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Description
meta regress performs meta-analysis regression, or meta-regression, which is a linear regression

of the study effect sizes on study-level covariates (moderators). Meta-regression investigates whether

between-study heterogeneity can be explained by one or more moderators. You can think of meta-

regression as a standard meta-analysis that incorporates moderators into the model. meta regress per-

forms both random-effects and fixed-effects meta-regression.

Quick start
Perform meta-regression of the effect size, meta es, on covariate (moderator) x1

meta regress x1

Same as above, but assume a DerSimonian–Laird random-effects method instead of the method declared

by either meta set or meta esize
meta regress x1, random(dlaird)

Add a factor variable a, and request a Knapp–Hartung adjustment to the standard errors of coefficients
meta regress x1 i.a, random(dlaird) se(khartung)

Perform a sensitivity analysis by assuming a fixed value of 0.2 for the between-study variance 𝜏2

meta regress x1 i.a, tau2(0.2)

Menu
Statistics > Meta-analysis
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Syntax
Meta-regression using meta-analysis model as declared with meta set or meta esize

meta regress moderators [ if ] [ in ] [ , reopts options ]

Random-effects meta-regression

meta regress moderators [ if ] [ in ], random[ (remethod) ] [ reopts options ]

Fixed-effects meta-regression

meta regress moderators [ if ] [ in ], fixed [ multiplicative options ]

Constant-only meta-regression

meta regress cons [ if ] [ in ] [ , modelopts ]

reopts Description

tau2(#) sensitivity meta-analysis using a fixed value of between-study variance 𝜏2

i2(#) sensitivity meta-analysis using a fixed value of heterogeneity statistic 𝐼2
res

se(seadj) adjust standard errors of the coefficients

options Description

Model

noconstant suppress constant term

tdistribution report 𝑡 tests instead of 𝑧 tests for the coefficients

Reporting

level(#) set confidence level; default is as declared for meta-analysis

noheader suppress output header

[ no ]metashow display or suppress meta settings in the output

display options control columns and column formats, row spacing, line width,
display of omitted variables and base and empty cells, and
factor-variable labeling

Maximization

maximize options control the maximization process; seldom used

coeflegend display legend instead of statistics

moderators may contain factor variables; see [U] 11.4.3 Factor variables.

collect is allowed; see [U] 11.1.10 Prefix commands.

coeflegend does not appear in the dialog box.

See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.4inrange
https://www.stata.com/manuals/meta.pdf#metametaregressSyntaxreopts
https://www.stata.com/manuals/meta.pdf#metametaregressSyntaxopts
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.4inrange
https://www.stata.com/manuals/meta.pdf#metametaregressSyntaxremethod
https://www.stata.com/manuals/meta.pdf#metametaregressSyntaxreopts
https://www.stata.com/manuals/meta.pdf#metametaregressSyntaxopts
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.4inrange
https://www.stata.com/manuals/meta.pdf#metametaregressSyntaxopts
https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.4inrange
https://www.stata.com/manuals/metametaregress.pdf#metametaregressSyntaxmodelopts
https://www.stata.com/manuals/meta.pdf#metametaregressOptionsseadj
https://www.stata.com/manuals/meta.pdf#metametaregressOptionsdisplay_options
https://www.stata.com/manuals/meta.pdf#metametaregressOptionsmaxopts
https://www.stata.com/manuals/u11.pdf#u11.4.3Factorvariables
https://www.stata.com/manuals/u11.pdf#u11.1.10Prefixcommands
https://www.stata.com/manuals/u20.pdf#u20Estimationandpostestimationcommands
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remethod Description

reml restricted maximum likelihood; the default

mle maximum likelihood

ebayes empirical Bayes

dlaird DerSimonian–Laird

sjonkman Sidik–Jonkman

hedges Hedges

hschmidt Hunter–Schmidt

modelopts is any option except noconstant.

Options

� � �
Model �

noconstant; see [R] Estimation options. This option is not allowed with constant-only meta-

regression.

Options random() and fixed, when specified with meta regress, temporarily override the global

model declared by meta set or meta esize during the computation. Options random(), common, and
fixed may not be combined. If these options are omitted, the declared meta-analysis model is assumed;

see Declaring a meta-analysis model in [META]meta data. Also see Meta-analysis models in [META] In-

tro.

random and random(remethod) specify that a random-effects model be assumed for meta-regression;

see Random-effects model in [META] Intro.

remethod specifies the type of estimator for the between-study variance 𝜏2. remethod is one of

reml, mle, ebayes, dlaird, sjonkman, hedges, or hschmidt. random is a synonym for

random(reml). See Options in [META] meta esize for more information.

fixed specifies that a fixed-effects model be assumed for meta-regression; see Fixed-effects model in

[META] Intro. It uses the inverse-variance estimation method; see Meta-analysis estimation methods

in [META] Intro.

reopts are tau2(#), i2(#), and se(khartung[ , truncated ]). These options are used with random-
effects meta-regression.

tau2(#) specifies the value of the between-study variance parameter, 𝜏2, to use for the random-effects

meta-regression. This option is useful for exploring the sensitivity of the results to different levels

of between-study heterogeneity. Only one of tau2() or i2() may be specified.

i2(#) specifies the value of the residual heterogeneity statistic 𝐼2
res (as a percentage) to use for the

random-effects meta-regression. This option is useful for exploring the sensitivity of the results to

different levels of between-study heterogeneity. Only one of i2() or tau2() may be specified.

https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
https://www.stata.com/manuals/metametaset.pdf#metametaset
https://www.stata.com/manuals/metametaesize.pdf#metametaesize
https://www.stata.com/manuals/metametadata.pdf#metametadataRemarksandexamplesDeclaringameta-analysismodel
https://www.stata.com/manuals/metametadata.pdf#metametadata
https://www.stata.com/manuals/metaintro.pdf#metaIntroRemarksandexamplesMeta-analysismodels
https://www.stata.com/manuals/metaintro.pdf#metaIntro
https://www.stata.com/manuals/metaintro.pdf#metaIntro
https://www.stata.com/manuals/metaintro.pdf#metaIntroRemarksandexamplesRandom-effectsmodel
https://www.stata.com/manuals/metaintro.pdf#metaIntro
https://www.stata.com/manuals/metametaesize.pdf#metametaesizeOptionsrandom
https://www.stata.com/manuals/metametaesize.pdf#metametaesize
https://www.stata.com/manuals/metaintro.pdf#metaIntroRemarksandexamplesFixed-effectsmodel
https://www.stata.com/manuals/metaintro.pdf#metaIntro
https://www.stata.com/manuals/metaintro.pdf#metaIntroRemarksandexamplesMeta-analysisestimationmethods
https://www.stata.com/manuals/metaintro.pdf#metaIntro
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se(seadj) specifies that the adjustment seadj be applied to the standard errors of the coefficients.

Additionally, the tests of significance of the coefficients are based on a Student’s 𝑡 distribution
instead of the normal distribution.

seadj is khartung[ , truncated ]. Adjustment khartung specifies that the Knapp–Hartung

adjustment (Hartung and Knapp 2001a, 2001b; Knapp and Hartung 2003), also known as the

Sidik–Jonkman adjustment (Sidik and Jonkman 2002), be applied to the standard errors of the

coefficients. hknapp and sjonkman are synonyms for khartung. truncated specifies that the
truncated Knapp–Hartung adjustment (Knapp and Hartung 2003), also known as the modified

Knapp–Hartung adjustment, be used.

multiplicative performs a fixed-effects meta-regression that accounts for residual heterogeneity by

including a multiplicative variance parameter 𝜙. 𝜙 is referred to as an “(over)dispersion parameter”.

See Introduction for details.

tdistribution reports 𝑡 tests instead of 𝑧 tests for the coefficients. This option is useful, for instance,
when meta regress is used to conduct a regression-based test for funnel-plot asymmetry. Tradition-

ally, the test statistic from this test is compared with critical values from a Student’s 𝑡 distribution
instead of the default normal distribution. This option may not be combined with option se().

� � �
Reporting �

level(#) specifies the confidence level, as a percentage, for confidence intervals. The default is

as declared for the meta-analysis session; see Declaring a confidence level for meta-analysis in

[META] meta data. Also see option level() in [META] meta set.

noheader suppresses the output header, either at estimation or upon replay.

metashow and nometashow display or suppress the meta setting information. By default, this informa-

tion is displayed at the top of the output. You can also specify nometashow with meta update to

suppress the meta setting output for the entire meta-analysis session.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] Estimation options.

� � �
Maximization �

maximize options: iterate(#), tolerance(#), nrtolerance(#), nonrtolerance (see [R] Maxi-

mize), from(#), and showtrace. These options control the iterative estimation of the between-study
variance parameter, 𝜏2, with random-effects methods reml, mle, and ebayes. These options are

seldom used.

from(#) specifies the initial value for 𝜏2 during estimation. By default, the initial value for 𝜏2 is the

noniterative Hedges estimator.

showtrace displays the iteration log that contains the estimated parameter 𝜏2, its relative difference

with the value from the previous iteration, and the scaled gradient.

The following option is available with meta regress but is not shown in the dialog box:

coeflegend; see [R] Estimation options.

https://www.stata.com/manuals/metametaregress.pdf#metametaregressRemarksandexamplesIntroduction
https://www.stata.com/manuals/metametadata.pdf#metametadataRemarksandexamplesDeclaringaconfidencelevelformeta-analysis
https://www.stata.com/manuals/metametadata.pdf#metametadata
https://www.stata.com/manuals/metametaset.pdf#metametasetOptionslevel
https://www.stata.com/manuals/metametaset.pdf#metametaset
https://www.stata.com/manuals/metametaupdate.pdf#metametaupdate
https://www.stata.com/manuals/d.pdf#dformat
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
https://www.stata.com/manuals/rmaximize.pdf#rMaximize
https://www.stata.com/manuals/rmaximize.pdf#rMaximize
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
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Remarks and examples
Remarks are presented under the following headings:

Introduction
Examples of using meta regress

Introduction
Meta-regression is a regression performed in the context of meta-analysis. It is used to study the

relationship between study effect sizes and covariates. Meta-regression is analogous to standard regres-

sion used when individual data are available, but in meta-regression, the observations are the studies, the

outcome of interest is the effect size, and the covariates are recorded at the study level. The study-level

covariates in meta-regression are known as moderators. Several examples of moderators include study

location, study test environment, drug administration method. For a general overview and discussions

about meta-regression, see Berlin and Antman (1992), Berkey et al. (1995), and Thompson and Higgins

(2002).

The goal of meta-regression is to explore and explain the between-study heterogeneity as a function

of moderators. Two types of regression models, fixed-effects (FE) and random-effects (RE), are avail-

able. An FE meta-regression assumes that all heterogeneity between study effect sizes can be accounted

for by the included moderators. An RE meta-regression accounts for potential additional variability un-

explained by the included moderators, also known as residual heterogeneity. Because a common-effect

meta-analysis model implies no study heterogeneity, it is not applicable to meta-regression, except in a

less interesting case of a constant-only model, which is equivalent to the standard common-effect meta-

analysis; see [META] meta summarize.

meta regress fits meta-regression. Use the random() option to fit an RE meta-regression and

the fixed option to fit an FE meta-regression. Also see Default meta-analysis model and method in

[META] meta data to learn about the default regression model used by meta regress.

For the 𝑗th study, let ̂𝜃𝑗 denote the effect size, �̂�2
𝑗 its variance, and x𝑗 be a 1 × 𝑝 vector of moderators

with the corresponding unknown 𝑝 × 1 coefficient vector β.

An FE meta-regression (Greenland 1987) is given by

̂𝜃𝑗 = x𝑗β + 𝜖𝑗, weighted by 𝑤𝑗 = 1
�̂�2

𝑗
, where 𝜖𝑗 ∼ 𝑁 (0, �̂�2

𝑗 )

Residual heterogeneity may be incorporated into an FEmeta-regression via a multiplicative factor, 𝜙,
applied to each of the variances �̂�2

𝑗 . This leads to a multiplicative meta-regression or FEmeta-regression

with multiplicative dispersion parameter (Thompson and Sharp 1999)

̂𝜃𝑗 = x𝑗β + 𝜖𝜙
𝑗 , weighted by 𝑤𝑗 = 1

�̂�2
𝑗
, where 𝜖𝜙

𝑗 ∼ 𝑁 (0, �̂�2
𝑗 𝜙)

This regression model may be specified by the combination of fixed and multiplicative options.

Another method of incorporating residual heterogeneity is to include an additive between-study vari-

ance component, 𝜏2, that leads to an RE meta-regression (Berkey et al. 1995), also known as a mixed

model in the meta-analysis literature:

̂𝜃𝑗 = x𝑗β + 𝜖∗
𝑗 = x𝑗β + 𝑢𝑗 + 𝜖𝑗, weighted by 𝑤∗

𝑗 = 1
�̂�2

𝑗 + ̂𝜏2 , where 𝜖∗
𝑗 ∼ 𝑁 (0, �̂�2

𝑗 + 𝜏2)

https://www.stata.com/manuals/metametasummarize.pdf#metametasummarize
https://www.stata.com/manuals/metametadata.pdf#metametadataRemarksandexamplesDefaultmeta-analysismodelandmethod
https://www.stata.com/manuals/metametadata.pdf#metametadata
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As we mentioned earlier, an RE meta-regression assumes that the moderators explain only part of the

heterogeneity, and a random-effects term 𝑢𝑗 ∼ 𝑁(0, 𝜏2) is used to account for the remainder.
Harbord and Higgins (2016) point out that some authors (Thompson and Sharp 1999; Higgins and

Thompson 2004) argue that an FE meta-regression should not be used because, in practice, the included

moderators rarely capture all the between-study heterogeneity and that the failure of the FE regression to

capture the extra between-study heterogeneity can lead to excessive type I errors. Also, the results from

an FE meta-regression, including its multiplicative version, may not be generalized to populations from

which the observed studies are a sample (Konstantopoulos and Hedges 2009). If you do not specify a

meta-analysis model with meta set or meta esize during declaration, an RE meta-regression will be

assumed by meta regress.

Meta-regression can also be considered an extension of subgroup analysis (see meta summarize,
subgroup() in [META]meta summarize) to include continuousmoderators in addition to the categorical

ones. In particular, an FE meta-regression with the subgroup variable specified as a factor variable (see

[U] 11.4.3 Factor variables) is equivalent to the FE subgroup analysis on that variable.

It is recommended that you have at least 10 studies per moderator to perform meta-regression (Boren-

stein et al. 2009 , chap. 20). Otherwise, you may not be able to estimate the effects of moderators reliably.

For more recommendations regarding meta-regression, see Schmidt and Hunter (2015, chap. 9), Deeks,

Macaskill, and Irwig (2005), Harbord and Higgins (2016), Sharp (2016), and Thompson and Higgins

(2002).

Examples of using meta regress
Consider a dataset from Colditz et al. (1994) of clinical trials that explore the efficacy of a Bacillus

Calmette-Guérin (BCG) vaccine in the prevention of tuberculosis (TB). This dataset was introduced in

Efficacy of BCG vaccine against tuberculosis (bcg.dta) of [META] meta. In this section, we use its

declared version and focus on the demonstration of various options of meta regress and explanation of

its output.

. use https://www.stata-press.com/data/r19/bcgset
(Efficacy of BCG vaccine against tuberculosis; set with -meta esize-)
. meta query, short
-> meta esize npost - nnegc, esize(lnrratio) studylabel(studylbl)

Effect-size label: Log risk-ratio
Effect-size type: lnrratio

Effect size: _meta_es
Std. err.: _meta_se

Model: Random effects
Method: REML

meta query, short reminds us about the main settings of the declaration step. Our data were declared

by using meta esize with variables npost, nnegt, nposc, and nnegc representing the summary data

from 2×2 tables, which record the numbers of positive and negative TB cases in the treatment and control

groups. The computed effect sizes are log risk-ratios; their values and standard errors are stored in the

respective system variables meta es and meta se. The studylbl variable supplies the study labels

to be used in the output. The declared meta-analysis model is the default random-effects model with the

REML estimation method.

https://www.stata.com/manuals/metametaset.pdf#metametaset
https://www.stata.com/manuals/metametaesize.pdf#metametaesize
https://www.stata.com/manuals/metametasummarize.pdf#metametasummarizeOptionssubgroup
https://www.stata.com/manuals/metametasummarize.pdf#metametasummarizeOptionssubgroup
https://www.stata.com/manuals/metametasummarize.pdf#metametasummarize
https://www.stata.com/manuals/u11.pdf#u11.4.3Factorvariables
https://www.stata.com/manuals/metameta.pdf#metametaRemarksandexamplesbcgdta
https://www.stata.com/manuals/metameta.pdf#metameta
https://www.stata.com/manuals/metametaesize.pdf#metametaesize
https://www.stata.com/manuals/metametadata.pdf#metametadataRemarksandexamplesSystemvariables
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Examples are presented under the following headings:

Example 1: Random-effects meta-regression
Example 2: Sidik–Jonkman random-effects method
Example 3: Truncated Knapp–Hartung standard-error adjustment
Example 4: Sensitivity meta-analysis
Example 5: Fixed-effects meta-regression
Example 6: Multiplicative meta-regression
Example 7: Constant-only model

Example 1: Random-effects meta-regression
In example 9 of [META]meta, following Berkey et al. (1995), we fit a meta-regression with a centered

absolute latitude, latitude c, as the moderator to address heterogeneity. Let’s refit this model here and
focus on the specification and output from meta regress.

. meta regress latitude_c
Effect-size label: Log risk-ratio

Effect size: _meta_es
Std. err.: _meta_se

Random-effects meta-regression Number of obs = 13
Method: REML Residual heterogeneity:

tau2 = .07635
I2 (%) = 68.39

H2 = 3.16
R-squared (%) = 75.63

Wald chi2(1) = 16.36
Prob > chi2 = 0.0001

_meta_es Coefficient Std. err. z P>|z| [95% conf. interval]

latitude_c -.0291017 .0071953 -4.04 0.000 -.0432043 -.0149991
_cons -.7223204 .1076535 -6.71 0.000 -.9333174 -.5113234

Test of residual homogeneity: Q_res = chi2(11) = 30.73 Prob > Q_res = 0.0012

Unlike with many Stata regression commands, we do not specify the dependent variable with meta
regress. The command includes it automatically from the declared meta settings. meta regress pro-

vides a short summary of the settings, which you can suppress with the nometashow option. System

variable meta es contains the effect sizes and is thus used as the dependent variable. System variable

meta se contains effect-size standard errors; it is used to construct the weights for the regression.

The header includes the information about the meta-analysis model and reports various summaries

such as heterogeneity statistics and the model test. For example, the results are based on 13 studies.

The reported 𝐼2
res statistic is 68%, which still suggests moderate heterogeneity, using the categorization

of Higgins et al. (2003), even after including latitude c as the moderator. In other words, 68% of

the variability in the residuals is still attributed to the between-study variation, whereas only 32% is

attributed to the within-study variation. The adjusted 𝑅2 statistic can be used to assess the proportion of

between-study variance explained by the covariates; see (6) in Methods and formulas for its definition

used in the meta-analysis literature. Here roughly 76% of the between-study variance is explained by the

covariate latitude c.

The output header also displays a model test that all coefficients other than the intercept are equal to

zero based on the 𝜒2 distribution with 𝑝 − 1 degrees of freedom. In our example, the 𝜒2 test statistic

is 16.36 with a 𝑝-value of 0.0001. We have only one moderator, so the results of the model test in our

example are equivalent to the 𝑧 test (𝜒2 value equals squared 𝑧 value) of the coefficient of latitude c
reported in the output table.

https://www.stata.com/manuals/metametaregress.pdf#metametaregressRemarksandexamplesmregexdefault
https://www.stata.com/manuals/metametaregress.pdf#metametaregressRemarksandexamplesmregexsj
https://www.stata.com/manuals/metametaregress.pdf#metametaregressRemarksandexamplesmregexkh
https://www.stata.com/manuals/metametaregress.pdf#metametaregressRemarksandexamplesmregexsens
https://www.stata.com/manuals/metametaregress.pdf#metametaregressRemarksandexamplesmregexfixed
https://www.stata.com/manuals/metametaregress.pdf#metametaregressRemarksandexamplesmregexmult
https://www.stata.com/manuals/metametaregress.pdf#metametaregressRemarksandexamplesmregexcons
https://www.stata.com/manuals/metameta.pdf#metametaRemarksandexamplesmetaexreg
https://www.stata.com/manuals/metameta.pdf#metameta
https://www.stata.com/manuals/metaglossary.pdf#metaGlossarymeta_settings
https://www.stata.com/manuals/metametadata.pdf#metametadataRemarksandexamplesSystemvariables
https://www.stata.com/manuals/metametadata.pdf#metametadataRemarksandexamplesSystemvariables
https://www.stata.com/manuals/meta.pdf#metametaregressMethodsandformulasmregeqR
https://www.stata.com/manuals/meta.pdf#metametaregressMethodsandformulas
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The regression coefficient for latitude c is −0.029, which means that every one degree of latitude

corresponds to a decrease of 0.0291 units in log risk-ratio. The intercept, ̂𝛽0, is −0.722, which means

that the overall risk ratio at the mean latitude (latitude c = 0 corresponds to latitude ≈ 33.46) is

exp(−0.722) = 0.46. Both of these coefficients are statistically significantly different from zero based

on the reported 𝑧 tests.
Finally, a test of residual homogeneity is reported at the bottom of the output. The test statistic 𝑄res

is 30.73 with a 𝑝-value of 0.0012, which suggests the presence of heterogeneity among the residuals.

Technical note
Heterogeneity statistics 𝐼2

res and 𝐻2
res, reported under Residual heterogeneity: in the header, are

extensions of the corresponding statistics 𝐼2 and 𝐻2 from standard meta-analysis to meta-regression

(Higgins and Thompson 2002). They measure the remaining between-study heterogeneity among the

residuals after adjusting for the variability due to moderators. Similarly, the test of residual homogeneity

based on the 𝑄res statistic is the extension of the standard meta-analysis homogeneity test based on the

Cochran’s 𝑄 statistic to meta-regression. See Residual heterogeneity measures and Residual homogene-

ity test in Methods and formulas.

Example 2: Sidik–Jonkman random-effects method
Continuing with example 1, let’s demonstrate the use of a different RE method, for instance, the

Sidik–Jonkman method, instead of the default REML method.

. meta regress latitude_c, random(sjonkman)
Effect-size label: Log risk-ratio

Effect size: _meta_es
Std. err.: _meta_se

Random-effects meta-regression Number of obs = 13
Method: Sidik--Jonkman Residual heterogeneity:

tau2 = .2318
I2 (%) = 86.79

H2 = 7.57
R-squared (%) = 32.90

Wald chi2(1) = 6.50
Prob > chi2 = 0.0108

_meta_es Coefficient Std. err. z P>|z| [95% conf. interval]

latitude_c -.0280714 .0110142 -2.55 0.011 -.0496589 -.0064838
_cons -.7410395 .1602117 -4.63 0.000 -1.055049 -.4270304

Test of residual homogeneity: Q_res = chi2(11) = 30.73 Prob > Q_res = 0.0012

The estimate of the regression coefficient for latitude c is −0.028 and is similar to the REML estimate

of −0.029, but the standard errors are quite different: 0.011 versus 0.007. Recall that REML assumes that

the error distribution is normal, whereas the Sidik–Jonkman estimator does not. Thus, its standard error

estimates are likely to be larger than those from REML. The estimates of the between-study variance, 𝜏2,

are also very different: 0.23 compared with the REML estimate of 0.08.

https://www.stata.com/manuals/meta.pdf#metametaregressMethodsandformulasResidualheterogeneitymeasures
https://www.stata.com/manuals/meta.pdf#metametaregressMethodsandformulasResidualhomogeneitytest
https://www.stata.com/manuals/meta.pdf#metametaregressMethodsandformulasResidualhomogeneitytest
https://www.stata.com/manuals/meta.pdf#metametaregressMethodsandformulas
https://www.stata.com/manuals/meta.pdf#metametaregressRemarksandexamplesmregexdefault
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Example 3: Truncated Knapp–Hartung standard-error adjustment
Continuing with example 1, let’s use an alternative standard-error computation sometimes used in

practice—the truncated Knapp–Hartung method.

. meta regress latitude_c, se(khartung, truncated)
Effect-size label: Log risk-ratio

Effect size: _meta_es
Std. err.: _meta_se

Random-effects meta-regression Number of obs = 13
Method: REML Residual heterogeneity:
SE adjustment: Truncated Knapp--Hartung tau2 = .07635

I2 (%) = 68.39
H2 = 3.16

R-squared (%) = 75.63
Model F(1,11) = 12.59
Prob > F = 0.0046

_meta_es Coefficient Std. err. t P>|t| [95% conf. interval]

latitude_c -.0291017 .0082014 -3.55 0.005 -.0471529 -.0110505
_cons -.7223204 .1227061 -5.89 0.000 -.9923946 -.4522462

Test of residual homogeneity: Q_res = chi2(11) = 30.73 Prob > Q_res = 0.0012

The reported standard errors are larger than those from example 1. This is expected because the

Knapp–Hartung adjustment incorporates the uncertainty in estimating 𝜏2 in the standard error computa-

tion. Also, the inferences for the tests of coefficients and the model test are now based on the Student’s

𝑡 and 𝐹 distributions, respectively, instead of the default normal and 𝜒2 distributions.

Example 4: Sensitivity meta-analysis
We can perform sensitivity analysis to explore the impact of the various levels of heterogeneity on

the regression results. Continuing with example 1, let’s fit a meta-regression assuming that the residual

heterogeneity statistic 𝐼2
res equals 90%.

. meta regress latitude_c, i2(90)
Effect-size label: Log risk-ratio

Effect size: _meta_es
Std. err.: _meta_se

Random-effects meta-regression Number of obs = 13
Method: User-specified I2 Residual heterogeneity:

tau2 = .3176
I2 (%) = 90.00

H2 = 10.00
Wald chi2(1) = 4.89
Prob > chi2 = 0.0269

_meta_es Coefficient Std. err. z P>|z| [95% conf. interval]

latitude_c -.0277589 .0125474 -2.21 0.027 -.0523514 -.0031664
_cons -.7443082 .1812664 -4.11 0.000 -1.099584 -.3890326

Test of residual homogeneity: Q_res = chi2(11) = 30.73 Prob > Q_res = 0.0012

The estimate of the coefficient for latitude c is now −0.028 with a standard error estimate of 0.01.

https://www.stata.com/manuals/meta.pdf#metametaregressRemarksandexamplesmregexdefault
https://www.stata.com/manuals/meta.pdf#metametaregressRemarksandexamplesmregexdefault
https://www.stata.com/manuals/meta.pdf#metametaregressRemarksandexamplesmregexdefault
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Let’s now fit a meta-regression assuming the between-study variance of 0.01.

. meta regress latitude_c, tau2(0.01)
Effect-size label: Log risk-ratio

Effect size: _meta_es
Std. err.: _meta_se

Random-effects meta-regression Number of obs = 13
Method: User-specified tau2 Residual heterogeneity:

tau2 = .01
I2 (%) = 22.08

H2 = 1.28
Wald chi2(1) = 57.62
Prob > chi2 = 0.0000

_meta_es Coefficient Std. err. z P>|z| [95% conf. interval]

latitude_c -.0295601 .0038942 -7.59 0.000 -.0371926 -.0219277
_cons -.6767043 .0617892 -10.95 0.000 -.7978089 -.5555998

Test of residual homogeneity: Q_res = chi2(11) = 30.73 Prob > Q_res = 0.0012

The specified value of 𝜏2 corresponds to the 𝐼2
res value of 22.08%. The coefficient estimate is now −0.03

with a standard error of 0.004.

In both sensitivity analyses, latitude c remained a statistically significant moderator for the log

risk-ratios.

Example 5: Fixed-effects meta-regression
Instead of an RE meta-regression as in example 1, we can use the fixed option to fit an FE meta-

regression. The use of an FE meta-regression is usually discouraged in the meta-analysis literature be-

cause it assumes that all between-study heterogeneity is accounted for by the specified moderators (Har-

bord and Higgins 2016; Thompson and Sharp 1999; Higgins and Thompson 2004). This is often an

unrealistic assumption in meta-analysis. We fit this model in our example for the purpose of demonstra-

tion.

. meta regress latitude_c, fixed
Effect-size label: Log risk-ratio

Effect size: _meta_es
Std. err.: _meta_se

Fixed-effects meta-regression Number of obs = 13
Method: Inverse-variance Wald chi2(1) = 121.50

Prob > chi2 = 0.0000

_meta_es Coefficient Std. err. z P>|z| [95% conf. interval]

latitude_c -.0292369 .0026524 -11.02 0.000 -.0344356 -.0240383
_cons -.6347482 .0445446 -14.25 0.000 -.7220541 -.5474423

Because the FE regression assumes no additional residual heterogeneity, the residual heterogeneity statis-

tics and the residual homogeneity test are not reported with meta regress, fixed.

The coefficient estimates are similar to those from example 1, but standard errors from the FE regres-

sion are smaller. This is because the FE regression does not account for the residual heterogeneity that is

not explained by the included moderators.

https://www.stata.com/manuals/meta.pdf#metametaregressRemarksandexamplesmregexdefault
https://www.stata.com/manuals/meta.pdf#metametaregressRemarksandexamplesmregexdefault
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Considering the presence of residual heterogeneity in these data, we should go back to our RE analysis

or explore the multiplicative meta-regression, which we demonstrate in example 6.

Example 6: Multiplicative meta-regression
An FEmeta-regression in example 5 does not account for residual heterogeneity. An extension of this

regressionmodel that does, known as amultiplicativemeta-regression (see Introduction andMethods and

formulas), has been considered in the meta-analysis literature. An RE meta-regression is the preferred

analysis these days, but we provide the multiplicative meta-regression for completeness.

Continuing with example 5, we add the multiplicative option to fit an FE meta-regression with a

multiplicative dispersion parameter 𝜙.
. meta regress latitude_c, fixed multiplicative

Effect-size label: Log risk-ratio
Effect size: _meta_es

Std. err.: _meta_se
Fixed-effects meta-regression Number of obs = 13
Error: Multiplicative Dispersion phi = 2.79
Method: Inverse-variance Wald chi2(1) = 43.49

Prob > chi2 = 0.0000

_meta_es Coefficient Std. err. z P>|z| [95% conf. interval]

latitude_c -.0292369 .0044335 -6.59 0.000 -.0379265 -.0205474
_cons -.6347482 .0744564 -8.53 0.000 -.7806801 -.4888163

Test of residual homogeneity: Q_res = chi2(11) = 30.73 Prob > Q_res = 0.0012

The estimate of the dispersion parameter, reported in the header as Dispersion phi, is 2.79. It is greater
than 1, which suggests the presence of residual heterogeneity in these data. The coefficient estimates are

the same as those in example 5, but the standard errors are about two times larger.

Example 7: Constant-only model
The primary use of meta regress is to fit meta-regression models containing moderators. You can

also fit a constant-only model (without moderators), although this is less common in the context of meta-

regression.

To fit a constant-only model with many regression estimation commands, you simply omit the co-

variates in the command specification. This would not work with meta regress because, without the

dependent-variable specification, we would have to type

. meta regress

which means replaying previous estimation results consistently across Stata. The above will either issue

an error that previous estimation results are not found or redisplay the results from the previous meta
regress specification.

https://www.stata.com/manuals/meta.pdf#metametaregressRemarksandexamplesmregexmult
https://www.stata.com/manuals/meta.pdf#metametaregressRemarksandexamplesmregexfixed
https://www.stata.com/manuals/meta.pdf#metametaregressRemarksandexamplesIntroduction
https://www.stata.com/manuals/meta.pdf#metametaregressMethodsandformulas
https://www.stata.com/manuals/meta.pdf#metametaregressMethodsandformulas
https://www.stata.com/manuals/meta.pdf#metametaregressRemarksandexamplesmregexfixed
https://www.stata.com/manuals/meta.pdf#metametaregressRemarksandexamplesmregexfixed
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Instead, to fit a constant-only model with meta regress, you specify the designator cons following

the command name.

. meta regress _cons
Effect-size label: Log risk-ratio

Effect size: _meta_es
Std. err.: _meta_se

Random-effects meta-regression Number of obs = 13
Method: REML Residual heterogeneity:

tau2 = .3132
I2 (%) = 92.22

H2 = 12.86
Wald chi2(0) = .
Prob > chi2 = .

_meta_es Coefficient Std. err. z P>|z| [95% conf. interval]

_cons -.7145323 .1797815 -3.97 0.000 -1.066898 -.362167

Test of residual homogeneity: Q_res = chi2(12) = 152.23 Prob > Q_res = 0.0000

Note that the estimated value of ̂𝜏2 is now 0.313, whereas in example 1 it was 0.076. That is, the

inclusion of covariate latitude c in example 1 reduced ̂𝜏2 from 0.313 to 0.076 for a relative reduction

of (0.313 − 0.076)/0.313 ≈ 76%.

The reason a constant-only meta-regression is not as common is because it produces the same results

as a standard meta-analysis.

. meta summarize, nostudies
Effect-size label: Log risk-ratio

Effect size: _meta_es
Std. err.: _meta_se

Study label: studylbl
Meta-analysis summary Number of studies = 13
Random-effects model Heterogeneity:
Method: REML tau2 = 0.3132

I2 (%) = 92.22
H2 = 12.86

theta: Overall Log risk-ratio

Estimate Std. err. z P>|z| [95% conf. interval]

theta -.7145323 .1797815 -3.97 0.000 -1.066898 -.362167

Test of homogeneity: Q = chi2(12) = 152.23 Prob > Q = 0.0000

See [META] meta summarize for details.

https://www.stata.com/manuals/meta.pdf#metametaregressRemarksandexamplesmregexdefault
https://www.stata.com/manuals/metametasummarize.pdf#metametasummarize
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Stored results
meta regress stores the following in e():

Scalars

e(N) number of observations (studies)

e(df m) model degrees of freedom

e(df r) residual degrees of freedom

e(chi2) model 𝜒2 Wald test statistic

e(F) model 𝐹 statistic

e(p) 𝑝-value for model test
e(phi) dispersion parameter

e(tau2) between-study variance

e(I2 res) 𝐼2
res heterogeneity statistic

e(H2 res) 𝐻2
res heterogeneity statistic

e(R2) 𝑅2 heterogeneity measure

e(Q res) Cochran’s 𝑄 residual homogeneity test statistic

e(df Q res) degrees of freedom for residual homogeneity test

e(p Q res) 𝑝-value for residual homogeneity test
e(seadj) standard error adjustment

e(converged) 1 if converged, 0 otherwise (with iterative random-effects methods)

Macros

e(cmd) meta regress
e(cmdline) command as typed

e(depvar) name of dependent variable, meta es
e(indepvars) names of independent variables (moderators)

e(title) title in estimation output

e(model) meta-analysis model

e(method) meta-analysis estimation method

e(seadjtype) type of standard error adjustment

e(properties) b V
e(estat cmd) program used to implement estat
e(predict) program used to implement predict
e(marginsok) predictions allowed by margins
e(marginsnotok) predictions disallowed by margins
e(marginsdefault) default predict() specification for margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices

e(b) coefficient vector

e(V) variance–covariance matrix of the estimators

Functions

e(sample) marks estimation sample

In addition to the above, the following is stored in r():

Matrices

r(table) matrix containing the coefficients with their standard errors, test statistics, 𝑝-values, and
confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when any

r-class command is run after the estimation command.

meta regress also creates a system variable, meta regweight, that contains meta-regression

weights.
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Methods and formulas
Methods and formulas are presented under the following headings:

Fixed-effects meta-regression
Random-effects meta-regression

Iterative methods for computing ̂𝜏2

Noniterative methods for computing ̂𝜏2

Knapp–Hartung standard-error adjustment
Residual homogeneity test
Residual heterogeneity measures

Fixed-effects meta-regression
For an overview of estimation methods used by meta-regression, see Berkey et al. (1995), Sidik and

Jonkman (2005), and Viechtbauer et al. (2015).

Consider an FE meta-analysis, where ̂𝜃𝑗 ∼ 𝑁(𝜃𝑗, �̂�2
𝑗 ), 𝜃𝑗 is the true effect size for study 𝑗, ̂𝜃𝑗 is

the estimated effect size, and �̂�2
𝑗 is the variance of ̂𝜃𝑗. In an FE meta-regression (Greenland 1987), the

study-specific mean, 𝜃𝑗, is expressed as

𝜃𝑗 = 𝛽0 + 𝛽1𝑥1𝑗 + · · · + 𝛽𝑝−1𝑥𝑝−1,𝑗 = x𝑗β

where x𝑗 = (1, 𝑥1𝑗, . . . , 𝑥𝑝−1,𝑗) is a 1 × 𝑝 vector of categorical and continuous moderators (covariates)

and β is a 𝑝 × 1 vector of regression coefficients to be estimated.

Defining 𝐾 × 𝑝 matrix X = (x′
1, x′

2, . . . , x′
𝐾)′ and θ̂ = ( ̂𝜃1, ̂𝜃2, . . . , ̂𝜃𝐾)′. Let 𝑤𝑗 = 1/�̂�2

𝑗 be the

weight associated with study 𝑗 in an FE meta-analysis. The vector of estimated regression coefficients is

β̂ = (X′WX)−1
X′Wθ̂

whereW = diag(𝑤1, 𝑤2, . . . , 𝑤𝐾).
The above FE regression does not account for residual heterogeneity. This can lead to coefficient

standard errors that are too small. Thompson and Sharp (1999) incorporated residual heterogeneity into

the model by including a multiplicative variance parameter:

̂𝜃𝑗 ∼ 𝑁 (x𝑗β, 𝜙𝜎2
𝑗 )

For a multiplicative FE meta-regression,W in the above is replaced withW𝜙 = diag(𝑤𝜙
1 , 𝑤𝜙

2 , . . . ,𝑤
𝜙
𝐾),

where the weights are defined as 𝑤𝜙
𝑗 = 1/( ̂𝜙�̂�2

𝑗 ). ̂𝜙 is estimated as the mean squared error from the

weighted linear regression with weights proportional to 1/�̂�2
𝑗 .

Next, we present another method of incorporating residual heterogeneity by including an additive

between-study variance parameter.

https://www.stata.com/manuals/metametaregress.pdf#metametaregressMethodsandformulasIterativemethodsforcomputingtau-hat-squared
https://www.stata.com/manuals/metametaregress.pdf#metametaregressMethodsandformulasNoniterativemethodsforcomputingtau-hat-squared
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Random-effects meta-regression
An RE meta-regression (Berkey et al. 1995) model may be expressed as

̂𝜃𝑗 = x𝑗β + 𝑢𝑗 + 𝜖𝑗 𝑢𝑗 ∼ 𝑁 (0, 𝜏2) 𝜖𝑗 ∼ 𝑁 (0, �̂�2
𝑗 )

All algorithms for RE meta-regression first estimate the between-study variance, 𝜏2. The regression

coefficients are then estimated via weighted least squares,

β̂
∗

= (X′W∗X)−1
X′W∗θ̂

whereW∗ = diag(𝑤∗
1, 𝑤∗

2, . . . , 𝑤∗
𝐾) and 𝑤∗

𝑗 = 1/(�̂�2
𝑗 + ̂𝜏2).

All the estimators of 𝜏2 can be expressed in terms of the matrix

P = A− AX (X′AX)−1
X′A (1)

where A is a 𝑝 × 𝑝 diagonal weight matrix whose elements depend on the type of estimator (Viechtbauer

et al. 2015).

The formulas in the following sections are based on Viechtbauer et al. (2015).

Iterative methods for computing ̂𝜏2

The three estimators described below do not have a closed-form solution, and an iterative algorithm

is needed to obtain an estimate of 𝜏2. The Fisher scoring algorithm, described below, is used to estimate

𝜏2.

All three estimators start with an initial estimate of 𝜏2 based on the Hedges estimator, ̂𝜏2
0 = ̂𝜏2

HE, but

you can specify your own initial estimate in the from() option. The estimate is then updated at each

iteration via the formula,

̂𝜏2
new = ̂𝜏2

current + 𝛿

where 𝛿 is a function of ̂𝜏2
current and its functional form depends on the estimation method.

The iteration terminates when reldif( ̂𝜏2
new, ̂𝜏2

current) is less than tolerance() and the scaled gradi-

ent, computed based on the log-likelihood functions provided below, is less than nrtolerance(); see
[R]Maximize.

The MLE of 𝜏2 is the value that maximizes the log-likelihood function (Hardy and Thompson 1996)

ln𝐿ML (𝜏2) = −1
2

{𝐾 ln(2𝜋) + ln ∣𝜏2I+W−1∣ + θ̂
′
Pθ̂}

The MLE formula for 𝛿 is

𝛿MLE = θ̂
′
PPθ̂ − tr(W∗)
tr(W∗W∗)

The MLE estimator of 𝜏2 does not incorporate the uncertainty about the unknown regression coeffi-

cients β and thus can be negatively biased.

https://www.stata.com/manuals/rmaximize.pdf#rMaximize


meta regress — Meta-analysis regression 16

The REML estimate of 𝜏2 is the value that maximizes the restricted log-likelihood function,

ln𝐿REML (𝜏2) = ln𝐿ML (𝜏2) − 1
2
ln ∣

𝐾
∑
𝑗=1

1
𝜏2 + �̂�2

𝑗
x′

𝑗x𝑗∣ + 𝑝
2
ln(2𝜋)

and the REML formula for 𝛿 is

𝛿REML = θ̂
′
PPθ̂ − tr(P)
tr(PP)

The empirical Bayes estimator for 𝜏2 was introduced by Morris (1983) and was first used in the meta-

analytic context by Berkey et al. (1995). This estimator is also known as the Paule–Mandel estimator

(Paule and Mandel 1982). The empirical Bayes formula for 𝛿 is

𝛿EB = 𝐾/(𝐾 − 𝑝)θ̂
′
Pθ̂ − 𝐾

tr(W∗)

For the three above estimators, A = W∗ in the definition of the P matrix from (1).

Noniterative methods for computing ̂𝜏2

This section describes noniterative methods, which have closed-form expressions.

The method of moments estimator of 𝜏2 (DuMouchel and Harris [1983, eq. 3.12]; also see Rauden-

bush [2009, eq. 16.43]), which can be viewed as an extension of the DerSimonian–Laird estimator from

the RE meta-analysis to meta-regression, is

̂𝜏2
DL = θ̂

′
Pθ̂ − (𝐾 − 𝑝)

tr(P)

= 𝑄res − (𝐾 − 𝑝)
tr(W) − tr{WX (X′WX)−1

X′W}
= 𝑄res − (𝐾 − 𝑝)

∑𝐾
𝑗=1 𝑤𝑗 (1 − ℎ𝑗)

(2)

where P is defined in (1) with A = W, ℎ𝑗 is the 𝑗th diagonal element of the “hat” matrix

X(X′WX)−1X′W, and 𝑄res is defined in (3).

For a constant-only model, when 𝑝 = 1, (2) reduces to the DerSimonian–Laird estimator from Non-

iterative methods in [META] meta summarize.

Hedges (1983) used OLS to provide a method of moments estimator of ̂𝜏2 for the REmeta-analysis. In

the context of meta-regression, the extension of the Hedges’s (HE) estimator introduced by Raudenbush

(2009, eq. 16.41) is

̂𝜏2
HE = θ̂

′
Pθ̂ − tr(PW−1)

𝐾 − 𝑝

=
∑𝐾

𝑗=1 ( ̂𝜃𝑗 − x𝑗β̂ols
)

2
− ∑𝐾

𝑗=1 �̂�2
𝑗 (1 − ℎols

𝑗 )
𝐾 − 𝑝

where P is defined in (1) with A = I, β̂
ols

= (X′X)−1Xθ̂, and ℎols
𝑗 is the 𝑗th diagonal element of the OLS

hat matrix X(X′X)−1X′.

https://www.stata.com/manuals/meta.pdf#metametaregressMethodsandformulasmregeqP
https://www.stata.com/manuals/metametasummarize.pdf#metametasummarizeMethodsandformulasNoniterativemethods
https://www.stata.com/manuals/meta.pdf#metametaregressMethodsandformulasmregeqP
https://www.stata.com/manuals/meta.pdf#metametaregressMethodsandformulasmregeqQres
https://www.stata.com/manuals/meta.pdf#metametaregressMethodsandformulasmregeqtaumm
https://www.stata.com/manuals/metametasummarize.pdf#metametasummarizeMethodsandformulasNoniterativemethods
https://www.stata.com/manuals/metametasummarize.pdf#metametasummarizeMethodsandformulasNoniterativemethods
https://www.stata.com/manuals/metametasummarize.pdf#metametasummarize
https://www.stata.com/manuals/meta.pdf#metametaregressMethodsandformulasmregeqP
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Sidik and Jonkman (2005) proposed the following estimator. Consider an initial estimate of 𝜏2,

̂𝜏2
0 =

∑𝐾
𝑗=1 ( ̂𝜃𝑗 − 𝜃)

2

𝐾
𝜃 =

∑𝐾
𝑗=1

̂𝜃𝑗

𝐾

Then, the estimator is defined as

̂𝜏2
SJ = θ̂

′
Pθ̂

𝐾 − 𝑝
=

∑𝐾
𝑗=1 𝑤SJ

𝑗 ( ̂𝜃𝑗 − x𝑗β̂SJ
)

2

𝐾 − 𝑝

where 𝑤SJ
𝑗 = ̂𝜏2

0 /(�̂�2
𝑗 + ̂𝜏2

0 ) is a diagonal element of A from (1), β̂
SJ

= (X′WSJX)−1X′WSJθ̂, andWSJ

is a 𝐾 × 𝐾 diagonal matrix with elements 𝑤SJ
𝑗 .

The Sidik–Jonkman estimator is not truncated because, theoretically, it should always produce a non-

negative estimate. However, Viechtbauer et al. (2015) point out that, technically, a negative value can

be produced in practice in an unlikely case of all ̂𝜃𝑗’s being identical.

Viechtbauer et al. (2015) provide the following extension for the estimator of 𝜏2, which was originally

introduced by Schmidt and Hunter (2015) in the context of RE meta-analysis, to meta-regression

̂𝜏2
HS = θ̂

′
Pθ̂ − 𝐾
tr(W)

= 𝑄res − 𝐾
tr(W)

where P is defined in (1) with A = W.

Knapp–Hartung standard-error adjustment

By default, the inference about the regression coefficients and their confidence intervals from meta-

regression is based on a normal distribution. The test of the significance of all regression coefficients is

based on a 𝜒2 distribution with 𝑝 − 1 degrees of freedom.

Knapp and Hartung (2003) proposed an adjustment to the standard errors of the estimated regression

coefficients to account for the uncertainty in the estimation of 𝜏2. They showed that the corresponding

tests of individual regression coefficients and their confidence intervals are based on the Student’s 𝑡
distribution with 𝐾 − 𝑝 degrees of freedom and that the overall test of significance is based on an 𝐹
distribution with 𝑝 − 1 numerator and 𝐾 − 𝑝 denominator.

The Knapp–Hartung adjustment first calculates the quadratic form,

𝑞KH = θ̂
′
Pθ̂

𝐾 − 𝑝
where P is defined in (1) with A = W∗. It then multiplies the regular expressions of the variances of re-

gression coefficients by 𝑞KH or, in the case of the truncated Knapp–Hartung adjustment, by max(1, 𝑞KH).

https://www.stata.com/manuals/meta.pdf#metametaregressMethodsandformulasmregeqP
https://www.stata.com/manuals/meta.pdf#metametaregressMethodsandformulasmregeqP
https://www.stata.com/manuals/meta.pdf#metametaregressMethodsandformulasmregeqP
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Residual homogeneity test
Consider a test of residual homogeneity, which mathematically translates to 𝐻0 ∶ 𝜏2 = 0 for the

random-effects meta-regression and to 𝐻0∶ 𝜙 = 1 for the fixed-effects meta-regression with multiplica-

tive dispersion parameter 𝜙. This test is based on the residual weighted sum of squares, 𝑄res,

𝑄res =
𝐾

∑
𝑗=1

𝑤𝑗 ( ̂𝜃𝑗 − x𝑗β̂)
2

=
𝐾

∑
𝑗=1

(
̂𝜃𝑗 − x𝑗β̂

�̂�𝑗
)

2

(3)

which is a generalization of the heterogeneity test statistic, 𝑄 (see Homogeneity test in [META] meta

summarize), to the context of meta-regression.

Under the null hypothesis of residual homogeneity, 𝑄res follows a 𝜒2 distribution with 𝐾 − 𝑝 degrees

of freedom (Seber and Lee 2003, sec. 2.4).

Residual heterogeneity measures
The 𝐼2

res statistic represents the percentage of residual between-study variation relative to the total

variability. For an RE meta-regression, it is defined by Higgins and Thompson (2002) as

𝐼2
res = ̂𝜏2

̂𝜏2 + 𝑠2 × 100% (4)

where 𝑠2 = (𝐾 − 𝑝)/tr(P) and A = W is used to define P. In the meta-regression context, the 𝐻2

statistic is defined as

𝐻2
res = ̂𝜏2 + 𝑠2

𝑠2 (5)

Adjusted 𝑅2 (Harbord and Higgins 2016; Borenstein et al. 2009 ) measures the proportion of the

between-study variance that is explained by the moderators. It is defined as

𝑅2 = ̂𝜏2
𝑐 − ̂𝜏2

̂𝜏2
𝑐

× 100% (6)

where ̂𝜏2
𝑐 is the between-study variance estimated from a constant-only model.

References
Berkey, C. S., D. C. Hoaglin, F. Mosteller, and G.A. Colditz. 1995.A random-effects regression model for meta-analysis.

Statistics in Medicine 14: 395–411. https://doi.org/10.1002/sim.4780140406.

Berlin, J. A., and E. M. Antman. 1992. Advantages and limitations of meta-analytic regressions of clinical trials data.

Controlled Clinical Trials 13: 422. https://doi.org/10.1016/0197-2456(92)90151-O.

Borenstein, M., L. V. Hedges, J. P. T. Higgins, and H. R. Rothstein. 2009. Introduction to Meta-Analysis. Chichester, UK:

Wiley.

Colditz, G. A., T. F. Brewer, C. S. Berkey, M. E. Wilson, E. Burdick, H. V. Fineberg, and F. Mosteller. 1994. Efficacy

of BCG vaccine in the prevention of tuberculosis: Meta-analysis of the published literature. Journal of the American

Medical Association 271: 698–702. https://doi.org/10.1001/jama.1994.03510330076038.

https://www.stata.com/manuals/metametasummarize.pdf#metametasummarizeMethodsandformulasHomogeneitytest
https://www.stata.com/manuals/metametasummarize.pdf#metametasummarize
https://www.stata.com/manuals/metametasummarize.pdf#metametasummarize
https://doi.org/10.1002/sim.4780140406
https://doi.org/10.1016/0197-2456(92)90151-O
https://www.stata.com/bookstore/ima.html
https://doi.org/10.1001/jama.1994.03510330076038


meta regress — Meta-analysis regression 19

Deeks, J. J., P. Macaskill, and L. Irwig. 2005. The performance of tests of publication bias and other sample size effects

in systematic reviews of diagnostic test accuracy was assessed. Journal of Clinical Epidemiology 58: 882–893. https:

//doi.org/10.1016/j.jclinepi.2005.01.016.

DuMouchel, W. H., and J. E. Harris. 1983. Bayes methods for combining the results of cancer studies in humans and

other species. Journal of the American Statistical Association 78: 293–308. https://doi.org/10.2307/2288631.

Greenland, S. 1987. Quantitative methods in the review of epidemiologic literature. Epidemiologic Reviews 9: 1–30.

https://doi.org/10.1093/oxfordjournals.epirev.a036298.

Harbord, R. M., and J. P. T. Higgins. 2016. “Meta-regression in Stata”. InMeta-Analysis in Stata: An Updated Collection

from the Stata Journal, edited by T. M. Palmer and J. A. C. Sterne, 85–111. 2nd ed. College Station, TX: Stata Press.

Hardy, R. J., and S. G. Thompson. 1996.Alikelihood approach tometa-analysis with random effects. Statistics inMedicine

15: 619–629. https://doi.org/10.1002/(SICI)1097-0258(19960330)15:6<619::AID-SIM188>3.0.CO;2-A.

Hartung, J., and G. Knapp. 2001a. On tests of the overall treatment effect in meta-analysis with normally distributed

responses. Statistics in Medicine 20: 1771–1782. https://doi.org/10.1002/sim.791.

———. 2001b. A refined method for the meta-analysis of controlled clinical trials with binary outcome. Statistics in

Medicine 20: 3875–3889. https://doi.org/10.1002/sim.1009.

Hedges, L. V. 1983.A random effects model for effect sizes. Psychological Bulletin 93: 388–395. https://doi.org/10.1037/

0033-2909.93.2.388.

Higgins, J. P. T., and S. G. Thompson. 2002. Quantifying heterogeneity in a meta-analysis. Statistics in Medicine 21:

1539–1558. https://doi.org/10.1002/sim.1186.

———. 2004. Controlling the risk of spurious findings from meta-regression. Statistics in Medicine 23: 1663–1682.

https://doi.org/10.1002/sim.1752.

Higgins, J. P. T., S. G. Thompson, J. J. Deeks, and D. G. Altman. 2003. Measuring inconsistency in meta-analyses. BMJ

327: 557–560. https://doi.org/10.1136/bmj.327.7414.557.

Knapp, G., and J. Hartung. 2003. Improved tests for a random effects meta-regression with a single covariate. Statistics

in Medicine 22: 2693–2710. https://doi.org/10.1002/sim.1482.

Konstantopoulos, S., and L. V. Hedges. 2009. “Analyzing effect sizes: Fixed-effects models”. In The Handbook of Re-

search Synthesis and Meta-Analysis, edited by H. Cooper, L. V. Hedges, and J. C. Valentine, 279–293. 2nd ed. New

York: Russell Sage Foundation.

Morris, C. N. 1983. Parametric empirical Bayes inference: Theory and applications. Journal of the American Statistical

Association 78: 47–55. https://doi.org/10.2307/2287098.

Paule, R. C., and J. Mandel. 1982. Consensus values and weighting factors. Journal of Research of the National Bureau of

Standards 87: 377–385. https://doi.org/10.6028/jres.087.022.

Raudenbush, S. W. 2009. “Analyzing effect sizes: Random-effects models”. In The Handbook of Research Synthesis and

Meta-Analysis, edited by H. Cooper, L. V. Hedges, and J. C. Valentine, 295–316. 2nd ed. New York: Russell Sage

Foundation.

Schmidt, F. L., and J. E. Hunter. 2015.Methods of Meta-Analysis: Correcting Error and Bias in Research Findings. 3rd ed.

Thousand Oaks, CA: Sage. https://doi.org/10.4135/9781483398105.

Seber, G. A. F., and A. J. Lee. 2003. Linear Regression Analysis. 2nd ed. Hoboken, NJ: Wiley. https://doi.org/10.1002/

9780471722199.

Sharp, S. J. 2016. “Meta-analysis regression”. In Meta-Analysis in Stata: An Updated Collection from the Stata Journal,

edited by T. M. Palmer and J. A. C. Sterne, 112–120. 2nd ed. College Station, TX: Stata Press.

Sidik, K., and J. N. Jonkman. 2002.A simple confidence interval for meta-analysis. Statistics in Medicine 21: 3153–3159.

https://doi.org/10.1002/sim.1262.

———. 2005. A note on variance estimation in random effects meta-regression. Journal of Biopharmaceutical Statistics

15: 823–838. https://doi.org/10.1081/BIP-200067915.

Thompson, S. G., and J. P. T. Higgins. 2002. How should meta-regression analyses be undertaken and interpreted? Statis-

tics in Medicine 21: 1559–1573. https://doi.org/10.1002/sim.1187.

Thompson, S. G., and S. J. Sharp. 1999. Explaining heterogeneity in meta-analysis: A comparison of methods. Statistics

in Medicine 18: 2693–2708. https://doi.org/10.1002/(sici)1097-0258(19991030)18:20<2693::aid-sim235>3.0.co;2-v.

https://doi.org/10.1016/j.jclinepi.2005.01.016
https://doi.org/10.1016/j.jclinepi.2005.01.016
https://doi.org/10.2307/2288631
https://doi.org/10.1093/oxfordjournals.epirev.a036298
https://www.stata-press.com/books/meta-analysis-in-stata
https://www.stata-press.com/books/meta-analysis-in-stata
https://doi.org/10.1002/(SICI)1097-0258(19960330)15:6<619::AID-SIM188>3.0.CO;2-A
https://doi.org/10.1002/sim.791
https://doi.org/10.1002/sim.1009
https://doi.org/10.1037/0033-2909.93.2.388
https://doi.org/10.1037/0033-2909.93.2.388
https://doi.org/10.1002/sim.1186
https://doi.org/10.1002/sim.1752
https://doi.org/10.1136/bmj.327.7414.557
https://doi.org/10.1002/sim.1482
https://doi.org/10.2307/2287098
https://doi.org/10.6028/jres.087.022
https://doi.org/10.4135/9781483398105
https://doi.org/10.1002/9780471722199
https://doi.org/10.1002/9780471722199
https://www.stata-press.com/books/meta-analysis-in-stata
https://doi.org/10.1002/sim.1262
https://doi.org/10.1081/BIP-200067915
https://doi.org/10.1002/sim.1187
https://doi.org/10.1002/(sici)1097-0258(19991030)18:20<2693::aid-sim235>3.0.co;2-v


meta regress — Meta-analysis regression 20

Viechtbauer, W., J. A. López-López, J. Sánchez-Meca, and F. Marín-Martínez. 2015. A comparison of procedures to test

for moderators in mixed-effects meta-regression models. Psychological Methods 20: 360–374. https://doi.org/10.1037/

met0000023.

Also see
[META] meta regress postestimation — Postestimation tools for meta regress

[META] meta data — Declare meta-analysis data

[META] meta forestplot — Forest plots

[META] meta galbraithplot — Galbraith plots

[META] meta labbeplot — L’Abbé plots

[META] meta summarize — Summarize meta-analysis data

[META] meta — Introduction to meta

[META] Glossary

[META] Intro — Introduction to meta-analysis

[U] 20 Estimation and postestimation commands

Stata, Stata Press, Mata, NetCourse, and NetCourseNow are registered trademarks of StataCorp
LLC. Stata and Stata Press are registered trademarks with the World Intellectual Property Or-
ganization of the United Nations. StataNow is a trademark of StataCorp LLC. Other brand and
product names are registered trademarks or trademarks of their respective companies. Copyright
© 1985–2025 StataCorp LLC, College Station, TX, USA. All rights reserved.

®

For suggested citations, see the FAQ on citing Stata documentation.

https://doi.org/10.1037/met0000023
https://doi.org/10.1037/met0000023
https://www.stata.com/manuals/metametaregresspostestimation.pdf#metametaregresspostestimation
https://www.stata.com/manuals/metametadata.pdf#metametadata
https://www.stata.com/manuals/metametaforestplot.pdf#metametaforestplot
https://www.stata.com/manuals/metametagalbraithplot.pdf#metametagalbraithplot
https://www.stata.com/manuals/metametalabbeplot.pdf#metametalabbeplot
https://www.stata.com/manuals/metametasummarize.pdf#metametasummarize
https://www.stata.com/manuals/metameta.pdf#metameta
https://www.stata.com/manuals/metaglossary.pdf#metaGlossary
https://www.stata.com/manuals/metaintro.pdf#metaIntro
https://www.stata.com/manuals/u20.pdf#u20Estimationandpostestimationcommands
https://www.stata.com/support/faqs/resources/citing-software-documentation-faqs/

