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Description
meta summarize summarizes meta data. It reports individual effect sizes and the overall effect size

(ES), their confidence intervals (CIs), heterogeneity statistics, and more. meta summarize can perform

random-effects (RE), common-effect (CE), and fixed-effects (FE) meta-analyses. It can also perform

subgroup, cumulative, and sensitivity meta-analyses. For graphical display of meta-analysis summaries,

see [META] meta forestplot.

Quick start
Perform meta-analysis and summarize meta data, which were declared by either meta set or meta

esize
meta summarize

Same as above, but summarize meta-analysis results using the empirical Bayes REmethod instead of the

declared method

meta summarize, random(ebayes)

Same as above, but report transformed effect sizes and CIs using the hyperbolic tangent function

meta summarize, random(ebayes) transform(tanh)

Perform subgroup meta-analysis based on the categorical variable x1
meta summarize, subgroup(x1)

Perform subgroup analysis based on the categorical variables x1, x2, and x3
meta summarize, subgroup(x1 x2 x3)

Perform cumulative meta-analysis (CMA), where studies are included in the CMA based on the ascending

order of observations in variable x4
meta summarize, cumulative(x4)

Same as above, but stratify the results of the CMA based on groups of the categorical variable x5
meta summarize, cumulative(x4, by(x5))

Perform leave-one-out meta-analysis

meta summarize, leaveoneout

Perform sensitivity meta-analysis by assuming a fixed value of 0.2 for the between-study heterogeneity

parameter 𝜏2, assuming that the declared model is RE

meta summarize, tau2(.2)
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Menu
Statistics > Meta-analysis

Syntax
Meta-analysis as declared with meta set or meta esize

meta summarize [ if ] [ in ] [ , options reopts ]

Random-effects meta-analysis

meta summarize [ if ] [ in ], random[ (remethod) ] [ options reopts ]

Common-effect meta-analysis

meta summarize [ if ] [ in ], common[ (cefemethod) ] [ options ]

Fixed-effects meta-analysis

meta summarize [ if ] [ in ], fixed[ (cefemethod) ] [ options ]

options Description

Main

subgroup(varlist) subgroup meta-analysis for each variable in varlist

cumulative(cumulspec) cumulative meta-analysis

leaveoneout leave-one-out meta-analysis

Options

level(#) set confidence level; default is as declared for meta-analysis

citype(citype) specify the type of study CI (for meta-analysis of a single
proportion)

proportion report proportions (for meta-analysis of a single proportion)

prevalence synonym for proportion but labels the effect sizes
as Prevalence in the output

+correlation report correlations (for meta-analysis of correlations)

eform option report exponentiated results

transform(transfspec) report transformed results

sort(varlist[ , ... ]) sort studies according to varlist

tdistribution report 𝑡 test instead of 𝑧 test for the overall effect size
nostudies suppress output for individual studies

noheader suppress output header

[ no ]metashow display or suppress meta settings in the output

display options control column formats

Maximization

maximize options control the maximization process; seldom used

collect is allowed; see [U] 11.1.10 Prefix commands.
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remethod Description

reml restricted maximum likelihood; the default

mle maximum likelihood

ebayes empirical Bayes

dlaird DerSimonian–Laird

sjonkman Sidik–Jonkman

hedges Hedges

hschmidt Hunter–Schmidt

cefemethod Description

mhaenszel Mantel–Haenszel

invvariance inverse variance

ivariance synonym for invvariance

reopts Description

tau2(#) sensitivity meta-analysis using a fixed value of between-study variance 𝜏2

i2(#) sensitivity meta-analysis using a fixed value of heterogeneity statistic 𝐼2

predinterval[ (#) ] report prediction interval for the overall effect size

se(seadj) adjust standard error of the overall effect size

Options

� � �
Main �

Options random(), common(), and fixed(), when specified with meta summarize, temporarily over-
ride the global model declared by meta set or meta esize during the computation. Options random(),
common(), and fixed() may not be combined. If these options are omitted, the declared meta-analysis

model is assumed; see Declaring a meta-analysis model in [META] meta data. Also see Meta-analysis

models in [META] Intro.

random and random(remethod) specify that a random-effects model be assumed for meta-analysis; see

Random-effects model in [META] Intro.

remethod specifies the type of estimator for the between-study variance 𝜏2. remethod is one of

reml, mle, ebayes, dlaird, sjonkman, hedges, or hschmidt. random is a synonym for

random(reml). See Options in [META] meta esize for more information.

common and common(cefemethod) specify that a common-effect model be assumed for meta-analysis;

see Common-effect (“fixed-effect”) model in [META] Intro. Also see the discussion in [META]meta

data about common-effect versus fixed-effects models.

common implies common(mhaenszel) for effect sizes lnoratio, lnrratio, and rdiff and

common(invvariance) for all other effect sizes. common(mhaenszel) is supported only with effect

sizes lnoratio, lnrratio, and rdiff.

cefemethod is one of mhaenszel or invvariance (synonym ivariance). See Options in

[META] meta esize for more information.

https://www.stata.com/manuals/meta.pdf#metametasummarizeOptionsseadj
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fixed and fixed(cefemethod) specify that a fixed-effects model be assumed for meta-analysis; see

Fixed-effects model in [META] Intro. Also see the discussion in [META]meta data about fixed-effects

versus common-effect models.

fixed implies fixed(mhaenszel) for effect sizes lnoratio, lnrratio, and rdiff and

fixed(invvariance) for all other effect sizes. fixed(mhaenszel) is supported only with effect

sizes lnoratio, lnrratio, and rdiff.

cefemethod is one of mhaenszel or invvariance (synonym ivariance); see Options in

[META] meta esize for more information.

subgroup(varlist) specifies that a subgroup meta-analysis (subgroup analysis) be performed for each

variable in varlist. Subgroup analysis performs meta-analysis separately for each variable in varlist

and for each group as defined by that variable. The specified meta-analysis model is assumed for each

subgroup. This analysis is useful when the results of all studies are too heterogeneous to be combined

into one estimate but the results are similar within certain groups of studies. The specified variables

can be numeric or string variables. When multiple variables are specified, only the subgroup results

are displayed; that is, the results from individual studies are suppressed for brevity. This option may

not be combined with cumulative() or leaveoneout.

cumulative(ordervar[ , ascending | descending by(byvar) ]) performs a cumulative meta-

analysis (CMA). CMA performs multiple meta-analyses and accumulates the results by adding one

study at a time to each subsequent analysis. It is useful for monitoring the results of the studies as

new studies become available. The studies enter the CMA based on the ordered values of variable

ordervar. ordervar must be a numeric variable. By default, ascending order is assumed unless

the suboption descending is specified; only one of ascending or descending is allowed. The

by(byvar) option specifies that the CMA be stratified by variable byvar. This option may not be

combined with subgroup() or leaveoneout.

leaveoneout performs a leave-one-out meta-analysis. For each study, the corresponding leave-one-out

meta-analysis is a meta-analysis of all the studies except that study. It is useful for assessing the effect

of a single study on the meta-analysis results and for identifying outliers if they exist. This option

may not be combined with subgroup() or cumulative().

reopts are tau2(#), i2(#), predinterval[ (#) ], and se(khartung[ , truncated ]). These options
are used with random-effects meta-analysis.

tau2(#) specifies the value of the between-study variance parameter, 𝜏2, to use for the random-

effects meta-analysis. This option is useful for exploring the sensitivity of the results to different

levels of between-study heterogeneity. Only one of tau2() or i2() may be specified. This option

is not allowed in combination with subgroup(), cumulative(), or leaveoneout.

i2(#) specifies the value of the heterogeneity statistic 𝐼2 (as a percentage) to use for the random-

effects meta-analysis. This option is useful for exploring the sensitivity of the results to different

levels of between-study heterogeneity. Only one of i2() or tau2() may be specified. This option

is not allowed in combination with subgroup(), cumulative(), or leaveoneout.

predinterval and predinterval(#) specify that the 95% or #% prediction interval be reported

for the overall effect size in addition to the confidence interval. # specifies the confidence level

of the prediction interval. The prediction interval provides plausible ranges for the effect size in

a future, new study. This option is not allowed in combination with subgroup() when specified

with more than one variable, cumulative(), or leaveoneout.

https://www.stata.com/manuals/meta.pdf#metametasummarizeOptionscefemethod2
https://www.stata.com/manuals/metaintro.pdf#metaIntroRemarksandexamplesFixed-effectsmodel
https://www.stata.com/manuals/metaintro.pdf#metaIntro
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https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/metaglossary.pdf#metaGlossaryprediction_interval
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se(seadj) specifies that the adjustment seadj be applied to the standard error of the overall effect size.
Additionally, the test of significance of the overall effect size is based on a Student’s 𝑡 distribution
instead of the normal distribution.

seadj is khartung[ , truncated ]. Adjustment khartung specifies that the Knapp–Hartung

adjustment (Hartung and Knapp 2001a, 2001b; Knapp and Hartung 2003), also known as the

Sidik–Jonkman adjustment (Sidik and Jonkman 2002), be applied to the standard error of the

overall effect size. hknapp and sjonkman are synonyms for khartung. truncated specifies

that the truncated Knapp–Hartung adjustment (Knapp and Hartung 2003), also known as the

modified Knapp–Hartung adjustment, be used.

� � �
Options �

level(#) specifies the confidence level, as a percentage, for confidence intervals. The default is

as declared for the meta-analysis session; see Declaring a confidence level for meta-analysis in

[META] meta data. Also see option level() in [META] meta set.

citype(citype) specifies the type of CI to be reported for meta-analysis of a single proportion. citype is

one of wald (the default), exact, wilson, agresti, or jeffreys. For more details, see Binomial
proportion in [R] ci. This option affects only individual study CIs and not the CI for the overall effect

size. Thus, it may not be combined with options cumulative(), leaveoneout, and subgroup()
with more than one variable.

proportion reports results as proportions for meta-analysis of a single proportion. By default, the re-

sults are displayed in the metric declared with meta esize, such as Freeman–Tukey-transformed pro-
portions or logit-transformed proportions. proportion is a synonym for transform(invftukey,
hmean) when the effect size is esize(ftukeyprop) or transform(invlogit) when the effect size

is esize(logitprop). This option affects how results are displayed, not how they are estimated or

stored.

prevalence is a synonym for proportion but labels the effect sizes as Prevalence instead of

Proportion in the output.

correlation is part of StataNow. It reports results as correlations for meta-analysis of correlations.

By default, the results are displayed in the metric declared with meta esize, such as Fisher’s 𝑧-
transformed correlations. correlation is a synonym for transform(corr) when the effect size

is esize(fisherz). This option affects how results are displayed, not how they are estimated or

stored.

eform option is one of eform, eform(string), or, or rr. It reports exponentiated effect sizes and trans-
forms their respective confidence intervals, whenever applicable. By default, the results are displayed

in the metric declared with meta set or meta esize such as log odds-ratios and log risk-ratios.

eform option affects how results are displayed, not how they are estimated and stored. eform option

is not available with two-sample continuous data, one-sample binary data, and correlation data.

eform(string) labels the exponentiated effect sizes as string; the other options use default labels. The
default label is specific to the chosen effect size. For example, option eform uses Odds ratio
when used with log odds-ratios declared with meta esize or Risk ratio when used with the

declared log risk-ratios. Option or is a synonym for eform when log odds-ratio is declared, and

option rr is a synonym for eform when log risk-ratio is declared. If option eslabel(eslab) is

specified during declaration, then eform will use the exp(eslab) label or, if eslab is too long, the

exp(ES) label.

https://www.stata.com/manuals/metametadata.pdf#metametadataRemarksandexamplesDeclaringaconfidencelevelformeta-analysis
https://www.stata.com/manuals/metametadata.pdf#metametadata
https://www.stata.com/manuals/metametaset.pdf#metametasetOptionslevel
https://www.stata.com/manuals/metametaset.pdf#metametaset
https://www.stata.com/manuals/rci.pdf#rciMethodsandformulasBinomialproportion
https://www.stata.com/manuals/rci.pdf#rciMethodsandformulasBinomialproportion
https://www.stata.com/manuals/rci.pdf#rci
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transform([ label: ] transf name) reports transformed effect sizes and CIs. transf name is one of

corr, efficacy, exp, invlogit, tanh, or invftukey[ , invftopts ]. When label is specified, the

transformed effect sizes are labeled as label instead of using the default label. This option may not be

combined with eform option.

corr transforms effect sizes (and CIs) specified as Fisher’s 𝑧 values into correlations and,

by default, labels them as Correlation; that is, transform(corr) is a synonym for

transform(Correlation: tanh).

efficacy transforms the effect sizes and CIs using the 1 − exp() function (or more precisely, the

−expm1() function) and labels them as Efficacy. This transformation is used, for example,

when the effect sizes are log risk-ratios so that the transformed effect sizes can be interpreted as

treatment efficacies, 1 − risk ratios.

exp exponentiates effect sizes and CIs and, by default, labels them as exp(ES). This transformation is
used, for example, when the effect sizes are log risk-ratios, log odds-ratios, and log hazard-ratios

so that the transformed effect sizes can be interpreted as risk ratios, odds ratios, and hazard ratios.

If the declared effect sizes are log odds-ratios or log risk-ratios, the default label is Odds ratio or

Risk ratio, respectively.

invlogit transforms the effect sizes and CIs using the inverse-logit function, invlogit(), and, by
default, labels them as invlogit(ES). This transformation is used, for example, when the effect
sizes are logit of proportions so that the transformed effect sizes can be interpreted as proportions.

tanh applies the hyperbolic tangent transformation, tanh(), to the effect sizes and CIs and, by de-

fault, labels them as tanh(ES). This transformation is used, for example, when the effect sizes are
Fisher’s 𝑧 values so that the transformed effect sizes can be interpreted as correlations.

invftukey[ , invftopts ] is relevant to meta-analysis of a single proportion. It applies the inverse

Freeman–Tukey double arcsine transformation to the effect sizes and CIs and, by default, labels

them as Proportion. This transformation is used only when pooling proportions (prevalences)

with the default effect size esize(ftukeyprop). See Inverse Freeman–Tukey transformation for
more details.

invftopts are hmean, gmean, amean, ivariance, and scale().

hmean specifies that the harmonic mean of the within-study sample sizes be used to back-

transform the overall effect size.

gmean specifies that the geometric mean of the within-study sample sizes be used to back-

transform the overall effect size.

amean specifies that the arithmetic mean of the within-study sample sizes be used to back-

transform the overall effect size.

ivariance specifies that the inverse of the variance of the overall effect size be used to back-

transform the overall effect size.

scale(#) scales the study proportions, the overall proportion, and their CIs by #. This option is

relevant when the proportions are very small, in which case it might be preferable to report

them as the number of successes per, say, 1,000 or 10,000 observations. #must be an integer

greater than 1.

sort(varlist[ , ascending | descending ]) sorts the studies in ascending or descending order based

on values of the variables in varlist. This option is useful if you want to sort the studies in the

output by effect sizes, sort( meta es), or by precision, sort( meta se). By default, ascend-

https://www.stata.com/manuals/meta.pdf#metametasummarizeOptionsinvftopts
https://www.stata.com/manuals/fnmathematicalfunctions.pdf#fnMathematicalfunctionsexpm1()
https://www.stata.com/manuals/fnmathematicalfunctions.pdf#fnMathematicalfunctionsexp()
https://www.stata.com/manuals/fnmathematicalfunctions.pdf#fnMathematicalfunctionsinvlogit()
https://www.stata.com/manuals/fntrigonometricfunctions.pdf#fnTrigonometricfunctionstanh()
https://www.stata.com/manuals/meta.pdf#metametasummarizeMethodsandformulasInverseFreeman--Tukeytransformation
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
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ing order is assumed unless the suboption descending is specified; only one of ascending or

descending is allowed. varlist may contain string and numeric variables. This option is not al-

lowed with cumulative(). When sort() is not specified, the order of the studies in the output is

based on the ascending values of variable meta id, which is equivalent to sort( meta id).

tdistribution reports a 𝑡 test instead of a 𝑧 test for the overall effect size. This option may not be

combined with option subgroup(), cumulative(), leaveoneout, or se().

nostudies (synonym nostudy) suppresses the display of information such as effect sizes and their CIs
for individual studies from the output table.

noheader suppresses the output header.

metashow and nometashow display or suppress the meta setting information. By default, this informa-

tion is displayed at the top of the output. You can also specify nometashow with meta update to

suppress the meta setting output for the entire meta-analysis session.

display options: cformat(% fmt), pformat(% fmt), and sformat(% fmt); see [R] Estimation options.

The defaults are cformat(%9.3f), pformat(%5.3f), and sformat(%8.2f).

wgtformat(% fmt) specifies how to format the weight column in the output table. The default is

wgtformat(%5.2f). The maximum format width is 5.

ordformat(% fmt) specifies the format for the values of the order variable, specified in

cumulative(ordervar). The default is ordformat(%9.0g). The maximum format width is 9.

� � �
Maximization �

maximize options: iterate(#), tolerance(#), nrtolerance(#), nonrtolerance (see [R] Maxi-

mize), from(#), and showtrace. These options control the iterative estimation of the between-study
variance parameter, 𝜏2, with random-effects methods reml, mle, and ebayes. These options are

seldom used.

from(#) specifies the initial value for 𝜏2 during estimation. By default, the initial value for 𝜏2 is the

noniterative Hedges estimator.

showtrace displays the iteration log that contains the estimated parameter 𝜏2, its relative difference

with the value from the previous iteration, and the scaled gradient.

Remarks and examples
Remarks are presented under the following headings:

Introduction
Examples of using meta summarize

Introduction
Meta-analysis helps answer research questions based on the results of multiple studies. Does exer-

cise prolong life? Does lack of sleep increase the risk of cancer? Does daylight saving save energy? Or

does performing the duck-face technique while taking a selfie increase the number of likes on Facebook?

These (except perhaps the last one) and many other research questions have been investigated by mul-

tiple studies. These studies may have reported conflicting results: some may have shown effects in one

direction, some in the opposite, and others may have shown none that are statistically significant. Meta-

analysis uses quantitative methods to explore these conflicting results and, whenever possible, provide a

unified conclusion based on the results of the individual studies.

https://www.stata.com/manuals/metametaupdate.pdf#metametaupdate
https://www.stata.com/manuals/d.pdf#dformat
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
https://www.stata.com/manuals/d.pdf#dformat
https://www.stata.com/manuals/d.pdf#dformat
https://www.stata.com/manuals/rmaximize.pdf#rMaximize
https://www.stata.com/manuals/rmaximize.pdf#rMaximize
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Meta-analysis combines the results of similar multiple studies into a single result. Studies typically

report some measures of outcomes, or effect sizes, and their precision (standard errors or CIs). Meta-

analysis combines the individual effects sizes to provide various meta-analysis summaries. The main

summaries are the overall effect size and its precision. Other meta-analysis summaries include the test

of significance of the overall effect size, between-study heterogeneity summaries such as the 𝐼2 statistic,

and the test of homogeneity between studies. The meta summarize command reports such summaries.

Estimating the overall effect size, 𝜃, and its precision based on the results of multiple studies is at the
heart of meta-analysis. There are various methods for estimating 𝜃, which depend on the research goals
and model assumptions about the studies. The estimate of the overall (combined) ES is computed as the

weighted average of the study-specific effect sizes, with larger weights given to more precise (larger)

studies:

̂𝜃 =
∑𝐾

𝑗=1 𝑤𝑗
̂𝜃𝑗

∑𝐾
𝑗=1 𝑤𝑗

The weights are determined by the chosen meta-analysis model, estimation method, and potentially the

type of effect size; see Methods and formulas for details. (In [META] Intro, we used 𝜃pop to denote the
population parameter of interest. For simplicity, here and in the rest of the documentation, we will use

𝜃.)
As we described in Meta-analysis models in [META] Intro, the choice of a meta-analysis model is

important not only for estimation but also for interpretation of ̂𝜃. meta summarize supports random-

effects (random), fixed-effects (fixed), and common-effect (common) meta-analysis models. Each

meta-analysis model provides various estimation methods such as the random-effects REML method,

random(reml), and fixed-effects Mantel–Haenszel method, fixed(mhaenszel). The default model
and method are as declared with meta set or meta esize; see Declaring a meta-analysis model in

[META]meta data. Note that the Mantel–Haenszel method is available only with effect sizes lnoratio,
lnrratio, and rdiff declared by using meta esize; see [META] meta esize.

For random-effects models, you can perform sensitivity meta-analysis to explore the impact of differ-

ent levels of heterogeneity on the results. You can use the tau2(#) option to specify different fixed values
for the between-study variance 𝜏2. Or you can fix the percentage of variation in the effect sizes because

of heterogeneity by specifying the values for the 𝐼2 statistic in the i2(#) option. With random-effects

models, you can also compute prediction intervals for ̂𝜃, predinterval(#), and use the alternative

standard-error estimators, se().

You can perform subgroup analysis, subgroup(), CMA, cumulative(), or leave-one-out meta-
analysis, leaveoneout; see Subgroup meta-analysis, Cumulative meta-analysis, and Leave-one-out

meta-analysis in [META] Intro. Also see Subgroup meta-analysis, Cumulative meta-analysis, and Leave-

one-out meta-analysis in Methods and formulas below.

You can sort the studies based on variables of interest via option sort(). For example, use

sort( meta es) or sort( meta weight) to display the results based on the ascending order of the

study effect sizes or study weights, respectively.

You can specify the desired confidence level with level(); report exponentiated results by specifying
eform; report a 𝑡 test, instead of a 𝑧 test, for the overall effect size by specifying tdistribution; and
more.

In the next section, we demonstrate various usages of meta summarize.

https://www.stata.com/manuals/meta.pdf#metametasummarizeMethodsandformulas
https://www.stata.com/manuals/metaintro.pdf#metaIntro
https://www.stata.com/manuals/metaintro.pdf#metaIntroRemarksandexamplesMeta-analysismodels
https://www.stata.com/manuals/metaintro.pdf#metaIntro
https://www.stata.com/manuals/metametaset.pdf#metametaset
https://www.stata.com/manuals/metametaesize.pdf#metametaesize
https://www.stata.com/manuals/metametadata.pdf#metametadataRemarksandexamplesDeclaringameta-analysismodel
https://www.stata.com/manuals/metametadata.pdf#metametadata
https://www.stata.com/manuals/metametaesize.pdf#metametaesize
https://www.stata.com/manuals/metaintro.pdf#metaIntroRemarksandexamplesSubgroupmeta-analysis
https://www.stata.com/manuals/metaintro.pdf#metaIntroRemarksandexamplesCumulativemeta-analysis
https://www.stata.com/manuals/metaintro.pdf#metaIntroRemarksandexamplesLeave-one-outmeta-analysis
https://www.stata.com/manuals/metaintro.pdf#metaIntroRemarksandexamplesLeave-one-outmeta-analysis
https://www.stata.com/manuals/metaintro.pdf#metaIntro
https://www.stata.com/manuals/meta.pdf#metametasummarizeMethodsandformulasSubgroupmeta-analysis
https://www.stata.com/manuals/meta.pdf#metametasummarizeMethodsandformulasCumulativemeta-analysis
https://www.stata.com/manuals/meta.pdf#metametasummarizeMethodsandformulasLeave-one-outmeta-analysis
https://www.stata.com/manuals/meta.pdf#metametasummarizeMethodsandformulasLeave-one-outmeta-analysis
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Examples of using meta summarize
Recall the pupil IQ data (Raudenbush and Bryk 1985; Raudenbush 1984) described in Effects of

teacher expectancy on pupil IQ (pupiliq.dta) of [META]meta. Here we will use its declared version and

will focus on the demonstration of various options of meta summarize and explanation of its output.

. use https://www.stata-press.com/data/r19/pupiliqset
(Effects of teacher expectancy on pupil IQ; set with -meta set-)
. keep in 1/10
(9 observations deleted)
. meta query, short
-> meta set stdmdiff se , studylabel(studylbl) eslabel(Std. mean diff.)

Effect-size label: Std. mean diff.
Effect-size type: Generic

Effect size: stdmdiff
Std. err.: se

Model: Random effects
Method: REML

For brevity, we consider only the first 10 studies. We use meta query, short to remind us about the

main settings of the declaration step. Our data were declared by using meta setwith variables stdmdiff
and se specifying the effect sizes and their standard errors, respectively. The declared meta-analysis

model is the default random-effects model with the REML estimation method.

Examples are presented under the following headings:

Example 1: Default random-effects meta-analysis
Example 2: DerSimonian–Laird random-effects method
Example 3: Fixed-effects meta-analysis
Example 4: Common-effect meta-analysis
Example 5: Knapp–Hartung standard-error adjustment
Example 6: Prediction interval
Example 7: Sensitivity meta-analysis
Example 8: Other options: CI level, t distribution, sort, eform
Example 9: Subgroup meta-analysis
Example 10: Meta-analysis of correlations
Example 11: Meta-analysis of a single proportion and the transform() option
Example 12: Cumulative meta-analysis
Example 13: Leave-one-out meta-analysis

https://www.stata.com/manuals/metameta.pdf#metametaRemarksandexamplespupiliqdta
https://www.stata.com/manuals/metameta.pdf#metametaRemarksandexamplespupiliqdta
https://www.stata.com/manuals/metameta.pdf#metameta
https://www.stata.com/manuals/metametasummarize.pdf#metametasummarizeRemarksandexamplesmsumexdefault
https://www.stata.com/manuals/metametasummarize.pdf#metametasummarizeRemarksandexamplesmsumexdlaird
https://www.stata.com/manuals/metametasummarize.pdf#metametasummarizeRemarksandexamplesmsumexfixed
https://www.stata.com/manuals/metametasummarize.pdf#metametasummarizeRemarksandexamplesmsumexcommon
https://www.stata.com/manuals/metametasummarize.pdf#metametasummarizeRemarksandexamplesmsumexkh
https://www.stata.com/manuals/metametasummarize.pdf#metametasummarizeRemarksandexamplesmsumexpredint
https://www.stata.com/manuals/metametasummarize.pdf#metametasummarizeRemarksandexamplesmsumexsens
https://www.stata.com/manuals/metametasummarize.pdf#metametasummarizeRemarksandexamplesmsumexlevel
https://www.stata.com/manuals/metametasummarize.pdf#metametasummarizeRemarksandexamplesmsumexsubgr
https://www.stata.com/manuals/metametasummarize.pdf#metametasummarizeRemarksandexamplesmsumexcorr
https://www.stata.com/manuals/metametasummarize.pdf#metametasummarizeRemarksandexamplesmsumexprop
https://www.stata.com/manuals/metametasummarize.pdf#metametasummarizeRemarksandexamplesmsumexcumul
https://www.stata.com/manuals/metametasummarize.pdf#metametasummarizeRemarksandexamplesmsumexoneout


meta summarize — Summarize meta-analysis data 10

Example 1: Default random-effects meta-analysis
We type meta summarize to obtain a standard meta-analysis summary.

. meta summarize
Effect-size label: Std. mean diff.

Effect size: stdmdiff
Std. err.: se

Study label: studylbl
Meta-analysis summary Number of studies = 10
Random-effects model Heterogeneity:
Method: REML tau2 = 0.0754

I2 (%) = 74.98
H2 = 4.00

Effect size: Std. mean diff.

Study Effect size [95% conf. interval] % weight

Rosenthal et al., 1974 0.030 -0.215 0.275 12.39
Conn et al., 1968 0.120 -0.168 0.408 11.62
Jose & Cody, 1971 -0.140 -0.467 0.187 10.92

Pellegrini & Hicks, 1972 1.180 0.449 1.911 5.25
Pellegrini & Hicks, 1972 0.260 -0.463 0.983 5.33
Evans & Rosenthal, 1969 -0.060 -0.262 0.142 13.11

Fielder et al., 1971 -0.020 -0.222 0.182 13.11
Claiborn, 1969 -0.320 -0.751 0.111 9.11

Kester, 1969 0.270 -0.051 0.591 11.02
Maxwell, 1970 0.800 0.308 1.292 8.15

theta 0.134 -0.075 0.342

Test of theta = 0: z = 1.26 Prob > |z| = 0.2085
Test of homogeneity: Q = chi2(9) = 26.21 Prob > Q = 0.0019

As with other meta commands, a short information about meta settings is displayed directly following

the meta summarize command. It can be suppressed with the nometashow option; see example 2.

Next, the header reports the information about the meta-analysis model and method, the number of

studies (10), and several heterogeneity statistics. The output table reports the effect sizes and their 95%

CIs for individual studies and the estimate of the overall, combined ES, labeled as theta, and its 95% CI.

The test of significance of the overall effect size and the homogeneity test are reported at the bottom of

the table.

Because our declared effect-size label, Std. mean diff., was too long to fit as the column header,

meta summarize used the generic column label Effect size but displayed the specified label in the

table legend.

The mean effect size in our example is 0.134 with the 95% CI of [−0.075, 0.342]. This estimate

is computed as the weighted average of the study-specific effect sizes, with the weights representing

precision of the studies. The percentages of the total weight for each study are reported in the % weight
column. The more precise the study is, the larger its weight percentage. For example, studies 6 and 7,

with labels Evans & Rosenthal, 1969 and Fielder et al., 1971, have the largest weight percentage
among the studies of about 13% (each). Thus, their effect-size estimates, −0.06 and −0.02, have the

largest weights in the weighted-average estimate.

The 95% CI for the overall estimate and the test of 𝐻0∶ 𝜃 = 0 with the 𝑧-test statistic of 1.26 and the
𝑝-value of 0.2085 suggest that 𝜃 is not statistically significantly different from 0. We should be careful,

however, with our conclusions in the presence of between-study heterogeneity.

https://www.stata.com/manuals/meta.pdf#metametasummarizeRemarksandexamplesmsumexdlaird
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The heterogeneity statistic 𝐼2, reported in the header, is about 75%, which means that 75% of the vari-

ability in the effect-size estimates is because of the between-study differences rather than the sampling

variation. According to Higgins et al. (2003), this value of 𝐼2 corresponds to “large heterogeneity”. (The

authors suggest that 𝐼2 = 25% should indicate “small heterogeneity”, 𝐼2 = 50% indicate “medium het-

erogeneity”, and 𝐼2 = 75% indicate “large heterogeneity”.) The between-study variance 𝜏2 is estimated

to be 0.0754. The homogeneity test of 𝐻0 ∶ 𝜃1 = 𝜃2 = · · · = 𝜃10 reports the 𝑄 test statistic of 26.21

with a 𝑝-value of 0.0019.
When there are few studies, which is typical in meta-analysis, the homogeneity test is known to have

low power, which means that it may not detect clinically significant heterogeneity (Hedges and Pigott

2001). Thus, you should use caution when interpreting nonsignificant results as “no heterogeneity”. In

fact, many experts (for example, Berman and Parker [2002]) recommend using a 10% significance level

instead of the classical 5% level to determine statistical significance when using this test. On the other

hand, when there are many studies, this test is known to have excessive power, which means that it tends

to detect heterogeneity that is clinically insignificant (Hardy and Thompson 1998).

In our example, the 𝑝-value of the homogeneity test is 0.0019 < 0.05 < 0.1, so there is definitely

statistical evidence of the between-study heterogeneity. See example 9 for one way to account for the

heterogeneity.

Example 2: DerSimonian–Laird random-effects method
Continuing with example 1, let’s use the DerSimonian–Laird random-effects method instead of the

default (declared) REMLmethod. Let’s also suppress the meta setting information displayed at the top of

the command output by using the nometashow option.

. meta summarize, random(dlaird) nometashow
Meta-analysis summary Number of studies = 10
Random-effects model Heterogeneity:
Method: DerSimonian--Laird tau2 = 0.0481

I2 (%) = 65.66
H2 = 2.91

Effect size: Std. mean diff.

Study Effect size [95% conf. interval] % weight

Rosenthal et al., 1974 0.030 -0.215 0.275 13.00
Conn et al., 1968 0.120 -0.168 0.408 11.88
Jose & Cody, 1971 -0.140 -0.467 0.187 10.90

Pellegrini & Hicks, 1972 1.180 0.449 1.911 4.42
Pellegrini & Hicks, 1972 0.260 -0.463 0.983 4.49
Evans & Rosenthal, 1969 -0.060 -0.262 0.142 14.11

Fielder et al., 1971 -0.020 -0.222 0.182 14.11
Claiborn, 1969 -0.320 -0.751 0.111 8.58

Kester, 1969 0.270 -0.051 0.591 11.04
Maxwell, 1970 0.800 0.308 1.292 7.45

theta 0.117 -0.061 0.296

Test of theta = 0: z = 1.29 Prob > |z| = 0.1967
Test of homogeneity: Q = chi2(9) = 26.21 Prob > Q = 0.0019

The results are now based on the DerSimonian–Laird method, and the header is updated to reflect this.

This method is one of the many random-effects methods for estimating the between-study variance 𝜏2.

Its estimate is 0.0481. In random-effects models, the weights depend on 𝜏2 and thus will differ across

https://www.stata.com/manuals/meta.pdf#metametasummarizeRemarksandexamplesmsumexsubgr
https://www.stata.com/manuals/meta.pdf#metametasummarizeRemarksandexamplesmsumexdefault
https://www.stata.com/manuals/metametasummarize.pdf#metametasummarizeSyntaxremethod
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different random-effects methods. The mean effect-size estimate under the DerSimonian–Laird method

is 0.117 with the 95% CI of [−0.061, 0.296]. This estimate is similar to the 0.134 estimate we obtained
in example 1. We also arrive at the same inferential conclusion of no statistical significance of the mean

effect size as in the previous example.

To shorten the output, let’s suppress the meta setting information from the output of meta summarize
for all remaining examples. We can use meta update to update our current meta settings.

. quietly meta update, nometashow

We specified the nometashow option with meta update to suppress the display of the meta setting in-

formation in all meta commands; see Modifying default meta settings in [META] meta data.

Example 3: Fixed-effects meta-analysis
In example 1, we assumed a random-effects meta-analysis model. We can use the fixed option to

specify a fixed-effects meta-analysis model.

. meta summarize, fixed
Meta-analysis summary Number of studies = 10
Fixed-effects model Heterogeneity:
Method: Inverse-variance I2 (%) = 65.66

H2 = 2.91
Effect size: Std. mean diff.

Study Effect size [95% conf. interval] % weight

Rosenthal et al., 1974 0.030 -0.215 0.275 15.13
Conn et al., 1968 0.120 -0.168 0.408 10.94
Jose & Cody, 1971 -0.140 -0.467 0.187 8.48

Pellegrini & Hicks, 1972 1.180 0.449 1.911 1.70
Pellegrini & Hicks, 1972 0.260 -0.463 0.983 1.74
Evans & Rosenthal, 1969 -0.060 -0.262 0.142 22.29

Fielder et al., 1971 -0.020 -0.222 0.182 22.29
Claiborn, 1969 -0.320 -0.751 0.111 4.89

Kester, 1969 0.270 -0.051 0.591 8.79
Maxwell, 1970 0.800 0.308 1.292 3.75

theta 0.051 -0.045 0.146

Test of theta = 0: z = 1.04 Prob > |z| = 0.2974
Test of homogeneity: Q = chi2(9) = 26.21 Prob > Q = 0.0019

As reported in the header, fixed implied the inverse-variance estimation method. The between-group

variance parameter is not estimated with fixed-effects models, so the heterogeneity summary does not

report tau2. Under this model, the mean effect-size estimate is 0.051 with the 95% CI of [−0.045, 0.146].
As we explain in Comparison between the models and interpretation of their results in [META] Intro, in a

fixed-effects model, theta estimates the weighted average of the true study-specific standardized mean

differences. Our interpretation is also limited to these 10 studies that we observed in our meta-analysis.

That is, the weighted average of the standardized mean differences of these 10 studies is not statistically

significantly different from 0.

https://www.stata.com/manuals/meta.pdf#metametasummarizeRemarksandexamplesmsumexdefault
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Example 4: Common-effect meta-analysis
From example 1 and example 3, we determined that there is substantial between-study variability in

these data. Thus, a common-effect model, which assumes that all study-specific effects are the same, is

not reasonable for these data. But we will demonstrate it for illustration purposes.

. meta summarize, common
Meta-analysis summary Number of studies = 10
Common-effect model
Method: Inverse-variance

Effect size: Std. mean diff.

Study Effect size [95% conf. interval] % weight

Rosenthal et al., 1974 0.030 -0.215 0.275 15.13
Conn et al., 1968 0.120 -0.168 0.408 10.94
Jose & Cody, 1971 -0.140 -0.467 0.187 8.48

Pellegrini & Hicks, 1972 1.180 0.449 1.911 1.70
Pellegrini & Hicks, 1972 0.260 -0.463 0.983 1.74
Evans & Rosenthal, 1969 -0.060 -0.262 0.142 22.29

Fielder et al., 1971 -0.020 -0.222 0.182 22.29
Claiborn, 1969 -0.320 -0.751 0.111 4.89

Kester, 1969 0.270 -0.051 0.591 8.79
Maxwell, 1970 0.800 0.308 1.292 3.75

theta 0.051 -0.045 0.146

Test of theta = 0: z = 1.04 Prob > |z| = 0.2974

We use the common option to specify a common-effect model. Because this model implies no heterogene-
ity, the corresponding summaries and the homogeneity test are not reported for this model. As we point

out in Comparison between the models and interpretation of their results in [META] Intro, a common-

effect model is computationally the same as a fixed-effects model. So we obtain the exact same results

as in example 3. However, the interpretation of our results is different. Here theta estimates a single

effect, which is common to all studies. Although the two models produce the same results, to encourage

proper interpretation, we provide both options, common and fixed, to distinguish between these models;
see Declaring a meta-analysis model in [META] meta data for details.

Example 5: Knapp–Hartung standard-error adjustment
Let’s return to our random-effects model from example 1. For random-effects models, meta

summarize provides several additional options, which we explore in the next three examples.

The Knapp–Hartung adjustment (also known as the Sidik–Jonkman adjustment) to the standard error

of the overall effect size (Knapp and Hartung 2003 and Hartung and Knapp 2001a, 2001b) is sometimes

used in practice. We can specify it with the se(khartung) option. We also specify the nostudies
option to suppress the output from individual studies because it is unaffected by the se(khartung)
option.

https://www.stata.com/manuals/meta.pdf#metametasummarizeRemarksandexamplesmsumexdefault
https://www.stata.com/manuals/meta.pdf#metametasummarizeRemarksandexamplesmsumexfixed
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https://www.stata.com/manuals/metametadata.pdf#metametadata
https://www.stata.com/manuals/meta.pdf#metametasummarizeRemarksandexamplesmsumexdefault


meta summarize — Summarize meta-analysis data 14

. meta summarize, se(khartung) nostudies
Meta-analysis summary Number of studies = 10
Random-effects model Heterogeneity:
Method: REML tau2 = 0.0754
SE adjustment: Knapp--Hartung I2 (%) = 74.98

H2 = 4.00
theta: Overall Std. mean diff.

Estimate Std. err. t P>|t| [95% conf. interval]

theta .1335309 .1215065 1.10 0.300 -.1413358 .4083976

Test of homogeneity: Q = chi2(9) = 26.21 Prob > Q = 0.0019

Without the individual studies, the output table is slightly different. The test of significance is now

reported in the output table instead of at the bottom of the output table.

The estimate theta is the same as in example 1, 0.134, but it is reported with more digits in this table.

The confidence intervals and the test of significance are different. In addition to making an adjustment

to the standard error, Knapp and Hartung also use a Student’s 𝑡 distribution as a sampling distribution

instead of the normal distribution. Thus, the 𝑡 statistic is reported in the output table instead of the 𝑧
statistic. Regardless, we still conclude that our overall effect size is not statistically significant.

Another standard error adjustment, also used in practice, is the so-called truncated or modified

Knapp–Hartung adjustment; see Methods and formulas for details. This adjustment can be specified

with the se(khartung, truncated) option.

. meta summarize, se(khartung, truncated)
(output omitted )

Example 6: Prediction interval
Recall from Random-effects model in [META] Intro that a random-effects model implies that the

observed studies in a meta-analysis represent a sample from a larger population of similar studies. What

if we want to estimate the plausible ranges for the overall effect size in a new, future study? We cannot

use the confidence interval for the overall effect size because it does not incorporate the uncertainty in

estimating the between-study variance, which is important if we want to predict an effect in a new study.

We can compute the prediction interval.

. meta summarize, predinterval(90) nostudies
Meta-analysis summary Number of studies = 10
Random-effects model Heterogeneity:
Method: REML tau2 = 0.0754

I2 (%) = 74.98
H2 = 4.00

theta: Overall Std. mean diff.

Estimate Std. err. z P>|z| [95% conf. interval]

theta .1335309 .1061617 1.26 0.208 -.0745422 .3416041

90% prediction interval for theta: [-0.414, 0.681]
Test of homogeneity: Q = chi2(9) = 26.21 Prob > Q = 0.0019

https://www.stata.com/manuals/meta.pdf#metametasummarizeRemarksandexamplesmsumexdefault
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We specified predinterval(90) to compute the 90% prediction interval for the mean effect size; use

predinterval to compute the 95% interval. Following example 5, we also used nostudies to suppress
individual studies.

The 90% prediction interval, reported at the bottom of the table, is [−0.414, 0.681]. The prediction
interval will be wider than the confidence interval because it additionally accounts for the uncertainty in

the between-study variability.

Example 7: Sensitivity meta-analysis
For random-effects models, we can perform sensitivity analysis to explore various levels of hetero-

geneity between studies. Let’s see how our results change for different values of the between-study

variance 𝜏2 and the heterogeneity statistic 𝐼2.

Let’s compute the results assuming that 𝜏2 equals 0.25.

. meta summarize, tau2(0.25) nostudies
Sensitivity meta-analysis summary Number of studies = 10
Random-effects model Heterogeneity:
Method: User-specified tau2 tau2 = 0.2500

I2 (%) = 90.86
H2 = 10.94

theta: Overall Std. mean diff.

Estimate Std. err. z P>|z| [95% conf. interval]

theta .173588 .171407 1.01 0.311 -.1623636 .5095395

Test of homogeneity: Q = chi2(9) = 26.21 Prob > Q = 0.0019

Our estimate of the mean effect size is 0.174 with the 95% CI of [−0.162, 0.51] compared with 0.134

with the 95% CI of [−0.075, 0.342] from example 1.

The specified value of 𝜏2 corresponds to an 𝐼2 of about 91%. Let’s now compute the results assuming

𝐼2 of 10%.

. meta summarize, i2(10) nostudies
Sensitivity meta-analysis summary Number of studies = 10
Random-effects model Heterogeneity:
Method: User-specified I2 tau2 = 0.0028

I2 (%) = 10.00
H2 = 1.11

theta: Overall Std. mean diff.

Estimate Std. err. z P>|z| [95% conf. interval]

theta .0589369 .0527232 1.12 0.264 -.0443987 .1622724

Test of homogeneity: Q = chi2(9) = 26.21 Prob > Q = 0.0019

The estimate of the mean effect size is 0.059 with the 95% CI of [−0.044, 0.162]. The corresponding 𝜏2

value is 0.0028.

In both cases above, the mean effect size is not statistically significant.

https://www.stata.com/manuals/meta.pdf#metametasummarizeRemarksandexamplesmsumexkh
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Example 8: Other options: CI level, t distribution, sort, eform
meta summarize provides other options such as level() to temporarily change the declared confi-

dence level and tdistribution to use a Student’s 𝑡 distribution as the sampling distribution instead of
the default normal distribution.

. meta summarize, level(90) tdistribution
Meta-analysis summary Number of studies = 10
Random-effects model Heterogeneity:
Method: REML tau2 = 0.0754

I2 (%) = 74.98
H2 = 4.00

Effect size: Std. mean diff.

Study Effect size [90% conf. interval] % weight

Rosenthal et al., 1974 0.030 -0.176 0.236 12.39
Conn et al., 1968 0.120 -0.122 0.362 11.62
Jose & Cody, 1971 -0.140 -0.415 0.135 10.92

Pellegrini & Hicks, 1972 1.180 0.566 1.794 5.25
Pellegrini & Hicks, 1972 0.260 -0.347 0.867 5.33
Evans & Rosenthal, 1969 -0.060 -0.229 0.109 13.11

Fielder et al., 1971 -0.020 -0.189 0.149 13.11
Claiborn, 1969 -0.320 -0.682 0.042 9.11

Kester, 1969 0.270 0.000 0.540 11.02
Maxwell, 1970 0.800 0.387 1.213 8.15

theta 0.134 -0.061 0.328

Test of theta = 0: t(9) = 1.26 Prob > |t| = 0.2401
Test of homogeneity: Q = chi2(9) = 26.21 Prob > Q = 0.0019

Notice that all CIs, including those for the individual studies, now correspond to the 90% confidence

level, compared with example 1. Also, the significance test now uses the Student’s 𝑡 distribution with

9 degrees of freedom, but the conclusion remains the same—the mean effect size is not statistically

significant.

You may also find meta summarize’s option eform useful when dealing with the effect sizes in the

log-transformed metric such as log odds-ratios or log risk-ratios. By default, meta summarize reports

results in the declared metric, which should be chosen such that the sampling distributions of the effect

sizes are well approximated by normal distributions. It may be more convenient, however, to display

the final results in the original metric. When you specify the eform option, it reports the exponentiated

results and the corresponding CIs. Note that the significance tests and other summary measures are still

computed based on the nonexponentiated results.

It does not make sense to exponentiate standardized mean differences in our example, but we will do

this just to demonstrate the option.

https://www.stata.com/manuals/meta.pdf#metametasummarizeRemarksandexamplesmsumexdefault
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Wewill also use the sort() option to sort our results based on the descending order of study weights,

with larger, more precise studies appearing first.

. meta summarize, eform sort(_meta_weight, descending)
Meta-analysis summary Number of studies = 10
Random-effects model Heterogeneity:
Method: REML tau2 = 0.0754

I2 (%) = 74.98
H2 = 4.00

exp(ES): exp(Std. mean diff.)

Study exp(ES) [95% conf. interval] % weight

Evans & Rosenthal, 1969 0.942 0.770 1.152 13.11
Fielder et al., 1971 0.980 0.801 1.199 13.11

Rosenthal et al., 1974 1.030 0.807 1.317 12.39
Conn et al., 1968 1.127 0.845 1.504 11.62

Kester, 1969 1.310 0.950 1.807 11.02
Jose & Cody, 1971 0.869 0.627 1.206 10.92

Claiborn, 1969 0.726 0.472 1.118 9.11
Maxwell, 1970 2.226 1.361 3.640 8.15

Pellegrini & Hicks, 1972 1.297 0.629 2.673 5.33
Pellegrini & Hicks, 1972 3.254 1.567 6.760 5.25

exp(theta) 1.143 0.928 1.407

Sorted by: _meta_weight
Test of theta = 0: z = 1.26 Prob > |z| = 0.2085
Test of homogeneity: Q = chi2(9) = 26.21 Prob > Q = 0.0019

meta summarize, eform reports exponentiated effect sizes and their corresponding CIs. It labels the

effect-size column as exp(ES), but you can change this label to string by specifying eform(string).

Note that the eform option worked in our example because meta set declared our precomputed effect
sizes as generic. They could have been log odds-ratios, in which case eform would make perfect sense.

However, if you use meta esize to compute the standardizedmean differences (for example, Hedges’s 𝑔)
and try to use eformwith meta summarize, you will receive an error message because meta summarize
knows that exponentiation is not appropriate with effect sizes that correspond to continuous data. With

effect sizes lnoratio (or lnorpeto) and lnrratio computed by meta esize, you can also use the

respective options or and rr, which are synonyms for eform in those cases. These options (and eform)
will label your results as Odds ratio (Peto’s OR) and Risk ratio.

Example 9: Subgroup meta-analysis
In example 1 and example 3, we identified the presence of substantial heterogeneity between the

observed studies. Sometimes, the heterogeneity can be explained by some study-level covariates, also

known as moderators. With categorical moderators, we can perform subgroup analysis, which performs

meta-analysis separately for each category of each moderator.

We have binary variable week1, which records whether teachers had prior contact with students for

more than 1 week or for 1 week or less. Let’s use this variable as the moderator in our subgroup analysis.

We specify the variable week1 in the subgroup() option.

https://www.stata.com/manuals/meta.pdf#metametasummarizeRemarksandexamplesmsumexdefault
https://www.stata.com/manuals/meta.pdf#metametasummarizeRemarksandexamplesmsumexfixed
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. meta summarize, subgroup(week1)
Subgroup meta-analysis summary Number of studies = 10
Random-effects model
Method: REML
Group: week1

Effect size: Std. mean diff.

Study Effect size [95% conf. interval] % weight

Group: <= 1 week
Pellegrini & Hicks, 1972 1.180 0.449 1.911 5.25
Pellegrini & Hicks, 1972 0.260 -0.463 0.983 5.33

Kester, 1969 0.270 -0.051 0.591 11.02
Maxwell, 1970 0.800 0.308 1.292 8.15

theta 0.581 0.174 0.989

Group: > 1 week
Rosenthal et al., 1974 0.030 -0.215 0.275 12.39

Conn et al., 1968 0.120 -0.168 0.408 11.62
Jose & Cody, 1971 -0.140 -0.467 0.187 10.92

Evans & Rosenthal, 1969 -0.060 -0.262 0.142 13.11
Fielder et al., 1971 -0.020 -0.222 0.182 13.11

Claiborn, 1969 -0.320 -0.751 0.111 9.11

theta -0.033 -0.137 0.071

Overall
theta 0.134 -0.075 0.342

Heterogeneity summary

Group df Q P > Q tau2 % I2 H2

<= 1 week 3 7.14 0.068 0.095 57.03 2.33
> 1 week 5 3.53 0.618 0.000 0.00 1.00

Overall 9 26.21 0.002 0.075 74.98 4.00

Test of group differences: Q_b = chi2(1) = 8.18 Prob > Q_b = 0.004

We now have two output tables. Our main table now reports results from individual studies separately

for each group, in addition to the group-specific overall effect size. The overall effect size computed

using all studies is reported at the bottom under Overall.

The second table reports the group-specific and overall heterogeneity summaries. The test of group

differences is reported at the bottom of this table.

The estimated theta for the group with contact <= 1 week is 0.581 with the 95% CI of [0.174, 0.989].
The mean effect size in this group is statistically significant at the 5% level. The estimated theta for the

group with contact > 1 week is −0.033 with the 95% CI of [−0.137, 0.071]. The mean effect size in this
group is not statistically significant at the 5% level.

If we look at the heterogeneity summaries, the <= 1 week group still has some unexplained between-

study heterogeneity with an estimated 𝐼2 of 57% and a 𝑝-value of the homogeneity test of 0.068 < 0.1.

There does not appear to be any between-study heterogeneity in the > 1 week group: 𝐼2 is essentially

0%, and the homogeneity test 𝑝-value is 0.618.
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We should interpret our results with caution because each subgroup analysis used a few studies, with

the <= 1 week group having only 4 studies.

We can specify multiple variables in the subgroup() option. Let’s also include variable tester in

our subgroup analysis.

. meta summarize, subgroup(week1 tester)
Subgroup meta-analysis summary Number of studies = 10
Random-effects model
Method: REML
Group: week1 tester

No. of
Group studies Std. mean diff. [95% conf. interval] p-value

week1
<= 1 week 4 0.581 0.174 0.989 0.005
> 1 week 6 -0.033 -0.137 0.071 0.535

tester
Aware 7 0.059 -0.129 0.247 0.535
Blind 3 0.316 -0.206 0.837 0.235

Overall
theta 10 0.134 -0.075 0.342 0.208

Heterogeneity summary

Group df Q P > Q tau2 % I2 H2

week1
<= 1 week 3 7.14 0.068 0.095 57.03 2.33
> 1 week 5 3.53 0.618 0.000 0.00 1.00

tester
Aware 6 16.35 0.012 0.035 59.07 2.44
Blind 2 9.31 0.009 0.154 75.14 4.02

Overall 9 26.21 0.002 0.075 74.98 4.00

Tests of group differences

df Q_b P > Q_b

week1 1 8.18 0.004
tester 1 0.82 0.365

With more than one variable in subgroup(), meta summarize reports three output tables. To conserve

space, the main table does not report individual studies but reports the number of studies in each group. It

also reports the 𝑝-values of the corresponding significance tests of the overall effect sizes in each group.
The heterogeneity table reports the group summaries for each variable, in addition to the overall

summaries. The new table reports the results of tests of subgroup differences for each variable.

The studies appear to be homogeneous across the levels of the tester variable.
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Example 10: Meta-analysis of correlations
Continuing with the dataset in example 5 of [META] meta data, we wish to produce a meta-analysis

summary and compute the overall correlation between conscientiousness and medication adherence.

. use https://www.stata-press.com/data/r19/adherence
(Conscientiousness and medication adherence)
. describe rho n studylbl
Variable Storage Display Value

name type format label Variable label

rho double %9.0g * Correlation coefficient
n int %9.0g Sample size of the study
studylbl str26 %26s Study label

The correlation coefficient rho is measured on the natural scale (−1 ≤ 𝑟 ≤ 1). Many meta-analysts

(for example, Borenstein and Hedges [2019]) recommend working with the Fisher’s 𝑧-transformed cor-
relations instead of the raw correlations:

𝑧 = 1
2
log(1 + rho

1 − rho
) = atanh(rho) ∼ 𝑁 (0, 1

n − 3
)

If the underlying data are bivariate normal, the variance of 𝑧 equals 1/(n − 3) and depends only on the
within-study sample size and not on the correlation parameter itself. Below, we use the first specification

of meta esize in example 5 of [META] meta data to compute Fisher’s 𝑧-transformed correlations:
. meta esize rho n, fisherz studylabel(studylbl) nometashow

The meta-analysis summary may be obtained as follows:

. meta summarize
Meta-analysis summary Number of studies = 16
Random-effects model Heterogeneity:
Method: REML tau2 = 0.0081

I2 (%) = 61.73
H2 = 2.61

Study Fisher’s z [95% conf. interval] % weight

Axelsson et al. (2009) 0.189 -0.001 0.380 5.68
Axelsson et al. (2011) 0.163 0.092 0.235 10.54

Bruce et al. (2010) 0.354 0.082 0.626 3.64
Christensen et al. (1999) 0.332 0.139 0.524 5.62

Christensen & Smith (1995) 0.277 0.041 0.513 4.41
Cohen et al. (2004) 0.000 -0.249 0.249 4.11

Dobbels et al. (2005) 0.177 0.027 0.327 7.14
Ediger et al. (2007) 0.050 -0.059 0.159 8.89
Insel et al. (2006) 0.266 0.002 0.530 3.79

Jerant et al. (2011) 0.010 -0.061 0.081 10.58
Moran et al. (1997) -0.090 -0.359 0.179 3.69

O’Cleirigh et al. (2007) 0.388 0.179 0.597 5.11
Penedo et al. (2003) 0.000 -0.184 0.184 5.87
Quine et al. (2012) 0.151 0.066 0.236 9.98

Stilley et al. (2004) 0.245 0.087 0.402 6.84
Wiebe & Christensen (1997) 0.040 -0.209 0.289 4.11

theta 0.150 0.088 0.212

Test of theta = 0: z = 4.75 Prob > |z| = 0.0000
Test of homogeneity: Q = chi2(15) = 38.16 Prob > Q = 0.0009

https://www.stata.com/manuals/metametadata.pdf#metametadataRemarksandexamplesmdataexcorr
https://www.stata.com/manuals/metametadata.pdf#metametadata
https://www.stata.com/manuals/fntrigonometricfunctions.pdf#fnTrigonometricfunctionsatanh()
https://www.stata.com/manuals/metametadata.pdf#metametadataRemarksandexamplesmdataexcorr
https://www.stata.com/manuals/metametadata.pdf#metametadata
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The overall Fisher’s 𝑧 value (transformed correlation coefficient) across the 16 studies is estimated to
be 0.150 using the REML RE meta-analysis model.

The interpretation of the results, however, is easier in the natural correlation-coefficient metric, which

we can compute using the inverse transformation:

rho = exp(2𝑧) − 1
exp(2𝑧) + 1

= tanh(𝑧)

Thus, you may obtain the value of the correlation coefficient and its CI by typing

. display tanh(r(theta))

.14880413

. display ”[” tanh(r(ci_lb)) ”, ” tanh(r(ci_ub)) ”]”
[.08783366, .20866384]

More conveniently, you can use the correlation option to report correlations. This option ap-

plies the hyperbolic tangent (tanh()) transformation to the Fisher’s 𝑧-values and labels the result-

ing effect sizes as Correlation. Notice that specifying correlation is equivalent to specifying

transform(corr) or transform(Correlation: tanh).

. meta summarize, correlation
Meta-analysis summary Number of studies = 16
Random-effects model Heterogeneity:
Method: REML tau2 = 0.0081

I2 (%) = 61.73
H2 = 2.61

Study Correlation [95% conf. interval] % weight

Axelsson et al. (2009) 0.187 -0.001 0.362 5.68
Axelsson et al. (2011) 0.162 0.091 0.231 10.54

Bruce et al. (2010) 0.340 0.082 0.555 3.64
Christensen et al. (1999) 0.320 0.139 0.481 5.62

Christensen & Smith (1995) 0.270 0.041 0.472 4.41
Cohen et al. (2004) 0.000 -0.244 0.244 4.11

Dobbels et al. (2005) 0.175 0.027 0.316 7.14
Ediger et al. (2007) 0.050 -0.059 0.158 8.89
Insel et al. (2006) 0.260 0.002 0.486 3.79

Jerant et al. (2011) 0.010 -0.061 0.081 10.58
Moran et al. (1997) -0.090 -0.345 0.177 3.69

O’Cleirigh et al. (2007) 0.370 0.178 0.535 5.11
Penedo et al. (2003) 0.000 -0.182 0.182 5.87
Quine et al. (2012) 0.150 0.066 0.232 9.98

Stilley et al. (2004) 0.240 0.087 0.382 6.84
Wiebe & Christensen (1997) 0.040 -0.206 0.281 4.11

tanh(theta) 0.149 0.088 0.209

Test of theta = 0: z = 4.75 Prob > |z| = 0.0000
Test of homogeneity: Q = chi2(15) = 38.16 Prob > Q = 0.0009

The overall correlation value is 0.149 with a CI of [0.088, 0.209].

https://www.stata.com/manuals/fntrigonometricfunctions.pdf#fnTrigonometricfunctionstanh()
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Example 11: Meta-analysis of a single proportion and the transform() option
Continuing from the meta esize ndeaths pensize setting in example 4 of [META] meta data, we

produce a meta-analysis summary and compute the overall proportion as follows:

. meta summarize, proportion
Effect-size label: Freeman--Tukey’s p

Effect size: _meta_es
Std. err.: _meta_se

Meta-analysis summary Number of studies = 4
Random-effects model Heterogeneity:
Method: REML tau2 = 0.0000

I2 (%) = 0.00
H2 = 1.00

Study Proportion [95% conf. interval] % weight

Study 1 0.273 0.044 0.579 20.18
Study 2 0.353 0.140 0.598 30.70
Study 3 0.476 0.264 0.693 37.72
Study 4 0.167 0.145 0.586 11.40

invftukey(theta) 0.360 0.230 0.499

Test of theta = 0: z = 7.67 Prob > |z| = 0.0000
Test of homogeneity: Q = chi2(3) = 2.18 Prob > Q = 0.5368

The overall proportion is estimated to be 0.360 with a CI of [0.230, 0.499].
The proportion option was used to report proportions instead of the Freeman–Tukey-transformed

proportions. This option is equivalent to transform(invftukey, hmean), where hmean specifies that

the harmonic mean of the study-specific sample sizes be used as 𝑛𝜃 to back-transform the overall effect

size [see (4) in Inverse Freeman–Tukey transformation for details]. Instead of the harmonic mean, Baren-

dregt et al. (2013) suggested to use the inverse of the variance of the overall Freeman–Tukey-transformed

proportion as an estimate of 𝑛𝜃. This may be requested via transform(invftukey, ivariance).

. meta summarize, transform(invftukey, ivariance)
Effect-size label: Freeman--Tukey’s p

Effect size: _meta_es
Std. err.: _meta_se

Meta-analysis summary Number of studies = 4
Random-effects model Heterogeneity:
Method: REML tau2 = 0.0000

I2 (%) = 0.00
H2 = 1.00

Study Proportion [95% conf. interval] % weight

Study 1 0.273 0.044 0.579 20.18
Study 2 0.353 0.140 0.598 30.70
Study 3 0.476 0.264 0.693 37.72
Study 4 0.167 0.145 0.586 11.40

invftukey(theta) 0.369 0.247 0.499

Note: Method ivariance is used to compute overall proportion.
Test of theta = 0: z = 8.89 Prob > |z| = 0.0000
Test of homogeneity: Q = chi2(3) = 2.18 Prob > Q = 0.5368

https://www.stata.com/manuals/metametadata.pdf#metametadataRemarksandexamplesmdataexprop
https://www.stata.com/manuals/metametadata.pdf#metametadata
https://www.stata.com/manuals/meta.pdf#metametasummarizeMethodsandformulasmsumeqpov
https://www.stata.com/manuals/meta.pdf#metametasummarizeMethodsandformulasInverseFreeman--Tukeytransformation
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Finally, the CIs for the Freeman–Tukey-transformed proportions are the standard normal-based Wald

intervals. These are stored in system variables meta cil and meta ciu. The CIs displayed in the table
above are the corresponding back-transformed (using transform(invftukey)) confidence intervals in
the proportion metric, and these are stored in meta cil transf and meta ciu transf.

When you report proportions either via the proportion or transform() option, you can use the

citype() option to display other types of CIs for the study proportions. Below, we display Wilson CIs

for the study proportions.

. meta summarize, transform(invftukey, ivariance) citype(wilson)
Effect-size label: Freeman--Tukey’s p

Effect size: _meta_es
Std. err.: _meta_se

Meta-analysis summary Number of studies = 4
Random-effects model Heterogeneity:
Method: REML tau2 = 0.0000

I2 (%) = 0.00
H2 = 1.00

Wilson
Study Proportion [95% conf. interval] % weight

Study 1 0.273 0.097 0.566 20.18
Study 2 0.353 0.173 0.587 30.70
Study 3 0.476 0.283 0.676 37.72
Study 4 0.167 0.030 0.564 11.40

invftukey(theta) 0.369 0.247 0.499

Note: Method ivariance is used to compute overall proportion.
Note: Wilson CIs are reported only for individual studies.
Test of theta = 0: z = 8.89 Prob > |z| = 0.0000
Test of homogeneity: Q = chi2(3) = 2.18 Prob > Q = 0.5368

The citype() option applies to the CIs of individual studies only and not to the CI of the overall

proportion.

Example 12: Cumulative meta-analysis
CMA (Lau et al. 1992 ; Sterne 2016) performs multiple meta-analyses by accumulating studies one at

a time. The studies are first ordered with respect to a variable of interest, the ordering variable. Meta-

analysis summaries are then computed for the first study, for the first two studies, for the first three

studies, and so on. The last meta-analysis will correspond to the standard meta-analysis using all studies.

CMA is useful, for instance, for identifying the point in time of the potential change in the direction or

significance of the effect size when the ordering variable is time. You can use the cumulative() option

to perform CMA.
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For demonstration purposes, let’s continue with the dataset in example 1 and use year as our ordering

variable.

. meta summarize, cumulative(year)
Cumulative meta-analysis summary Number of studies = 10
Random-effects model
Method: REML
Order variable: year

theta: Overall Std. mean diff.

Study theta [95% conf. interval] p-value year

Conn et al., 1968 0.120 -0.168 0.408 0.414 1968
Evans & Rosent~1969 -0.001 -0.166 0.165 0.995 1969

Claiborn, 1969 -0.042 -0.201 0.117 0.605 1969
Kester, 1969 0.022 -0.177 0.221 0.830 1969

Maxwell, 1970 0.140 -0.178 0.459 0.389 1970
Jose & Cody, 1971 0.089 -0.177 0.355 0.510 1971

Fielder et al., 1~1 0.064 -0.141 0.270 0.539 1971
Pellegrini & H~1972 0.161 -0.117 0.438 0.257 1972
Pellegrini & H~1972 0.161 -0.090 0.413 0.208 1972
Rosenthal et.., 1~4 0.134 -0.075 0.342 0.208 1974

The output table reports the overall effect size and its CIs for each cumulative analysis. The p-value
column contains the 𝑝-values of the significance tests of the overall effect sizes from these analyses. The

last column displays the values of the ordering variable.

In our example, no particular trend is apparent.

We can perform stratified CMA by specifying a categorical variable in cumulative()’s option by().
To demonstrate, we also specify cumulative()’s option descending to list results in descending order

of year.

. meta summarize, cumulative(year, by(week1) descending)
Stratified cumulative meta-analysis summary Number of studies = 10
Random-effects model
Method: REML
Order variable: year (descending)
Stratum: week1

theta: Overall Std. mean diff.

Study theta [95% conf. interval] p-value year

Group: <= 1 week
Pellegrini & H~1972 0.260 -0.463 0.983 0.481 1972
Pellegrini & H~1972 0.718 -0.183 1.620 0.118 1972

Maxwell, 1970 0.755 0.320 1.190 0.001 1970
Kester, 1969 0.581 0.174 0.989 0.005 1969

Group: > 1 week
Rosenthal et.., 1~4 0.030 -0.215 0.275 0.810 1974
Fielder et al., 1~1 0.000 -0.156 0.156 0.998 1971

Jose & Cody, 1971 -0.026 -0.166 0.115 0.720 1971
Claiborn, 1969 -0.054 -0.188 0.080 0.429 1969

Evans & Rosent~1969 -0.056 -0.167 0.056 0.326 1969
Conn et al., 1968 -0.033 -0.137 0.071 0.535 1968

CMA is performed separately for each group of week1.

https://www.stata.com/manuals/meta.pdf#metametasummarizeRemarksandexamplesmsumexdefault
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Also see Cumulative meta-analysis in [META] meta.

Example 13: Leave-one-out meta-analysis
For each study in the meta-analysis, the corresponding leave-one-out meta-analysis will omit that

study and perform ameta-analysis on the remaining set of studies (𝑘−1 studies). It is useful for exploring

the influence of a single study on the overall effect size estimate.

Continuing with example 1, we will use option leaveoneout to perform a leave-one-out meta-

analysis and sort our results according to variable se so that larger studies appear first.

. meta summarize, leaveoneout sort(se)
Leave-one-out meta-analysis summary Number of studies = 10
Random-effects model
Method: REML

theta: Overall Std. mean diff.

Omitted study theta [95% conf. interval] p-value

Evans & Rosenthal, 1969 0.172 -0.073 0.418 0.169
Fielder et al., 1971 0.168 -0.081 0.418 0.186

Rosenthal et al., 1974 0.161 -0.090 0.413 0.208
Conn et al., 1968 0.149 -0.102 0.400 0.244

Kester, 1969 0.127 -0.115 0.368 0.304
Jose & Cody, 1971 0.174 -0.060 0.408 0.146

Claiborn, 1969 0.175 -0.036 0.386 0.105
Maxwell, 1970 0.021 -0.076 0.119 0.665

Pellegrini & Hicks, 1972 0.132 -0.095 0.358 0.254
Pellegrini & Hicks, 1972 0.057 -0.090 0.204 0.446

theta 0.134 -0.075 0.342 0.208

Sorted by: se

The output table reports the overall effect size and its CIs for each leave-one-out analysis. In this exam-

ple, the first row reports the overall effect size estimate based on all the studies excluding the Evans &
Rosenthal, 1969 study (10 − 1 = 9 studies). The p-value column contains the 𝑝-values of the sig-
nificance tests of the overall effect sizes from these analyses. The last row displays the results based on

all 10 studies. It seems that the Maxwell, 1970 study has a relatively large influence because the 95%

CI from the meta-analysis excluding that study, [−0.076, 0.119], does not contain the overall effect size
estimate based on all studies, 0.134.

https://www.stata.com/manuals/metameta.pdf#metametaRemarksandexamplesCumulativemeta-analysis
https://www.stata.com/manuals/metameta.pdf#metameta
https://www.stata.com/manuals/meta.pdf#metametasummarizeRemarksandexamplesmsumexdefault
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Stored results
meta summarize stores the following in r():

Scalars

r(N) number of observations

r(theta) overall effect size

r(se) standard error of overall effect size

r(ci lb) lower CI bound for overall effect size

r(ci ub) upper CI bound for overall effect size

r(tau2) between-study variance

r(I2) 𝐼2 heterogeneity statistic (not for CE model)

r(H2) 𝐻2 heterogeneity statistic (not for CE model)

r(z) 𝑧 statistic for test of significance of overall effect size (when se() not specified)

r(t) 𝑡 statistic for test of significance of overall effect size (when se() specified)

r(df) degrees of freedom for 𝑡 distribution
r(p) 𝑝-value for test of significance of overall effect size
r(Q) Cochran’s 𝑄 heterogeneity test statistic (not for CE model)

r(df Q) degrees of freedom for heterogeneity test

r(p Q) 𝑝-value for heterogeneity test
r(Q b) Cochran’s 𝑄 statistic for test of group differences (for subgroup() with one variable)

r(df Q b) degrees of freedom for test of group differences

r(p Q b) 𝑝-value for test of group differences
r(seadj) standard error adjustment

r(level) confidence level for CIs

r(pi lb) lower bound of prediction interval

r(pi ub) upper bound of prediction interval

r(pilevel) confidence level for prediction interval

r(converged) 1 if converged, 0 otherwise (with iterative random-effects methods)

Macros

r(model) meta-analysis model

r(method) meta-analysis estimation method

r(citype) type of CI used in option citype() for meta-analysis of a single proportion

r(subgroupvars) names of subgroup-analysis variables

r(ordervar) name of order variable used in option cumulative()
r(byvar) name of variable used in suboption by() within option cumulative()
r(direction) ascending or descending
r(seadjtype) type of standard error adjustment

Matrices

r(esgroup) ESs and CIs from subgroup analysis

r(hetgroup) heterogeneity summary from subgroup analysis

r(diffgroup) results for tests of group differences from subgroup analysis

r(cumul) results from cumulative meta-analysis

r(leaveoneout) results from leave-one-out meta-analysis

r(pi info) prediction intervals from subgroup analysis

meta summarize also creates a system variable, meta weight, which contains study

weights. When the transform() option is specified, meta summarize creates system variables

meta es transf, meta cil transf, and meta ciu transf, which contain the transformed

effect sizes and lower and upper bounds of the corresponding transformed CIs.

Also see Stored results in [META]meta set and Stored results in [META]meta esize for other system

variables.

https://www.stata.com/manuals/metametaset.pdf#metametasetStoredresults
https://www.stata.com/manuals/metametaset.pdf#metametaset
https://www.stata.com/manuals/metametaesize.pdf#metametaesizeStoredresults
https://www.stata.com/manuals/metametaesize.pdf#metametaesize
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Methods and formulas
Methods and formulas are presented under the following headings:

Fixed-effects and common-effect methods for combining study estimates
Inverse-variance method
Mantel–Haenszel method for two-group comparison of binary outcomes
Peto’s method for odds ratios

Random-effects methods for combining study estimates
Iterative methods
Noniterative methods
Knapp–Hartung standard-error adjustment
Prediction intervals

Confidence intervals and significance test
Heterogeneity measures
Inverse Freeman–Tukey transformation
Homogeneity test
Subgroup meta-analysis

Fixed-effects model
Random-effects model

Cumulative meta-analysis
Leave-one-out meta-analysis

The formulas andmethods below are based on Veroniki et al. (2016), Viechtbauer et al. (2015), Boren-

stein et al. (2009), Schwarzer, Carpenter, and Rücker (2015), Kontopantelis and Reeves (2016), Fisher

(2016), and Bradburn, Deeks, and Altman (2016).

Fixed-effects and common-effect methods for combining study estimates

Consider the data from 𝐾 independent studies. Let ̂𝜃𝑗 be the estimate of the population effect size 𝜃𝑗
reported by the 𝑗th study and �̂�2

𝑗 be the corresponding estimate of the within-study variance, which is

equal to the squared standard error of ̂𝜃𝑗.
̂𝜃𝑗 is one of Hedges’s 𝑔𝑗, Cohen’s 𝑑𝑗, ln (ÔR𝑗), ln (R̂R𝑗), and

so on, as defined in Methods and formulas of [META]meta esize, or a generic (precomputed) effect size

as declared by [META] meta set.

Consider a fixed-effects model (Hedges and Vevea 1998; Rice, Higgins, and Lumley 2018) from

Meta-analysis models in [META] Intro,

̂𝜃𝑗 = 𝜃𝑗 + 𝜖𝑗 𝜖𝑗 ∼ 𝑁 (0, �̂�2
𝑗 )

where �̂�2
𝑗 ’s are treated as known values that do not require estimation. Under the assumption that 𝜃1 =

𝜃2 = · · · = 𝜃𝐾 = 𝜃, the above fixed-effects model simplifies to a common-effect model (Hedges 1982;
Rosenthal and Rubin 1982):

̂𝜃𝑗 = 𝜃 + 𝜖𝑗 𝜖𝑗 ∼ 𝑁 (0, �̂�2
𝑗 )

The estimation methods we describe below are the same for the two models, but the interpretation

of the estimates is different; see Comparison between the models and interpretation of their results in

[META] Intro. The two models estimate different population parameters. A common-effect model esti-

mates the common effect 𝜃pop = 𝜃, whereas a fixed-effects model estimates a weighted average of the

study-specific effects ̂𝜃𝑗’s,

𝜃pop = Ave(𝜃𝑗) =
∑𝐾

𝑗=1 𝑊𝑗𝜃𝑗

∑𝐾
𝑗=1 𝑊𝑗

https://www.stata.com/manuals/metametaesize.pdf#metametaesizeMethodsandformulas
https://www.stata.com/manuals/metametaesize.pdf#metametaesize
https://www.stata.com/manuals/metametaset.pdf#metametaset
https://www.stata.com/manuals/metaintro.pdf#metaIntroRemarksandexamplesMeta-analysismodels
https://www.stata.com/manuals/metaintro.pdf#metaIntro
https://www.stata.com/manuals/metaintro.pdf#metaIntroRemarksandexamplesComparisonbetweenthemodelsandinterpretationoftheirresults
https://www.stata.com/manuals/metaintro.pdf#metaIntro
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where 𝑊𝑗’s represent true, unknown weights, which are defined in Rice, Higgins, and Lumley (2018,

eq. 3). For simplicity, in what follows, we will use 𝜃 to mean 𝜃pop.

Inverse-variance method

Under the inverse-variance method, the MLE of 𝜃 is

̂𝜃IV =
∑𝐾

𝑗=1
̂𝜃𝑗/�̂�2

𝑗

∑𝐾
𝑗=1 1/�̂�2

𝑗
=

∑𝐾
𝑗=1 𝑤𝑗

̂𝜃𝑗

∑𝐾
𝑗=1 𝑤𝑗

where the weight 𝑤𝑗 = 1/�̂�2
𝑗 is used to estimate the true weight 𝑊𝑗. The inverse-variance method takes

its name from the weights being the reciprocal of the effect-size variances.

The variance estimate of ̂𝜃IV
V̂ar ( ̂𝜃IV) = 1

𝑤.

where 𝑤. = ∑𝐾
𝑗=1 𝑤𝑗.

Mantel–Haenszel method for two-group comparison of binary outcomes

For meta-analysis that compares two binary outcomes, the Mantel–Haenszel method can be used

to combine odds ratios (OR), risk ratios (RR), and risk differences (RD) instead of the inverse-variance

method. The classical Mantel–Haenszel method (Mantel and Haenszel 1959) is used for OR, and its

extension by Greenland and Robins (1985) is used for RR and RD. The Mantel–Haenszel method may be

preferable with sparse data (Emerson 1994). This is the default pooling method in meta esize for the

effect sizes mentioned above with fixed-effects and common-effect models.

Consider the following 2 × 2 table for the 𝑗th study.

group event no event size

treatment 𝑎𝑗 𝑏𝑗 𝑛1𝑗 = 𝑎𝑗 + 𝑏𝑗
control 𝑐𝑗 𝑑𝑗 𝑛2𝑗 = 𝑐𝑗 + 𝑑𝑗

The sample size for the 𝑗th study is denoted by 𝑛𝑗 = 𝑛1𝑗 + 𝑛2𝑗.

For the overall risk difference, the formula is

̂𝜃MH =
∑𝐾

𝑗=1 𝑤(MH)
𝑗 × ̂𝜃𝑗

∑𝐾
𝑗=1 𝑤(MH)

𝑗

where ̂𝜃𝑗 is R̂D from the 𝑗th study.
Unlike the inverse-variance method, with log odds-ratios and log risk-ratios, the Mantel–Haenszel

method combines the individual effect sizes in the original metric and then takes the log to obtain the

final overall log odds-ratio or log risk-ratio estimate,

̂𝜃MH = ln
⎧{
⎨{⎩

∑𝐾
𝑗=1 𝑤(MH)

𝑗 × exp( ̂𝜃𝑗)

∑𝐾
𝑗=1 𝑤(MH)

𝑗

⎫}
⎬}⎭

where ̂𝜃𝑗 is ln(ÔR) or ln (R̂R) from the 𝑗th study.

https://www.stata.com/manuals/metametaesize.pdf#metametaesize
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The MH weights are defined as follows. In the formula for the overall risk difference, the weight

assigned to each study is

𝑤(MH)
𝑗 =

𝑛1𝑗𝑛2𝑗

𝑛𝑗

For the overall log risk-ratio, the 𝑗th weight is given by

𝑤(MH)
𝑗 =

𝑛1𝑗𝑐𝑗

𝑛𝑗

And for the overall log odds-ratio, the 𝑗th weight is given by

𝑤(MH)
𝑗 =

𝑏𝑗𝑐𝑗

𝑛𝑗

An estimator of the variance of the overall risk difference ̂𝜃MH = R̂DMH (Greenland and Robins 1985)

is

V̂ar (R̂DMH) =
∑𝐾

𝑗=1 (𝑎𝑗𝑏𝑗𝑛3
2𝑗 + 𝑐𝑗𝑑𝑗𝑛3

1𝑗) /𝑛1𝑗𝑛2𝑗𝑛2
𝑗

(∑𝐾
𝑗=1 𝑛1𝑗𝑛2𝑗/𝑛𝑗)

2

An estimator of the variance of the overall log risk-ratio ̂𝜃MH = ln(R̂RMH) (Greenland and Robins 1985)
is

V̂ar { ln(R̂RMH)} =
∑𝐾

𝑗=1 {𝑛1𝑗𝑛2𝑗 (𝑎𝑗 + 𝑐𝑗) − 𝑎𝑗𝑐𝑗𝑛𝑗} /𝑛2
𝑗

(∑𝐾
𝑗=1 𝑎𝑗𝑛2𝑗/𝑛𝑗) × (∑𝐾

𝑗=1 𝑐𝑗𝑛1𝑗/𝑛𝑗)

And an estimator of the variance of the overall log odds-ratio ̂𝜃MH = ln(ÔRMH) (Robins, Breslow, and
Greenland 1986; Robins, Greenland, and Breslow 1986) is

V̂ar{ ln(ÔRMH)} =
∑𝐾

𝑗=1 𝑃𝑗𝑅𝑗

2 (∑𝐾
𝑗=1 𝑅𝑗)

2 +
∑𝐾

𝑗=1 (𝑃𝑗𝑆𝑗 + 𝑄𝑗𝑅𝑗)

2 ∑𝐾
𝑗=1 𝑅𝑗 ∑𝐾

𝑗=1 𝑆𝑗
+

∑𝐾
𝑗=1 𝑄𝑗𝑆𝑗

2 (∑𝐾
𝑗=1 𝑆𝑗)

2

where

𝑃𝑗 =
𝑎𝑗 + 𝑑𝑗

𝑛𝑗
, 𝑄𝑗 =

𝑏𝑗 + 𝑐𝑗

𝑛𝑗
, 𝑅𝑗 =

𝑎𝑗𝑑𝑗

𝑛𝑗
, and 𝑆𝑗 =

𝑏𝑗𝑐𝑗

𝑛𝑗

Greenland and Robins (1985) and Robins, Breslow, and Greenland (1986) demonstrate consistency

of all the above variance estimators in the two cases they call a sparse-data limiting model, in which

the number of 2 × 2 tables (studies) increases but the cell sizes remain fixed, and a large-strata limiting

model, in which the number of studies remains fixed but individual cell sizes increase.

Peto’s method for odds ratios

An alternative to the Mantel–Haenszel method for combining odds ratios is the Peto’s method (Peto

et al. 1977 ; Yusuf et al. 1985 ). It is based on the inverse-variance method but uses an alternate way to

compute the odds ratios (and consequently the log odds-ratio).
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Let ln(ÔRPeto𝑗 ) be Peto’s log odds-ratio for the 𝑗th study as defined in Odds ratio in [META] meta

esize. Then, Peto’s overall log odds-ratio is defined following the inverse-variance method as follows,

̂𝜃Peto = ln(ÔRPeto) =
∑𝐾

𝑗=1 𝑤𝑗 ln(ÔRPeto𝑗 )

∑𝐾
𝑗=1 𝑤𝑗

where 𝑤𝑗 = 1/�̂�2
𝑗 = Var(𝑎𝑗) and Var(𝑎𝑗) is as defined in Methods and formulas of [META] meta esize

of [META] meta esize.

The variance estimate is

V̂ar{ ln(ÔRPeto)} = 1
∑𝐾

𝑗=1 𝑤𝑗

Random-effects methods for combining study estimates
Suppose that the observed study-specific effect sizes represent a random sample from a population of

effect sizes that is normally distributed with mean 𝜃 and variance 𝜏2.

Consider a random-effects model (Hedges 1983; DerSimonian and Laird 1986) from Meta-analysis

models in [META] Intro,
̂𝜃𝑗 = 𝜃𝑗 + 𝜖𝑗 = 𝜃 + 𝑢𝑗 + 𝜖𝑗

where 𝜖𝑗 and 𝑢𝑗 are assumed to be independent with 𝜖𝑗 ∼ 𝑁 (0, �̂�2
𝑗 ) and 𝑢𝑗 ∼ 𝑁 (0, 𝜏2).

The overall effect 𝐸( ̂𝜃𝑗) = 𝜃 is estimated as the weighted average,

̂𝜃∗ =
∑𝐾

𝑗=1 𝑤∗
𝑗

̂𝜃𝑗

∑𝐾
𝑗=1 𝑤∗

𝑗
(1)

where 𝑤∗
𝑗 = 1/ (�̂�2

𝑗 + ̂𝜏2). The variance of ̂𝜃∗ is estimated by

V̂ar ( ̂𝜃∗) = 1
𝑤∗

.

where 𝑤∗
. = ∑𝐾

𝑗=1 𝑤∗
𝑗 .

Different estimators of the between-study variance, 𝜏2, lead to different estimators of 𝜃. meta
summarize supports seven estimation methods of 𝜏2. Three methods are iterative: the maximum likeli-

hood (ML) estimator (Hardy and Thompson 1996); the restricted maximum-likelihood (REML) estimator

(Raudenbush 2009); and the empirical Bayes (EB) estimator (Morris 1983; Berkey et al. 1995 ), also

known as the Paule–Mandel estimator (Paule and Mandel 1982). Four methods are noniterative (have

a closed-form expression): DerSimonian–Laird (DL) estimator (DerSimonian and Laird 1986); Hedges

estimator (HE) (Hedges 1983; Hedges and Olkin 1985), also known as the Cochran estimator or variance-

component estimator; Hunter–Schmidt (HS) estimator (Schmidt and Hunter 2015); and Sidik–Jonkman

(SJ) estimator (Sidik and Jonkman 2005).

The formulas for and properties of these estimators have been discussed at length in Veroniki et al.

(2016). Expressions for these estimators are given in the more general context of meta-regression in

Methods and formulas of [META] meta regress. Below, we provide the simplified expressions when no

covariates (moderators) are included in the regression model. The simplified expressions were obtained

by replacing the X matrix with 𝐾 × 1 column vector of 1s.

https://www.stata.com/manuals/metametaesize.pdf#metametaesizeMethodsandformulasOddsratio
https://www.stata.com/manuals/metametaesize.pdf#metametaesize
https://www.stata.com/manuals/metametaesize.pdf#metametaesize
https://www.stata.com/manuals/metametaesize.pdf#metametaesizeMethodsandformulas
https://www.stata.com/manuals/metametaesize.pdf#metametaesize
https://www.stata.com/manuals/metametaesize.pdf#metametaesize
https://www.stata.com/manuals/metaintro.pdf#metaIntroRemarksandexamplesMeta-analysismodels
https://www.stata.com/manuals/metaintro.pdf#metaIntroRemarksandexamplesMeta-analysismodels
https://www.stata.com/manuals/metaintro.pdf#metaIntro
https://www.stata.com/manuals/metametaregress.pdf#metametaregressMethodsandformulas
https://www.stata.com/manuals/metametaregress.pdf#metametaregress
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Iterative methods

TheMLmethod (Hardy and Thompson 1996; Thompson and Sharp 1999) computes theMLE of 𝜏2 by

maximizing the following log-likelihood function,

ln𝐿ML (𝜏2) = −𝐾
2
ln(2𝜋) − 1

2

𝐾
∑
𝑗=1

ln (�̂�2
𝑗 + 𝜏2) − 1

2

𝐾
∑
𝑗=1

( ̂𝜃𝑗 − ̂𝜃∗)
2

�̂�2
𝑗 + 𝜏2

with respect to 𝜏2, where ̂𝜃∗ is defined in (1) and is based on the current value of ̂𝜏2.

The ML method is asymptotically efficient but may produce biased results in small samples. The

REMLmethod estimates 𝜏2 by accounting for the uncertainty in the estimation of 𝜃, which leads to nearly
an unbiased estimate of 𝜏2.

The REML log-likelihood function is

ln𝐿REML (𝜏2) = ln𝐿ML (𝜏2) − 1
2
ln{

𝐾
∑
𝑗=1

(�̂�2
𝑗 + 𝜏2)−1} + ln(2𝜋)

2

The EB estimator and a description of the iterative process for each estimator in this section is presented

in the Methods and formulas of [META] meta regress.

Noniterative methods

The methods in this section do not make any assumptions about the distribution of the random effects.

They also do not require any iteration.

The most popular noniterative estimation method is the DL method. This is a method of moment

estimator for 𝜏2, and it is defined as follows,

̂𝜏2
DL = 𝑄 − (𝐾 − 1)

∑𝐾
𝑗=1 𝑤𝑗 − ∑𝐾

𝑗=1 𝑤2
𝑗 / ∑𝐾

𝑗=1 𝑤𝑗

where 𝑄 = ∑𝐾
𝑗=1 𝑤𝑗 ( ̂𝜃𝑗 − ̂𝜃IV)

2
and 𝑤𝑗 = 1/�̂�2

𝑗 .

Because ̂𝜏2
DL is negative when 𝑄 < 𝐾 − 1, it is truncated at 0 in practice, and thus max (0, ̂𝜏2

DL) is
used to estimate the between-study variance:

̂𝜏2
DL = max

⎧{
⎨{⎩

0,
∑𝐾

𝑗=1 𝑤𝑗 ( ̂𝜃𝑗 − ̂𝜃IV)
2

− (𝐾 − 1)

∑𝐾
𝑗=1 𝑤𝑗 − ∑𝐾

𝑗=1 𝑤2
𝑗 / ∑𝐾

𝑗=1 𝑤𝑗

⎫}
⎬}⎭

The HE estimator is another method of moment estimator defined as follows,

̂𝜏2
HE = max{0, 1

𝐾 − 1

𝐾
∑
𝑗=1

( ̂𝜃𝑗 − 𝜃)
2

− 1
𝐾

𝐾
∑
𝑗=1

�̂�2
𝑗 }

where 𝜃 = (∑𝐾
𝑗=1

̂𝜃𝑗)/𝐾.

https://www.stata.com/manuals/meta.pdf#metametasummarizeMethodsandformulasmsumeqthstar
https://www.stata.com/manuals/metametaregress.pdf#metametaregressMethodsandformulas
https://www.stata.com/manuals/metametaregress.pdf#metametaregress
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The HS estimator is given by

̂𝜏2
HS = max

⎧{
⎨{⎩

0, 𝑄 − 𝐾
∑𝐾

𝑗=1 𝑤𝑗

⎫}
⎬}⎭

For the SJ estimator, consider an initial estimate of 𝜏2, given by

̂𝜏2
0 =

∑𝐾
𝑗=1 ( ̂𝜃𝑗 − 𝜃)

2

𝐾

Then, the estimator is defined as

̂𝜏2
SJ =

∑𝐾
𝑗=1 𝑤SJ

𝑗 ( ̂𝜃𝑗 − ̂𝜃SJ)
2

𝐾 − 1

where 𝑤SJ
𝑗 = ̂𝜏2

0 / (�̂�2
𝑗 + ̂𝜏2

0 ) and ̂𝜃SJ = ∑𝐾
𝑗=1 𝑤SJ

𝑗
̂𝜃𝑗/ ∑𝐾

𝑗=1 𝑤SJ
𝑗 .

Knapp–Hartung standard-error adjustment

Hartung and Knapp (2001a) and Sidik and Jonkman (2002) proposed an adjustment to the variance

of ̂𝜃∗ to account for the uncertainty in estimating 𝜏2, which is used in the expression for weights. They

proposed to multiply V̂ar( ̂𝜃∗) = 1/𝑤∗
. by the following quadratic form,

𝑞KH = 1
𝐾 − 1

𝐾
∑
𝑗=1

𝑤∗
𝑗 ( ̂𝜃𝑗 − ̂𝜃∗)

2

or by max (1, 𝑞KH).

The variance estimator for ̂𝜃∗ can then be defined as

V̂arHK ( ̂𝜃∗) = {𝑞KH × 1/𝑤∗
. with option se(khartung)

max (1, 𝑞KH) × 1/𝑤∗
. with option se(khartung, truncated)

Hartung (1999) established that the statistic

̂𝜃∗ − 𝜃

√V̂arHK ( ̂𝜃∗)

has a Student’s 𝑡 distribution with 𝐾 − 1 degrees of freedom.
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Correspondingly, the (1 − 𝛼) × 100% CI for 𝜃 using the Knapp–Hartung standard error is

̂𝜃∗ ± 𝑡𝐾−1,1−𝛼/2√V̂arHK ( ̂𝜃∗)

where 𝑡𝐾−1,1−𝛼/2 denotes the 1 − 𝛼/2 quantile of the Student’s 𝑡 distribution with 𝐾 − 1 degrees of

freedom.

The test statistic for the significance test of an overall effect, 𝐻0∶ 𝜃 = 0, is

̂𝜃∗

√V̂arHK ( ̂𝜃∗)

and has the Student’s 𝑡 distribution with 𝐾 − 1 degrees of freedom.

Also see Sidik and Jonkman (2002, 2003) and Cornell et al. (2014) for more discussion about the

Knapp–Hartung adjustment.

Prediction intervals

In a random-effects model, you can compute a prediction interval (Higgins, Thompson, and Spiegel-

halter 2009) that estimates plausible ranges for 𝜃 in a future study. Compared with the CI, a prediction

interval incorporates the uncertainty in estimating 𝜏2 in the computation.

A (1 − 𝛼) × 100% prediction interval is defined as

̂𝜃∗ ± 𝑡𝐾−2,1−𝛼/2√V̂ar ( ̂𝜃∗) + ̂𝜏2

where 𝑡𝐾−2,1−𝛼/2 denotes the 1 − 𝛼/2 quantile of the Student’s 𝑡 distribution with 𝐾 − 2 degrees of

freedom. This prediction interval may be specified with the predinterval() option.

Confidence intervals and significance test

Let ̂𝜃 be any of the estimators considered in the previous sections such as ̂𝜃IV or ̂𝜃∗. The (1−𝛼)×100%
confidence interval for 𝜃 is

̂𝜃 ± 𝑧1−𝛼/2√V̂ar ( ̂𝜃)

where 𝑧1−𝛼/2 is the (1 − 𝛼/2)th quantile of the standard normal distribution.
We reject the hypothesis of no treatment effect 𝐻0∶ 𝜃 = 0 at level 𝛼, if

∣ ̂𝜃∣

√V̂ar ( ̂𝜃)
> 𝑧1−𝛼/2

If the tdistribution option is specified, the 𝑧1−𝛼/2 critical value is replaced with the 𝑡𝐾−1,1−𝛼/2
critical value in the above formulas.

Heterogeneity measures
The homogeneity test can be used to test whether the study-specific effects are the same; see Ho-

mogeneity test. But with a small number of studies, this test may have low power (Hedges and Pigott

2001). Also, it does not provide an estimate of the magnitude of the between-study heterogeneity. Some

authors (for example, Higgins and Thompson [2002] and Higgins et al. [2003]) suggest examining the

heterogeneity statistics rather than relying solely on the homogeneity test.

https://www.stata.com/manuals/meta.pdf#metametasummarizeMethodsandformulasHomogeneitytest
https://www.stata.com/manuals/meta.pdf#metametasummarizeMethodsandformulasHomogeneitytest
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Higgins and Thompson (2002) proposed two heterogeneity measures: 𝐼2 and 𝐻2. We define them

separately for random-effects and fixed-effects models.

For a random-effects model, the two heterogeneity measures are defined as follows:

𝐼2 = ̂𝜏2

̂𝜏2 + 𝑠2 × 100% (2)

and

𝐻2 = ̂𝜏2 + 𝑠2

𝑠2 (3)

where

𝑠2 = 𝐾 − 1
∑𝐾

𝑗=1 𝑤𝑗 − ∑𝐾
𝑗=1 𝑤2

𝑗 / ∑𝐾
𝑗=1 𝑤𝑗

is the within-study variance and ̂𝜏2 is an estimator of the between-study variance. The values of 𝐼2 and

𝐻2 will vary depending on which estimator of ̂𝜏2 is specified in the random() option.

For a fixed-effects model, the expressions for 𝐼2 and 𝐻2 are given by

𝐼2 = {𝑄 − (𝐾 − 1)
𝑄

} × 100%

and

𝐻2 = 𝑄
𝐾 − 1

where 𝑄 is defined in Homogeneity test.

The formulas above for 𝐼2 and 𝐻2 are equivalent to the corresponding formulas (2) and (3), when

the DLmethod is used to estimate 𝜏2. 𝐼2 is negative when 𝑄 < (𝐾 − 1) and is thus reset to zero in that
case.

Inverse Freeman–Tukey transformation
For each study, let ̂𝑝FT be the Freeman–Tukey-transformed proportion as defined in Freeman–Tukey-

transformed proportion in Methods and formulas in [META] meta esize.

The inverse Freeman–Tukey transformation, which back-transforms ̂𝑝FT to a proportion (option

transform(invftukey)), is given by (Miller 1978)

̂𝑝 = 0.5
⎧{
⎨{⎩

1 − sgn (cos ̂𝑝FT)
√√√

⎷
1 − (sin ̂𝑝FT +

sin ̂𝑝FT − 1
sin �̂�FT

𝑛
)

2⎫}
⎬}⎭

https://www.stata.com/manuals/meta.pdf#metametasummarizeMethodsandformulasHomogeneitytest
https://www.stata.com/manuals/meta.pdf#metametasummarizeMethodsandformulasmsumeqIsq
https://www.stata.com/manuals/meta.pdf#metametasummarizeMethodsandformulasmsumeqHsq
https://www.stata.com/manuals/metametaesize.pdf#metametaesizeMethodsandformulasFreeman--Tukey-transformedproportion
https://www.stata.com/manuals/metametaesize.pdf#metametaesizeMethodsandformulasFreeman--Tukey-transformedproportion
https://www.stata.com/manuals/metametaesize.pdf#metametaesizeMethodsandformulas
https://www.stata.com/manuals/metametaesize.pdf#metametaesize


meta summarize — Summarize meta-analysis data 35

where sgn is the sign operator. The expression depends on the study sample size 𝑛, which is available

for each study but not for the overall (pooled) effect size. To back-transform the overall effect size ̂𝜃,
where ̂𝜃 is obtained by pooling the study-specific ̂𝑝FT’s, to obtain the overall proportion, Miller (1978)

suggested to use 𝑛𝜃, the harmonic mean (default) of the study-specific sample sizes, in place of 𝑛 in the

above formula. Other estimators for 𝑛𝜃 include the geometric mean, arithmetic mean, or the inverse of

the variance of the overall effect size.

Because 0 ≤ 𝑒 ≤ 𝑛, each study’s ̂𝑝FT must be between asin{√1/(𝑛 + 1)} and

asin{√𝑛/(𝑛 + 1)} + 𝜋/2 [see (1) in [META] meta esize]. Thus, the above back-transformation is

valid only if asin{√1(𝑛𝜃 + 1)} ≤ ̂𝜃 ≤ asin{√𝑛𝜃/(𝑛𝜃 + 1)} + (𝜋/2). Therefore, in practice, the

overall proportion, ̂𝑝ov, is computed as follows:

̂𝑝ov =

⎧{{{
⎨{{{⎩

0 if ̂𝜃 < asin (√ 1
𝑛𝜃+1 )

1 if ̂𝜃 > asin (√ 𝑛𝜃
𝑛𝜃+1 ) + 𝜋

2

0.5
⎧{
⎨{⎩

1 − sgn (cos ̂𝜃) √1 − (sin ̂𝜃 +
sin ̂𝜃− 1

sin𝜃
𝑛𝜃

)
2⎫}
⎬}⎭

otherwise

(4)

Because ̂𝜃 can be bounded away from 0 whenever ̂𝜃 > asin{√1/(𝑛𝜃 + 1)}, the test statistic for
𝐻0∶ 𝜃 = 0 is adjusted as follows:

∣ ̂𝜃 − asin (√ 1
𝑛𝜃+1 )∣

√V̂ar ( ̂𝜃)

Homogeneity test
Consider a test of 𝐻0 ∶ 𝜃1 = 𝜃2 = · · · = 𝜃𝐾 = 𝜃, known as the homogeneity test, that evaluates

whether the effect sizes are the same across the studies. It uses the following test statistic,

𝑄 =
𝐾

∑
𝑗=1

𝑤𝑗 ( ̂𝜃𝑗 − ̂𝜃)
2

=
𝐾

∑
𝑗=1

𝑤𝑗
̂𝜃2
𝑗 −

(∑𝐾
𝑗=1 𝑤𝑗

̂𝜃𝑗)
2

∑𝐾
𝑗=1 𝑤𝑗

where 𝑤𝑗 = 1/�̂�2
𝑗 , and

̂𝜃𝑗 and
̂𝜃 depend on the type of the effect size chosen.

Under the null hypothesis of homogeneity, 𝑄 follows a 𝜒2 distribution with𝐾−1 degrees of freedom.

Hedges and Pigott (2001) showed that the test has low power when the number of studies (𝐾) is small,

which is typical in meta-analysis. This means that the null hypothesis of homogeneity is not rejected as

often as it should be. Thus, for the homogeneity test, the meta-analysis literature (for example, Petitti

[2001]; Berman and Parker [2002]; Sutton and Higgins [2008]) suggests using the significance level

𝛼 = 0.1 instead of the conventional 𝛼 = 0.05.

The homogeneity test checks for the potential presence of heterogeneity but does not estimate the

magnitude of the heterogeneity. Thus, many authors (for example, Higgins and Thompson [2002]; Hig-

gins et al. [2003]) suggest exploring the heterogeneity statistics rather than solely relying on the test. See

Heterogeneity measures.

https://www.stata.com/manuals/metametaesize.pdf#metametaesizeMethodsandformulasmeseqpft
https://www.stata.com/manuals/metametaesize.pdf#metametaesize
https://www.stata.com/manuals/meta.pdf#metametasummarizeMethodsandformulasHeterogeneitymeasures
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Subgroup meta-analysis
When the subgroup(varname) option is specified, we assume that the 𝐾 studies are partitioned into

𝐿 subgroups defined by varname. Estimates of the overall effect size and their corresponding standard

errors are calculated for each of the 𝐿 subgroups.

Let ̂𝜃𝑗𝑙 be the effect-size estimate from study 𝑗 within subgroup 𝑙 and �̂�2
𝑗𝑙 be the corresponding vari-

ance, where 𝑙 = 1, 2, . . . , 𝐿 and 𝑗 = 1, 2, . . . , 𝐾𝑙.

Below, we describe the formulas separately for fixed-effects and random-effects models. The for-

mulas for the common-effect model are the same as for the fixed-effects model. When you spec-

ify a common-effect model with subgroup analysis, this model is assumed within each subgroup 𝑙 =
1, 2, . . . , 𝐿, but not for the entire sample of studies.

Fixed-effects model

In what follows, we assume the inverse-variance method, but the same principles apply to the Man-

tel–Haenszel method.

In subgroup analysis, a fixed-effects model may be formulated as

̂𝜃𝑗𝑙 = 𝜃𝑗𝑙 + 𝜖𝑗𝑙, 𝜖𝑗𝑙 ∼ 𝑁 (0, �̂�2
𝑗𝑙)

For the 𝑙th group, ̂𝜃IV,𝑙 is a weighted average of the effect sizes
̂𝜃𝑗𝑙 with weights 𝑤𝑗𝑙 = 1/�̂�2

𝑗𝑙:

̂𝜃IV,𝑙 =
∑𝐾𝑙

𝑗=1 𝑤𝑗𝑙
̂𝜃𝑗𝑙

∑𝐾𝑙
𝑗=1 𝑤𝑗𝑙

The variance estimate of ̂𝜃IV,𝑙 is

V̂ar ( ̂𝜃IV,𝑙) = 1
𝑤.𝑙

where 𝑤.𝑙 = ∑𝐾𝑙
𝑗=1 𝑤𝑗𝑙.

Other meta-analytic quantities such as 𝐼2
𝑙 and 𝑄𝑙 may also be computed for the 𝑙th subgroup just as

we described in the previous sections.
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The Cochran’s 𝑄 statistic can be extended to test for differences between the 𝐿 subgroups:

𝑄𝑏 =
𝐿

∑
𝑙=1

𝑤.𝑙 ( ̂𝜃IV,𝑙 −
∑𝐿

𝑙=1 𝑤.𝑙
̂𝜃IV,𝑙

∑𝐿
𝑙=1 𝑤.𝑙

)
2

The subscript 𝑏 in 𝑄𝑏 stands for “between” to emphasize that 𝑄𝑏 tests for “between-group” differences.

Under the null hypothesis of homogeneity between the subgroups (𝜃.1 = 𝜃.2 = · · · = 𝜃.𝐿 = 𝜃), the
statistic 𝑄𝑏 has a 𝜒2 distribution with 𝐿 − 1 degrees of freedom.

Random-effects model

Consider a random-effects model with 𝐿 subgroups and separate between-study variances 𝜏2
𝑙 :

̂𝜃𝑗𝑙 = 𝜃.𝑙 + 𝑢𝑗𝑙 + 𝜖𝑗𝑙 𝜖𝑗𝑙 ∼ 𝑁 (0, �̂�2
𝑗𝑙) 𝑢𝑗𝑙 ∼ 𝑁 (0, 𝜏2

𝑙 )

The formulas for the random-effects model are the same as for the above fixed-effects model, except

we replace the weights with the random-effects weights.

The estimate, ̂𝜃∗
𝑙 , and its variance in the 𝑙th group are

̂𝜃∗
𝑙 =

∑𝐾𝑙
𝑗=1 𝑤∗

𝑗𝑙
̂𝜃𝑗𝑙

∑𝐾𝑙
𝑗=1 𝑤∗

𝑗𝑙

V̂ar ( ̂𝜃∗
𝑙 ) = 1

𝑤∗
.𝑙

where 𝑤∗
𝑗𝑙 = 1/(�̂�2

𝑗𝑙 + ̂𝜏2
𝑙 ) and 𝑤∗

.𝑙 = ∑𝐾𝑙
𝑗=1 𝑤∗

𝑗𝑙.

The Cochran’s statistic for testing differences between the 𝐿 subgroups is defined as

𝑄∗
𝑏 =

𝐿
∑
𝑙=1

𝑤∗
.𝑙 ( ̂𝜃∗

𝑙 −
∑𝐿

𝑙=1 𝑤∗
.𝑙

̂𝜃∗
𝑙

∑𝐿
𝑙=1 𝑤∗

.𝑙
)

2

Under the null hypothesis of homogeneity between the subgroups (𝜃.1 = 𝜃.2 = · · · = 𝜃.𝐿 = 𝜃), 𝑄∗
𝑏 has

a 𝜒2 distribution with 𝐿 − 1 degrees of freedom.

Also see Borenstein et al. (2009, chap. 19) and Schwarzer, Carpenter, and Rücker (2015).

Cumulative meta-analysis
To perform CMA, we first sort the studies in ascending order according to the values of the variable

specified in the cumulative() option. If suboption descending is specified within the cumulative()
option, the order is reversed. Mathematically, this corresponds to sorting the pairs ( ̂𝜃𝑗, �̂�2

𝑗 ) in the speci-

fied order. Let ( ̂𝜃𝑠
𝑗 , �̂�2,𝑠

𝑗 ) denote the sorted pairs.



meta summarize — Summarize meta-analysis data 38

CMA estimates 𝐾 overall effect sizes ̂𝜃𝑐
𝑗’s as follows,

̂𝜃𝑐
1 = ̂𝜃𝑠

1

̂𝜃𝑐
2 = MA ( ̂𝜃𝑠

1, ̂𝜃𝑠
2)

̂𝜃𝑐
3 = MA ( ̂𝜃𝑠

1, ̂𝜃𝑠
2, ̂𝜃𝑠

3)

⋮
̂𝜃𝑐
𝑗 = MA ( ̂𝜃𝑠

1, ̂𝜃𝑠
2, ̂𝜃𝑠

3, . . . , ̂𝜃𝑠
𝑗)

⋮
̂𝜃𝑐
𝐾 = MA ( ̂𝜃𝑠

1, ̂𝜃𝑠
2, ̂𝜃𝑠

3, . . . , ̂𝜃𝑠
𝐾)

where MA ( ̂𝜃𝑠
1, ̂𝜃𝑠

2, ̂𝜃𝑠
3, . . . , ̂𝜃𝑠

𝑗) denotes a meta-analysis applied to the sorted studies 1 through 𝑗. Note
that the meta-analysis also depends on the values �̂�2,𝑠

𝑗 but we omitted them from MA() for notational
convenience.

If suboption by(byvar) is specified within the cumulative() option, the above procedure is repeated
for each subgroup defined by variable byvar.

Leave-one-out meta-analysis

Leave-one-out meta-analysis estimates 𝐾 overall effect sizes ̂𝜃−𝑗’s as follows,

̂𝜃−1 = MA ( ̂𝜃2, ̂𝜃3, . . . , ̂𝜃𝐾)
̂𝜃−2 = MA ( ̂𝜃1, ̂𝜃3, . . . , ̂𝜃𝐾)

⋮
̂𝜃−𝑗 = MA ( ̂𝜃1, ̂𝜃2, . . . , ̂𝜃𝑗−1, ̂𝜃𝑗+1, . . . , ̂𝜃𝐾)

⋮
̂𝜃−𝐾 = MA ( ̂𝜃1, ̂𝜃2, ̂𝜃3, . . . , ̂𝜃𝐾−1)

where MA ( ̂𝜃1, ̂𝜃2, . . . , ̂𝜃𝑗−1, ̂𝜃𝑗+1, . . . , ̂𝜃𝐾) denotes a meta-analysis applied to all the studies except the

𝑗th study. Note that the meta-analysis also depends on the values �̂�2
𝑗 , but we omitted them from MA()

for notational convenience.
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