
- `streg`
 Parametric survival models
- `stcrreg`
 Competing-risks regression

Other regression models
- `glm`
 Generalized linear models
- `areg`
 Linear regression with a large dummy-variable set
- `rreg`
 Robust regression
- `truncreg`
 Truncated regression

Descriptive statistics
- `mean`
 Estimate means
- `proportion`
 Estimate proportions
- `ratio`
 Estimate ratios
- `total`
 Estimate totals

Panel-data models
- `xtreg`
 Fixed-, between- and random-effects, and population-averaged linear models
- `xtrc`
 Random-coefficients model
- `xtlogit`
 Fixed-effects, random-effects, and population-averaged logit models
- `xtprobit`
 Random-effects and population-averaged probit models
- `xtcloglog`
 Random-effects and population-averaged cloglog models
- `xtpoisson`
 Fixed-effects, random-effects, and population-averaged Poisson models
- `xtnbreg`
 Fixed-effects, random-effects, and population-averaged negative binomial models
- `xtgee`
 Fit population-averaged panel-data models by using GEE

Multilevel mixed-effects models
- `mixed`
 Multilevel mixed-effects linear regression

Survey regression models
- `svy:`
 Estimation commands for survey data (excluding commands that are not listed above)

Only Taylor-linearized survey variance estimation is supported with `svy:`.
Also see

[MI] mi estimate — Estimation using multiple imputations
[MI] mi estimate postestimation — Postestimation tools for mi estimate
[MI] mi import — Import data into mi
[MI] mi impute — Impute missing values
[MI] mi set — Declare multiple-imputation data
[MI] Workflow — Suggested workflow
[MI] Intro — Introduction to mi
[MI] Intro substantive — Introduction to multiple-imputation analysis
[MI] Glossary