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Description
meta mvregress performs multivariate meta-regression. You can think of multivariate meta-

regression as an extension of meta-regression, where multiple potentially dependent effect sizes are

available for each study. meta mvregress performs both random-effects and fixed-effects multivari-

ate meta-regression with various covariance structures and estimation methods for the random effects.

meta mvregress is a standalone command in the sense that it does not require you to declare your data

as meta data using meta set or meta esize.

Quick start
Perform random-effects multivariate meta-analysis of the effect-size variables y1 and y2 with within-

study covariance structure defined by variables v11, v12, and v22
meta mvregress y1 y2, wcovvariables(v11 v12 v22)

Same as above, but perform random-effects multivariate meta-regression on continuous variable x1 and

factor variable x2
meta mvregress y1 y2 = x1 i.x2, wcovvariables(v11 v12 v22)

Same as above, but estimate random-effects using ML instead of the default REML

meta mvregress y1 y2 = x1 i.x2, wcovvariables(v11 v12 v22) random(mle)

Same as above, but specify an independent random-effects covariance structure instead of the default

unstructured covariance matrix

meta mvregress y1 y2 = x1 i.x2, wcovvariables(v11 v12 v22) ///
random(mle, covariance(independent))

Same as above, but use a truncated Jackson–Riley adjustment to the standard errors of coefficients

meta mvregress y1 y2 = x1 i.x2, wcovvariables(v11 v12 v22) ///
random(mle, covariance(independent) se(truncjriley))

Perform a fixed-effects multivariate meta-analysis of variables y1 and y2 with standard error variables

s1 and s2, and assume a within-study correlation value of 0
meta mvregress y1 y2, fixed wsevariables(s1 s2) wcorrelations(0)

Perform multivariate meta-analysis of three effect-size variables y1, y2, and y3 with six within-study

variance–covariance variables v11, v12, v13, v22, v23, and v33
meta mvregress y1 y2 y3, wcovvariables(v11 v12 v13 v22 v23 v33)

Same as above, but using varlist shortcut notations and assuming the variables appear in the dataset in

the order shown above

meta mvregress y1-y3, wcovvariables(v11-v33)
meta mvregress y*, wcovvariables(v*)
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https://www.stata.com/manuals/metametaregress.pdf#metametaregress
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Menu
Statistics > Meta-analysis

Syntax
Random-effects multivariate meta-regression

meta mvregress depvars = moderators [ if ] [ in ], wcovspec [ random(randomspec)
options ]

Fixed-effects multivariate meta-regression

meta mvregress depvars = moderators [ if ] [ in ], wcovspec fixed [ options ]

Multivariate meta-analysis (constant-only model)

meta mvregress depvars [ if ] [ in ], wcovspec [modelopts ]

wcovspec Description

Model
∗ wcovvariables(varlist) specify within-study variance and covariance variables
∗ wsevariables(varlist) specify within-study standard-error variables
∗ wcorrelations(# | numlist) specify within-study correlation values

Either wcovvariables() or both wsevariables() and wcorrelations() are required.

For random(randomspec), the syntax of randomspec is

remethod [ , covariance(recov) se(seadj) ]

remethod Description

reml restricted maximum likelihood; the default

mle maximum likelihood

jwriley Jackson–White–Riley

recov Description

unstructured all variances and covariances to be distinctly estimated; the default

independent one unique variance parameter per random effect; all covariances 0

exchangeable equal variances for random effects and one common pairwise
covariance

identity equal variances for random effects; all covariances 0

fixed(matname) fixed random-effects covariance matrix matname

seadj Description

jriley Jackson–Riley standard-error adjustment

truncjriley truncated Jackson–Riley standard-error adjustment

https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.4inrange
https://www.stata.com/manuals/meta.pdf#metametamvregressSyntaxwcovspec
https://www.stata.com/manuals/meta.pdf#metametamvregressSyntaxrandomspec
https://www.stata.com/manuals/meta.pdf#metametamvregressSyntaxopts
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.4inrange
https://www.stata.com/manuals/meta.pdf#metametamvregressSyntaxwcovspec
https://www.stata.com/manuals/meta.pdf#metametamvregressSyntaxopts
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.4inrange
https://www.stata.com/manuals/meta.pdf#metametamvregressSyntaxwcovspec
https://www.stata.com/manuals/metametamvregress.pdf#metametamvregressSyntaxmodelopts
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/meta.pdf#metametamvregressSyntaxremethod
https://www.stata.com/manuals/meta.pdf#metametamvregressSyntaxrecov
https://www.stata.com/manuals/meta.pdf#metametamvregressSyntaxseadj
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options Description

Model

noconstant suppress constant term

tdistribution(#) compute 𝑡 tests instead of 𝑧 tests for regression coefficients

Reporting

level(#) set confidence level; default is level(95)
stddeviations show random-effects parameter estimates as standard deviations and

correlations; the default

variance show random-effects parameter estimates as variances and covariances

nohomtest suppress output for homogeneity test

noretable suppress random-effects table

nofetable suppress fixed-effects table

estmetric show parameter estimates as stored in e(b)
noheader suppress output header

display options control columns and column formats, row spacing, line width,
display of omitted variables and base and empty cells, and
factor-variable labeling

Maximization

maximize options control the maximization process; seldom used

coeflegend display legend instead of statistics

moderators may contain factor variables; see [U] 11.4.3 Factor variables.

collect is allowed; see [U] 11.1.10 Prefix commands.

coeflegend does not appear in the dialog box.

See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

modelopts is any of options except noconstant.

Options

� � �
Model �

wcovvariables(varlist) or wsevariables(varlist) and wcorrelations(# | numlist) specify infor-

mation about the within-study covariance matrices 𝚲𝑗, which are required for multivariate meta-

regression.

wcovvariables(varlist) specifies variables that define the within-study covariance matrices 𝚲𝑗. If

𝑑 is the number of depvars, then 𝑑(𝑑 + 1)/2 variables must be provided. The order in which

the variables are specified is important. For example, if we have 𝑑 = 3 dependent variables y1,
y2, and y3, then 6 variables must be provided within wcovvariables() in the following order:

Var(y1), Cov(y1, y2), Cov(y1, y3), Var(y2), Cov(y2, y3), and Var(y3). This option may not be
combined with options wsevariables() and wcorrelations().

wsevariables(varlist) specifies variables that define the within-study standard errors of depvars.

This option is useful, in combination with wcorrelations(), when the within-study covariances
are not reported but only standard errors are available for depvars. If 𝑑 is the number of dep-

vars, then 𝑑 variables must be specified, which represent the within-study standard errors of each

variable in depvars. The order of the variables must follow the order in which depvars were spec-

https://www.stata.com/manuals/meta.pdf#metametamvregressOptionsdisplay_options
https://www.stata.com/manuals/meta.pdf#metametamvregressOptionsmaxopts
https://www.stata.com/manuals/u11.pdf#u11.4.3Factorvariables
https://www.stata.com/manuals/u11.pdf#u11.1.10Prefixcommands
https://www.stata.com/manuals/u20.pdf#u20Estimationandpostestimationcommands
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
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ified. This option must be specified in combination with option wcorrelations(), which to-

gether define the within-study covariance matrices. wsevariables() may not be combined with

wcovvariables().

wcorrelations(# | numlist) specifies values for the within-study correlations between depvars.

This option is also used to specify assumed correlations when only within-study standard errors

are available, which are specified in option wsevariables(). If wcorrelations(#) is spec-

ified, # is assumed to be the common within-study correlation value between all depvars. If

numlist is specified, then 𝑑(𝑑 − 1)/2 values must be provided, where 𝑑 is the number of dep-

vars. The order in which the correlation values are specified is important. For example, if we

have 𝑑 = 3 dependent variables y1, y2, and y3, then 3 values must be provided in the following
order: Corr(y1, y2), Corr(y1, y3), and Corr(y2, y3). This option must be specified in combina-

tion with option wsevariables(), which together define the within-study covariance matrices.

wcorrelations() may not be combined with wcovvariables().

random and random(randomspec) specify that a random-effects model be assumed for the multivariate

meta-regression. The syntax for randomspec is remethod [ , covariance(recov) se(seadj) ].
remethod specifies the type of estimator for the between-study covariance matrix 𝚺. remethod is one

of reml, mle, or jwriley. random is a synonym for random(reml).

reml, the default, specifies that the REML method (Jackson, Riley, and White 2011) be used to

estimate 𝚺. This method produces an unbiased positive semidefinite estimate of the between-

study covariance matrix and is commonly used in practice. The remlmethod requires iteration.

mle specifies that the ML method (Jackson, Riley, and White 2011) be used to estimate 𝚺. It

produces a positive semidefinite estimate of the between-study covariance matrix. With a few

studies or small studies, this method may produce biased estimates. With many studies, the ML

method is more efficient than the REMLmethod. Method mle requires iteration.

jwriley specifies that the Jackson–White–Riley method (Jackson, White, and Riley 2013) be

used to estimate 𝚺. This method is a multivariate generalization of the popular DerSimo-

nian–Laird method in univariate meta-analysis. The method does not make any assumptions

about the distribution of random effects and does not require iteration. But it may produce an

estimate of 𝚺 that is not positive semidefinite and is thus “truncated” (via spectral decomposi-

tion) in that case.

covariance(recov) specifies the structure of the covariance matrix for the random effects. recov is

one of the following: unstructured, independent, exchangeable, identity, or fixed(mat-

name).

unstructured allows for all variances and covariances to be distinct. If there are 𝑑 random-

effects terms (corresponding to the 𝑑 depvars), the unstructured covariance matrix will have

𝑑(𝑑 + 1)/2 unique parameters. This is the default covariance structure.
independent allows for a distinct variance for each random effect corresponding to a dependent

variable and assumes that all covariances are 0.

exchangeable specifies one common variance for all random effects and one common pairwise

covariance.

identity is short for “multiple of the identity”; that is, all variances are equal and all covariances
are 0.

fixed(matname) specifies a fixed (known) 𝚺 = matname. This covariance structure requires

no iteration.
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se(seadj) specifies that the adjustment seadj be applied to the standard errors of the regression coeffi-
cients. Additionally, the tests of significance of the regression coefficients are based on a Student’s

𝑡 distribution instead of the normal distribution. The Jackson–Riley adjustments are multivariate
generalizations of the Knapp–Hartung standard-error adjustments in univariate meta-regression.

seadj is one of jriley or truncjriley.

jriley specifies that the Jackson–Riley adjustment (Jackson and Riley 2014) be applied to the

standard errors of the coefficients.

truncjriley specifies that the truncated Jackson–Riley adjustment (Jackson and Riley 2014) be
applied to the standard errors of the coefficients.

fixed specifies that a fixed-effects model be assumed for the multivariate meta-regression. In this case,

𝚺 = 0, and no iteration is performed to estimate the random-effects parameters.

noconstant; see [R] Estimation options. This option is not allowed with constant-only multivariate

meta-regression.

tdistribution(#) computes 𝑡 tests instead of 𝑧 tests for the regression coefficients. The 𝑡 tests are
based on # degrees of freedom, which does not have to be an integer.

� � �
Reporting �

level(#); see [R] Estimation options.

stddeviations, variance; see [ME] mixed.

nohomtest suppresses the homogeneity test based on the 𝑄 statistic from the output.

noretable, nofetable, estmetric, noheader; see [ME] mixed.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] Estimation options.

� � �
Maximization �

maximize options: difficult, technique(algorithm spec), iterate(#), [no]log, trace,
gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), and nonrtolerance; see [R] Maximize. Those that require special mention for

meta mvregress are listed below.

For the technique() option, the default is technique(nr). The bhhh algorithm is not available.

matsqrt, the default, and matlog; see [ME]mixed, except meta mvregress implies a single model

level.

maximize options are not available with fixed-effects multivariate meta-regression.

The following option is available with meta mvregress but is not shown in the dialog box:

coeflegend; see [R] Estimation options.

https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
https://www.stata.com/manuals/memixed.pdf#memixed
https://www.stata.com/manuals/memixed.pdf#memixed
https://www.stata.com/manuals/d.pdf#dformat
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
https://www.stata.com/manuals/rmaximize.pdf#rMaximizeSyntaxalgorithm_spec
https://www.stata.com/manuals/rmaximize.pdf#rMaximize
https://www.stata.com/manuals/memixed.pdf#memixed
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
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Remarks and examples
Remarks are presented under the following headings:

Introduction
Examples of using meta mvregress

Introduction
Multivariate meta-regression is a technique used to study the relationship between multiple, usually

dependent, effect sizes reported for each study and covariates. Multivariate meta-regression is analo-

gous to multivariate regression that is used when individual data are available, but in multivariate meta-

regression, the observations are the studies, the outcomes of interest are effect sizes, and the covariates

are recorded at the study level. The study-level covariates in meta-regression are known as moderators.

Examples of moderators include study publication year, study test environment, and drug administration

method. For a comprehensive introduction to multivariate meta-regression, see Gleser and Olkin (2009)

and Jackson, Riley, and White (2011).

A study may report multiple effect sizes in two different scenarios. In the first scenario, a study

may compare various treatment groups against a common control group. For example, in a study that

investigates the effect of multiple dietary regimens on weight loss, independent groups of individuals

may be assigned to one of several diets: Keto diet, vegan diet, high-protein diet, or intermittent fasting.

Multiple effect sizes that compare each of these diets with a control group (not following an assigned

diet) can be computed. These effect sizes are usually correlated because they share a common control

group. Studies falling under this category are called “multiple-treatment studies” or “mixed-treatment

studies” in the multivariate meta-analysis literature.

In the second scenario, subjects are allocated to a treatment group or a control group as in the case

of univariate meta-analysis, but multiple outcomes (endpoints) are compared across the two groups. For

example, consider a study that explores the impact of a new teaching technique on math (outcome 1),

physics (outcome 2), and chemistry (outcome 3) testing scores. Students are randomly assigned to one

of two groups: those who were taught using the new technique (treatment group) and those who were

not (control group). Three effect sizes that compare the three testing scores across the two groups are

computed. These effect sizes are dependent because they were reported on the same set of students.

Studies of this kind are referred to as “multiple-endpoint studies” in the literature.

Traditionally, the standard approach for handling multiple effect sizes reported per study was to per-

form separate univariate meta-analysis for each effect size. This approach ignores the dependence be-

tween the effect sizes and usually leads to biased pooled effects with overestimated variances. Another

approach (Rosenthal and Rubin 1986) is to summarize the multiple effects by a single value for each

study and then combine these values via standard univariate meta-analysis. This approach will result

in information loss because of data reduction and may yield univariate summaries that are difficult to

interpret in light of the original dependent effect sizes.

By properly accounting for the dependence between the effect sizes, multivariate meta-regression

often provides parameter estimators with more optimal properties when compared with the previous two

approaches. This is because it exploits the correlation between the multiple effect sizes, and thus the

dependent effect sizes may borrow strength from each other to produce pooled effect sizes with smaller

variances (Jackson, Riley, and White 2011).

As is the case with meta-regression, the goal of multivariate meta-regression is also to explore and ex-

plain the between-study heterogeneity as a function of moderators. Two types of multivariate regression

models, fixed-effects and random-effects, are available. A fixed-effects multivariate meta-regression as-
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sumes that all heterogeneity between study effect sizes can be accounted for by the included moderators.

A random-effects multivariate meta-regression accounts for potential additional variability unexplained

by the included moderators, also known as residual heterogeneity.

meta mvregress fits multivariate meta-regression. The default model assumed by meta mvregress
is a random-effects model using the REMLmethodwith an unstructured between-study covariancematrix.

Use the random() option to specify other random-effects methods such as theMLE or a noniterative Jack-

son–White–Riley method, which can be viewed as an extension of the univariate DerSimonian–Laird

method to the multivariate setting. You may also use the random() option to specify an alternative co-

variance structure such as exchangeable, independent, identity, or fixed() in the covariance()
suboption.

Covariance structure fixed() specifies a fixed between-study covariance matrix and thus can be

used to perform sensitivity analysis similarly to option tau2() in [META] meta regress. Specifying

a covariance structure other than the default unstructured is particularly useful when the number of

observations, 𝑛, is small relative to the number of estimated fixed-effects parameters and variance com-
ponents.

Jackson and Riley (2014) proposed an adjustment to the standard errors of the fixed-effects parameters

that provides more accurate inference when the number of studies is relatively small. This adjustment is

available with the se() option. The Jackson–Riley adjustment can be seen as a multivariate extension

of the Knapp–Hartung adjustment (Knapp and Hartung 2003) in univariate meta-regression, and the two

adjustments are identical when there is only one effect-size variable.

Consider data from 𝐾 independent studies and 𝑑 outcomes (effect sizes). Let ̂𝜃𝑖𝑗 be the estimated

effect size reported by study 𝑗 for outcome 𝑖, and let a 𝑑 × 1 vector θ̂𝑗 = ( ̂𝜃1𝑗, ̂𝜃2𝑗, . . . , ̂𝜃𝑑𝑗)′ be an

estimate of the true population effect size θ𝑗 for study 𝑗.
A model for the fixed-effects multivariate meta-regression (Raudenbush, Becker, and Kalaian 1988)

can be expressed as

̂𝜃𝑖𝑗 = 𝛽𝑖0 + 𝛽𝑖1𝑥1𝑗 + · · · + 𝛽𝑖,𝑝−1𝑥𝑝−1,𝑗 + 𝜖𝑖𝑗 = x𝑗β𝑖 + 𝜖𝑖𝑗

for outcome 𝑖 = 1, . . . , 𝑑 and study 𝑗 = 1, . . . , 𝐾. Here x𝑗 = (1, 𝑥1𝑗, . . . , 𝑥𝑝−1,𝑗) is a 1 × 𝑝 vector of

categorical and continuous moderators (covariates), β𝑖 is an outcome-specific 𝑝 × 1 vector of unknown

regression coefficients, and ε𝑗 = (𝜖1𝑗, 𝜖2𝑗, . . . , 𝜖𝑑𝑗)′ is a 𝑑 × 1 vector of within-study errors that have a

𝑑-variate normal distribution with zero mean vector and a 𝑑 × 𝑑 covariance matrix Var(ε𝑗) = 𝚲𝑗. The

within-study covariance matrices 𝚲𝑗’s are treated as known and do not require estimation. The values

of these matrices are specified as variables in the wcovvariables() option or in a combination of the

wsevariables() and wcorrelations() options.

In a matrix notation, the above fixed-effects model can be defined as

θ̂𝑗 = X𝑗β + ε𝑗, ε𝑗 ∼ 𝑁𝑑(0, 𝚲𝑗)

where X𝑗 = x𝑗 ⊗ 𝐼𝑑 (⊗ is the Kronecker product) is a 𝑑 × 𝑑𝑝 matrix and β = (β′
1,β′

2, . . . ,β′
𝑑)′ is a

𝑑𝑝 × 1 vector of all unknown regression coefficients.

Residual heterogeneity may be accounted for by including an additive between-study covariance com-

ponent, 𝚺, that leads to a random-effects multivariate meta-regression (Berkey et al. 1998):

θ̂𝑗 = X𝑗β + ε∗
𝑗 = X𝑗β + u𝑗 + ε𝑗, where ε∗

𝑗 ∼ 𝑁𝑑 (0, 𝚲𝑗 + 𝚺)

As we mentioned earlier, a random-effects multivariate meta-regression assumes that the moderators

explain only part of heterogeneity, and random effects u𝑗 = (𝑢1𝑗, 𝑢2𝑗, . . . , 𝑢𝑑𝑗)′ ∼ 𝑁𝑑(0, 𝚺) (𝑗 =
1, . . . , 𝐾) account for the remainder.

https://www.stata.com/manuals/metametaregress.pdf#metametaregressSyntaxreopts
https://www.stata.com/manuals/metametaregress.pdf#metametaregress
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Harbord and Higgins (2016) point out that some authors (Thompson and Sharp 1999; Higgins and

Thompson 2004) argue that a fixed-effects meta-regression should not be used because, in practice, the

included moderators rarely capture all the between-study heterogeneity and that the failure of the fixed-

effects regression to capture the extra between-study heterogeneity can lead to excessive type I errors.

This observation is also echoed by Jackson, Riley, and White (2011) in the multivariate setting.

Examples of using meta mvregress
Examples are presented under the following headings:

Example 1: Univariate versus multivariate meta-analysis
Example 2: Random-effects multivariate meta-regression
Example 3: Identical results from univariate and multivariate analyses
Example 4: Heterogeneity statistics
Example 5: Jackson–White–Riley random-effects method
Example 6: Jackson–Riley standard-error adjustment
Example 7: When within-study covariances are not available
Example 8: Missing outcome data
Example 9: Between-study covariance structures
Example 10: Sensitivity meta-analysis
Example 11: Fixed-effects multivariate meta-regression

Example 1: Univariate versus multivariate meta-analysis
Consider a dataset from Antczak-Bouckoms et al. (1993) of five randomized controlled trials that

explored the impact of two procedures (surgical and nonsurgical) for treating periodontal disease. This

dataset was also analyzed by Berkey et al. (1998).

In these trials, subjects’ mouths were split into sections. These sections were randomly allocated to

the two treatment procedures. At least one section was treated surgically and at least one other section

was treated nonsurgically for each patient. The main objectives of the periodontal treatment were to

reduce probing depths and increase attachment levels (Berkey et al. 1998).

Two outcomes of interest are improvements from baseline (pretreatment) in probing depth (y1) and
attachment level (y2) around the teeth. Because the two outcomes y1 and y2 are measured on the same

subject, they should not be treated as independent. This is an example of multiple-endpoint studies where

multiple outcomes (two in this case) are compared across two groups (surgical versus nonsurgical). We

first describe our dataset.

https://www.stata.com/manuals/metametamvregress.pdf#metametamvregressRemarksandexamplesmvregexuniv
https://www.stata.com/manuals/metametamvregress.pdf#metametamvregressRemarksandexamplesmvregexreg
https://www.stata.com/manuals/metametamvregress.pdf#metametamvregressRemarksandexamplesmvregexuvsm
https://www.stata.com/manuals/metametamvregress.pdf#metametamvregressRemarksandexamplesmvregexhet
https://www.stata.com/manuals/metametamvregress.pdf#metametamvregressRemarksandexamplesmvregexjwr
https://www.stata.com/manuals/metametamvregress.pdf#metametamvregressRemarksandexamplesmvregexjr
https://www.stata.com/manuals/metametamvregress.pdf#metametamvregressRemarksandexamplesmvregexmisscov
https://www.stata.com/manuals/metametamvregress.pdf#metametamvregressRemarksandexamplesmvregexmisses
https://www.stata.com/manuals/metametamvregress.pdf#metametamvregressRemarksandexamplesmvregexcovstruct
https://www.stata.com/manuals/metametamvregress.pdf#metametamvregressRemarksandexamplesmvregexsens
https://www.stata.com/manuals/metametamvregress.pdf#metametamvregressRemarksandexamplesmvregexfixed
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. use https://www.stata-press.com/data/r19/periodontal
(Treatment of moderate periodontal disease)
. describe
Contains data from https://www.stata-press.com/data/r19/periodontal.dta
Observations: 5 Treatment of moderate

periodontal disease
Variables: 9 13 Jan 2025 18:11

(_dta has notes)

Variable Storage Display Value
name type format label Variable label

trial str23 %23s Trial label
pubyear byte %9.0g Publication year centered at 1983
y1 float %6.2f Mean improvement in probing depth

(mm)
y2 float %6.2f Mean improvement in attachment

level (mm)
v11 float %6.4f Variance of y1
v12 float %6.4f Covariance of y1 and y2
v22 float %6.4f Variance of y2
s1 double %10.0g Standard error of y1
s2 double %10.0g Standard error of y2

Sorted by:

We will start by performing a separate meta-analysis for each outcome. We declare our data as meta

data using the meta set command and then construct a forest plot for each outcome; see [META] meta

set and [META] meta forestplot, respectively.

. quietly meta set y1 s1, studylabel(trial) eslabel(”Mean diff.”)

. meta forestplot, esrefline
Effect-size label: Mean diff.

Effect size: y1
Std. err.: s1

Study label: trial

Philstrom et al. (1983)

Lindhe et al. (1982)

Knowles et al. (1979)

Ramfjord et al. (1987)

Becker et al. (1988)

Overall

Heterogeneity: τ2 = 0.01, I2 = 71.95%, H2 = 3.56

Test of θi = θj: Q(4) = 12.82, p = 0.01

Test of θ = 0: z = 6.09, p = 0.00

Study

0.00 0.20 0.40 0.60 0.80

with 95% CI
Mean diff.

0.47 [

0.20 [

0.40 [

0.26 [

0.56 [

0.36 [

0.30,

0.05,

0.31,

0.15,

0.32,

0.24,

0.64]

0.35]

0.49]

0.37]

0.80]

0.48]

18.09

19.95

25.09

23.73

13.14

(%)
Weight

Random-effects REML model

Positive y1 values indicate that the mean improvement (reduction) in probing depth for the surgical group
is larger than that for the nonsurgical group. It appears that the surgical treatment performs consistently

better (y1 > 0) across all studies. The overall mean difference is 0.36 with a 95% CI of [0.24, 0.48], which
means that, on average, the reduction in probing depth was 0.36 mm higher than that for the nonsurgical

group.

https://www.stata.com/manuals/metametaset.pdf#metametaset
https://www.stata.com/manuals/metametaset.pdf#metametaset
https://www.stata.com/manuals/metametaforestplot.pdf#metametaforestplot
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Similarly, we will construct a forest plot for variable y2.

. quietly meta set y2 s2, studylabel(trial) eslabel(”Mean diff.”)

. meta forestplot, esrefline
Effect-size label: Mean diff.

Effect size: y2
Std. err.: s2

Study label: trial

Philstrom et al. (1983)

Lindhe et al. (1982)

Knowles et al. (1979)

Ramfjord et al. (1987)

Becker et al. (1988)

Overall

Heterogeneity: τ2 = 0.03, I2 = 93.98%, H2 = 16.60

Test of θi = θj: Q(4) = 112.08, p = 0.00

Test of θ = 0: z = -3.91, p = 0.00

Study

-0.80 -0.60 -0.40 -0.20 0.00

with 95% CI
Mean diff.

-0.32 [

-0.60 [

-0.12 [

-0.31 [

-0.39 [

-0.35 [

-0.49,

-0.66,

-0.19,

-0.39,

-0.73,

-0.52,

-0.15]

-0.54]

-0.05]

-0.23]

-0.05]

-0.17]

19.20

23.11

22.71

22.64

12.34

(%)
Weight

Random-effects REML model

Negative y2 values indicate that the mean improvement (increase) in attachment level for the surgical

group is smaller than that for the nonsurgical group. Because y2 < 0 across all studies, the nonsurgical

treatment performs consistently better in terms of attachment level. It appears that there is considerable

heterogeneity in attachment levels (y2) based on the nonoverlapping CIs in the forest plot and a large

value of the 𝐼2 statistic (93.98%).

Notice that the obtained heterogeneity statistics are from univariate meta-analyses conducted sepa-

rately. In example 4, we show how to assess heterogeneity from a multivariate analysis by using the

estat heterogeneity command.

https://www.stata.com/manuals/meta.pdf#metametamvregressRemarksandexamplesmvregexhet
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The two separate meta-analyses do not account for the dependence between y1 and y2. Let’s fit a
bivariate meta-analysis (constant-only bivariate meta-regression) using the meta mvregress command.

. meta mvregress y1 y2, wcovvariables(v11 v12 v22)
Performing EM optimization ...
Performing gradient-based optimization:
Iteration 0: Log restricted-likelihood = 2.0594015
Iteration 1: Log restricted-likelihood = 2.0822862
Iteration 2: Log restricted-likelihood = 2.0823276
Iteration 3: Log restricted-likelihood = 2.0823276
Multivariate random-effects meta-analysis Number of obs = 10
Method: REML Number of studies = 5

Obs per study:
min = 2
avg = 2.0
max = 2

Wald chi2(0) = .
Log restricted-likelihood = 2.0823276 Prob > chi2 = .

Coefficient Std. err. z P>|z| [95% conf. interval]

y1
_cons .3534282 .0588486 6.01 0.000 .238087 .4687694

y2
_cons -.3392152 .0879051 -3.86 0.000 -.5115061 -.1669243

Test of homogeneity: Q_M = chi2(8) = 128.23 Prob > Q_M = 0.0000

Random-effects parameters Estimate

Unstructured:
sd(y1) .1083191
sd(y2) .1806968

corr(y1,y2) .6087987

The output shows information about the optimization algorithm, the iteration log, and themodel (random-

effects) and method (REML) used for estimation. It also displays the number of studies, 𝐾 = 5, and the

total number of observations on the outcomes, 𝑛 = 10, which is equal to 𝐾𝑑 because there are no

missing observations. The minimum, maximum, and average numbers of observations per study are also

reported. Because there were no missing observations, all of these numbers are identical and equal to 2.

The first table displays the regression (fixed-effects) coefficient estimates from the bivariate meta-

analysis. These estimates correspond to the overall bivariate effect size θ̂ = ( ̂𝜃1, ̂𝜃2)′. The estimates

are close to the univariate ones reported on the forest plots. But from a bivariate analysis, we obtained

slightly narrower 95% CIs for the overall effect sizes. The multivariate homogeneity test, which tests

whether θ𝑗 = (𝜃1𝑗, 𝜃2𝑗)′ is constant across studies, is rejected (𝑝 < 0.0001). This agrees with earlier

univariate results, particularly from the second forest plot, which exhibited considerable heterogeneity.
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The second table displays the random-effects parameters, traditionally known as variance compo-

nents in the context of multilevel or mixed-effects models. By default, similar to the mixed command,

meta mvregress reports standard deviations of y1 and y2 and their correlation: sd(y1), sd(y2), and
corr(y1,y2), respectively. But you can instead specify the variance option to report variances and

the covariance.

Example 2: Random-effects multivariate meta-regression
Berkey et al. (1998) noted that although the meta-analysis of Antczak-Bouckoms et al. (1993) ac-

counted for many factors that could potentially lead to heterogeneity, a substantive variability was still

present, as we highlighted in example 1. They suggested to use the year of publication centered at 1983

(pubyear), a surrogate for the time when the trial was performed, as a moderator to explain a portion

of this heterogeneity. They reasoned that as the surgical experience accumulates, the surgical procedure

will become more efficient so the most recent studies may show greater surgical benefits.

Let’s first perform separate univariate meta-regressions for outcomes y1 and y2 with pubyear as a

moderator. We can do this by specifying only one dependent variable with meta mvregress or by using

meta regress. We will use meta mvregress because it does not require setting the data.

. meta mvregress y1 = pubyear, wsevariables(s1)
Performing EM optimization ...
Performing gradient-based optimization:
Iteration 0: Log restricted-likelihood = -1.6637351
Iteration 1: Log restricted-likelihood = -1.6426005
Iteration 2: Log restricted-likelihood = -1.6414308
Iteration 3: Log restricted-likelihood = -1.6414292
Iteration 4: Log restricted-likelihood = -1.6414292
Multivariate random-effects meta-regression Number of obs = 5
Method: REML Number of studies = 5

Obs per study:
min = 1
avg = 1.0
max = 1

Wald chi2(1) = 0.04
Log restricted-likelihood = -1.6414292 Prob > chi2 = 0.8332

y1 Coefficient Std. err. z P>|z| [95% conf. interval]

pubyear .004542 .021569 0.21 0.833 -.0377325 .0468165
_cons .362598 .0725013 5.00 0.000 .2204981 .504698

Test of homogeneity: Q_M = chi2(3) = 11.80 Prob > Q_M = 0.0081

Random-effects parameters Estimate

Identity:
sd(y1) .1406077

https://www.stata.com/manuals/memixed.pdf#memixed
https://www.stata.com/manuals/meta.pdf#metametamvregressRemarksandexamplesmvregexuniv
https://www.stata.com/manuals/metametaregress.pdf#metametaregress
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. meta mvregress y2 = pubyear, wsevariables(s2)
Performing EM optimization ...
Performing gradient-based optimization:
Iteration 0: Log restricted-likelihood = -2.4661957
Iteration 1: Log restricted-likelihood = -2.3230318
Iteration 2: Log restricted-likelihood = -2.3229928
Iteration 3: Log restricted-likelihood = -2.3229928
Multivariate random-effects meta-regression Number of obs = 5
Method: REML Number of studies = 5

Obs per study:
min = 1
avg = 1.0
max = 1

Wald chi2(1) = 0.20
Log restricted-likelihood = -2.3229928 Prob > chi2 = 0.6524

y2 Coefficient Std. err. z P>|z| [95% conf. interval]

pubyear -.0134909 .0299534 -0.45 0.652 -.0721985 .0452167
_cons -.3399793 .0978864 -3.47 0.001 -.5318331 -.1481256

Test of homogeneity: Q_M = chi2(3) = 108.29 Prob > Q_M = 0.0000

Random-effects parameters Estimate

Identity:
sd(y2) .201787

Here we specified the standard error variables s1 and s2 in the wsevariables() options to

match the univariate setup more closely, but we could have used wcovvariables(v11) and

wcovvariables(v22), following example 1.

Results from the univariate meta-regressions suggest that variable pubyear does not seem to explain

the between-study heterogeneity between the effect sizes y1 and y2; the 𝑝-values for testing the pubyear
coefficients to be 0 are 𝑝 = 0.833 and 𝑝 = 0.652, respectively.

https://www.stata.com/manuals/meta.pdf#metametamvregressRemarksandexamplesmvregexuniv
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The two separate meta-regressions do not account for the dependence between y1 and y2. Below, we
fit a bivariate meta-regression that accounts for this dependence.

. meta mvregress y1 y2 = pubyear, wcovvariables(v*)
Performing EM optimization ...
Performing gradient-based optimization:
Iteration 0: Log restricted-likelihood = -3.5544446
Iteration 1: Log restricted-likelihood = -3.5402086
Iteration 2: Log restricted-likelihood = -3.5399568
Iteration 3: Log restricted-likelihood = -3.5399567
Multivariate random-effects meta-regression Number of obs = 10
Method: REML Number of studies = 5

Obs per study:
min = 2
avg = 2.0
max = 2

Wald chi2(2) = 0.40
Log restricted-likelihood = -3.5399567 Prob > chi2 = 0.8197

Coefficient Std. err. z P>|z| [95% conf. interval]

y1
pubyear .0048615 .0218511 0.22 0.824 -.0379658 .0476888

_cons .3587569 .07345 4.88 0.000 .2147975 .5027163

y2
pubyear -.0115367 .0299635 -0.39 0.700 -.070264 .0471907

_cons -.3357368 .0979979 -3.43 0.001 -.5278091 -.1436645

Test of homogeneity: Q_M = chi2(6) = 125.76 Prob > Q_M = 0.0000

Random-effects parameters Estimate

Unstructured:
sd(y1) .1429917
sd(y2) .2021314

corr(y1,y2) .561385

Instead of listing all the variance–covariance variables v11, v12, and v22 in the wcovvariables()
option, we used the stub notation v* to refer to all of them. This notation is especially convenient for mod-
els with more dependent variables. You just need to make sure that these are the only variables starting

with v in the dataset and that the variables are properly ordered (think of a vectorized upper triangle of the
variance–covariance matrix) before using the stub notation; see the description of wcovvariables().

The estimates of the regression coefficients of variable pubyear are 0.0049 with a 95% CI of

[−0.0380, 0.0477] for outcome y1 and −0.0115 with a 95% CI of [−0.0703, 0.0472]) for outcome y2.
The coefficients are not significant according to the 𝑧 tests with the respective 𝑝-values 𝑝 = 0.824 and

𝑝 = 0.7.

Although pubyear did not explain the between-study heterogeneity, we continue to include it as a

moderator in our subsequent examples (example 3–example 6) for illustration purposes.

https://www.stata.com/manuals/meta.pdf#metametamvregressRemarksandexamplesmvregexuvsm
https://www.stata.com/manuals/meta.pdf#metametamvregressRemarksandexamplesmvregexjr
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Example 3: Identical results from univariate and multivariate analyses
At this point, it may be interesting to explore when the results from a multivariate meta-regression

can match the results of separate univariate meta-analyses. Theoretically, if the within-study covariances

(and thus correlations) in 𝚲𝑗 are equal to 0 and the between-study covariances in 𝚺 are also equal to 0,

then performing a multivariate meta-regression is equivalent to performing separate univariate meta-

regressions for each outcome.

Continuing with example 2, we specify the wsevariables(s1 s2) and wcorrelations(0) options

to assume there is no within-study correlation between y1 and y2. We also assume that the between-

study covariances are 0 by specifying an independent covariance structure for the random effects with

the covariance(independent) suboption of the random() option.

. meta mvregress y1 y2 = pubyear, wsevariables(s1 s2) wcorrelations(0)
> random(reml, covariance(independent))
Performing EM optimization ...
Performing gradient-based optimization:
Iteration 0: Log restricted-likelihood = -3.9946242
Iteration 1: Log restricted-likelihood = -3.9656463
Iteration 2: Log restricted-likelihood = -3.9644233
Iteration 3: Log restricted-likelihood = -3.964422
Iteration 4: Log restricted-likelihood = -3.964422
Multivariate random-effects meta-regression Number of obs = 10
Method: REML Number of studies = 5

Obs per study:
min = 2
avg = 2.0
max = 2

Wald chi2(2) = 0.25
Log restricted-likelihood = -3.964422 Prob > chi2 = 0.8837

Coefficient Std. err. z P>|z| [95% conf. interval]

y1
pubyear .004542 .021569 0.21 0.833 -.0377325 .0468165

_cons .362598 .0725013 5.00 0.000 .2204981 .504698

y2
pubyear -.0134909 .0299534 -0.45 0.652 -.0721985 .0452167

_cons -.3399793 .0978864 -3.47 0.001 -.5318331 -.1481256

Test of homogeneity: Q_M = chi2(6) = 120.10 Prob > Q_M = 0.0000

Random-effects parameters Estimate

Independent:
sd(y1) .1406077
sd(y2) .201787

The results for regression coefficients and variance components are identical to those from separate uni-

variate meta-regressions in example 2. Note that the multivariate homogeneity statistic 𝑄M = 120.10

is the sum of the univariate statistics 𝑄M = 𝑄res = 11.8 and 𝑄M = 𝑄res = 108.3, where 𝑄res is the

univariate version of 𝑄M defined in [META] meta regress.

https://www.stata.com/manuals/meta.pdf#metametamvregressRemarksandexamplesmvregexreg
https://www.stata.com/manuals/meta.pdf#metametamvregressRemarksandexamplesmvregexreg
https://www.stata.com/manuals/metametaregress.pdf#metametaregress
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Example 4: Heterogeneity statistics
Continuing with example 2, let’s refit the model and use the postestimation command estat

heterogeneity to quantify heterogeneity after the bivariate meta-regression. Assessing the residual

between-study variability is important in the context of random-effects multivariate meta-regression, so

we will discuss various heterogeneity measures in detail in this example.

. quietly meta mvregress y1 y2 = pubyear, wcovvariables(v*)

. estat heterogeneity
Method: Cochran
Joint:

I2 (%) = 95.23
H2 = 20.96

Method: Jackson--White--Riley
y1:

I2 (%) = 85.26
R = 2.60

y2:
I2 (%) = 95.85

R = 4.91
Joint:

I2 (%) = 91.57
R = 3.44

By default, the Cochran and Jackson–White–Riley heterogeneity statistics are reported, but the White

heterogeneity statistic is also available, as we demonstrate later in this example.

Cochran 𝐼2
Q and 𝐻2

Q are direct extensions to the multivariate setting of the univariate 𝐼2 and 𝐻2 statis-

tics based on the DerSimonian–Laird method and thus have the same interpretations; see Heterogeneity

measures in Methods and formulas in [META]meta summarize and Residual heterogeneity measures in

Methods and formulas in [META] meta regress. For instance, 𝐼2
Q = 95.23% means that 95.23% of the

residual heterogeneity, heterogeneity not accounted for by the moderator pubyear, is due to true hetero-
geneity between the studies as opposed to the sampling variability. The high value for this statistic is not

surprising because, as we saw in example 2, pubyear did not explain much heterogeneity between the

studies.

The values of Cochran statistics are the same for all random-effects methods because they are based on

the Cochran multivariate 𝑄 statistic, which is calculated based on the fixed-effects model; see Cochran

heterogeneity statistics in Methods and formulas in [META] estat heterogeneity (mv) for details. One

potential shortcoming of the Cochran statistics is that they quantify the amount of heterogeneity jointly

for all outcomes. The Jackson–White–Riley statistics (Jackson, White, and Riley 2012) provide ways to

assess the contribution of each outcome to the total heterogeneity, in addition to their joint contribution.

You can also investigate the impact of any subset of outcomes on heterogeneity by specifying the

subset of outcomes in the jwriley() option of estat heterogeneity; see example 1 of [META] estat

heterogeneity (mv). These statistics are also the only truly multivariate heterogeneity statistics in the

sense that their definitions stem from purely multivariate concepts rather than from univariate concepts

applied to the multivariate setting.

The Jackson–White–Riley statistics measure the variability of the random-effects estimator relative

to the fixed-effects estimator. The larger the values, the more between-study heterogeneity is left un-

explained after accounting for moderators. The 𝑅JWR statistic is an absolute measure (𝑅JWR ≥ 1), and

https://www.stata.com/manuals/meta.pdf#metametamvregressRemarksandexamplesmvregexreg
https://www.stata.com/manuals/metaestatheterogeneitymv.pdf#metaestatheterogeneity(mv)
https://www.stata.com/manuals/metaestatheterogeneitymv.pdf#metaestatheterogeneity(mv)
https://www.stata.com/manuals/metametasummarize.pdf#metametasummarizeMethodsandformulasHeterogeneitymeasures
https://www.stata.com/manuals/metametasummarize.pdf#metametasummarizeMethodsandformulasHeterogeneitymeasures
https://www.stata.com/manuals/metametasummarize.pdf#metametasummarizeMethodsandformulas
https://www.stata.com/manuals/metametasummarize.pdf#metametasummarize
https://www.stata.com/manuals/metametaregress.pdf#metametaregressMethodsandformulasResidualheterogeneitymeasures
https://www.stata.com/manuals/metametaregress.pdf#metametaregressMethodsandformulas
https://www.stata.com/manuals/metametaregress.pdf#metametaregress
https://www.stata.com/manuals/meta.pdf#metametamvregressRemarksandexamplesmvregexreg
https://www.stata.com/manuals/metaestatheterogeneitymv.pdf#metaestatheterogeneity(mv)MethodsandformulasCochranheterogeneitystatistics
https://www.stata.com/manuals/metaestatheterogeneitymv.pdf#metaestatheterogeneity(mv)MethodsandformulasCochranheterogeneitystatistics
https://www.stata.com/manuals/metaestatheterogeneitymv.pdf#metaestatheterogeneity(mv)Methodsandformulas
https://www.stata.com/manuals/metaestatheterogeneitymv.pdf#metaestatheterogeneity(mv)
https://www.stata.com/manuals/metaestatheterogeneitymv.pdf#metaestatheterogeneity(mv)Remarksandexamplesestathetexjwr
https://www.stata.com/manuals/metaestatheterogeneitymv.pdf#metaestatheterogeneity(mv)
https://www.stata.com/manuals/metaestatheterogeneitymv.pdf#metaestatheterogeneity(mv)
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𝐼2
JWR is defined based on 𝑅JWR as a percentage increase in the variability of the random-effects estimates

relative to the fixed-effects estimates; see Jackson–White–Riley heterogeneity statistics in Methods and

formulas in [META] estat heterogeneity (mv) for technical details.

𝑅JWR = 1, and consequently 𝐼2
JWR = 0%, means that the moderators have accounted for all the het-

erogeneity between the effect sizes, and therefore there is no difference between the random-effects and

fixed-effects models. Values of 𝐼2
JWR that are close to 100% mean that considerable residual heterogene-

ity is still present in the model so that the random-effects model is more appropriate. In our example, for

instance, for outcome y1, 𝑅JWR = 2.6, and the corresponding 𝐼2
JWR = 85.26% > 75%, which suggests

“large heterogeneity” according to Higgins et al. (2003).

Other multivariate extensions of the 𝐼2 heterogeneity statistic have also been used in practice. For

example, the White 𝐼2 statistic (White 2011) can be computed by using the white option.

. estat heterogeneity, white
Method: White
y1:

I2 (%) = 77.26
y2:

I2 (%) = 94.32

The White 𝐼2 statistic is a direct extension of the univariate 𝐼2 statistic (Residual heterogeneity mea-

sures in Methods and formulas in [META] meta regress), except the estimated between-study variance

̂𝜏2 is replaced by a diagonal of the estimated between-study covariance matrix, �̂�. It has the same inter-

pretation as the univariate 𝐼2 and reduces to it when there is only one dependent variable.

Unlike the Cochran and Jackson–White–Riley statistics that can assess heterogeneity jointly for all

outcomes, the White statistic can only quantify heterogeneity separately for each outcome; see table 1

in [META] estat heterogeneity (mv). In our example, continuing with outcome y1, we see that 𝐼2
W =

77.26% > 75% also reports the presence of a large between-study variability for that outcome even after

accounting for pubyear.

Technical note
The actual definition for the Jackson–White–Riley 𝑅JWR statistic is somewhat technical. It is easier

to think about it first in the univariate setting, where it is defined as the ratio of the widths of the CIs

of the random-effects estimator for the regression coefficient vector to the corresponding fixed-effects

estimator raised to the power of 1/2𝑝. In the multivariate setting, the widths of confidence intervals

become areas or volumes of confidence regions, and the power becomes 1/2𝑝𝑑.

For example, for outcome y1, 𝑑 = 1, 𝑝 = 2, and ̂𝛽01 and
̂𝛽11 are the estimates of the constant and the

regression coefficient for pubyear. Then,𝑅JWR = 2.6 is the ratio, raised to the power of 1/4, of the areas
of the confidence regions (ellipses) for estimates ̂𝛽01 and

̂𝛽11 under the random-effects and fixed-effects

multivariate meta-regressions. This ratio is greater than 1 because the area of the confidence region under

the random-effects model is larger.

The 𝐼2
JWR = 85.26% for outcome y1 is interpreted as roughly an 85% increase in the area of the confi-

dence regions for the random-effects estimator of 𝛽01 and 𝛽11 relative to the fixed-effects estimator. See

Jackson, White, and Riley (2012) for more ways of interpreting the 𝐼2
JWR statistic in terms of generalized

variances and geometric means.

Note that with three- and higher-dimensional models, the areas of confidence regions become vol-

umes, and the shapes of confidence regions become ellipsoids.

https://www.stata.com/manuals/metaestatheterogeneitymv.pdf#metaestatheterogeneity(mv)MethodsandformulasJackson--White--Rileyheterogeneitystatistics
https://www.stata.com/manuals/metaestatheterogeneitymv.pdf#metaestatheterogeneity(mv)Methodsandformulas
https://www.stata.com/manuals/metaestatheterogeneitymv.pdf#metaestatheterogeneity(mv)Methodsandformulas
https://www.stata.com/manuals/metaestatheterogeneitymv.pdf#metaestatheterogeneity(mv)
https://www.stata.com/manuals/metametaregress.pdf#metametaregressMethodsandformulasResidualheterogeneitymeasures
https://www.stata.com/manuals/metametaregress.pdf#metametaregressMethodsandformulasResidualheterogeneitymeasures
https://www.stata.com/manuals/metametaregress.pdf#metametaregressMethodsandformulas
https://www.stata.com/manuals/metametaregress.pdf#metametaregress
https://www.stata.com/manuals/metaestatheterogeneitymv.pdf#metaestatheterogeneity(mv)Methodsandformulasestathettblstat
https://www.stata.com/manuals/metaestatheterogeneitymv.pdf#metaestatheterogeneity(mv)
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Example 5: Jackson–White–Riley random-effects method
Continuing with example 2, we demonstrate the use of an alternative random-effects estimation

method, the Jackson–White–Riley method, instead of the default REMLmethod. This method is a mul-

tivariate extension of the popular univariate DerSimonian–Laird method.

. meta mvregress y1 y2 = pubyear, wcovvariables(v*) random(jwriley)
Multivariate random-effects meta-regression Number of obs = 10
Method: Jackson--White--Riley Number of studies = 5

Obs per study:
min = 2
avg = 2.0
max = 2

Wald chi2(2) = 0.30
Prob > chi2 = 0.8621

Coefficient Std. err. z P>|z| [95% conf. interval]

y1
pubyear .0046544 .023268 0.20 0.841 -.04095 .0502588

_cons .358993 .0783252 4.58 0.000 .2054784 .5125075

y2
pubyear -.0117463 .0419197 -0.28 0.779 -.0939074 .0704147

_cons -.335579 .1393286 -2.41 0.016 -.608658 -.0624999

Test of homogeneity: Q_M = chi2(6) = 125.76 Prob > Q_M = 0.0000

Random-effects parameters Estimate

Unstructured:
sd(y1) .1547229
sd(y2) .2947281

corr(y1,y2) .6518347

The estimates of the regression coefficients are very similar to those from example 2 using the REML

method. For instance, the coefficient of pubyear for outcome y1 is 0.0049 and is similar to the REML

estimate of 0.0047. The standard errors and estimates of variance components are larger than those

obtained from the REML estimation. This is because REML assumes normality and, when this assumption

is satisfied, it is likely to produce more efficient estimates than a method of moments estimator such as

the Jackson–White–Riley.

Example 6: Jackson–Riley standard-error adjustment
Jackson and Riley (2014) proposed a multivariate extension of the univariate Knapp and Hartung

(2003) standard-error adjustment that provides more accurate inference for the regression coefficients

when the number of studies is small (as is the case in our example where 𝐾 = 5).

https://www.stata.com/manuals/meta.pdf#metametamvregressRemarksandexamplesmvregexreg
https://www.stata.com/manuals/meta.pdf#metametamvregressRemarksandexamplesmvregexreg
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Continuing with example 2, we compute the Jackson–Riley standard-error adjustment by specifying

the se(jriley) suboption within random().

. meta mvregress y1 y2 = pubyear, wcovvariables(v*) random(reml, se(jriley))
Performing EM optimization ...
Performing gradient-based optimization:
Iteration 0: Log restricted-likelihood = -3.5544446
Iteration 1: Log restricted-likelihood = -3.5402086
Iteration 2: Log restricted-likelihood = -3.5399568
Iteration 3: Log restricted-likelihood = -3.5399567
Multivariate random-effects meta-regression Number of obs = 10
Method: REML Number of studies = 5
SE adjustment: Jackson--Riley Obs per study:

min = 2
avg = 2.0
max = 2

F(2, 6.00) = 0.20
Log restricted-likelihood = -3.5399567 Prob > F = 0.8249

Coefficient Std. err. t P>|t| [95% conf. interval]

y1
pubyear .0048615 .021313 0.23 0.827 -.0472895 .0570124

_cons .3587569 .0716413 5.01 0.002 .183457 .5340569

y2
pubyear -.0115367 .0292256 -0.39 0.707 -.0830492 .0599758

_cons -.3357368 .0955846 -3.51 0.013 -.569624 -.1018496

Test of homogeneity: Q_M = chi2(6) = 125.76 Prob > Q_M = 0.0000

Random-effects parameters Estimate

Unstructured:
sd(y1) .1429917
sd(y2) .2021314

corr(y1,y2) .561385

The regression coefficients and variance components are identical to those in example 2. But the standard

errors of the regression coefficients have been adjusted; see Jackson–Riley standard-error adjustment in

Methods and formulas below. The tests of the regression coefficients and the model test now use the

Student’s 𝑡 and 𝐹 distributions, respectively, instead of the default normal and 𝜒2 distributions.

Another standard error adjustment that is used in practice is the truncated Jackson–Riley adjustment,

which may be obtained by specifying the se(truncjriley) suboption. The Jackson–Riley standard-

error adjustment reduces to the Knapp–Hartung adjustment when there is only one dependent variable.

https://www.stata.com/manuals/meta.pdf#metametamvregressRemarksandexamplesmvregexreg
https://www.stata.com/manuals/meta.pdf#metametamvregressRemarksandexamplesmvregexreg
https://www.stata.com/manuals/meta.pdf#metametamvregressMethodsandformulasJackson--Rileystandard-erroradjustment
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Example 7: When within-study covariances are not available
Glas et al. (2003, table 3) reported a dataset of 10 studies to investigate the sensitivity and specificity

of the tumor marker telomerase to diagnose primary bladder cancer. This dataset was also analyzed by

Riley et al. (2007) and White (2016). Let’s describe our dataset.

. use https://www.stata-press.com/data/r19/telomerase
(Telomerase for diagnosing primary bladder cancer)
. describe
Contains data from https://www.stata-press.com/data/r19/telomerase.dta
Observations: 10 Telomerase for diagnosing

primary bladder cancer
Variables: 8 4 Feb 2025 04:09

(_dta has notes)

Variable Storage Display Value
name type format label Variable label

trial str22 %22s Trial label
trialnum byte %9.0g Trial ID
y1 float %9.0g Logit sensitivity
y2 float %9.0g Logit specificity
s1 float %9.0g Standard error of logit

sensitivity
s2 float %9.0g Standard error of logit

specificity
v1 double %10.0g Variance of logit sensitivity
v2 double %10.0g Variance of logit specificity

Sorted by:

Variables y1 and y2 are logit-transformed sensitivity and specificity for telomerase, and s1 and s2 are

the corresponding standard errors.

No within-study covariances are reported for this dataset. When this occurs, one possible approach is

to perform a sensitivity analysis (see example 10), where we assess the impact of different magnitudes

of correlations on our bivariate meta-analysis results. In our case, sensitivity and specificity are typi-

cally measured on independent groups of individuals, so it is reasonable to assume that the within-study

correlation is zero between y1 and y2.

We specify the variance option to report variances and covariances of the random effects instead of

the default standard deviations and correlations to replicate the results of Riley et al. (2007, table 3), who

reported variances of the random effects.

https://www.stata.com/manuals/meta.pdf#metametamvregressRemarksandexamplesmvregexsens
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. meta mvregress y*, wsevariables(s*) wcorrelation(0) variance
Performing EM optimization ...
Performing gradient-based optimization:
Iteration 0: Log restricted-likelihood = -28.449202 (not concave)
Iteration 1: Log restricted-likelihood = -25.18825
Iteration 2: Log restricted-likelihood = -24.713278
Iteration 3: Log restricted-likelihood = -24.609916
Iteration 4: Log restricted-likelihood = -24.418125
Iteration 5: Log restricted-likelihood = -24.415969
Iteration 6: Log restricted-likelihood = -24.415967
Multivariate random-effects meta-analysis Number of obs = 20
Method: REML Number of studies = 10

Obs per study:
min = 2
avg = 2.0
max = 2

Wald chi2(0) = .
Log restricted-likelihood = -24.415967 Prob > chi2 = .

Coefficient Std. err. z P>|z| [95% conf. interval]

y1
_cons 1.166189 .1861349 6.27 0.000 .801371 1.531006

y2
_cons 2.057721 .5534499 3.72 0.000 .9729789 3.142462

Test of homogeneity: Q_M = chi2(18) = 90.87 Prob > Q_M = 0.0000

Random-effects parameters Estimate

Unstructured:
var(y1) .2022309
var(y2) 2.583339

cov(y1,y2) -.7227936

Our results match those reported by Riley et al. (2007). The estimated overall sensitivity for y1
is invlogit(1.166) = 76.24 or roughly 76%, and the estimated overall specificity for y2 is

invlogit(2.058) = 88.68 or roughly 89%. Glas et al. (2003) noted that the sensitivity of telomerase

may not be large enough for clinical use in diagnosing bladder cancer.

Had we not specified the variance option and reported the default standard deviations and correla-

tions of the random-effects, we would get corr(y1,y2) = −1. We can verify this either by typing meta
mvregress to replace the results or by using the postestimation command estat sd. We demonstrate

the latter.

. estat sd

Random-effects parameters Estimate

Unstructured:
sd(y1) .4497009
sd(y2) 1.607277

corr(y1,y2) -.9999998

https://www.stata.com/manuals/metaestatsd.pdf#metaestatsd
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Riley et al. (2007) noted that having a between-study correlation of 1 or −1 is common in multivari-

ate meta-analysis when the number of studies is small, especially when the within-study variances are

similar to or larger than the corresponding between-study variances. This is the case in our data where,

for example, the mean within-study variance for y1 is 0.18 (for instance, type summarize v1), which is
comparable with the estimated between-study variance var(y1) = 0.20. Other random-effects covari-

ance structures should be explored to address correlations of 1 and −1; see example 1 of [META] meta

mvregress postestimation.

Example 8: Missing outcome data
Fiore et al. (1996) reported a dataset of 24 studies investigating the impact of 4 intervention types to

promote smoking cessation. This dataset was also analyzed by Lu and Ades (2006).

The four intervention types are (a) no contact, (b) self-help, (c) individual counseling, and (d) group

counseling. The goal is to compare types (b), (c), and (d) with (a). Variables yb, yc, and yd represent the

log odds-ratios for types (b), (c), and (d) relative to group (a). The corresponding within-study variances

and covariances are reported by the six variables vbb, vbc, vbd, vcc, vcd, and vdd.

An odds ratio greater than 1 (or, equivalently, positive log odds-ratio) means that the odds of quitting

smoking are larger in the corresponding group compared with the odds in type (a). This dataset is an

example of multiple-treatment studies.

. use https://www.stata-press.com/data/r19/smokecess
(Smoking cessation interventions)
. describe y* v*
Variable Storage Display Value

name type format label Variable label

yb double %9.0g Log-odds ratio (b vs a)
yc double %9.0g Log-odds ratio (c vs a)
yd double %9.0g Log-odds ratio (d vs a)
vbb double %9.0g Variance of yb
vbc double %9.0g Covariance of yb and yc
vbd double %9.0g Covariance of yb and yd
vcc double %9.0g Variance of yc
vcd double %9.0g Covariance of yc and yd
vdd double %9.0g Variance of yd

https://www.stata.com/manuals/metametamvregresspostestimation.pdf#metametamvregresspostestimationRemarksandexamplesmvregpexre
https://www.stata.com/manuals/metametamvregresspostestimation.pdf#metametamvregresspostestimation
https://www.stata.com/manuals/metametamvregresspostestimation.pdf#metametamvregresspostestimation
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Let’s explore the missing-value structure of this dataset.

. misstable pattern y*, frequency
Missing-value patterns

(1 means complete)
Pattern

Frequency 1 2 3

1 1 1 1

14 1 0 0
3 0 0 1
3 1 1 0
1 0 1 0
1 0 1 1
1 1 0 1

24
Variables are (1) yc (2) yd (3) yb

There are 24 observations, and only 1 contains values for all 3 variables. There is only one observation

when both yd and yb and both yc and yb are observed. And variables yd and yb have only six nonmissing
values. So, among all variables, there are a total of 72 = 3 × 24 values, and only 31 = 72 − (14 × 2 +
3 × 2 + 3 + 2 + 1 + 1) of them are not missing. Given how small and sparse these data are, we can

anticipate that the joint estimation of these variables will be challenging without additional, potentially

strong, assumptions about the data.

In fact, if we try to run the following model, where for demonstration we use the MLmethod,

. meta mvregress yb yc yd, wcovvariables(vbb vbc vbd vcc vcd vdd) random(mle)
(output omitted )

we will obtain a correlation between the random effects associated with outcomes yb and yd,
corr(yb,yd), close to 1. This is because only 2 out of the 24 studies have observations on both of the
outcomes (type misstable pattern yb yd, frequency), whichmakes the estimation of corr(yb,yd)
unstable and inaccurate. Also, the between-study covariance structure may be overparameterized given

how sparse the data are.

Note that meta mvregress uses all available data (all 31 nonmissing values in our example) and not

just complete observations. It produces valid results under the assumption that the missing observations

are missing at random.

The first model we ran assumed an unrestricted (unstructured) between-study covariance for yb,
yc, and yd. Let’s simplify this assumption and assume an independent covariance structure to reduce the
number of estimated variance components. Also, whenever a large portion of the observations is missing,

as in our example, parameter estimates tend to be less accurate. We thus specify the cformat(%9.3f)
option to display results up to three decimal points.
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. meta mvregress y*, wcovvariables(v*) random(mle, covariance(independent))
> cformat(%9.3f)
Performing EM optimization ...
Performing gradient-based optimization:
Iteration 0: Log likelihood = -71.117927 (not concave)
Iteration 1: Log likelihood = -57.19315 (not concave)
Iteration 2: Log likelihood = -53.591501
Iteration 3: Log likelihood = -52.323504
Iteration 4: Log likelihood = -52.108529
Iteration 5: Log likelihood = -52.106793
Iteration 6: Log likelihood = -52.106792
Multivariate random-effects meta-analysis Number of obs = 31
Method: ML Number of studies = 24

Obs per study:
min = 1
avg = 1.3
max = 3

Wald chi2(0) = .
Log likelihood = -52.106792 Prob > chi2 = .

Coefficient Std. err. z P>|z| [95% conf. interval]

yb
_cons 0.147 0.135 1.09 0.274 -0.116 0.411

yc
_cons 0.649 0.193 3.36 0.001 0.270 1.027

yd
_cons 0.663 0.243 2.72 0.006 0.186 1.140

Test of homogeneity: Q_M = chi2(28) = 204.22 Prob > Q_M = 0.0000

Random-effects parameters Estimate

Independent:
sd(yb) 0.000
sd(yc) 0.694
sd(yd) 0.092

All the regression coefficient estimates are positive, which means that all interventions are better than

intervention (a), although without statistical significance for outcome yb. Parameter sd(yb) is close to 0,
which means that the between-study covariance may still be overparameterized. In example 9 below, we

will demonstrate alternative random-effects covariance structures that further restrict the between-study

covariance structure.

Example 9: Between-study covariance structures
Continuing with example 8, we further reduce the number of variance components to be estimated

by specifying a more restrictive between-study covariance structure than covariance(independent).
One such structure is identity, where we assume that all random effects are uncorrelated and have one

common variance, which is to be estimated.

https://www.stata.com/manuals/meta.pdf#metametamvregressRemarksandexamplesmvregexcovstruct
https://www.stata.com/manuals/meta.pdf#metametamvregressRemarksandexamplesmvregexmisses
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. meta mvregress y*, wcovvariables(v*) random(mle, covariance(identity))
> cformat(%9.3f)
Performing EM optimization ...
Performing gradient-based optimization:
Iteration 0: Log likelihood = -62.707676 (not concave)
Iteration 1: Log likelihood = -54.538092
Iteration 2: Log likelihood = -54.501914
Iteration 3: Log likelihood = -54.501897
Iteration 4: Log likelihood = -54.501897
Multivariate random-effects meta-analysis Number of obs = 31
Method: ML Number of studies = 24

Obs per study:
min = 1
avg = 1.3
max = 3

Wald chi2(0) = .
Log likelihood = -54.501897 Prob > chi2 = .

Coefficient Std. err. z P>|z| [95% conf. interval]

yb
_cons 0.367 0.317 1.16 0.247 -0.254 0.988

yc
_cons 0.674 0.176 3.83 0.000 0.329 1.019

yd
_cons 0.864 0.396 2.18 0.029 0.087 1.641

Test of homogeneity: Q_M = chi2(28) = 204.22 Prob > Q_M = 0.0000

Random-effects parameters Estimate

Identity:
sd(yb yc yd) 0.580

The random-effects (or between-study) covariance structure is now labeled Identity:, and the common
standard deviation is labeled as sd(yb yc yd) and is equal to 0.580. Notice how sensitive the regression

coefficient estimates are to the choice of the between-study covariance structure. This phenomenon is a

consequence of many missing values in the data. In this case, it is important to also explore univariate

results by performing meta-analysis separately for each outcome.

We can also assume that all random effects have the same correlation and the same variance by spec-

ifying the exchangeable covariance structure.
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. meta mvregress y*, wcovvariables(v*) random(mle, covariance(exchangeable))
> cformat(%9.3f)
Performing EM optimization ...
Performing gradient-based optimization:
Iteration 0: Log likelihood = -65.135877 (not concave)
Iteration 1: Log likelihood = -54.442273 (not concave)
Iteration 2: Log likelihood = -53.488791
Iteration 3: Log likelihood = -53.376428
Iteration 4: Log likelihood = -53.35636
Iteration 5: Log likelihood = -53.356319
Iteration 6: Log likelihood = -53.356319
Multivariate random-effects meta-analysis Number of obs = 31
Method: ML Number of studies = 24

Obs per study:
min = 1
avg = 1.3
max = 3

Wald chi2(0) = .
Log likelihood = -53.356319 Prob > chi2 = .

Coefficient Std. err. z P>|z| [95% conf. interval]

yb
_cons 0.413 0.296 1.40 0.162 -0.166 0.992

yc
_cons 0.705 0.193 3.66 0.000 0.327 1.082

yd
_cons 0.837 0.308 2.71 0.007 0.232 1.441

Test of homogeneity: Q_M = chi2(28) = 204.22 Prob > Q_M = 0.0000

Random-effects parameters Estimate

Exchangeable:
sd(yb yc yd) 0.672

corr(yb yc yd) 0.817

The common correlation is labeled as corr(yb yc yd)with an estimated value of 0.817, and the common
standard deviation, sd(yb yc yd), is estimated to be 0.672.

meta mvregress lists only the estimated variance components. If you would like to see the full

between-study covariance matrix, you can use the estat recovariance command.

. estat recovariance
Between-study covariance matrix

yb yc yd

yb .451656
yc .3690338 .451656
yd .3690338 .3690338 .451656

To see the corresponding correlation matrix, you can specify the correlation option.

https://www.stata.com/manuals/metaestatrecovariance.pdf#metaestatrecovariance
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Example 10: Sensitivity meta-analysis
It is quite common in multivariate meta-regression to produce unstable estimates, especially when

the number of observations is small relative to the number of parameters to be estimated or when a

relatively large portion of the observations is missing. In this case, our goal may shift toward assessing the

impact of different magnitudes of between-study variances and covariances on the estimates of regression

coefficients.

Continuing with the dataset in example 8, we can investigate the effect of no correlation, moderate

correlation (0.4), and high correlation (0.8) between the random-effects associated with variables yb
and yc on the regression coefficients estimates. For simplicity, we will assume that the random effect

associated with yd is uncorrelated with the random-effects of yb and yc and that all random-effects have

unit variance (so covariances and correlations are identical). Thus, our fixed between-study covariance

matrices for the three scenarios are

. matrix Sigma1 = (1,0,0\0,1,0\0,0,1)

. matrix Sigma2 = (1,0.4,0\0.4,1,0\0,0,1)

. matrix Sigma3 = (1,0.8,0\0.8,1,0\0,0,1)

We fit the first model using the correlations of 0 and store the estimation results as corr0.

. meta mvregress y*, wcovvariables(v*) random(mle, covariance(fixed(Sigma1)))
Multivariate random-effects meta-analysis Number of obs = 31
Method: User-specified Sigma = Sigma1 Number of studies = 24

Obs per study:
min = 1
avg = 1.3
max = 3

Wald chi2(0) = .
Prob > chi2 = .

Coefficient Std. err. z P>|z| [95% conf. interval]

yb
_cons .4293913 .502528 0.85 0.393 -.5555455 1.414328

yc
_cons .7629462 .2739889 2.78 0.005 .2259379 1.299955

yd
_cons 1.028532 .5979445 1.72 0.085 -.1434175 2.200482

Test of homogeneity: Q_M = chi2(28) = 204.22 Prob > Q_M = 0.0000

Random-effects parameters Estimate

User-specified Sigma1:
sd(yb) 1
sd(yc) 1
sd(yd) 1

corr(yb,yc) 0
corr(yb,yd) 0
corr(yc,yd) 0

. estimates store corr0

Next, we fit the model with correlations of 0.4 and store results as corr4 and the model with corre-

lations of 0.8 and store results as corr8. For brevity, we suppress the output from both commands.

https://www.stata.com/manuals/meta.pdf#metametamvregressRemarksandexamplesmvregexmisses
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. quietly meta mvregress y*, wcovvariables(v*) random(mle, covariance(fixed(Sigma2)))

. estimates store corr4

. quietly meta mvregress y*, wcovvariables(v*) random(mle, covariance(fixed(Sigma3)))

. estimates store corr8

We compare the estimates side by side by using estimates table:

. estimates table corr0 corr4 corr8,
> keep(yb:_cons yc:_cons yd:_cons) b(%8.3f) se(%8.3f)

Variable corr0 corr4 corr8

yb
_cons 0.429 0.472 0.566

0.503 0.478 0.418

yc
_cons 0.763 0.752 0.730

0.274 0.271 0.266

yd
_cons 1.029 1.039 1.057

0.598 0.603 0.607

Legend: b/se

As the correlation between the random effects associated with yb and yc increases, the coefficient es-

timate for yb increases, whereas that for yc decreases. Also, the two estimates become more precise

(have smaller standard errors) as the correlation increases. This is expected because estimation borrows

information from one outcome to estimate the coefficient of the other correlated outcome. This phe-

nomenon is referred to as “strength borrowing” in the multivariate meta-analysis literature. Notice also

how the various magnitudes of correlations had little to no impact on the estimation of yd because of the

assumption of zero correlation between the random effect of yd and those of yb and of yc.

Example 11: Fixed-effects multivariate meta-regression
Gleser and Olkin (2009) reported six studies that compare the effects of five types of exercise with a

control group (no exercise) on systolic blood pressure. This dataset was also analyzed byHartung, Knapp,

and Sinha (2008). Variables y1 to y5 are standard mean differences between each type of exercise and

the control group. Ten variables, v11, v12, . . . , v55, define the corresponding within-study variances

and covariances.

The goal of this example is to demonstrate a potential problem that you may encounter in practice

when there are missing observations in the data. And we also demonstrate how to perform a fixed-effects

multivariate meta-analysis.

If we run the default random-effects model, we will get the following error message:

. use https://www.stata-press.com/data/r19/systolicbp
(Effect of exercise on systolic blood pressure)
. meta mvregress y*, wcovvariables(v*)
cannot estimate unstructured between-study covariance

Variables y1 and y4 have 1 jointly observed value. With recov
unstructured, at least 2 jointly observed values are required to estimate
the between-study covariance. You may try specifying a different recov in
option random(), such as random(, covariance(independent)).

r(459);

https://www.stata.com/manuals/restimatestable.pdf#restimatestable
https://www.stata.com/manuals/perror.pdf#perrorRemarksandexamplesr(459)
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We list the observations on variables y1 and y4:

. list y1 y4, sep(0) noobs

y1 y4

.808 .
. 1.962
. 2.568
. .

1.171 3.159
.681 .

As the error message suggests, the estimation of the between-study covariance matrix, especially the ele-

ment cov(y1,y4), is not possible, because there is only one joint observation (1.171, 3.159) on variables
y1 and y4.

We may try a different random-effects covariance structure (see example 9 and example 10). Alter-

natively, we will follow Gleser and Olkin (2009) and perform a fixed-effects multivariate meta-analysis

by specifying the fixed option.

. meta mvregress y*, wcovvariables(v*) fixed
Multivariate fixed-effects meta-analysis Number of obs = 15

Number of studies = 6
Obs per study:

min = 1
avg = 2.5
max = 4

Wald chi2(0) = .
Prob > chi2 = .

Coefficient Std. err. z P>|z| [95% conf. interval]

y1
_cons .7560005 .1144556 6.61 0.000 .5316716 .9803294

y2
_cons 1.398708 .1265397 11.05 0.000 1.150695 1.646722

y3
_cons 1.745014 .1646159 10.60 0.000 1.422373 2.067655

y4
_cons 2.146055 .1823172 11.77 0.000 1.78872 2.50339

y5
_cons 2.141486 .2338656 9.16 0.000 1.683118 2.599854

Test of homogeneity: Q_M = chi2(10) = 10.10 Prob > Q_M = 0.4318

The homogeneity test based on the statistic 𝑄M = 10.1 favors the fixed-effects model (𝑝 = 0.4318).

However, we should be careful not to rely solely on this test because it is known to have low power when

the number of studies is small (Hedges and Pigott 2001).

https://www.stata.com/manuals/meta.pdf#metametamvregressRemarksandexamplesmvregexcovstruct
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Stored results
meta mvregress stores the following in e():

Scalars

e(N) total number of observations on depvars

e(k) number of parameters

e(k eq) number of dependent variables

e(k f) number of fixed-effects parameters

e(k r) number of random-effects parameters

e(k rs) number of variances

e(k rc) number of covariances

e(seadj) standard error adjustment (se() only)

e(ll) log (restricted) likelihood (mle and reml only)

e(rank) rank of e(V)
e(ic) number of iterations (mle and reml only)

e(df m) model degrees of freedom

e(chi2) model 𝜒2 Wald test statistic

e(df r) model denominator degrees of freedom (tdistribution() only)

e(F) model 𝐹 statistic (tdistribution() only)

e(p) 𝑝-value for model test
e(Q M) multivariate Cochran 𝑄 residual homogeneity test statistic

e(df Q M) degrees of freedom for residual homogeneity test

e(p Q M) 𝑝-value for residual homogeneity test
e(converged) 1 if converged, 0 otherwise (mle and reml only)

e(s max) maximum number of observations per study

e(s avg) average number of observations per study

e(s min) minimum number of observations per study

e(N s) number of studies

Macros

e(cmd) meta mvregress
e(cmdline) command as typed

e(model) multivariate meta-analysis model

e(method) multivariate meta-analysis estimation method

e(title) title in estimation output

e(chi2type) Wald; type of model 𝜒2 test

e(depvars) names of dependent variables

e(indepvars) names of independent variables (moderators)

e(wcovvariables) variables defining within-study covariance matrix

e(wsevariables) standard error variables from wsevariables()
e(wcorrelations) values of the assumed within-study correlations from wcorrelations()
e(redim) random-effects dimensions

e(vartypes) variance-structure types

e(seadjtype) type of standard error adjustment (se() only)

e(technique) maximization technique (mle and reml only)

e(ml method) type of ml method

e(opt) type of optimization (mle and reml only)

e(optmetric) matsqrt or matlog; random-effects matrix parameterization (mle and reml only)

e(properties) b V
e(predict) program used to implement predict
e(estat cmd) program used to implement estat
e(marginsok) predictions allowed by margins
e(marginsnotok) predictions disallowed by margins
e(marginsdefault) default predict() specification for margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved
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Matrices

e(b) coefficient vector

e(V) variance–covariance matrix of the estimators

Functions

e(sample) marks estimation sample

In addition to the above, the following is stored in r():

Matrices

r(table) matrix containing the coefficients with their standard errors, test statistics, 𝑝-values, and
confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when any

r-class command is run after the estimation command.

Methods and formulas
Methods and formulas are presented under the following headings:

Fixed-effects multivariate meta-regression
Random-effects multivariate meta-regression

Iterative methods for computing 𝚺
Noniterative method for computing 𝚺
Random-effects covariance structures
Jackson–Riley standard-error adjustment

Multivariate meta-analysis
Residual homogeneity test

For an overview of estimation methods used by multivariate meta-regression, see van Houwelingen,

Arends, and Stijnen (2002), Jackson, Riley, and White (2011), White (2011), and Sera et al. (2019).

Consider data from 𝐾 independent studies and 𝑑 outcomes (effect sizes). Let ̂𝜃𝑖𝑗 be the estimated

effect size reported by study 𝑗 for outcome 𝑖, and let the 𝑑 × 1 vector θ̂𝑗 = ( ̂𝜃1𝑗, ̂𝜃2𝑗, . . . , ̂𝜃𝑑𝑗)′ be an

estimate of the true population effect size θ𝑗 for study 𝑗.

Fixed-effects multivariate meta-regression
Amodel for the fixed-effects multivariate meta-regression (Raudenbush, Becker, and Kalaian 1988)

can be expressed as

̂𝜃𝑖𝑗 = 𝛽𝑖0 + 𝛽𝑖1𝑥1𝑗 + · · · + 𝛽𝑖,𝑝−1𝑥𝑝−1,𝑗 + 𝜖𝑖𝑗 = x𝑗β𝑖 + 𝜖𝑖𝑗

for outcome 𝑖 = 1, . . . , 𝑑 and study 𝑗 = 1, . . . , 𝐾. Here x𝑗 = (1, 𝑥1𝑗, . . . , 𝑥𝑝−1,𝑗) is a 1 × 𝑝 vector of

categorical and continuous moderators (covariates), β𝑖 is an outcome-specific 𝑝 × 1 vector of unknown

regression coefficients, and ε𝑗 = (𝜖1𝑗, 𝜖2𝑗, . . . , 𝜖𝑑𝑗)′ is a 𝑑 × 1 vector of within-study errors that have a

𝑑-variate normal distribution with zero mean vector and a 𝑑 × 𝑑 covariance matrix Var(ε𝑗) = 𝚲𝑗. The

within-study covariance matrices 𝚲𝑗’s are treated as known and do not require estimation. 𝚲𝑗’s reduce

to �̂�2
𝑗 in the case of univariate meta-analysis; see Methods and formulas of [META] meta summarize.

In matrix notation, the above fixed-effects model can be defined as

θ̂𝑗 = X𝑗β + ε𝑗, ε𝑗 ∼ 𝑁𝑑 (0, 𝚲𝑗)

where X𝑗 = x𝑗 ⊗ 𝐼𝑑 (⊗ is the Kronecker product) is a 𝑑 × 𝑑𝑝 matrix and β = (β′
1,β′

2, . . . ,β′
𝑑)′ is a

𝑑𝑝 × 1 vector of all unknown regression coefficients.

https://www.stata.com/manuals/metametamvregress.pdf#metametamvregressMethodsandformulasIterativemethodsforcomputingSigma
https://www.stata.com/manuals/metametamvregress.pdf#metametamvregressMethodsandformulasNoniterativemethodforcomputingSigma
https://www.stata.com/manuals/metametasummarize.pdf#metametasummarizeMethodsandformulas
https://www.stata.com/manuals/metametasummarize.pdf#metametasummarize
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LetW𝑗 = 𝚲−1
𝑗 , a 𝑑 × 𝑑 matrix. Then the fixed-effects estimator for the regression coefficients is

β̂ = (
𝐾

∑
𝑗=1

X′
𝑗W𝑗X𝑗)

−1 𝐾
∑
𝑗=1

X′
𝑗W𝑗θ̂𝑗

and the corresponding covariance matrix is

Var(β̂) = (
𝐾

∑
𝑗=1

X′
𝑗W𝑗X𝑗)

−1

(1)

The above fixed-effects regression does not account for residual heterogeneity. This can lead to stan-

dard errors of regression coefficients that are too small. Next we present a random-effects multivariate

meta-regression model that incorporates residual heterogeneity by including an additive between-study

covariance component 𝚺.

Random-effects multivariate meta-regression
Consider the following extension of a fixed-effects multivariate meta-regression model (Berkey et al.

1998):

θ̂𝑗 = X𝑗β + ε∗
𝑗, where ε∗

𝑗 ∼ 𝑁𝑑 (0, 𝚲𝑗 + 𝚺)

Alternatively, the above model can be written as

θ̂𝑗 = X𝑗β + u𝑗 + ε𝑗, ε𝑗 ∼ 𝑁𝑑 (0, 𝚲𝑗)

where random effects u𝑗 = (𝑢1𝑗, 𝑢2𝑗, . . . , 𝑢𝑑𝑗)′ ∼ 𝑁𝑑(0, 𝚺) (𝑗 = 1, . . . , 𝐾) account for the additional

variation that is not explained by moderators X𝑗.

The models above define a random-effects multivariate meta-regression.

Let �̂� be an estimate of the between-study covariance matrix 𝚺 (to be discussed later), and letW∗
𝑗 =

(�̂� + 𝚲𝑗)−1. The random-effects estimator for the regression coefficients is

β̂
∗

= (
𝐾

∑
𝑗=1

X′
𝑗W

∗
𝑗X𝑗)

−1 𝐾
∑
𝑗=1

X′
𝑗W

∗
𝑗θ̂𝑗

The corresponding covariance matrix is given by

Var(β̂
∗
) = (

𝐾
∑
𝑗=1

X′
𝑗W

∗
𝑗X𝑗)

−1

(2)

In the following section, we outline the estimation of the between-study covariance matrix 𝚺 for

the ML and REML iterative methods. For the noniterative Jackson–White–Riley of estimating 𝚺, see

Noniterative method for computing 𝚺.

Iterative methods for computing 𝚺

The two estimators described below do not have a closed-form solution, and an iterative algorithm is

needed to estimate 𝚺.

https://www.stata.com/manuals/meta.pdf#metametamvregressMethodsandformulasNoniterativemethodforcomputingSigma
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The joint log-likelihood function of β and 𝚺 for a random-effects multivariate meta-regression can

be expressed as

ln𝐿ML (β, 𝚺) = −1
2

{𝑛 ln(2𝜋) +
𝐾

∑
𝑗=1

ln ∣V𝑗∣ +
𝐾

∑
𝑗=1

(θ̂𝑗 − X𝑗β)
′
V−1

𝑗 (θ̂𝑗 − X𝑗β)}

whereV𝑗 = 𝚺+𝚲𝑗, |V𝑗| is the determinant ofV𝑗, and 𝑛 is the total number of observations ̂𝜃𝑖𝑗 (𝑛 = 𝐾𝑑
when there are no missing data).

The between-study covariance 𝚺 is estimated by maximizing the profile log-likelihood function ob-

tained by treating β as known and plugging β̂
∗
into ln𝐿ML(β, 𝚺) in place of β (Pinheiro and Bates

[2000, ch. 2]):

ln𝐿ML (𝚺) = −1
2

{𝑛 ln(2𝜋) +
𝐾

∑
𝑗=1

ln ∣V𝑗∣ +
𝐾

∑
𝑗=1

(θ̂𝑗 − X𝑗β̂
∗
)

′
V−1

𝑗 (θ̂𝑗 − X𝑗β̂
∗
)}

The MLE of 𝚺 does not incorporate the uncertainty about the unknown regression coefficients β and

thus can be negatively biased.

The REML estimator of 𝚺 maximizes the restricted log-likelihood function

ln𝐿REML (𝚺) = ln𝐿ML (𝚺) − 1
2
ln ∣

𝐾
∑
𝑗=1

X′
𝑗V

−1
𝑗 X𝑗∣ + 𝑑𝑝

2
ln(2𝜋)

The REMLmethod estimates 𝚺 by accounting for the uncertainty in the estimation of β, which leads
to a nearly unbiased estimate of 𝚺. The optimization of the above log-likelihood functions can be done

using the machinery of the mixed-effects models to obtain the estimates β̂
∗
and �̂�. For details, see

Pinheiro and Bates (2000) and Methods and formulas of [ME]mixed. When 𝑑 = 1, that is, in the context

of univariate meta-analysis, the aboveML and REML estimators reduce to their univariate counterparts as

reported by meta regress.

Noniterative method for computing 𝚺

This section describes a noniterative method to estimate the between-study covariance matrix 𝚺,

which has a closed-form expression. The formulas in this section are based on Jackson, White, and Riley

(2013).

Using the notation for a fixed-effects multivariate meta-regression, define a 𝑑 × 𝑑 matrix

QJWR =
𝐾

∑
𝑗=1

W𝑗 (θ̂𝑗 − X𝑗β̂) (θ̂𝑗 − X𝑗β̂)
′
R𝑗

where R𝑗 is a 𝑑 × 𝑑 diagonal matrix with the 𝑖th diagonal element equal to 1 if ̂𝜃𝑖𝑗 is observed and 0 if

it is missing.

The role of R𝑗 is to ensure that missing outcomes do not contribute to the computation of QJWR.

Let R = ⊕𝐾
𝑗=1R𝑗 andW = ⊕𝐾

𝑗=1W𝑗 be 𝐾𝑑 × 𝐾𝑑 block-diagonal matrices formed by submatrices R𝑗
andW𝑗, respectively; ⊕ is the Kronecker sum. In the presence of missing outcome values, the matrix

W𝑗 = 𝚲−1
𝑗 is obtained by inverting the submatrix of 𝚲𝑗 corresponding to the observed outcome values

and by replacing the remaining elements with zeros.

https://www.stata.com/manuals/memixed.pdf#memixedMethodsandformulas
https://www.stata.com/manuals/memixed.pdf#memixed
https://www.stata.com/manuals/metametaregress.pdf#metametaregress
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Let X denote a 𝐾𝑑 × 𝑝 matrix constructed by vertically stacking the 𝑑 × 𝑝 matrices X𝑗, that is,

X = (X′
1,X′

2, . . . ,X′
𝐾)′. Define

PM = (I𝐾𝑑 −H)′
W

B = (I𝐾𝑑 −H)′
R

(3)

where H = X(X′WX)−1X′W and I𝐾𝑑 is the 𝐾𝑑 × 𝐾𝑑 identity matrix. The subscriptM in PM is used

to emphasize that the 𝐾𝑑 × 𝐾𝑑 matrix PM generalizes the 𝐾 × 𝐾 matrix P, defined by (1) in Methods

and formulas of [META] meta regress, to the multivariate meta-regression setting.

Partition the 𝐾𝑑 × 𝐾𝑑 matrices PM and B into 𝐾2 blocks of 𝑑 × 𝑑 matrices, and denote the 𝑗th by 𝑙th
submatrix of PM by (PM)𝑗𝑙 and of B by (B)𝑗𝑙, respectively. The method of moments estimator proposed

by Jackson, White, and Riley (2013) solves the system of 𝑑2 estimating equations

vec (QJWR) = vec{
𝐾

∑
𝑗=1

(B)𝑗𝑗} + {
𝐾

∑
𝑙=1

𝐾
∑
𝑗=1

(B)′
𝑗𝑙 ⊗ (PM)𝑙𝑗} vec(�̃�)

where vec(A) vectorizes A column by column and ⊗ is the Kronecker product. Solving for vec(�̃�) and
hence �̃�, we obtain the JWR estimator of the between-study covariance matrix,

�̂�JWR = �̃� + �̃�
′

2

The estimator �̂�JWR is symmetric but not necessarily positive semidefinite. We can obtain a positive

semidefinite estimator, �̂�
+
JWR, based on spectral decomposition �̂�JWR = ∑𝑑

𝑖=1 𝜆𝑖e𝑖e
′
𝑖 as follows,

�̂�
+
JWR =

𝑑
∑
𝑖=1

max (0, 𝜆𝑖) e𝑖e
′
𝑖

where 𝜆𝑖s are the eigenvalues of �̂�JWR and e𝑖s are the corresponding orthonormal eigenvectors. �̂�
+
JWR

has the same eigenvectors as �̂�JWR but with negative eigenvalues truncated at 0.

The JWR estimator can be viewed as an extension of the DerSimonian–Laird estimator from the

random-effects meta-regression to multivariate meta-regression. For univariate meta-analysis (𝑑 = 1),

the JWR estimator reduces to the DerSimonian–Laird estimator from meta regress. The truncation of
�̂�JWR to obtain �̂�

+
JWR is equivalent to truncating ̂𝜏2

DL at 0 in univariate meta-regression whenever the

estimate is negative.

Random-effects covariance structures

Several covariance structures may be assumed for the between-study covariance matrix 𝚺. The de-

fault covariance structure is unstructured, which is the most general structure in which all elements

or, more precisely, 𝑑(𝑑 + 1)/2 variance components are estimated. Other covariance structures are

independent, exchangeable, identity, and fixed(matname). These structures may be useful to

provide more stable estimates by reducing the complexity of the model, especially when the number of

observations, 𝑛, is relatively small.

https://www.stata.com/manuals/metametaregress.pdf#metametaregressMethodsandformulasmregeqP
https://www.stata.com/manuals/metametaregress.pdf#metametaregressMethodsandformulas
https://www.stata.com/manuals/metametaregress.pdf#metametaregressMethodsandformulas
https://www.stata.com/manuals/metametaregress.pdf#metametaregress
https://www.stata.com/manuals/metametaregress.pdf#metametaregressMethodsandformulasNoniterativemethodsforcomputingtau-hat-squared
https://www.stata.com/manuals/metametaregress.pdf#metametaregress
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For example, when 𝑑 = 3, the covariance structures are

unstructured 𝚺 = ⎡⎢
⎣

𝜎11
𝜎21 𝜎22
𝜎31 𝜎32 𝜎33

⎤⎥
⎦

independent 𝚺 = ⎡⎢
⎣

𝜎11
0 𝜎22
0 0 𝜎33

⎤⎥
⎦

exchangeable 𝚺 = ⎡⎢
⎣

𝜎11
𝜎21 𝜎11
𝜎21 𝜎21 𝜎11

⎤⎥
⎦

identity 𝚺 = ⎡⎢
⎣

𝜎11
0 𝜎11
0 0 𝜎11

⎤⎥
⎦

Any of the above covariance structures may be specified with the ML and REML methods. Only the

unstructured covariance structure is allowed with the JWR method. When covariance structure

fixed(matname) is specified, matname is assumed to be the known between-study covariance, and

thus no iteration is needed.

Jackson–Riley standard-error adjustment

By default, the inference about the regression coefficients and their confidence intervals from meta-

regression is based on a normal distribution. The test of the significance of all regression coefficients is

based on a 𝜒2 distribution with 𝑑(𝑝 − 1) degrees of freedom.
Jackson and Riley (2014) proposed an adjustment to the standard errors of the estimated regression

coefficients to account for the uncertainty in the estimation of 𝚺. They showed that the corresponding

tests of individual regression coefficients and their confidence intervals are based on the Student’s 𝑡
distribution with 𝑛 − 𝑑𝑝 degrees of freedom and that the overall test of significance is based on an 𝐹
distribution with 𝑑(𝑝 − 1) numerator and 𝑛 − 𝑑𝑝 denominator degrees of freedom.

The Jackson–Riley adjustment first calculates the quadratic form,

𝑞JR = 1
𝑛 − 𝑑𝑝

𝐾
∑
𝑗=1

(θ̂𝑗 − X𝑗β̂)
′
W∗

𝑗 (θ̂𝑗 − X𝑗β̂)

It then multiplies the regular expressions of the variances of regression coefficients by 𝑞JR or, in the case
of the truncated Jackson–Riley adjustment, by max(1, 𝑞JR). When 𝑑 = 1, the Jackson–Riley adjustment,

𝑞JR, reduces to the Knapp–Hartung adjustment, 𝑞KH, from Knapp–Hartung standard-error adjustment in

Methods and formulas in [META] meta regress.

Multivariate meta-analysis
The formulas presented so far are derived for the general case of multivariate meta-regression. Meth-

ods and formulas for the special case of multivariate meta-analysis (when no moderators are included)

can be obtained by taking x𝑗 = 1 and 𝑝 = 1. When 𝑑 = 1, the REML, ML, and JWR estimators reduce

to the univariate REML, ML, and DL estimators described in [META] meta summarize for constant-only

models and in [META] meta regress for regression models.

https://www.stata.com/manuals/metametaregress.pdf#metametaregressMethodsandformulasKnapp--Hartungstandard-erroradjustment
https://www.stata.com/manuals/metametaregress.pdf#metametaregressMethodsandformulas
https://www.stata.com/manuals/metametaregress.pdf#metametaregress
https://www.stata.com/manuals/metametasummarize.pdf#metametasummarize
https://www.stata.com/manuals/metametaregress.pdf#metametaregress
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Residual homogeneity test
Consider a test of residual homogeneity, which mathematically translates to 𝐻0 ∶ 𝚺 = 0𝑑×𝑑 for the

random-effects multivariate meta-regression. This test is based on the multivariate residual weighted

sum of squares, 𝑄M,

𝑄M =
𝐾

∑
𝑗=1

(θ̂𝑗 − X𝑗β̂)
′
W𝑗 (θ̂𝑗 − X𝑗β̂)

where β̂ is a fixed-effects estimator of regression coefficients defined for a fixed-effects multivariate

meta-regression.

Under the null hypothesis of residual homogeneity, 𝑄M follows a 𝜒2 distribution with 𝑛 − 𝑑𝑝 de-

grees of freedom (Seber and Lee 2003, sec. 2.4). The 𝑄M statistic reduces to the univariate residual

homogeneity test statistic, 𝑄res, when 𝑑 = 1 (see Residual homogeneity test in Methods and formulas in

[META]meta regress). It also reduces to the univariate homogeneity statistic 𝑄 when no moderators are

included (see Homogeneity test in Methods and formulas in [META] meta summarize).
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