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Description

meta regress performs meta-analysis regression, or meta-regression, which is a linear regression
of the study effect sizes on study-level covariates (moderators). Meta-regression investigates whether
between-study heterogeneity can be explained by one or more moderators. You can think of meta-
regression as a standard meta-analysis that incorporates moderators into the model. meta regress
performs both random-effects and fixed-effects meta-regression.

Quick start
Perform meta-regression of the effect size, meta es, on covariate (moderator) x1

meta regress x1

Same as above, but assume a DerSimonian–Laird random-effects method instead of the method
declared by either meta set or meta esize

meta regress x1, random(dlaird)

Add a factor variable a, and request a Knapp–Hartung adjustment to the standard errors of coefficients
meta regress x1 i.a, random(dlaird) se(khartung)

Perform a sensitivity analysis by assuming a fixed value of 0.2 for the between-study variance τ2

meta regress x1 i.a, tau2(0.2)

Menu
Statistics > Meta-analysis
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Syntax

Meta-regression using meta-analysis model as declared with meta set or meta esize

meta regress moderators
[

if
] [

in
] [

, reopts options
]

Random-effects meta-regression

meta regress moderators
[

if
] [

in
]
, random

[
(remethod)

] [
reopts options

]
Fixed-effects meta-regression

meta regress moderators
[

if
] [

in
]
, fixed

[
multiplicative options

]
Constant-only meta-regression

meta regress cons
[

if
] [

in
] [

, modelopts
]

reopts Description

tau2(#) sensitivity meta-analysis using a fixed value of between-study variance τ2

i2(#) sensitivity meta-analysis using a fixed value of heterogeneity statistic I2res
se(seadj) adjust standard errors of the coefficients

options Description

Model

noconstant suppress constant term
tdistribution report t tests instead of z tests for the coefficients

Reporting

level(#) set confidence level; default is as declared for meta-analysis
noheader suppress output header[
no
]
metashow display or suppress meta settings in the output

display options control columns and column formats, row spacing, line width,
display of omitted variables and base and empty cells, and
factor-variable labeling

Maximization

maximize options control the maximization process; seldom used

coeflegend display legend instead of statistics

moderators may contain factor variables; see [U] 11.4.3 Factor variables.
collect is allowed; see [U] 11.1.10 Prefix commands.
coeflegend does not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.
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remethod Description

reml restricted maximum likelihood; the default
mle maximum likelihood
ebayes empirical Bayes
dlaird DerSimonian–Laird
sjonkman Sidik–Jonkman
hedges Hedges
hschmidt Hunter–Schmidt

modelopts is any option except noconstant.

Options

� � �
Model �

noconstant; see [R] Estimation options. This option is not allowed with constant-only meta-
regression.

Options random() and fixed, when specified with meta regress, temporarily override the global
model declared by meta set or meta esize during the computation. Options random(), common,
and fixed may not be combined. If these options are omitted, the declared meta-analysis model is
assumed; see Declaring a meta-analysis model in [META] meta data. Also see Meta-analysis models
in [META] Intro.

random and random(remethod) specify that a random-effects model be assumed for meta-regression;
see Random-effects model in [META] Intro.

remethod specifies the type of estimator for the between-study variance τ2. remethod is one of
reml, mle, ebayes, dlaird, sjonkman, hedges, or hschmidt. random is a synonym for
random(reml). See Options in [META] meta esize for more information.

fixed specifies that a fixed-effects model be assumed for meta-regression; see Fixed-effects model
in [META] Intro. It uses the inverse-variance estimation method; see Meta-analysis estimation
methods in [META] Intro.

reopts are tau2(#), i2(#), and se(khartung
[
, truncated

]
). These options are used with

random-effects meta-regression.

tau2(#) specifies the value of the between-study variance parameter, τ2, to use for the random-
effects meta-regression. This option is useful for exploring the sensitivity of the results to
different levels of between-study heterogeneity. Only one of tau2() or i2() may be specified.

i2(#) specifies the value of the residual heterogeneity statistic I2res (as a percentage) to use for
the random-effects meta-regression. This option is useful for exploring the sensitivity of the
results to different levels of between-study heterogeneity. Only one of i2() or tau2() may
be specified.
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se(seadj) specifies that the adjustment seadj be applied to the standard errors of the coefficients.
Additionally, the tests of significance of the coefficients are based on a Student’s t distribution
instead of the normal distribution.

seadj is khartung
[
, truncated

]
. Adjustment khartung specifies that the Knapp–Hartung

adjustment (Hartung and Knapp 2001a, 2001b; Knapp and Hartung 2003), also known as the
Sidik–Jonkman adjustment (Sidik and Jonkman 2002), be applied to the standard errors of
the coefficients. hknapp and sjonkman are synonyms for khartung. truncated specifies
that the truncated Knapp–Hartung adjustment (Knapp and Hartung 2003), also known as the
modified Knapp–Hartung adjustment, be used.

multiplicative performs a fixed-effects meta-regression that accounts for residual heterogeneity by
including a multiplicative variance parameter φ. φ is referred to as an “(over)dispersion parameter”.
See Introduction for details.

tdistribution reports t tests instead of z tests for the coefficients. This option is useful, for
instance, when meta regress is used to conduct a regression-based test for funnel-plot asymmetry.
Traditionally, the test statistic from this test is compared with critical values from a Student’s
t distribution instead of the default normal distribution. This option may not be combined with
option se().

� � �
Reporting �

level(#) specifies the confidence level, as a percentage, for confidence intervals. The default is
as declared for the meta-analysis session; see Declaring a confidence level for meta-analysis in
[META] meta data. Also see option level() in [META] meta set.

noheader suppresses the output header, either at estimation or upon replay.

metashow and nometashow display or suppress the meta setting information. By default, this
information is displayed at the top of the output. You can also specify nometashow with meta
update to suppress the meta setting output for the entire meta-analysis session.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] Estimation options.

� � �
Maximization �

maximize options: iterate(#), tolerance(#), nrtolerance(#), nonrtolerance (see [R] Max-
imize), from(#), and showtrace. These options control the iterative estimation of the between-
study variance parameter, τ2, with random-effects methods reml, mle, and ebayes. These options
are seldom used.

from(#) specifies the initial value for τ2 during estimation. By default, the initial value for τ2

is the noniterative Hedges estimator.

showtrace displays the iteration log that contains the estimated parameter τ2, its relative difference
with the value from the previous iteration, and the scaled gradient.

The following option is available with meta regress but is not shown in the dialog box:

coeflegend; see [R] Estimation options.

https://www.stata.com/manuals/metametadata.pdf#metametadataRemarksandexamplesDeclaringaconfidencelevelformeta-analysis
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Remarks and examples stata.com

Remarks are presented under the following headings:
Introduction
Examples of using meta regress

Introduction
Meta-regression is a regression performed in the context of meta-analysis. It is used to study

the relationship between study effect sizes and covariates. Meta-regression is analogous to standard
regression used when individual data are available, but in meta-regression, the observations are the
studies, the outcome of interest is the effect size, and the covariates are recorded at the study level. The
study-level covariates in meta-regression are known as moderators. Several examples of moderators
include study location, study test environment, drug administration method. For a general overview
and discussions about meta-regression, see Berlin and Antman (1992), Berkey et al. (1995), and
Thompson and Higgins (2002).

The goal of meta-regression is to explore and explain the between-study heterogeneity as a
function of moderators. Two types of regression models, fixed-effects (FE) and random-effects (RE),
are available. An FE meta-regression assumes that all heterogeneity between study effect sizes can be
accounted for by the included moderators. An RE meta-regression accounts for potential additional
variability unexplained by the included moderators, also known as residual heterogeneity. Because
a common-effect meta-analysis model implies no study heterogeneity, it is not applicable to meta-
regression, except in a less interesting case of a constant-only model, which is equivalent to the
standard common-effect meta-analysis; see [META] meta summarize.

meta regress fits meta-regression. Use the random() option to fit an RE meta-regression and
the fixed option to fit an FE meta-regression. Also see Default meta-analysis model and method in
[META] meta data to learn about the default regression model used by meta regress.

For the jth study, let θ̂j denote the effect size, σ̂2
j its variance, and xj be a 1 × p vector of

moderators with the corresponding unknown p× 1 coefficient vector β.

An FE meta-regression (Greenland 1987) is given by

θ̂j = xjβ+ εj , weighted by wj =
1

σ̂2
j

, where εj ∼ N
(
0, σ̂2

j

)
Residual heterogeneity may be incorporated into an FE meta-regression via a multiplicative factor, φ,

applied to each of the variances σ̂2
j . This leads to a multiplicative meta-regression or FE meta-regression

with multiplicative dispersion parameter (Thompson and Sharp 1999)

θ̂j = xjβ+ εφj , weighted by wj =
1

σ̂2
j

, where εφj ∼ N
(
0, σ̂2

jφ
)

This regression model may be specified by the combination of fixed and multiplicative options.

Another method of incorporating residual heterogeneity is to include an additive between-study
variance component, τ2, that leads to an RE meta-regression (Berkey et al. 1995), also known as a
mixed model in the meta-analysis literature:

θ̂j = xjβ+ ε∗j = xjβ+ uj + εj , weighted by w∗j =
1

σ̂2
j + τ̂2

, where ε∗j ∼ N
(
0, σ̂2

j + τ2
)

As we mentioned earlier, an RE meta-regression assumes that the moderators explain only part of the
heterogeneity, and a random-effects term uj ∼ N(0, τ2) is used to account for the remainder.

http://stata.com
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Harbord and Higgins (2016) point out that some authors (Thompson and Sharp 1999; Higgins
and Thompson 2004) argue that an FE meta-regression should not be used because, in practice, the
included moderators rarely capture all the between-study heterogeneity and that the failure of the FE
regression to capture the extra between-study heterogeneity can lead to excessive type I errors. Also,
the results from an FE meta-regression, including its multiplicative version, may not be generalized
to populations from which the observed studies are a sample (Konstantopoulos and Hedges 2009). If
you do not specify a meta-analysis model with meta set or meta esize during declaration, an RE
meta-regression will be assumed by meta regress.

Meta-regression can also be considered an extension of subgroup analysis (see meta summarize,
subgroup() in [META] meta summarize) to include continuous moderators in addition to the
categorical ones. In particular, an FE meta-regression with the subgroup variable specified as a factor
variable (see [U] 11.4.3 Factor variables) is equivalent to the FE subgroup analysis on that variable.

It is recommended that you have at least 10 studies per moderator to perform meta-regression
(Borenstein et al. 2009, chap. 20). Otherwise, you may not be able to estimate the effects of moderators
reliably. For more recommendations regarding meta-regression, see Schmidt and Hunter (2015, chap. 9),
Deeks, Macaskill, and Irwig (2005), Harbord and Higgins (2016), Sharp (2016), and Thompson and
Higgins (2002).

Examples of using meta regress

Consider a dataset from Colditz et al. (1994) of clinical trials that explore the efficacy of a Bacillus
Calmette-Guérin (BCG) vaccine in the prevention of tuberculosis (TB). This dataset was introduced in
Efficacy of BCG vaccine against tuberculosis (bcg.dta) of [META] meta. In this section, we use its
declared version and focus on the demonstration of various options of meta regress and explanation
of its output.

. use https://www.stata-press.com/data/r18/bcgset
(Efficacy of BCG vaccine against tuberculosis; set with -meta esize-)

. meta query, short
-> meta esize npost - nnegc, esize(lnrratio) studylabel(studylbl)

Effect-size label: Log risk-ratio
Effect-size type: lnrratio

Effect size: _meta_es
Std. err.: _meta_se

Model: Random effects
Method: REML

meta query, short reminds us about the main settings of the declaration step. Our data were
declared by using meta esize with variables npost, nnegt, nposc, and nnegc representing the
summary data from 2× 2 tables, which record the numbers of positive and negative TB cases in the
treatment and control groups. The computed effect sizes are log risk-ratios; their values and standard
errors are stored in the respective system variables meta es and meta se. The studylbl variable
supplies the study labels to be used in the output. The declared meta-analysis model is the default
random-effects model with the REML estimation method.

Examples are presented under the following headings:

Example 1: Random-effects meta-regression
Example 2: Sidik–Jonkman random-effects method
Example 3: Truncated Knapp–Hartung standard-error adjustment
Example 4: Sensitivity meta-analysis
Example 5: Fixed-effects meta-regression
Example 6: Multiplicative meta-regression
Example 7: Constant-only model

https://www.stata.com/manuals/metametaset.pdf#metametaset
https://www.stata.com/manuals/metametaesize.pdf#metametaesize
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Example 1: Random-effects meta-regression

In example 9 of [META] meta, following Berkey et al. (1995), we fit a meta-regression with a
centered absolute latitude, latitude c, as the moderator to address heterogeneity. Let’s refit this
model here and focus on the specification and output from meta regress.

. meta regress latitude_c

Effect-size label: Log risk-ratio
Effect size: _meta_es

Std. err.: _meta_se

Random-effects meta-regression Number of obs = 13
Method: REML Residual heterogeneity:

tau2 = .07635
I2 (%) = 68.39

H2 = 3.16
R-squared (%) = 75.63

Wald chi2(1) = 16.36
Prob > chi2 = 0.0001

_meta_es Coefficient Std. err. z P>|z| [95% conf. interval]

latitude_c -.0291017 .0071953 -4.04 0.000 -.0432043 -.0149991
_cons -.7223204 .1076535 -6.71 0.000 -.9333174 -.5113234

Test of residual homogeneity: Q_res = chi2(11) = 30.73 Prob > Q_res = 0.0012

Unlike with many Stata regression commands, we do not specify the dependent variable with meta
regress. The command includes it automatically from the declared meta settings. meta regress
provides a short summary of the settings, which you can suppress with the nometashow option.
System variable meta es contains the effect sizes and is thus used as the dependent variable.
System variable meta se contains effect-size standard errors; it is used to construct the weights for
the regression.

The header includes the information about the meta-analysis model and reports various summaries
such as heterogeneity statistics and the model test. For example, the results are based on 13 studies.
The reported I2res statistic is 68%, which still suggests moderate heterogeneity, using the categorization
of Higgins et al. (2003), even after including latitude c as the moderator. In other words, 68%
of the variability in the residuals is still attributed to the between-study variation, whereas only
32% is attributed to the within-study variation. The adjusted R2 statistic can be used to assess the
proportion of between-study variance explained by the covariates; see (6) in Methods and formulas
for its definition used in the meta-analysis literature. Here roughly 76% of the between-study variance
is explained by the covariate latitude c.

The output header also displays a model test that all coefficients other than the intercept are equal
to zero based on the χ2 distribution with p − 1 degrees of freedom. In our example, the χ2 test
statistic is 16.36 with a p-value of 0.0001. We have only one moderator, so the results of the model
test in our example are equivalent to the z test (χ2 value equals squared z value) of the coefficient
of latitude c reported in the output table.

The regression coefficient for latitude c is−0.029, which means that every one degree of latitude
corresponds to a decrease of 0.0291 units in log risk-ratio. The intercept, β̂0, is −0.722, which means
that the overall risk ratio at the mean latitude (latitude c = 0 corresponds to latitude ≈ 33.46)
is exp(−0.722) = 0.46. Both of these coefficients are statistically significantly different from zero
based on the reported z tests.

https://www.stata.com/manuals/metameta.pdf#metametaRemarksandexamplesmetaexreg
https://www.stata.com/manuals/metameta.pdf#metameta
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https://www.stata.com/manuals/meta.pdf#metametaregressMethodsandformulasmregeqR
https://www.stata.com/manuals/meta.pdf#metametaregressMethodsandformulas
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Finally, a test of residual homogeneity is reported at the bottom of the output. The test statistic
Qres is 30.73 with a p-value of 0.0012, which suggests the presence of heterogeneity among the
residuals.

Technical note

Heterogeneity statistics I2res and H2
res, reported under Residual heterogeneity: in the header,

are extensions of the corresponding statistics I2 and H2 from standard meta-analysis to meta-
regression (Higgins and Thompson 2002). They measure the remaining between-study heterogeneity
among the residuals after adjusting for the variability due to moderators. Similarly, the test of residual
homogeneity based on the Qres statistic is the extension of the standard meta-analysis homogeneity
test based on the Cochran’s Q statistic to meta-regression. See Residual heterogeneity measures and
Residual homogeneity test in Methods and formulas.

Example 2: Sidik–Jonkman random-effects method

Continuing with example 1, let’s demonstrate the use of a different RE method, for instance, the
Sidik–Jonkman method, instead of the default REML method.

. meta regress latitude_c, random(sjonkman)

Effect-size label: Log risk-ratio
Effect size: _meta_es

Std. err.: _meta_se

Random-effects meta-regression Number of obs = 13
Method: Sidik--Jonkman Residual heterogeneity:

tau2 = .2318
I2 (%) = 86.79

H2 = 7.57
R-squared (%) = 32.90

Wald chi2(1) = 6.50
Prob > chi2 = 0.0108

_meta_es Coefficient Std. err. z P>|z| [95% conf. interval]

latitude_c -.0280714 .0110142 -2.55 0.011 -.0496589 -.0064838
_cons -.7410395 .1602117 -4.63 0.000 -1.055049 -.4270304

Test of residual homogeneity: Q_res = chi2(11) = 30.73 Prob > Q_res = 0.0012

The estimate of the regression coefficient for latitude c is −0.028 and is similar to the REML
estimate of −0.029, but the standard errors are quite different: 0.011 versus 0.007. Recall that REML
assumes that the error distribution is normal, whereas the Sidik–Jonkman estimator does not. Thus,
its standard error estimates are likely to be larger than those from REML. The estimates of the
between-study variance, τ2, are also very different: 0.23 compared with the REML estimate of 0.08.

https://www.stata.com/manuals/meta.pdf#metametaregressMethodsandformulasResidualheterogeneitymeasures
https://www.stata.com/manuals/meta.pdf#metametaregressMethodsandformulasResidualhomogeneitytest
https://www.stata.com/manuals/meta.pdf#metametaregressMethodsandformulas
https://www.stata.com/manuals/meta.pdf#metametaregressRemarksandexamplesmregexdefault
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Example 3: Truncated Knapp–Hartung standard-error adjustment

Continuing with example 1, let’s use an alternative standard-error computation sometimes used in
practice—the truncated Knapp–Hartung method.

. meta regress latitude_c, se(khartung, truncated)

Effect-size label: Log risk-ratio
Effect size: _meta_es

Std. err.: _meta_se

Random-effects meta-regression Number of obs = 13
Method: REML Residual heterogeneity:
SE adjustment: Truncated Knapp--Hartung tau2 = .07635

I2 (%) = 68.39
H2 = 3.16

R-squared (%) = 75.63
Model F(1,11) = 12.59
Prob > F = 0.0046

_meta_es Coefficient Std. err. t P>|t| [95% conf. interval]

latitude_c -.0291017 .0082014 -3.55 0.005 -.0471529 -.0110505
_cons -.7223204 .1227061 -5.89 0.000 -.9923946 -.4522462

Test of residual homogeneity: Q_res = chi2(11) = 30.73 Prob > Q_res = 0.0012

The reported standard errors are larger than those from example 1. This is expected because the Knapp–
Hartung adjustment incorporates the uncertainty in estimating τ2 in the standard error computation.
Also, the inferences for the tests of coefficients and the model test are now based on the Student’s t
and F distributions, respectively, instead of the default normal and χ2 distributions.

Example 4: Sensitivity meta-analysis

We can perform sensitivity analysis to explore the impact of the various levels of heterogeneity
on the regression results. Continuing with example 1, let’s fit a meta-regression assuming that the
residual heterogeneity statistic I2res equals 90%.

. meta regress latitude_c, i2(90)

Effect-size label: Log risk-ratio
Effect size: _meta_es

Std. err.: _meta_se

Random-effects meta-regression Number of obs = 13
Method: User-specified I2 Residual heterogeneity:

tau2 = .3176
I2 (%) = 90.00

H2 = 10.00
Wald chi2(1) = 4.89
Prob > chi2 = 0.0269

_meta_es Coefficient Std. err. z P>|z| [95% conf. interval]

latitude_c -.0277589 .0125474 -2.21 0.027 -.0523514 -.0031664
_cons -.7443082 .1812664 -4.11 0.000 -1.099584 -.3890326

Test of residual homogeneity: Q_res = chi2(11) = 30.73 Prob > Q_res = 0.0012

The estimate of the coefficient for latitude c is now −0.028 with a standard error estimate of
0.01.

https://www.stata.com/manuals/meta.pdf#metametaregressRemarksandexamplesmregexdefault
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https://www.stata.com/manuals/meta.pdf#metametaregressRemarksandexamplesmregexdefault
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Let’s now fit a meta-regression assuming the between-study variance of 0.01.

. meta regress latitude_c, tau2(0.01)

Effect-size label: Log risk-ratio
Effect size: _meta_es

Std. err.: _meta_se

Random-effects meta-regression Number of obs = 13
Method: User-specified tau2 Residual heterogeneity:

tau2 = .01
I2 (%) = 22.08

H2 = 1.28
Wald chi2(1) = 57.62
Prob > chi2 = 0.0000

_meta_es Coefficient Std. err. z P>|z| [95% conf. interval]

latitude_c -.0295601 .0038942 -7.59 0.000 -.0371926 -.0219277
_cons -.6767043 .0617892 -10.95 0.000 -.7978089 -.5555998

Test of residual homogeneity: Q_res = chi2(11) = 30.73 Prob > Q_res = 0.0012

The specified value of τ2 corresponds to the I2res value of 22.08%. The coefficient estimate is now
−0.03 with a standard error of 0.004.

In both sensitivity analyses, latitude c remained a statistically significant moderator for the log
risk-ratios.

Example 5: Fixed-effects meta-regression

Instead of an RE meta-regression as in example 1, we can use the fixed option to fit an FE
meta-regression. The use of an FE meta-regression is usually discouraged in the meta-analysis literature
because it assumes that all between-study heterogeneity is accounted for by the specified moderators
(Harbord and Higgins 2016; Thompson and Sharp 1999; Higgins and Thompson 2004). This is often
an unrealistic assumption in meta-analysis. We fit this model in our example for the purpose of
demonstration.

. meta regress latitude_c, fixed

Effect-size label: Log risk-ratio
Effect size: _meta_es

Std. err.: _meta_se

Fixed-effects meta-regression Number of obs = 13
Method: Inverse-variance Wald chi2(1) = 121.50

Prob > chi2 = 0.0000

_meta_es Coefficient Std. err. z P>|z| [95% conf. interval]

latitude_c -.0292369 .0026524 -11.02 0.000 -.0344356 -.0240383
_cons -.6347482 .0445446 -14.25 0.000 -.7220541 -.5474423

Because the FE regression assumes no additional residual heterogeneity, the residual heterogeneity
statistics and the residual homogeneity test are not reported with meta regress, fixed.

The coefficient estimates are similar to those from example 1, but standard errors from the FE
regression are smaller. This is because the FE regression does not account for the residual heterogeneity
that is not explained by the included moderators.

https://www.stata.com/manuals/meta.pdf#metametaregressRemarksandexamplesmregexdefault
https://www.stata.com/manuals/meta.pdf#metametaregressRemarksandexamplesmregexdefault
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Considering the presence of residual heterogeneity in these data, we should go back to our RE
analysis or explore the multiplicative meta-regression, which we demonstrate in example 6.

Example 6: Multiplicative meta-regression

An FE meta-regression in example 5 does not account for residual heterogeneity. An extension
of this regression model that does, known as a multiplicative meta-regression (see Introduction and
Methods and formulas), has been considered in the meta-analysis literature. An RE meta-regression is
the preferred analysis these days, but we provide the multiplicative meta-regression for completeness.

Continuing with example 5, we add the multiplicative option to fit an FE meta-regression with
a multiplicative dispersion parameter φ.

. meta regress latitude_c, fixed multiplicative

Effect-size label: Log risk-ratio
Effect size: _meta_es

Std. err.: _meta_se

Fixed-effects meta-regression Number of obs = 13
Error: Multiplicative Dispersion phi = 2.79
Method: Inverse-variance Wald chi2(1) = 43.49

Prob > chi2 = 0.0000

_meta_es Coefficient Std. err. z P>|z| [95% conf. interval]

latitude_c -.0292369 .0044335 -6.59 0.000 -.0379265 -.0205474
_cons -.6347482 .0744564 -8.53 0.000 -.7806801 -.4888163

Test of residual homogeneity: Q_res = chi2(11) = 30.73 Prob > Q_res = 0.0012

The estimate of the dispersion parameter, reported in the header as Dispersion phi, is 2.79. It is
greater than 1, which suggests the presence of residual heterogeneity in these data. The coefficient
estimates are the same as those in example 5, but the standard errors are about two times larger.

Example 7: Constant-only model

The primary use of meta regress is to fit meta-regression models containing moderators. You
can also fit a constant-only model (without moderators), although this is less common in the context
of meta-regression.

To fit a constant-only model with many regression estimation commands, you simply omit the
covariates in the command specification. This would not work with meta regress because, without
the dependent-variable specification, we would have to type

. meta regress

which means replaying previous estimation results consistently across Stata. The above will either
issue an error that previous estimation results are not found or redisplay the results from the previous
meta regress specification.

https://www.stata.com/manuals/meta.pdf#metametaregressRemarksandexamplesmregexmult
https://www.stata.com/manuals/meta.pdf#metametaregressRemarksandexamplesmregexfixed
https://www.stata.com/manuals/meta.pdf#metametaregressRemarksandexamplesIntroduction
https://www.stata.com/manuals/meta.pdf#metametaregressMethodsandformulas
https://www.stata.com/manuals/meta.pdf#metametaregressRemarksandexamplesmregexfixed
https://www.stata.com/manuals/meta.pdf#metametaregressRemarksandexamplesmregexfixed
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Instead, to fit a constant-only model with meta regress, you specify the designator cons
following the command name.

. meta regress _cons

Effect-size label: Log risk-ratio
Effect size: _meta_es

Std. err.: _meta_se

Random-effects meta-regression Number of obs = 13
Method: REML Residual heterogeneity:

tau2 = .3132
I2 (%) = 92.22

H2 = 12.86
Wald chi2(0) = .
Prob > chi2 = .

_meta_es Coefficient Std. err. z P>|z| [95% conf. interval]

_cons -.7145323 .1797815 -3.97 0.000 -1.066898 -.362167

Test of residual homogeneity: Q_res = chi2(12) = 152.23 Prob > Q_res = 0.0000

Note that the estimated value of τ̂2 is now 0.313, whereas in example 1 it was 0.076. That is,
the inclusion of covariate latitude c in example 1 reduced τ̂2 from 0.313 to 0.076 for a relative
reduction of (0.313− 0.076)/0.313 ≈ 76%.

The reason a constant-only meta-regression is not as common is because it produces the same
results as a standard meta-analysis.

. meta summarize, nostudies

Effect-size label: Log risk-ratio
Effect size: _meta_es

Std. err.: _meta_se
Study label: studylbl

Meta-analysis summary Number of studies = 13
Random-effects model Heterogeneity:
Method: REML tau2 = 0.3132

I2 (%) = 92.22
H2 = 12.86

theta: Overall Log risk-ratio

Estimate Std. err. z P>|z| [95% conf. interval]

theta -.7145323 .1797815 -3.97 0.000 -1.066898 -.362167

Test of homogeneity: Q = chi2(12) = 152.23 Prob > Q = 0.0000

See [META] meta summarize for details.

https://www.stata.com/manuals/meta.pdf#metametaregressRemarksandexamplesmregexdefault
https://www.stata.com/manuals/metametasummarize.pdf#metametasummarize
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Stored results
meta regress stores the following in e():

Scalars
e(N) number of observations (studies)
e(df m) model degrees of freedom
e(df r) residual degrees of freedom
e(chi2) model χ2 Wald test statistic
e(F) model F statistic
e(p) p-value for model test
e(phi) dispersion parameter
e(tau2) between-study variance
e(I2 res) I2res heterogeneity statistic
e(H2 res) H2

res heterogeneity statistic
e(R2) R2 heterogeneity measure
e(Q res) Cochran’s Q residual homogeneity test statistic
e(df Q res) degrees of freedom for residual homogeneity test
e(p Q res) p-value for residual homogeneity test
e(seadj) standard error adjustment
e(converged) 1 if converged, 0 otherwise (with iterative random-effects methods)

Macros
e(cmd) meta regress
e(cmdline) command as typed
e(depvar) name of dependent variable, meta es
e(indepvars) names of independent variables (moderators)
e(title) title in estimation output
e(model) meta-analysis model
e(method) meta-analysis estimation method
e(seadjtype) type of standard error adjustment
e(properties) b V
e(estat cmd) program used to implement estat
e(predict) program used to implement predict
e(marginsok) predictions allowed by margins
e(marginsnotok) predictions disallowed by margins
e(marginsdefault) default predict() specification for margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices
e(b) coefficient vector
e(V) variance–covariance matrix of the estimators

Functions
e(sample) marks estimation sample

In addition to the above, the following is stored in r():

Matrices
r(table) matrix containing the coefficients with their standard errors, test statistics, p-values,

and confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when
any r-class command is run after the estimation command.

meta regress also creates a system variable, meta regweight, that contains meta-regression
weights.



14 meta regress — Meta-analysis regression

Methods and formulas
Methods and formulas are presented under the following headings:

Fixed-effects meta-regression
Random-effects meta-regression

Iterative methods for computing τ̂2

Noniterative methods for computing τ̂2

Knapp–Hartung standard-error adjustment
Residual homogeneity test
Residual heterogeneity measures

Fixed-effects meta-regression

For an overview of estimation methods used by meta-regression, see Berkey et al. (1995), Sidik
and Jonkman (2005), and Viechtbauer et al. (2015).

Consider an FE meta-analysis, where θ̂j ∼ N(θj , σ̂
2
j ), θj is the true effect size for study j, θ̂j is

the estimated effect size, and σ̂2
j is the variance of θ̂j . In an FE meta-regression (Greenland 1987),

the study-specific mean, θj , is expressed as

θj = β0 + β1x1j + · · ·+ βp−1xp−1,j = xjβ

where xj = (1, x1j , . . . , xp−1,j) is a 1×p vector of categorical and continuous moderators (covariates)
and β is a p× 1 vector of regression coefficients to be estimated.

Defining K×p matrix X = (x′1,x
′
2, . . . ,x

′
K)′ and θ̂ = (θ̂1, θ̂2, . . . , θ̂K)′. Let wj = 1/σ̂2

j be the
weight associated with study j in an FE meta-analysis. The vector of estimated regression coefficients
is

β̂ = (X′WX)
−1

X′Wθ̂

where W = diag(w1, w2, . . . , wK).

The above FE regression does not account for residual heterogeneity. This can lead to coefficient
standard errors that are too small. Thompson and Sharp (1999) incorporated residual heterogeneity
into the model by including a multiplicative variance parameter:

θ̂j ∼ N
(
xjβ, φσ

2
j

)
For a multiplicative FE meta-regression, W in the above is replaced withWφ = diag(wφ1 , w

φ
2 , . . . ,wφK),

where the weights are defined as wφj = 1/(φ̂σ̂2
j ). φ̂ is estimated as the mean squared error from the

weighted linear regression with weights proportional to 1/σ̂2
j .

Next, we present another method of incorporating residual heterogeneity by including an additive
between-study variance parameter.



meta regress — Meta-analysis regression 15

Random-effects meta-regression

An RE meta-regression (Berkey et al. 1995) model may be expressed as

θ̂j = xjβ+ uj + εj uj ∼ N
(
0, τ2

)
εj ∼ N

(
0, σ̂2

j

)
All algorithms for RE meta-regression first estimate the between-study variance, τ2. The regression

coefficients are then estimated via weighted least squares,

β̂
∗
= (X′W∗X)

−1
X′W∗θ̂

where W∗ = diag(w∗1 , w
∗
2 , . . . , w

∗
K) and w∗j = 1/(σ̂2

j + τ̂2).

All the estimators of τ2 can be expressed in terms of the matrix

P = A−AX (X′AX)
−1

X′A (1)

where A is a p×p diagonal weight matrix whose elements depend on the type of estimator (Viechtbauer
et al. 2015).

The formulas in the following sections are based on Viechtbauer et al. (2015).

Iterative methods for computing τ̂2

The three estimators described below do not have a closed-form solution, and an iterative algorithm
is needed to obtain an estimate of τ2. The Fisher scoring algorithm, described below, is used to
estimate τ2.

All three estimators start with an initial estimate of τ2 based on the Hedges estimator, τ̂20 = τ̂2HE,
but you can specify your own initial estimate in the from() option. The estimate is then updated at
each iteration via the formula,

τ̂2new = τ̂2current + δ

where δ is a function of τ̂2current and its functional form depends on the estimation method.

The iteration terminates when reldif(τ̂2new, τ̂
2
current) is less than tolerance() and the scaled

gradient, computed based on the log-likelihood functions provided below, is less than nrtolerance();
see [R] Maximize.

The MLE of τ2 is the value that maximizes the log-likelihood function (Hardy and Thompson 1996)

lnLML

(
τ2
)
= −1

2

{
K ln(2π) + ln

∣∣τ2I+W−1∣∣+ θ̂
′
Pθ̂
}

The MLE formula for δ is

δMLE =
θ̂
′
PPθ̂− tr(W∗)

tr(W∗W∗)

The MLE estimator of τ2 does not incorporate the uncertainty about the unknown regression
coefficients β and thus can be negatively biased.

https://www.stata.com/manuals/rmaximize.pdf#rMaximize
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The REML estimate of τ2 is the value that maximizes the restricted log-likelihood function,

lnLREML

(
τ2
)
= lnLML

(
τ2
)
− 1

2
ln

∣∣∣∣∣∣
K∑
j=1

1

τ2 + σ̂2
j

x′jxj

∣∣∣∣∣∣+ p

2
ln(2π)

and the REML formula for δ is

δREML =
θ̂
′
PPθ̂− tr(P)

tr(PP)

The empirical Bayes estimator for τ2 was introduced by Morris (1983) and was first used in the
meta-analytic context by Berkey et al. (1995). This estimator is also known as the Paule–Mandel
estimator (Paule and Mandel 1982). The empirical Bayes formula for δ is

δEB =
K/(K − p)θ̂

′
Pθ̂−K

tr(W∗)

For the three above estimators, A = W∗ in the definition of the P matrix from (1).

Noniterative methods for computing τ̂2

This section describes noniterative methods, which have closed-form expressions.

The method of moments estimator of τ2 (DuMouchel and Harris [1983, eq. 3.12]; also see
Raudenbush [2009, eq. 16.43]), which can be viewed as an extension of the DerSimonian–Laird
estimator from the RE meta-analysis to meta-regression, is

τ̂2DL =
θ̂
′
Pθ̂− (K − p)

tr(P)

=
Qres − (K − p)

tr(W)− tr
{
WX (X′WX)

−1
X′W

} =
Qres − (K − p)∑K
j=1 wj (1− hj)

(2)

where P is defined in (1) with A = W, hj is the jth diagonal element of the “hat” matrix
X(X′WX)−1X′W, and Qres is defined in (3).

For a constant-only model, when p = 1, (2) reduces to the DerSimonian–Laird estimator from
Noniterative methods in [META] meta summarize.

Hedges (1983) used OLS to provide a method of moments estimator of τ̂2 for the RE meta-
analysis. In the context of meta-regression, the extension of the Hedges’s (HE) estimator introduced
by Raudenbush (2009, eq. 16.41) is

τ̂2HE =
θ̂
′
Pθ̂− tr(PW−1)

K − p

=

∑K
j=1

(
θ̂j − xjβ̂ols

)2
−
∑K
j=1 σ̂

2
j

(
1− holsj

)
K − p

https://www.stata.com/manuals/meta.pdf#metametaregressMethodsandformulasmregeqP
https://www.stata.com/manuals/metametasummarize.pdf#metametasummarizeMethodsandformulasNoniterativemethods
https://www.stata.com/manuals/metametasummarize.pdf#metametasummarizeMethodsandformulasNoniterativemethods
https://www.stata.com/manuals/meta.pdf#metametaregressMethodsandformulasmregeqP
https://www.stata.com/manuals/meta.pdf#metametaregressMethodsandformulasmregeqQres
https://www.stata.com/manuals/meta.pdf#metametaregressMethodsandformulasmregeqtaumm
https://www.stata.com/manuals/metametasummarize.pdf#metametasummarizeMethodsandformulasNoniterativemethods
https://www.stata.com/manuals/metametasummarize.pdf#metametasummarize
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where P is defined in (1) with A = I, β̂ols = (X′X)−1Xθ̂, and holsj is the jth diagonal element
of the OLS hat matrix X(X′X)−1X′.

Sidik and Jonkman (2005) proposed the following estimator. Consider an initial estimate of τ2,

τ̂20 =

∑K
j=1

(
θ̂j − θ

)2
K

θ =

∑K
j=1 θ̂j

K

Then, the estimator is defined as

τ̂2SJ =
θ̂
′
Pθ̂

K − p
=

∑K
j=1 w

SJ
j

(
θ̂j − xjβ̂SJ

)2
K − p

where wSJ
j = τ̂20 /(σ̂

2
j + τ̂20 ) is a diagonal element of A from (1), β̂SJ = (X′WSJX)−1X′WSJθ̂,

and WSJ is a K ×K diagonal matrix with elements wSJ
j .

The Sidik–Jonkman estimator is not truncated because, theoretically, it should always produce a
nonnegative estimate. However, Viechtbauer et al. (2015) point out that, technically, a negative value
can be produced in practice in an unlikely case of all θ̂j’s being identical.

Viechtbauer et al. (2015) provide the following extension for the estimator of τ2, which was
originally introduced by Schmidt and Hunter (2015) in the context of RE meta-analysis, to meta-
regression

τ̂2HS =
θ̂
′
Pθ̂−K
tr(W)

=
Qres −K

tr(W)

where P is defined in (1) with A = W.

Knapp–Hartung standard-error adjustment

By default, the inference about the regression coefficients and their confidence intervals from meta-
regression is based on a normal distribution. The test of the significance of all regression coefficients
is based on a χ2 distribution with p− 1 degrees of freedom.

Knapp and Hartung (2003) proposed an adjustment to the standard errors of the estimated regression
coefficients to account for the uncertainty in the estimation of τ2. They showed that the corresponding
tests of individual regression coefficients and their confidence intervals are based on the Student’s t
distribution with K − p degrees of freedom and that the overall test of significance is based on an
F distribution with p− 1 numerator and K − p denominator.

The Knapp–Hartung adjustment first calculates the quadratic form,

qKH =
θ̂
′
Pθ̂

K − p
where P is defined in (1) with A = W∗. It then multiplies the regular expressions of the variances
of regression coefficients by qKH or, in the case of the truncated Knapp–Hartung adjustment, by
max(1, qKH).

https://www.stata.com/manuals/meta.pdf#metametaregressMethodsandformulasmregeqP
https://www.stata.com/manuals/meta.pdf#metametaregressMethodsandformulasmregeqP
https://www.stata.com/manuals/meta.pdf#metametaregressMethodsandformulasmregeqP
https://www.stata.com/manuals/meta.pdf#metametaregressMethodsandformulasmregeqP
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Residual homogeneity test

Consider a test of residual homogeneity, which mathematically translates to H0 : τ
2 = 0 for

the random-effects meta-regression and to H0 : φ = 1 for the fixed-effects meta-regression with
multiplicative dispersion parameter φ. This test is based on the residual weighted sum of squares,
Qres,

Qres =

K∑
j=1

wj

(
θ̂j − xjβ̂

)2
=

K∑
j=1

(
θ̂j − xjβ̂

σ̂j

)2

(3)

which is a generalization of the heterogeneity test statistic, Q (see Homogeneity test in [META] meta
summarize), to the context of meta-regression.

Under the null hypothesis of residual homogeneity, Qres follows a χ2 distribution with K − p
degrees of freedom (Seber and Lee 2003, sec. 2.4).

Residual heterogeneity measures

The I2res statistic represents the percentage of residual between-study variation relative to the total
variability. For an RE meta-regression, it is defined by Higgins and Thompson (2002) as

I2res =
τ̂2

τ̂2 + s2
× 100% (4)

where s2 = (K − p)/tr(P) and A = W is used to define P. In the meta-regression context, the
H2 statistic is defined as

H2
res =

τ̂2 + s2

s2
(5)

Adjusted R2 (Harbord and Higgins 2016; Borenstein et al. 2009) measures the proportion of the
between-study variance that is explained by the moderators. It is defined as

R2 =
τ̂2c − τ̂2

τ̂2c
× 100% (6)

where τ̂2c is the between-study variance estimated from a constant-only model.
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Also see
[META] meta regress postestimation — Postestimation tools for meta regress

[META] meta data — Declare meta-analysis data

[META] meta forestplot — Forest plots
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[META] meta labbeplot — L’Abbé plots

[META] meta summarize — Summarize meta-analysis data
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