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Description
meta meregress performs multilevel meta-regression. You can think of multilevel meta-regression

as an extension of meta-regression, where effect sizes are nested within a higher grouping variable,

such as district or region, and thus may be correlated. These groups may themselves be nested within

another higher grouping variable, and so on. The dependencies among the observations within a group

are accounted for by the inclusion of random effects at different levels of hierarchy.

If you wish to fit multilevel meta-analysis models with random intercepts only, see [META] meta

multilevel for an alternative command with a simpler syntax.

meta meregress performs random-effects (RE) multilevel meta-regression with various covariance

structures and estimation methods for the random effects, which include random intercepts and random

coefficients. meta meregress is a standalone command in that it does not require you to declare your

data as meta data using meta set or meta esize.

Quick start
Perform standard REmeta-analysis by expressing it as a two-level meta-analysis model of the effect-size

y with random intercepts by trial and effect-size standard errors se
meta meregress y || trial:, essevariable(se)

Same as above, but perform an RE meta-regression on continuous moderator x
meta meregress y x || trial:, essevariable(se)

Same as above, but specify effect-size variances (var) instead of the effect-size standard errors
meta meregress y x || trial:, esvarvariable(var)

Perform a three-level meta-analysis of effect-size y with random intercepts by region and by trial
nested within region

meta meregress y || region: || trial:, essevariable(se)

Same as above, but perform a three-level meta-regression on moderator x, add a random slope on x at

the region level, and request the ML instead of the default REML estimation method

meta meregress y x || region: x || trial:, essevariable(se) mle

Same as above, but add a random slope on x at the trial-within-region level and specify an exchangeable
covariance structure between the random slopes and intercepts at the trial-within-region level and an

unstructured covariance structure between the random slopes and intercepts at the region level

meta meregress y x || region: x, covariance(unstructured) ///
|| trial: x, covariance(exchangeable) essevariable(se) mle
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https://www.stata.com/manuals/metametaregress.pdf#metametaregress
https://www.stata.com/manuals/metametamultilevel.pdf#metametamultilevel
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Perform a three-level meta-regression of y on x1 and x2 with random slopes for x1 and x2 at the region
level, and specify a custom covariance structure for the random effects at the region level

matrix A = (.5,.,.a .,1,. .a,.,1)
meta meregress y x1 x2 || region: x1 x2, covariance(custom A) ///

|| trial:, essevariable(se)

Menu
Statistics > Meta-analysis

Syntax
meta meregress depvar fe equation || re equation [ || re equation [ . . . ] ],

{ essevariable(varname) | esvarvariable(varname) } [ options ]

where the syntax of fe equation is

[ indepvars ] [ if ] [ in ] [ , fe options ]

and the syntax of re equation is

levelvar: [ varlist ] [ , re options ]

levelvar is a variable identifying the group structure for the random effects at that level. A random

intercept is included in each re equation unless option noconstant is specified and a random coefficient

(also known as a random slope) associated with each variable in varlist is also added to the model.

fe options Description

Model

noconstant suppress constant term from the fixed-effects equation

constraints(constraints) apply specified linear constraints

re options Description

Model

covariance(vartype) variance–covariance structure of the random effects

noconstant suppress constant term from the random-effects equation

collinear keep collinear variables

https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/meta.pdf#metametameregressSyntaxopts
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.4inrange
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptionsOptionsconstraintsdescrip
https://www.stata.com/manuals/meta.pdf#metametameregressSyntaxvartype
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options Description

Model
∗ essevariable(varname) specify effect-size (sampling) standard errors
∗ esvarvariable(varname) specify effect-size (sampling) variances

reml fit model via restricted maximum likelihood; the default

mle fit model via maximum likelihood

Reporting

level(#) set confidence level; default is level(95)
stddeviations show random-effects parameter estimates as standard deviations

and correlations; the default

variance show random-effects parameter estimates as variances and
covariances

estmetric show parameter estimates as stored in e(b)
nohomtest suppress output for homogeneity test

noretable suppress random-effects table

nofetable suppress fixed-effects table

noheader suppress output header

nogroup suppress table summarizing groups

nocnsreport do not display constraints

display options control columns and column formats, row spacing, line width,
display of omitted variables and base and empty cells, and
factor-variable labeling

EM options

emiterate(#) number of EM iterations; default is emiterate(20)
emtolerance(#) EM convergence tolerance; default is emtolerance(1e-10)
emonly fit model exclusively using EM

emlog show EM iteration log

emdots show EM iterations as dots

Maximization

maximize options control the maximization process; seldom used

coeflegend display legend instead of statistics

∗ Either essevariable() or esvarvariable() is required.

indepvars and varlist may contain factor variables; see [U] 11.4.3 Factor variables.

collect is allowed; see [U] 11.1.10 Prefix commands.

coeflegend does not appear in the dialog box.

See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/meta.pdf#metametameregressOptionsdisplay_options
https://www.stata.com/manuals/meta.pdf#metametameregressOptionsmaxopts
https://www.stata.com/manuals/u11.pdf#u11.4.3Factorvariables
https://www.stata.com/manuals/u11.pdf#u11.1.10Prefixcommands
https://www.stata.com/manuals/u20.pdf#u20Estimationandpostestimationcommands
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vartype Description

independent one unique standard-deviation parameter per random effect, all
correlations 0; the default

exchangeable equal standard deviations for random effects and one common
pairwise correlation

identity equal standard deviations for random effects; all correlations 0

unstructured all standard deviations and correlations to be distinctly estimated

custom matname custom matrix matname with fixed, free, and patterned
standard deviations and correlations

Options

� � �
Model �

noconstant suppresses the constant (intercept) term and may be specified for the fixed-effects equation

and for any of or all the random-effects equations.

covariance(vartype) specifies the structure of the covariance matrix for the random effects and may

be specified for each random-effects equation. vartype is one of the following: independent,
exchangeable, identity, unstructured, or custom.

independent allows for a distinct standard deviation for each random effect within a random-effects

equation and assumes that all correlations are 0. This is the default covariance structure.

exchangeable specifies one common standard deviation for all random effects and one common

pairwise correlation.

identity is short for “multiple of the identity”; that is, all standard deviations are equal and all

correlations are 0.

unstructured allows for all standard deviations and correlations to be distinct. If there are 𝑞 random-
effects terms, the unstructured covariance matrix will have 𝑞(𝑞 + 1)/2 unique parameters.

custom matname specifies constraints for standard deviations (diagonal elements of matname) and

correlations (off-diagonal elements of matname) of the random effects. Three types of specifica-

tions are allowed within matname:

1. A nonmissing value # that fixes the corresponding element at # during estimation.

2. One of .a, .b, etc., assigned to at least two diagonal or two off-diagonal elements to restrict
the respective standard deviations or correlations to be the same during estimation.

3. Amissing value . that allows the corresponding element to be freely estimated.

For example, assume that an re equation in the model is || levelvar : x1 x2 x3 and therefore

there are four random effects (one random intercept and three random slopes) at the levelvar
level. Below, we describe the effect of specifying covariance(custom matname) with

matname =
⎛⎜⎜⎜
⎝

x1 x2 x3 cons
1.2

0.5 .a
.b . .a
.b .c .c .

⎞⎟⎟⎟
⎠
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Let the 𝑢𝑗’s be the random slopes of xj, j ∈ {1, 2, 3} and 𝑢0 be the random intercept. The above

specification fixes the standard deviation of 𝑢1 at 1.2 and the correlation between 𝑢1 and 𝑢2 at

0.5 during estimation. It also restricts the standard deviations of 𝑢2 and 𝑢3 to be equal (set equal

to .a), the correlation between 𝑢1 and 𝑢3 to be the same as the correlation between 𝑢1 and 𝑢0
(both set equal to .b), and the correlation between 𝑢2 and 𝑢0 to be identical to the correlation

between 𝑢3 and 𝑢0 (both set equal to .c). Furthermore, it allows the standard deviation of 𝑢0 and

the correlation between 𝑢2 and 𝑢3 to be freely estimated.

essevariable(varname) specifies a variable that stores the standard errors of the effect sizes in variable
varname, also known as sampling standard errors. You must specify one of essevariable() or

esvarvariable().

esvarvariable(varname) specifies a variable that stores the variances of the effect sizes in vari-

able varname, also known as sampling variances. You must specify one of esvarvariable() or

essevariable().

reml and mle specify the statistical method for fitting the model.

reml, the default, specifies that the model be fit using restricted maximum likelihood (REML), also

known as residual maximum likelihood.

mle specifies that the model be fit using maximum likelihood (ML).

constraints(constraints); see [R] Estimation options.

� � �
Reporting �

level(#); see [R] Estimation options.

stddeviations, the default, displays the random-effects parameter estimates as standard deviations and
correlations.

variance displays the random-effects parameter estimates as variances and covariances.

estmetric; see [ME] mixed.

nohomtest suppresses the homogeneity test based on the 𝑄𝑀 statistic from the output.

noretable, nofetable, noheader, and nogroup; see [ME] mixed.

nocnsreport; see [R] Estimation options.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] Estimation options.

� � �
EM options �

emiterate(#), emtolerance(#), emonly, emlog, and emdots; see [ME] mixed.

� � �
Maximization �

maximize options: difficult, technique(algorithm spec), iterate(#), [no]log, trace,
gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), and nonrtolerance; see [R] Maximize. Those that require special mention for

meta meregress are listed below.

For the technique() option, the default is technique(nr). The bhhh algorithm is not available.

matsqrt, the default, and matlog; see [ME] mixed.

https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
https://www.stata.com/manuals/memixed.pdf#memixed
https://www.stata.com/manuals/memixed.pdf#memixed
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
https://www.stata.com/manuals/d.pdf#dformat
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
https://www.stata.com/manuals/memixed.pdf#memixed
https://www.stata.com/manuals/rmaximize.pdf#rMaximizeSyntaxalgorithm_spec
https://www.stata.com/manuals/rmaximize.pdf#rMaximize
https://www.stata.com/manuals/memixed.pdf#memixed
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The following options are available with meta meregress but are not shown in the dialog box:

collinear specifies that meta meregress not omit collinear variables from the random-effects equa-

tion. Usually, there is no reason to leave collinear variables in place; in fact, doing so usually causes

the estimation to fail because of the matrix singularity caused by the collinearity. However, with cer-

tain models (for example, a random-effects model with a full set of contrasts), the variables may be

collinear, yet the model is fully identified because of restrictions on the random-effects covariance

structure. In such cases, using the collinear option allows the estimation to take place with the

random-effects equation intact.

coeflegend; see [R] Estimation options.

Remarks and examples
Remarks are presented under the following headings:

Introduction
Standard meta-analysis as a two-level model
Three-level random-intercepts model
Three-level model with random slopes
Using meta meregress

Examples of using meta meregress
Example 1: Standard meta-analysis as a two-level model
Example 2: Three-level meta-analysis
Example 3: Assessing multilevel heterogeneity
Example 4: Likelihood-ratio tests and information criteria
Example 5: Three-level meta-regression with random slopes
Example 6: Random-effects covariance structures
Example 7: Sensitivity multilevel meta-regression

Introduction
Multilevel meta-regression is a statistical technique used to study the relationship between effect sizes

and covariates, where effect sizes may be correlated because of the clustered or multilevel (hierarchical)

structure of the data. The multilevel structure can arise, for example, when we consider a meta-analysis

that explores the impact of a new teaching technique on math testing scores. Studies may be conducted

in separate school districts with potentially multiple studies in each school district. Each study reports

an effect size that quantifies the difference between the two groups of students (those who received the

new teaching technique and those who did not), such as mean difference of testing scores between the

two groups. We are interested not only in synthesizing the overall effect of the new teaching technique

but also in assessing the variability (heterogeneity) among the effect sizes at the district level (level 3)

and among the studies within each district (level 2, also known as the studies-within-district level).

Results of studies conducted within the same school district are more likely to be similar and thus

dependent given that, for example, the students therein are exposed to the same socioeconomical factors.

This dependence is usually accounted for by including random effects at various levels of hierarchy in the

model. By properly accounting for the dependence among the effect sizes, we can produce more accurate

inference compared with performing a standard meta-analysis that ignores the hierarchical structure and

the dependence among the effect sizes.

The standard meta-analysis can be viewed as a two-level meta-analysis model where the subjects or

participants within studies are the level-1 observations and studies (or more precisely effect sizes reported

by the studies) are the level-2 observations. The within-study standard errors or variances are assumed

known; see Standard meta-analysis as a two-level model.

https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
https://www.stata.com/manuals/metametameregress.pdf#metametameregressRemarksandexamplesmeregexuniv
https://www.stata.com/manuals/metametameregress.pdf#metametameregressRemarksandexamplesmeregexthree
https://www.stata.com/manuals/metametameregress.pdf#metametameregressRemarksandexamplesmeregexhet
https://www.stata.com/manuals/metametameregress.pdf#metametameregressRemarksandexamplesmeregexlric
https://www.stata.com/manuals/metametameregress.pdf#metametameregressRemarksandexamplesmeregexrandslope
https://www.stata.com/manuals/metametameregress.pdf#metametameregressRemarksandexamplesmeregexcovstruct
https://www.stata.com/manuals/metametameregress.pdf#metametameregressRemarksandexamplesmeregexsens
https://www.stata.com/manuals/meta.pdf#metametameregressRemarksandexamplesStandardmeta-analysisasatwo-levelmodel
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In the school example above, studies are the level-2 observations. However, this is not always the

case in multilevel meta-analysis applications. For example, we may have a four-level meta-analysis with

runs (level 2) nested within experiments (level 3) nested within studies (level 4); see McCurdy et al.

(2020) for another example. Here studies actually define level 4 and runs define level 2. Thus, the terms

“within-study standard errors” and “within-study variances” may not always be appropriate to refer to the

variability at the lowest level of hierarchy, which is described by the standard errors or variances of the

effect sizes. In our four-level example, the terms “within-run standard errors” and “within-run variances”

would be more appropriate. To avoid any confusion, we will use the terms “sampling standard errors”

and “sampling variances” to refer, respectively, to the standard errors and the variances of the effect sizes.

Multilevel meta-regression differs from standard meta-regression in two major aspects. First, a hier-

archical (grouping) structure is assumed to be present in the data, and it is a main interest to decompose

the total heterogeneity among the effect sizes across the different levels of hierarchy. Second, random

slopes for moderators may be included in the model at different grouping levels. Recall that a standard

meta-regression model incorporates only random intercepts.

Multilevel meta-regression is analogous to a multilevel mixed-effects model (Raudenbush and Bryk

2002), which is usedwhen individual data are available, but inmultilevel meta-regression, the outcome of

interest is an effect size. And, because we do not have individual participant data, there are no covariates

that are recorded at the lowest observation level. Also, the sampling variances, the variability at the lowest

level, are assumed to be known. Having the known sampling variance allows us to include random

intercepts at level 2. However, to include random slopes at level 2, the data must include repeated

measures at this level; in the example of schools at level 2, we would need multiple effect sizes for each

school to include random slopes at the school level. At level 3 and higher, the data will naturally have

multiple lower-level groups nested within higher-level groups, so both random intercepts and random

slopes can be included.

The covariates in multilevel meta-regression are known as moderators. Examples of moderators in-

clude study publication year, study test environment, and drug administration method. For a compre-

hensive introduction to multilevel meta-regression, see Goldstein et al. (2000); Thompson, Turner, and

Warn (2001); Konstantopoulos (2011); Cheung (2014); and Sera et al. (2019).

Standard meta-analysis as a two-level model

The standard RE meta-analysis model (see [META] meta summarize) may be viewed as a special

two-level meta-analysis where the subjects or the within-study observations (level 1) are nested within

studies (level 2). These levels are

Level 1 (within studies): ̂𝜃𝑗 = 𝜃𝑗 + 𝜖𝑗

Level 2 (between studies): 𝜃𝑗 = 𝜃 + 𝑢𝑗
(1)

where 𝜖𝑗 ∼ 𝑁 (0, �̂�2
𝑗 ) and 𝑢𝑗 ∼ 𝑁 (0, 𝜏2). Here �̂�2

𝑗 is the sampling variance (effect-size variance) for

the 𝑗th study, which is assumed known (it is assumed to be estimated with adequate accuracy within

each study, hence the hat notation). 𝜏2 is the variance of the random effects (the 𝑢𝑗’s), also known as the

between-study variance. The sampling errors (the 𝜖𝑗’s) and the random effects (the 𝑢𝑗’s) are assumed to

be independent. Similarly, the classical RE meta-regression (see [META] meta regress) can be obtained

by incorporating moderators into (1) as follows:

https://www.stata.com/manuals/metametasummarize.pdf#metametasummarize
https://www.stata.com/manuals/metametaregress.pdf#metametaregress
https://www.stata.com/manuals/meta.pdf#metametameregressRemarksandexamplesmeeqtwolvl
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Level 1 (within studies): ̂𝜃𝑗 = 𝜃𝑗 + 𝜖𝑗

Level 2 (between studies): 𝜃𝑗 = 𝛽0 + 𝛽1𝑥1,𝑗 + · · · + 𝛽𝑝−1𝑥𝑝−1,𝑗 + 𝑢𝑗

= x𝑗β + 𝑢𝑗

where β = (𝛽0, 𝛽1, . . . , 𝛽𝑝−1)′
is a 𝑝 × 1 vector of unknown regression (fixed-effects) coefficients.

Three-level random-intercepts model

Next we will discuss extensions of (1) to higher levels of hierarchy. Given its prevalence in practice,

we will start by mathematically describing the three-level random-intercepts meta-analysis model with

a single observation per level-2 group (level-2 groups have no repeated measures). The model can be

expressed as

Level 1 (within studies): ̂𝜃𝑗𝑘 = 𝜃𝑗𝑘 + 𝜖𝑗𝑘

Level 2: 𝜃𝑗𝑘 = 𝜃𝑗 + 𝑢(2)
𝑗𝑘

Level 3: 𝜃𝑗 = 𝜃 + 𝑢(3)
𝑗

(2)

where 𝑗 = 1, 2, . . . , 𝑀, 𝑘 = 1, 2, . . . , 𝑚𝑗, 𝑢(3)
𝑗 ∼ 𝑁(0, 𝜏2

3 ), 𝑢(2)
𝑗𝑘 ∼ 𝑁(0, 𝜏2

2 ), and 𝜖𝑗𝑘 ∼ 𝑁(0, �̂�2
𝑗𝑘), with

the �̂�2
𝑗𝑘’s being known as sampling variances (or more generally within-level-2 variances). The 𝑢(3)

𝑗 ’s,

𝑢(2)
𝑗𝑘 ’s, and 𝜖𝑗𝑘’s are independent, and 𝜏2

3 and 𝜏2
2 are the random-effects variances at the third and second

levels, respectively. Model (2) assumes that there is one effect-size observation per group at level 2. This

is the most common setting in practice. For the general setting that accounts for multiple observations

per group at level 2, see Three-level model with random slopes.

In a single-equation notation, (2) can be written as

̂𝜃𝑗𝑘 = 𝜃 + 𝑢(3)
𝑗 + 𝑢(2)

𝑗𝑘 + 𝜖𝑗𝑘

When we include a 1 × 𝑝 vector of moderators, x𝑗𝑘 = (1, 𝑥1,𝑗𝑘, . . . , 𝑥𝑝−1,𝑗𝑘), the three-level meta-
analysis model described in (2) becomes a three-level meta-regression model

̂𝜃𝑗𝑘 = 𝛽0 + 𝛽1𝑥1,𝑗𝑘 + · · · + 𝛽𝑝−1𝑥𝑝−1,𝑗𝑘 + 𝑢(3)
𝑗 + 𝑢(2)

𝑗𝑘 + 𝜖𝑗𝑘

= x𝑗𝑘β + 𝑢(3)
𝑗 + 𝑢(2)

𝑗𝑘 + 𝜖𝑗𝑘

(3)

Model (3) includes only random intercepts. It does not include any random slopes for moderators x𝑗𝑘.

The above model can be extended to more than three levels of hierarchy; see Sera et al. (2019) for details.

If you would like to fit a model like (3) or its higher-level analogs, you can use the meta multilevel
command, which has a simpler syntax than meta meregress.

Three-level model with random slopes

Incorporating random slopes at any level of hierarchy (other than level 1, where observations or indi-

vidual participants are not available) requires repeatedmeasures to be available at that level. For example,

it is not possible to include random slopes at level 2 in meta-analysis for any of the moderators in (3)

because there is one observation per group at that level. In that case, if you attempt to include random

slopes at level 2, meta meregress will produce estimates of their standard deviations that are practically
0. If you are familiar with the concept of random slopes in the context of multilevel meta-analysis, then

you may skip the rest of this section and go to Using meta meregress.

https://www.stata.com/manuals/meta.pdf#metametameregressRemarksandexamplesmeeqtwolvl
https://www.stata.com/manuals/meta.pdf#metametameregressRemarksandexamplesmeeqthreelvl
https://www.stata.com/manuals/meta.pdf#metametameregressRemarksandexamplesThree-levelmodelwithrandomslopes
https://www.stata.com/manuals/meta.pdf#metametameregressRemarksandexamplesmeeqthreelvl
https://www.stata.com/manuals/meta.pdf#metametameregressRemarksandexamplesmeeqthreelvl
https://www.stata.com/manuals/meta.pdf#metametameregressRemarksandexamplesmeeqthreelvlint
https://www.stata.com/manuals/meta.pdf#metametameregressRemarksandexamplesmeeqthreelvlint
https://www.stata.com/manuals/metametamultilevel.pdf#metametamultilevel
https://www.stata.com/manuals/meta.pdf#metametameregressRemarksandexamplesmeeqthreelvlint
https://www.stata.com/manuals/meta.pdf#metametameregressRemarksandexamplesUsingmetameregress
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Below, we modify the notation used in (3) to introduce a third subscript, 𝑟, that accounts for the
repeated measures at level 2. Assume there are 𝑞𝑙 random effects (1 random intercept and 𝑞𝑙 − 1 random

slopes) at level 𝑙 = 2 and 𝑙 = 3; random slopes may then be introduced into (3) by writing

̂𝜃𝑗𝑘𝑟 = x𝑗𝑘𝑟β + z
(3)
𝑗𝑘𝑟u

(3)
𝑗 + z

(2)
𝑗𝑘𝑟u

(2)
𝑗𝑘 + 𝜖𝑗𝑘𝑟 (4)

where 𝑗 = 1, 2, . . . , 𝑀, 𝑘 = 1, 2, . . . , 𝑚𝑗, and 𝑟 = 1, 2, . . . , 𝑚𝑗𝑘. The subscript 𝑟 was not needed in

(3), because 𝑚𝑗𝑘 was assumed to equal 1. Here x𝑗𝑘𝑟 = (1, 𝑥1,𝑗𝑘𝑟, . . . , 𝑥𝑝−1,𝑗𝑘𝑟) is a 1 × 𝑝 vector of

moderators associated with β, and z
(3)
𝑗𝑘𝑟 is a 1×𝑞3 vector of moderators associated with the level-3 𝑞3 ×1

vector of random effects u
(3)
𝑗 (1 intercept and 𝑞3 − 1 slopes), where u

(3)
𝑗 ∼ 𝑁(0, 𝚺(3)). Similarly, z(2)

𝑗𝑘𝑟 is

a 1×𝑞2 vector of moderators associated with the level-2 (within-level-3) 𝑞2 ×1 vector of random effects

u
(2)
𝑗𝑘 , where u

(2)
𝑗𝑘 ∼ 𝑁(0, 𝚺(2)). The 𝜖𝑗𝑘𝑟’s are the within-level-2 error terms following a 𝑁(0, �̂�2

𝑗𝑘𝑟)
distribution. 𝚺(3) and 𝚺(2) are the random-effects covariance matrices at levels 3 and 2, respectively.

The above model can be extended to more than three levels of hierarchy with the possibility to include

random slopes at any level 𝑙 > 1; see Sera et al. (2019) for details.

Using meta meregress

meta meregress fits various multilevel meta-regression models. Suppose variable es records effect

sizes and variable se records the sampling standard errors for effect sizes.

Standard meta-analysis model as a two-level model. The standard RE meta-analysis model can be

expressed as a two-level meta-analysis model. Suppose variable study stores study IDs; we can then fit

a standard RE meta-analysis model using

. meta meregress es || study:, essevariable(se)

Recall that in meta-analysis, the sampling standard errors are treated as known. We specify them in the

essevariable() option. If you have variances instead, you can specify them in the esvarvariable()
option. The above specification should produce the same results as if we had typed meta set es se
followed by meta summarize, nostudies; see [META] meta summarize and example 1.

Two-level meta-regression. Suppose we have two moderators, x1 and x2. If we assume that the

effects of moderators are constant across studies, we can fit a standard REmeta-regression as a two-level

meta-regression without random coefficients (random slopes) for moderators:

. meta meregress es x1 x2 || study:, essevariable(se)

The above specification produces the same results as if we had typed meta set es se followed by meta
regress x1 x2; see [META] meta regress and example 1.

Alternatively, we can allow the effects of moderators to vary across studies by including random

slopes for the moderators:

. meta meregress es x1 x2 || study: x1, essevariable(se)

Recall that this is possible only if there are multiple observations (effect sizes) per study; otherwise, the

estimated standard deviations of the random slopes will be estimated as zeros. In other words, in the

context of standard meta-regression (where one effect size per study is reported), the above specification

will produce a zero estimate for the standard deviation of random slopes; see Three-level model with

random slopes for more details.

We can include random slopes for all or a subset of moderators by specifying the desired subset in the

random-effects equation (the || study: equation in our example).

https://www.stata.com/manuals/meta.pdf#metametameregressRemarksandexamplesmeeqthreelvlint
https://www.stata.com/manuals/meta.pdf#metametameregressRemarksandexamplesmeeqthreelvlint
https://www.stata.com/manuals/meta.pdf#metametameregressRemarksandexamplesmeeqthreelvlint
https://www.stata.com/manuals/metametasummarize.pdf#metametasummarize
https://www.stata.com/manuals/meta.pdf#metametameregressRemarksandexamplesmeregexuniv
https://www.stata.com/manuals/metametaregress.pdf#metametaregress
https://www.stata.com/manuals/meta.pdf#metametameregressRemarksandexamplesmeregexuniv
https://www.stata.com/manuals/meta.pdf#metametameregressRemarksandexamplesThree-levelmodelwithrandomslopes
https://www.stata.com/manuals/meta.pdf#metametameregressRemarksandexamplesThree-levelmodelwithrandomslopes
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Three-level meta-analysis model. Suppose we have schools (level 2) and each school records re-

peated observations on effect sizes. Also, suppose that the schools are nested within districts (level 3).

We can incorporate potential dependence among the effect sizes within schools and within districts by

fitting a three-level meta-analysis model with district as the top (third) level:

. meta meregress es || district: || school:, essevariable(se)

Three-level meta-regression. Continuing with our three-level school data, if we also have modera-

tors, say, x1 and x2, we can incorporate them in our three-level meta-analysis model in various ways.

We can specify them only in the fixed-effects equation, assuming their effects do not vary across

districts or schools within districts:

. meta meregress es x1 x2 || district: || school:, essevariable(se)

We can specify them in all equations to allow them to vary within all levels:

. meta meregress es x1 x2 || district: x1 x2 || school: x1 x2, essevariable(se)

Or, if there is only one effect size reported per school, then we can eliminate the random slopes from the

school level:

. meta meregress es x1 x2 || district: x1 || school:, essevariable(se)

For illustration, in the above we included random slopes only for x1.

Three-level meta-regressionwith various covariance structures. In the presence of random slopes,

we can specify various covariance structures to model the dependencies between random effects at a spe-

cific level. By default, the random effects are assumed to be independent. This default is chosen out of

computational feasibility, in case the model includes many random slopes. In practice, you will often

want to verify that this assumption is reasonable for your data. You can do this by specifying other co-

variance structures such as exchangeable, unstructured, or custom matname in the covariance()
option. For instance, we now assume an unstructured (completely unrestricted) covariance for the ran-

dom effects at the district level:

. meta meregress es x1 x2 || district: x1, covariance(unstructured)
|| school:, essevariable(se)

In some applications, you may need to fix or constrain some elements of the random-effects vari-

ance–covariance matrix. This is also useful to perform sensitivity analysis; see example 7. You can do

this by using the custom matname covariance structure.

Covariance structure custom matname provides a flexible way to restrict specific random-effects

standard deviations and correlations during estimation while allowing the remaining parameters to be

freely estimated. This option can be seen as a generalization of option tau2() in [META] meta regress

and thus can be used to perform sensitivity analysis; see covariance(custom matname).

Similarly, we can build other models. With more levels, we can specify different covariance structures

at different levels of hierarchy:

. meta meregress es x1 x2 || state: x1 x2, covariance(unstructured)
|| district: x2 , covariance(exchangeable) || school: , essevariable(se)

By default, meta meregress uses the REML method to estimate model parameters. This method

produces unbiased estimates of the random-effects covariance parameters by accounting for the loss of

degrees of freedom from estimating the fixed-effects vector β. You can specify the mle option to instead

estimate parameters using ML.

https://www.stata.com/manuals/meta.pdf#metametameregressRemarksandexamplesmeregexsens
https://www.stata.com/manuals/metametaregress.pdf#metametaregressSyntaxreopts
https://www.stata.com/manuals/metametaregress.pdf#metametaregress
https://www.stata.com/manuals/meta.pdf#metametameregressOptionscustomcov
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Examples of using meta meregress
Examples are presented under the following headings:

Example 1: Standard meta-analysis as a two-level model
Example 2: Three-level meta-analysis
Example 3: Assessing multilevel heterogeneity
Example 4: Likelihood-ratio tests and information criteria
Example 5: Three-level meta-regression with random slopes
Example 6: Random-effects covariance structures
Example 7: Sensitivity multilevel meta-regression

Example 1: Standard meta-analysis as a two-level model
Recall the pupil IQ data (Raudenbush and Bryk 1985; Raudenbush 1984) described in Effects of

teacher expectancy on pupil IQ (pupiliq.dta) of [META] meta. Here we will use its declared version

(declared with meta set) to illustrate how to specify a standard meta-analysis model as a two-level

random-intercepts model.

. use https://www.stata-press.com/data/r19/pupiliqset
(Effects of teacher expectancy on pupil IQ; set with -meta set-)
. meta query, short
-> meta set stdmdiff se , studylabel(studylbl) eslabel(Std. mean diff.)

Effect-size label: Std. mean diff.
Effect-size type: Generic

Effect size: stdmdiff
Std. err.: se

Model: Random effects
Method: REML

In these data, the effect sizes are standardized mean differences stored in variable stdmdiff, with
their respective standard errors stored in variable se. To perform standard meta-analysis, we type the

following, suppressing the individual study results for brevity:

. meta summarize, nostudies
Effect-size label: Std. mean diff.

Effect size: stdmdiff
Std. err.: se

Study label: studylbl
Meta-analysis summary Number of studies = 19
Random-effects model Heterogeneity:
Method: REML tau2 = 0.0188

I2 (%) = 41.84
H2 = 1.72

theta: Overall Std. mean diff.

Estimate Std. err. z P>|z| [95% conf. interval]

theta .0836946 .0516536 1.62 0.105 -.0175447 .1849338

Test of homogeneity: Q = chi2(18) = 35.83 Prob > Q = 0.0074

The overall effect-size estimate is 0.0837 with the standard error of 0.052, and the estimated between-

study variance tau2 is 0.0188.

The standard meta-analysis model for this dataset can be expressed as

stdmdiff𝑗 = 𝜃 + 𝑢𝑗 + 𝜖𝑗 (5)

with 𝑢𝑗 ∼ 𝑁(0, 𝜏2) and 𝜖𝑗 ∼ 𝑁(0, se2
𝑗 ). This model can be fit using meta meregress as follows.

https://www.stata.com/manuals/metametameregress.pdf#metametameregressRemarksandexamplesmeregexuniv
https://www.stata.com/manuals/metametameregress.pdf#metametameregressRemarksandexamplesmeregexthree
https://www.stata.com/manuals/metametameregress.pdf#metametameregressRemarksandexamplesmeregexhet
https://www.stata.com/manuals/metametameregress.pdf#metametameregressRemarksandexamplesmeregexlric
https://www.stata.com/manuals/metametameregress.pdf#metametameregressRemarksandexamplesmeregexrandslope
https://www.stata.com/manuals/metametameregress.pdf#metametameregressRemarksandexamplesmeregexcovstruct
https://www.stata.com/manuals/metametameregress.pdf#metametameregressRemarksandexamplesmeregexsens
https://www.stata.com/manuals/metameta.pdf#metametaRemarksandexamplespupiliqdta
https://www.stata.com/manuals/metameta.pdf#metametaRemarksandexamplespupiliqdta
https://www.stata.com/manuals/metameta.pdf#metameta
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We specify the response variable and the fixed-effects portion of the model by typing the outcome

variable (stdmdiff) and some independent variables (moderators) of interest (in this example, there are
no moderators) after the command meta meregress. We then type || study: to specify random effects

at the study level. We did not specify any variables after the colon (:), because we wanted to incorporate
only random intercepts; see example 5 for random slopes. We also specify the variable containing the

sampling standard errors using option essevariable().

. meta meregress stdmdiff || study:, essevariable(se)
Performing EM optimization ...
Performing gradient-based optimization:
Iteration 0: Log restricted-likelihood = -33.419194 (not concave)
Iteration 1: Log restricted-likelihood = -10.213945 (not concave)
Iteration 2: Log restricted-likelihood = -3.8361073
Iteration 3: Log restricted-likelihood = -3.7393756
Iteration 4: Log restricted-likelihood = -3.7365412
Iteration 5: Log restricted-likelihood = -3.7365412
Computing standard errors ...
Multilevel REML meta-analysis Number of obs = 19
Group variable: study Number of groups = 19

Obs per group:
min = 1
avg = 1.0
max = 1

Wald chi2(0) = .
Log restricted-likelihood = -3.7365412 Prob > chi2 = .

stdmdiff Coefficient Std. err. z P>|z| [95% conf. interval]

_cons .0836939 .0516531 1.62 0.105 -.0175444 .1849322

Test of homogeneity: Q_M = chi2(18) = 35.83 Prob > Q_M = 0.0074

Random-effects parameters Estimate

study: Identity
sd(_cons) .1372184

The output shows information about the optimization algorithm, the iteration log, and the method (REML)

used for estimating 𝜏2. There are 19 observations (effect sizes) and 19 groups (studies) with one obser-

vation per group, which is the case for standard meta-analysis. The reported model Wald test is missing

because we do not have moderators in our model.

The first table displays the fixed-effect parameter estimate from the two-level meta-analysis. Here the

fixed-effect parameter is a constant term denoted by cons, which represents 𝜃 in (5) and theta in the

output from meta summarize. The estimate of 𝜃 is 0.0837 with a standard error of 0.052 and the 95% CI

of [−0.0175, 0.1849]. The test of homogeneity, which tests that all effect sizes are equal, reports the 𝑄M

statistic of 35.83 with a 𝑝-value of 0.0074. The second table shows the estimated value of 𝜏 (standard

deviation of the random effects 𝑢𝑗’s) labeled as sd( cons) in the output.

https://www.stata.com/manuals/meta.pdf#metametameregressRemarksandexamplesmeregexrandslope
https://www.stata.com/manuals/meta.pdf#metametameregressRemarksandexamplesmeeqtwolvliq
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The results for the fixed-effect parameter are virtually identical. meta summarize reported an esti-

mate of the variance of the random intercepts ̂𝜏2 = 0.0188, whereas meta meregress reports the stan-

dard deviation ( ̂𝜏 = 0.1372) by default. We can display the variance by specifying the option variance
on replay. We also use options noheader and nofetable to suppress the header and the fixed-effects

table.

. meta meregress, variance noheader nofetable
Test of homogeneity: Q_M = chi2(18) = 35.83 Prob > Q_M = 0.0074

Random-effects parameters Estimate

study: Identity
var(_cons) .0188289

Alternatively, we could have used estat sd, variance to obtain the same output; see [META] estat sd

and example 6.

Similarly, we can fit a standard meta-regression model as a two-level random-intercepts regression

model. First, we use meta regress ([META] meta regress) to fit a standard meta-regression model:

. meta regress weeks
Effect-size label: Std. mean diff.

Effect size: stdmdiff
Std. err.: se

Random-effects meta-regression Number of obs = 19
Method: REML Residual heterogeneity:

tau2 = .01117
I2 (%) = 29.36

H2 = 1.42
R-squared (%) = 40.70

Wald chi2(1) = 7.51
Prob > chi2 = 0.0061

_meta_es Coefficient Std. err. z P>|z| [95% conf. interval]

weeks -.0157453 .0057447 -2.74 0.006 -.0270046 -.0044859
_cons .1941774 .0633563 3.06 0.002 .0700013 .3183535

Test of residual homogeneity: Q_res = chi2(17) = 27.66 Prob > Q_res = 0.0490

https://www.stata.com/manuals/metaestatsd.pdf#metaestatsd
https://www.stata.com/manuals/meta.pdf#metametameregressRemarksandexamplesmeregexcovstruct
https://www.stata.com/manuals/metametaregress.pdf#metametaregress
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Next we fit this same model using meta meregress. We simply list the moderator (weeks) in the

fixed-effects portion of the model after the outcome variable stdmdiff.

. meta meregress stdmdiff weeks || study:, essevariable(se) variance
Performing EM optimization ...
Performing gradient-based optimization:
Iteration 0: Log restricted-likelihood = -31.596287 (not concave)
Iteration 1: Log restricted-likelihood = -8.6658459 (not concave)
Iteration 2: Log restricted-likelihood = -1.1427859 (not concave)
Iteration 3: Log restricted-likelihood = -.71416907
Iteration 4: Log restricted-likelihood = -.71388211
Iteration 5: Log restricted-likelihood = -.71388211
Computing standard errors ...
Multilevel REML meta-regression Number of obs = 19
Group variable: study Number of groups = 19

Obs per group:
min = 1
avg = 1.0
max = 1

Wald chi2(1) = 7.51
Log restricted-likelihood = -.71388211 Prob > chi2 = 0.0061

stdmdiff Coefficient Std. err. z P>|z| [95% conf. interval]

weeks -.0157453 .0057447 -2.74 0.006 -.0270046 -.0044859
_cons .1941769 .0633561 3.06 0.002 .0700012 .3183527

Test of homogeneity: Q_M = chi2(17) = 27.66 Prob > Q_M = 0.0490

Random-effects parameters Estimate

study: Identity
var(_cons) .011166

The estimates for the fixed-effects coefficients (reported in the first table) and 𝜏2 (labeled var( cons)
in the second table above) are almost the same as from meta regress.

Example 2: Three-level meta-analysis
Consider a dataset fromCooper, Valentine, andMelson (2003) on schools thatmodified their calendars

without prolonging the school year. A version of this dataset was also analyzed by Konstantopoulos

(2011) and will be used below. The dataset consists of 56 studies that were conducted in 11 school

districts.

Some schools adopted modified calendars that feature shorter breaks more frequently throughout the

year (for example, 12 weeks of school followed by 4 weeks off), as opposed to the traditional calendar

with a longer summer break and shorter winter and spring breaks. The studies compared the academic

achievement of students on a traditional calendar with those on a modified calendar. The effect size

(stmdiff) was the standardized mean difference with positive values indicating higher achievement, on
average, in the group on the modified calendar. The standard error (se) of stmdiff was also reported

by each study. Let’s first describe our dataset:
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. use https://www.stata-press.com/data/r19/schoolcal, clear
(Effect of modified school calendar on student achievement)
. describe
Contains data from https://www.stata-press.com/data/r19/schoolcal.dta
Observations: 56 Effect of modified school

calendar on student achievement
Variables: 8 19 Jan 2025 21:44

(_dta has notes)

Variable Storage Display Value
name type format label Variable label

district int %12.0g District ID
school byte %9.0g School ID
study byte %12.0g Study ID
stdmdiff double %10.0g Standardized difference in means

of achievement test scores
var double %10.0g Within-study variance of stdmdiff
year int %12.0g Year of the study
se double %10.0g Within-study standard-error of

stdmdiff
year_c byte %9.0g Year of the study centered around

1990

Sorted by: district

Because the schools are nested within districts, we fit a three-level random-intercepts model. This

model can also be fit using command meta multilevel; see example 1 of [META] meta multilevel.

The model can be expressed as

stdmdiff𝑗𝑘 = 𝜃 + 𝑢(3)
𝑗 + 𝑢(2)

𝑗𝑘 + 𝜖𝑗𝑘 (6)

with 𝑢(3)
𝑗 ∼ 𝑁(0, 𝜏2

3 ), 𝑢(2)
𝑗𝑘 ∼ 𝑁(0, 𝜏2

2 ), and 𝜖𝑗𝑘 ∼ 𝑁(0, se2
𝑗𝑘). Here there is one observation (effect size)

reported per school (level-2 group). Fitting a three-level model requires that you specify two random-

effects equations: one for level 3 (identified by variable district) and one for level 2 (identified by

variable school). This model can be fit using meta meregress as follows:

https://www.stata.com/manuals/metametamultilevel.pdf#metametamultilevelRemarksandexamplesmuregexthree
https://www.stata.com/manuals/metametamultilevel.pdf#metametamultilevel
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. meta meregress stdmdiff || district: || school:, essevariable(se)
Performing EM optimization ...
Performing gradient-based optimization:
Iteration 0: Log restricted-likelihood = -104.8525 (not concave)
Iteration 1: Log restricted-likelihood = -49.423286 (not concave)
Iteration 2: Log restricted-likelihood = -25.793723 (not concave)
Iteration 3: Log restricted-likelihood = -21.309955
Iteration 4: Log restricted-likelihood = -9.1248907
Iteration 5: Log restricted-likelihood = -8.2630422
Iteration 6: Log restricted-likelihood = -7.9588574
Iteration 7: Log restricted-likelihood = -7.9587239
Iteration 8: Log restricted-likelihood = -7.9587239
Computing standard errors ...
Multilevel REML meta-analysis Number of obs = 56

Grouping information

No. of Observations per group
Group variable groups Minimum Average Maximum

district 11 3 5.1 11
school 56 1 1.0 1

Wald chi2(0) = .
Log restricted-likelihood = -7.9587239 Prob > chi2 = .

stdmdiff Coefficient Std. err. z P>|z| [95% conf. interval]

_cons .1847132 .0845559 2.18 0.029 .0189866 .3504397

Test of homogeneity: Q_M = chi2(55) = 578.86 Prob > Q_M = 0.0000

Random-effects parameters Estimate

district: Identity
sd(_cons) .2550724

school: Identity
sd(_cons) .1809324

We first store the results of the model so we can use them later in example 4 to perform likelihood-ratio

tests.

. estimates store main_model

As in example 1, our fixed-effects equation contains only the dependent variable (effect sizes stdmdiff).
But we have two random-effects equations. The first represents random intercepts [the 𝑢(3)

𝑗 ’s in (6)] at the

district level (level 3), and the second represents random intercepts [the 𝑢(2)
𝑗𝑘 ’s in (6)] at the school

level (level 2). The order in which these are specified (from left to right) is important—meta meregress
assumes that school is nested within district. Below, we describe each portion of the output in detail.

The output first displays information about the optimization, including an iteration log. The top of the

header shows the method (REML) used for estimation and also displays the total number of observations,

which is 56 in our example.

https://www.stata.com/manuals/meta.pdf#metametameregressRemarksandexamplesmeregexlric
https://www.stata.com/manuals/meta.pdf#metametameregressRemarksandexamplesmeregexuniv
https://www.stata.com/manuals/meta.pdf#metametameregressRemarksandexamplesmeeqschoolint
https://www.stata.com/manuals/meta.pdf#metametameregressRemarksandexamplesmeeqschoolint
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The information on groups at different levels of hierarchy is displayed as a table with one row for

each grouping (level of hierarchy). For example, there are 11 groups (districts) at the district level.

Each group contains somewhere between 3 to 11 level-2 groups (schools). You can suppress this table

with the nogroup or the noheader option, which will also suppress the rest of the header.

The second table displays the fixed-effects coefficients. In our example, there is only an intercept

corresponding to the term 𝜃 in (6). The value of ̂𝜃 is 0.185 with a 95% CI of [0.019, 0.35]. This means
that, on average, students following the modified school calendar achieved higher scores than those who

did not.

The third table displays the random-effects parameters, traditionally known as variance components in

the context of multilevel or mixed-effects models. The variance-component estimates are now organized

and labeled according to each level. By default, meta meregress reports standard deviations of the

random intercepts (and correlations if they existed in the model) at each level. But you can instead

specify the variance option to report variances (and covariances if they existed in the model). We have

𝜏3 = 0.255 and 𝜏2 = 0.181. These values are the building blocks for assessing heterogeneity across

different hierarchical levels and are typically interpreted in that context; see example 3 and Higgins–

Thompson heterogeneity statistics in Methods and formulas in [META] estat heterogeneity (me) for

details. In general, the higher the value of 𝜏𝑙, the more heterogeneity is expected among the groups

within level 𝑙.

Example 3: Assessing multilevel heterogeneity
Continuing with example 2, let’s use the postestimation command estat heterogeneity to quantify

the multilevel heterogeneity among the effect sizes captured by the three-level meta-analysis model.

. estat heterogeneity
Method: Cochran
Joint:

I2 (%) = 90.50
Method: Higgins--Thompson
district:

I2 (%) = 63.32
school:

I2 (%) = 31.86
Total:

I2 (%) = 95.19

Cochran’s 𝐼2
Q quantifies the amount of heterogeneity jointly for all levels of hierarchy. It is a direct ex-

tension to the multilevel setting of the classical 𝐼2 statistic based on the DerSimonian–Laird method and

thus has the same interpretation. For instance, 𝐼2
Q = 90.50% means that 90.50% of the variability among

the effect sizes is due to true heterogeneity in our data as opposed to the sampling variability. See Het-

erogeneity measures in Methods and formulas in [META] meta summarize and Residual heterogeneity

measures in Methods and formulas in [META] meta regress for details.

The value of the Cochran statistic is the same for all multilevel models with the same fixed-effects

structure. This is because its computation is based on the Cochran multivariate 𝑄 statistic, which is

calculated based only on the fixed-effects model; see Cochran heterogeneity statistic in Methods and

formulas in [META] estat heterogeneity (me) for details.

Unlike the Cochran 𝐼2
Q statistic, themultilevel Higgins–Thompson 𝐼2 statistics (Nakagawa and Santos

2012) provide ways to assess the contribution of each level of hierarchy to the total heterogeneity, in

addition to their joint contribution. For example, between-schools heterogeneity or heterogeneity within

https://www.stata.com/manuals/meta.pdf#metametameregressRemarksandexamplesmeeqschoolint
https://www.stata.com/manuals/meta.pdf#metametameregressRemarksandexamplesmeregexhet
https://www.stata.com/manuals/metaestatheterogeneityme.pdf#metaestatheterogeneity(me)MethodsandformulasHiggins--Thompsonheterogeneitystatistics
https://www.stata.com/manuals/metaestatheterogeneityme.pdf#metaestatheterogeneity(me)MethodsandformulasHiggins--Thompsonheterogeneitystatistics
https://www.stata.com/manuals/metaestatheterogeneityme.pdf#metaestatheterogeneity(me)Methodsandformulas
https://www.stata.com/manuals/metaestatheterogeneityme.pdf#metaestatheterogeneity(me)
https://www.stata.com/manuals/meta.pdf#metametameregressRemarksandexamplesmeregexthree
https://www.stata.com/manuals/metaestatheterogeneityme.pdf#metaestatheterogeneity(me)
https://www.stata.com/manuals/metametasummarize.pdf#metametasummarizeMethodsandformulasHeterogeneitymeasures
https://www.stata.com/manuals/metametasummarize.pdf#metametasummarizeMethodsandformulasHeterogeneitymeasures
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districts (level-2 heterogeneity) is the lowest, accounting for about 32% of the total variation in our

data, whereas between-districts heterogeneity (level-3 heterogeneity) accounts for about 63% of the total

variation. This is a direct consequence of the estimate of 𝜏2
3 being greater than that of 𝜏2

2 in example 2.

See Higgins–Thompson heterogeneity statistics in Methods and formulas in [META] estat heterogeneity

(me) for details.

Example 4: Likelihood-ratio tests and information criteria
Suppose we wish to test whether there is a nonnegligible amount of heterogeneity within districts (that

is, heterogeneity between the schools within a district). This amounts to testing 𝐻0∶ 𝜏2
2 = 0. We need

to fit a model with 𝜏2
2 = 0 and compare it with the model from example 2. This is a two-level model

with district as the second level of hierarchy (we eliminate the school level). We fit this model and

store its results under the name school effect. Recall that we had already saved our results for the

three-level model in example 2 under the name main model. So we can use the lrtest command to

conduct a likelihood-ratio test of our 𝐻0.

. quietly meta meregress stdmdiff || district: , essevariable(se)

. estimates store school_effect

. lrtest main_model school_effect
Likelihood-ratio test
Assumption: school_effect nested within main_model
LR chi2(1) = 48.52

Prob > chi2 = 0.0000
Note: The reported degrees of freedom assumes the null hypothesis is not on

the boundary of the parameter space. If this is not true, then the
reported test is conservative.

Note: LR tests based on REML are valid only when the fixed-effects
specification is identical for both models.

Because the null hypothesis value of 𝜏2
2 is at the boundary of the parameter space, the asymptotic

distribution of the test statistic is a mixture of the 𝜒2
0 (a point mass at zero) and 𝜒2

1 distributions (Verbeke

andMolenberghs 2000; Self and Liang 1987; and Gutierrez, Carter, and Drukker 2001), with each having

an equal weight of 0.5. To elaborate on the first note reported by lrtest, the exact 𝑝-value can therefore
be computed as

𝑝 = 0.5 × 𝑃(𝜒2
0 > 48.52) + 0.5 × 𝑃(𝜒2

1 > 48.52) = 0.5 × 𝑃(𝜒2
1 > 48.52)

which is half of what is reported above. The second equality holds because the 𝜒2 distribution with zero

degrees of freedom, 𝜒2
0, places all probability mass at zero, and therefore 0.5 × 𝑃(𝜒2

0 > 48.52) = 0.

This updated 𝑝-value computation does not affect our conclusion regarding the test result, which is that
we reject the hypothesis that schools are homogeneous within districts.

Similarly, we may also wish to test whether there is a nonnegligible amount of heterogeneity between

districts, which amounts to testing 𝐻0∶ 𝜏2
3 = 0. This is equivalent to fitting a standard RE meta-analysis

where all 56 effect sizes are assumed independent. Hence, we use variable study as the grouping level

in our model specification. Had we used school, the model would have clustered our 56 effect sizes

into 11 groups, which would violate the independence assumption.
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. quietly meta meregress stdmdiff || study: , essevariable(se)

. estimates store dist_effect

. lrtest main_model dist_effect
Likelihood-ratio test
Assumption: dist_effect nested within main_model
LR chi2(1) = 17.77

Prob > chi2 = 0.0000
Note: The reported degrees of freedom assumes the null hypothesis is not on

the boundary of the parameter space. If this is not true, then the
reported test is conservative.

Note: LR tests based on REML are valid only when the fixed-effects
specification is identical for both models.

The results of the test provide strong evidence that there is significant between-districts heterogeneity.

Similar discussion applies to the computation of the exact 𝑝-value as above.
We can compare our models using information criteria by using the estimates stats command.

We use option all to request AICc and CAIC in addition to the default AIC and BIC. We also use option

n() to use 𝑛 − 𝑝 = 55 instead of 𝑛 = 56 as the number of observations in the computation of BIC, AICc,

and CAIC because our models used REML estimation.

. estimates stats main_model dist_effect school_effect, all n(55)
Information criteria

Model N ll(null) ll(model) df

main_model 55 . -7.958724 3
dist_effect 55 . -16.8455 2

school_eff~t 55 . -32.21648 2

Model AIC BIC AICc CAIC

main_model 21.91745 27.93945 22.38804 30.93945
dist_effect 37.691 41.70566 37.92177 43.70566

school_eff~t 68.43295 72.44762 68.66372 74.44762

Legend: AIC is Akaike’s information criterion.
BIC is Bayesian information criterion.
AICc is corrected Akaike’s information criterion.
CAIC is consistent Akaike’s information criterion.

All measures of information criteria favor the three-level model main model.

Example 5: Three-level meta-regression with random slopes
For illustration purposes, we will use variable year c to conduct a three-level meta-regression and

include random slopes (corresponding to variable year c) at the district level. We will not include

random slopes at the school level, because there is only one observation (effect size) per school; oth-

erwise, we will get an estimate that is practically zero for the standard deviation of the random slope of

year c at the school level; see Three-level model with random slopes. The model can be described as

follows:

stdmdiff𝑗𝑘 = 𝛽0 + 𝛽1year c𝑗𝑘 + 𝑢(3)
0𝑗 + 𝑢(3)

1𝑗 year c𝑗𝑘 + 𝑢(2)
𝑗𝑘 + 𝜖𝑗𝑘 (7)

https://www.stata.com/manuals/restimatesstats.pdf#restimatesstats
https://www.stata.com/manuals/meta.pdf#metametameregressRemarksandexamplesThree-levelmodelwithrandomslopes
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with (𝑢(3)
0𝑗 , 𝑢(3)

1𝑗 )′ ∼ 𝑁(0, 𝚺(3)), 𝑢(2)
𝑗𝑘 ∼ 𝑁(0, 𝜏2

2 ), and 𝜖𝑗𝑘 ∼ 𝑁(0, var𝑗𝑘). By default, the 2 × 2

matrix 𝚺(3) is assumed diagonal, which means that the 𝑢(3)
0𝑗 ’s and 𝑢(3)

1𝑗 ’s are assumed independent. Other

covariance structures can be specified with the covariance() option; see example 6.

. meta meregress stdmdiff year_c || district: year_c || school:,
> esvarvariable(var)
Performing EM optimization ...
Performing gradient-based optimization:
Iteration 0: Log restricted-likelihood = -101.95646 (not concave)
Iteration 1: Log restricted-likelihood = -94.506515 (not concave)
Iteration 2: Log restricted-likelihood = -27.473244 (not concave)
Iteration 3: Log restricted-likelihood = -9.8063375
Iteration 4: Log restricted-likelihood = -7.2135277
Iteration 5: Log restricted-likelihood = -7.210109 (not concave)
Iteration 6: Log restricted-likelihood = -7.2100808 (not concave)
Iteration 7: Log restricted-likelihood = -7.210061 (not concave)
Iteration 8: Log restricted-likelihood = -7.2098547
Iteration 9: Log restricted-likelihood = -7.2095937
Iteration 10: Log restricted-likelihood = -7.2095345
Iteration 11: Log restricted-likelihood = -7.2095303
Iteration 12: Log restricted-likelihood = -7.2095301
Computing standard errors ...
Multilevel REML meta-regression Number of obs = 56

Grouping information

No. of Observations per group
Group variable groups Minimum Average Maximum

district 11 3 5.1 11
school 56 1 1.0 1

Wald chi2(1) = 0.55
Log restricted-likelihood = -7.2095301 Prob > chi2 = 0.4577

stdmdiff Coefficient Std. err. z P>|z| [95% conf. interval]

year_c .0096021 .0129302 0.74 0.458 -.0157407 .0349448
_cons .1609612 .082311 1.96 0.051 -.0003654 .3222879

Test of homogeneity: Q_M = chi2(54) = 550.26 Prob > Q_M = 0.0000

Random-effects parameters Estimate

district: Independent
sd(year_c) .0335302
sd(_cons) .06437

school: Identity
sd(_cons) .1808125

The estimate of the regression coefficient of variable year c is 0.010 with a 95% CI of

[−0.016, 0.035]. We do not see any evidence for the association between stdmdiff and year c
(𝑝 = 0.458). The estimates of the standard deviations of 𝑢(3)

1𝑗 and 𝑢(3)
0𝑗 (at the district level) are

labeled in the output as sd(year c) and sd( cons) and are estimated to be 0.034 and 0.064, respec-

tively. These values are the estimates of the square root of the diagonal elements of 𝚺(3). The covariance

https://www.stata.com/manuals/meta.pdf#metametameregressRemarksandexamplesmeregexcovstruct
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structure at the district level is labeled as Independent, which is the default assumption. You may
display the 2 × 2 matrix 𝚺(3) using the estat recovariance command; see example 6. The estimate

of 𝜏2 is 0.181.

Although year c did not explain the heterogeneity, we continue to include it as a moderator in our

subsequent examples (example 6 and example 7) for illustration purposes.

Example 6: Random-effects covariance structures
Continuing with example 5, we will explore different random-effects covariance structures for 𝚺(3)

instead of the default independent structure. The default independent covariance structure is chosen out of

computational feasibility. In multilevel modeling, it is important to start with an unrestricted covariance

first, whenever feasible. It is also important to have meaningful baseline values for the moderators to

make variance components interpretable. Here we include year c, which is centered on 1990, instead of
year, so that the intercept can be interpreted as the expected value in 1990 and the variance components
can also be interpreted relative to this year. Let’s specify the covariance(unstructured) option first.

This assumes that all random effects have distinct standard deviations and correlations. We suppress the

header and the iteration log and display results with 3 decimal points using the noheader, nolog, and
cformat(%9.3f) options, which we store in the local macro ‘options’ for syntactical convenience.

. local options noheader nolog cformat(%9.3f)

. meta meregress stdmdiff year_c || district: year_c,
> covariance(unstructured) || school:, esvarvariable(var) ‘options’

stdmdiff Coefficient Std. err. z P>|z| [95% conf. interval]

year_c 0.007 0.010 0.71 0.479 -0.013 0.028
_cons 0.160 0.076 2.12 0.034 0.012 0.308

Test of homogeneity: Q_M = chi2(54) = 550.26 Prob > Q_M = 0.0000

Random-effects parameters Estimate

district: Unstructured
sd(year_c) 0.028
sd(_cons) 0.082

corr(year_c,_cons) 1.000

school: Identity
sd(_cons) 0.180

The random-effects covariance structure at the district level is now labeled Unstructured:. The
correlation between the random slope and the random intercept is labeled as corr(year c, cons).
The estimated correlation value is 1 because, as we mentioned in example 5, variable year c did not

explain any heterogeneity and was included here for illustration purposes only.

Instead of specifying one of the standard covariance structures (independent, identity,
exchangeable, or unstructured), you may request a custom covariance structure where you can fix

specific standard deviations or correlations while allowing others to be estimated. For example, the fol-

lowing matrix A fixes the correlation between 𝑢(3)
0𝑗 and 𝑢(3)

1𝑗 at 0.5 and allows for their standard deviations

to be estimated from the data. See covariance(custom matname) for details.

https://www.stata.com/manuals/metaestatrecovariance.pdf#metaestatrecovariance
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. matrix A = (. ,.5 \ .5 ,.)

. meta meregress stdmdiff year_c || district: year_c, covariance(custom A)
> || school:, esvarvariable(var) ‘options’

stdmdiff Coefficient Std. err. z P>|z| [95% conf. interval]

year_c 0.007 0.011 0.67 0.500 -0.014 0.028
_cons 0.170 0.082 2.08 0.038 0.010 0.330

Test of homogeneity: Q_M = chi2(54) = 550.26 Prob > Q_M = 0.0000

Random-effects parameters Estimate

district: Custom
sd(year_c) 0.026
sd(_cons) 0.116

corr(year_c,_cons) 0.500*

school: Identity
sd(_cons) 0.180

(*) fixed during estimation

Note the asterisk that is appended next to the corr(year c, cons) value to emphasize that it was

fixed during estimation.

You may additionally wish to constrain the two standard deviations of the random intercept and ran-

dom slope to be the same (both specified equal to .a):

. matrix B = (.a ,.5 \ .5 ,.a)

. meta meregress stdmdiff year_c || district: year_c, covariance(custom B)
> || school:, esvarvariable(var) ‘options’

stdmdiff Coefficient Std. err. z P>|z| [95% conf. interval]

year_c 0.010 0.012 0.79 0.427 -0.014 0.034
_cons 0.154 0.076 2.02 0.043 0.005 0.304

Test of homogeneity: Q_M = chi2(54) = 550.26 Prob > Q_M = 0.0000

Random-effects parameters Estimate

district: Custom
sd(year_c _cons) 0.033

corr(year_c,_cons) 0.500*

school: Identity
sd(_cons) 0.181

(*) fixed during estimation

We can display the random-effects covariance matrices 𝚺(3) (at the district level) and 𝚺(2) (at the

school level), which is a scalar in our example, using the estat recovariance command ([META] estat

recovariance). This is particularly useful if we specify a complicated custom covariance structure in our

model using the covariance(custom matname) option (think 3 × 3 or larger covariance matrices).

https://www.stata.com/manuals/metaestatrecovariance.pdf#metaestatrecovariance
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. estat recovariance
Random-effects covariance matrix for level district

year_c _cons

year_c .0010852
_cons .0005426 .0010852

Fixed parameter: corr(year_c,_cons)=.5.
Random-effects covariance matrix for level school

_cons

_cons .0326401

To see the corresponding correlation matrix, specify the correlation option.

You may also use estat sd ([META] estat sd) to display the variance-components parameters as

variances and covariances (instead of the default standard deviations and correlations). This will also

group together any parameters that were constrained to be the same.

. estat sd, variance
Test of homogeneity: Q_M = chi2(54) = 550.26 Prob > Q_M = 0.0000

Random-effects parameters Estimate

district: Custom
var(year_c _cons) .0010852
cov(year_c,_cons) .0005426

school: Identity
var(_cons) .0326401

Note: corr(year_c,_cons)=.5 at district

level fixed during estimation.

Example 7: Sensitivity multilevel meta-regression
It is quite common in multilevel meta-regression to produce unstable estimates, especially when the

number of observations is small relative to the number of parameters to be estimated. In this case, our goal

may shift toward assessing the impact of different magnitudes of random-effects covariance parameters

on the estimates of regression coefficients to evaluate the robustness of our results.

Continuing with (7) from example 5, we can investigate the effect of no correlation, moderate corre-

lation (0.4), and high correlation (0.8) between the random intercepts (the 𝑢(3)
0𝑗 ’s) and the random slopes

(the 𝑢(3)
1𝑗 ’s) at the district level on the regression coefficient estimates. Wewill allow for the random-

effects standard deviations to be estimated from the data. Thus, our fixed custom random-effects covari-

ance matrices for the three scenarios are

. matrix Sigma1 = (.,0\0,.)

. matrix Sigma2 = (.,.4\.4,.)

. matrix Sigma3 = (.,.8\.8,.)

We fit the first model using the correlations of 0 and store the estimation results as corr0.

. quietly meta meregress stdmdiff year_c
> || district: year_c, covariance(custom Sigma1)
> || school:, esvarvariable(var)
. estimates store corr0

https://www.stata.com/manuals/metaestatsd.pdf#metaestatsd
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Next we fit the model with correlations of 0.4 and store results as corr4 and the model with corre-

lations of 0.8 and store results as corr8. For brevity, we suppressed the output from all commands by

running them quietly.

. quietly meta meregress stdmdiff year_c
> || district: year_c, covariance(custom Sigma2)
> || school:, esvarvariable(var)
. estimates store corr4

. quietly meta meregress stdmdiff year_c
> || district: year_c, covariance(custom Sigma3)
> || school:, esvarvariable(var)
. estimates store corr8

We compare the estimates side by side by using estimates table:

. estimates table corr0 corr4 corr8,
> keep(stdmdiff:year_c stdmdiff:_cons) b(%8.3f) se(%8.3f)

Variable corr0 corr4 corr8

year_c 0.006 0.007 0.007
0.011 0.011 0.011

_cons 0.181 0.172 0.164
0.090 0.083 0.078

Legend: b/se

As the correlation between the random intercepts and the random slopes at the district level increases,
the coefficient estimate for cons decreases. Also, the estimate becomes more precise (has a smaller

standard error) as the correlation increases. Note also how the various magnitudes of correlations had

little to no impact on the estimation of year c (all values are near 0) because, as we saw in example 5,

variable year c did not explain any heterogeneity and should have been excluded from the model.

Stored results
meta meregress stores the following in e():

Scalars

e(N) total number of observations

e(k) number of parameters

e(k f) number of fixed-effects parameters

e(k r) number of random-effects parameters

e(k rs) number of variances

e(k rc) number of covariances

e(ll) log (restricted) likelihood

e(rank) rank of e(V)
e(ic) number of iterations

e(df m) model degrees of freedom

e(chi2) model 𝜒2 Wald test statistic

e(p) 𝑝-value for model test
e(Q M) multilevel Cochran 𝑄𝑀 residual homogeneity test statistic

e(df Q M) degrees of freedom for residual homogeneity test

e(p Q M) 𝑝-value for residual homogeneity test
e(converged) 1 if converged, 0 otherwise

https://www.stata.com/manuals/restimatestable.pdf#restimatestable
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Macros

e(cmd) meta meregress
e(cmdline) command as typed

e(method) REML or ML
e(title) title in estimation output

e(chi2type) Wald; type of model 𝜒2 test

e(depvar) name of dependent variable

e(ivars) grouping variables

e(indepvars) names of independent variables (moderators)

e(esvarvariable) variable containing sampling variances (when esvarvariable() is specified)

e(essevariable) variable containing sampling standard errors (when essevariable() is specified)

e(redim) random-effects dimensions

e(vartypes) variance-structure types

e(revars) random-effects covariates

e(technique) maximization technique

e(datasignature) the checksum

e(datasignaturevars) variables used in calculation of checksum

e(emonly) emonly, if specified
e(ml method) type of ml method

e(opt) type of optimization

e(optmetric) matsqrt or matlog; random-effects matrix parameterization
e(properties) b V
e(predict) program used to implement predict
e(estat cmd) program used to implement estat
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices

e(b) coefficient vector

e(V) variance–covariance matrix of the estimators

e(cov cust #) custom random-effects covariance matrix (when covariance(custom matname) is

specified)
e(Cns) constraints matrix

e(N g) group counts

e(g min) group-size minimums

e(g avg) group-size averages

e(g max) group-size maximums

Functions

e(sample) marks estimation sample

In addition to the above, the following is stored in r():

Matrices

r(table) matrix containing the coefficients with their standard errors, test statistics, 𝑝-values, and
confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when any

r-class command is run after the estimation command.

When the esvarvariable() option is specified, meta meregress creates a system variable,

meta mereg se, that contains the sampling standard errors.
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Methods and formulas
Methods and formulas are presented under the following headings:

Three-level meta-regression

Methods for estimating 𝚺(2) and 𝚺(3)

Random-effects covariance structures
Multilevel meta-analysis
Residual homogeneity test

For an overview of the statistical models behind multilevel meta-regression, see Konstantopoulos

(2011) and Sera et al. (2019).

Three-level meta-regression
The model for the three-level meta-regression can be expressed as

̂𝜃𝑗𝑘𝑟 = x𝑗𝑘𝑟β + z
(3)
𝑗𝑘𝑟u

(3)
𝑗 + z

(2)
𝑗𝑘𝑟u

(2)
𝑗𝑘 + 𝜖𝑗𝑘𝑟

for 𝑗 = 1, 2, . . . , 𝑀, 𝑘 = 1, 2, . . . , 𝑚𝑗, and 𝑟 = 1, 2, . . . , 𝑚𝑗𝑘. In this case,

x𝑗𝑘𝑟 = (1, 𝑥1,𝑗𝑘𝑟, . . . , 𝑥𝑝−1,𝑗𝑘𝑟) is a 1× 𝑝 vector of moderators and β is the corresponding 𝑝 × 1 vector

of unknown fixed-effects parameters. z
(3)
𝑗𝑘𝑟 is a 1 × 𝑞3 vector of moderators associated with the level-3

𝑞3 × 1 vector of random effects u
(3)
𝑗 (1 intercept and 𝑞3 − 1 slopes), where u

(3)
𝑗 ∼ 𝑁(0, 𝚺(3)). Similarly,

z
(2)
𝑗𝑘𝑟 is a 1× 𝑞2 vector of moderators associated with the level-2 (within-level-3) 𝑞2 ×1 vector of random

effects u
(2)
𝑗𝑘 , where u

(2)
𝑗𝑘 ∼ 𝑁(0, 𝚺(2)). 𝜖𝑗𝑘𝑟 ∼ 𝑁(0, �̂�2

𝑗𝑘𝑟) with the �̂�2
𝑗𝑘𝑟’s being the sampling variances.

Define the 𝑚𝑗𝑘 × 𝑝 matrix X𝑗𝑘 = (x′
𝑗𝑘1, x′

𝑗𝑘2, . . . , x′
𝑗𝑘𝑚𝑗𝑘

)′ and the 𝑚𝑗𝑘 × 1 vectors θ̂𝑗𝑘 =

( ̂𝜃𝑗𝑘1, ̂𝜃𝑗𝑘2, . . . , ̂𝜃𝑗𝑘𝑚𝑗𝑘
)′ and ε𝑗𝑘 = (𝜖𝑗𝑘1, 𝜖𝑗𝑘2, . . . , 𝜖𝑗𝑘𝑚𝑗𝑘

)
′
. The above model can now be written

as

θ̂𝑗𝑘 = X𝑗𝑘β + Z
(3)
𝑗𝑘 u

(3)
𝑗 + Z

(2)
𝑗𝑘 u

(2)
𝑗𝑘 + ε𝑗𝑘

where 𝑚𝑗𝑘 × 𝑞3 matrix Z
(3)
𝑗𝑘 = (z(3)′

𝑗𝑘1 , z(3)′
𝑗𝑘2 , . . . , z(3)′

𝑗𝑘𝑚𝑗𝑘
)′ and 𝑚𝑗𝑘 × 𝑞2 matrix Z

(2)
𝑗𝑘 =

(z(2)′
𝑗𝑘1 , z(2)′

𝑗𝑘2 , . . . , z(2)′
𝑗𝑘𝑚𝑗𝑘

)′. The ε𝑗𝑘’s have an𝑚𝑗𝑘-variate normal distribution with zero mean vector and a

diagonal 𝑚𝑗𝑘 ×𝑚𝑗𝑘 covariance matrix Var(ε𝑗𝑘) = 𝚲𝑗𝑘 with diagonal elements �̂�2
𝑗𝑘𝑟, 𝑟 = 1, 2, . . . , 𝑚𝑗𝑘.

The covariancematrices (the𝚲𝑗𝑘’s) are treated as known and do not require estimation. The𝚲𝑗𝑘’s reduce

to �̂�2
𝑗 in the case of standard meta-analysis; see Methods and formulas of [META] meta summarize.

Let 𝑚𝑗. = ∑𝑚𝑗
𝑘=1 𝑚𝑗𝑘 be the number of observations belonging to the 𝑗th level-3 group and define

the 𝑚𝑗. × 𝑝 matrix X𝑗 = (X′
𝑗1,X′

𝑗2, . . . ,X′
𝑗𝑚𝑗

)′ and the 𝑚𝑗. × 1 vectors θ̂𝑗 = (θ̂
′
𝑗1, θ̂

′
𝑗2, . . . , θ̂

′
𝑗𝑚𝑗

)′ and

ε𝑗 = (ε′
𝑗1, ε′

𝑗2, . . . , ε′
𝑗𝑚𝑗

)′ with 𝑚𝑗. × 𝑚𝑗. covariance matrix Var(ε𝑗) = 𝚲𝑗 = ⊕𝑚𝑗
𝑘=1𝚲𝑗𝑘, where ⊕ is the

Kronecker sum. The previous model can now be expressed as

θ̂𝑗 = X𝑗β + Z
(3)
𝑗 u

(3)
𝑗 + Z

(2)
𝑗 u

(2)
𝑗 + ε𝑗

where 𝑚𝑗. × 𝑚𝑗𝑞2 block-diagonal matrix Z
(2)
𝑗 = ⊕𝑚𝑗

𝑘=1Z
(2)
𝑗𝑘 , 𝑚𝑗. × 𝑞3 matrix Z

(3)
𝑗 =

(Z(3)′

𝑗1 ,Z(3)′

𝑗2 , . . . ,Z(3)′

𝑗𝑚𝑗
), and 𝑚𝑗𝑞2 × 1 vector of random effects at level 2 u

(2)
𝑗 =

(u(2)′
𝑗1 ,u(2)′

𝑗2 , . . . ,u(2)′
𝑗𝑚𝑗

)′ ∼ 𝑁(0, I𝑚𝑗
⊗ 𝚺(2)), where ⊗ is the Kronecker product.

https://www.stata.com/manuals/metametameregress.pdf#metametameregressMethodsandformulasMethodsforestimatingSigma
https://www.stata.com/manuals/metametasummarize.pdf#metametasummarizeMethodsandformulas
https://www.stata.com/manuals/metametasummarize.pdf#metametasummarize
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Wemay eliminate the explicit reference to specific levels of hierarchy and express the previous model

more compactly as

θ̂𝑗 = X𝑗β + Z𝑗u𝑗 + ε𝑗

where 𝑚𝑗. × (𝑞3 + 𝑚𝑗𝑞2) matrix Z𝑗 = (Z(3)
𝑗 ,Z(2)

𝑗 ) and (𝑞3 + 𝑚𝑗𝑞2) × 1 vector u𝑗 = (u(3)′
𝑗 ,u(2)′

𝑗 )′, with

a (𝑞3 + 𝑚𝑗𝑞2) × (𝑞3 + 𝑚𝑗𝑞2) covariance matrix 𝚺𝑗,

𝚺𝑗 = Var (u𝑗) = [
𝚺(3) 0

0 I𝑚𝑗
⊗ 𝚺(2)]

Note that 𝚺𝑗 depends on 𝑗 only through its dimension. In other words, if estimates for 𝚺(2) and 𝚺(3) are

available, then estimates for 𝚺𝑗, 𝑗 = 1, 2, . . . , 𝑀 are also available.

Let �̂�𝑗 be an estimate of the random-effects covariance matrix 𝚺𝑗 (to be discussed later), and let

W𝑗 = (Z𝑗�̂�𝑗Z
′
𝑗 + 𝚲𝑗)−1. The vector of fixed-effects regression coefficients β can be estimated as

β̂ = (
𝑀

∑
𝑗=1

X′
𝑗W𝑗X𝑗)

−1 𝑀
∑
𝑗=1

X′
𝑗W𝑗θ̂𝑗

The corresponding covariance matrix is given by

Var(β̂) = (
𝑀

∑
𝑗=1

X′
𝑗W𝑗X𝑗)

−1

In the following section, we outline the estimation of the random-effects covariance matrices 𝚺(2)

and 𝚺(3) (and thus of 𝚺𝑗) for the ML and REMLmethods.

Methods for estimating 𝚺(2) and 𝚺(3)

The two estimators described below do not have a closed-form solution, and an iterative algorithm is

needed to estimate 𝚺(2) and 𝚺(3).

The joint log-likelihood function of β, 𝚺(2), and 𝚺(3) for a random-effects multivariate meta-

regression can be expressed as

ln𝐿ML (β, 𝚺(2), 𝚺(3)) = −1
2

{𝑛 ln(2𝜋) +
𝑀

∑
𝑗=1

ln ∣V𝑗∣ +
𝑀

∑
𝑗=1

(θ̂𝑗 − X𝑗β)
′
V−1

𝑗 (θ̂𝑗 − X𝑗β)}

where V𝑗 = Z𝑗𝚺𝑗Z
′
𝑗 + 𝚲𝑗, |V𝑗| is the determinant of V𝑗, and 𝑛 = ∑𝑀

𝑗=1 ∑𝑚𝑗
𝑘=1 𝑚𝑗𝑘 is the total number

of observations ̂𝜃𝑗𝑘𝑟.

The random-effects covariance matrices 𝚺(2) and 𝚺(3) are estimated by maximizing the profile log-

likelihood function obtained by treating β as known and plugging β̂ into ln𝐿ML(β, 𝚺) in place of β
(Pinheiro and Bates [2000, chap. 2]):

ln𝐿ML (𝚺(2), 𝚺(3)) = −1
2

{𝑛 ln(2𝜋) +
𝑀

∑
𝑗=1

ln ∣V𝑗∣ +
𝑀

∑
𝑗=1

(θ̂𝑗 − X𝑗β̂)
′
V−1

𝑗 (θ̂𝑗 − X𝑗β̂)}
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The MLE of 𝚺(2) and 𝚺(3) does not incorporate the uncertainty about the unknown regression coeffi-

cients β and thus can be negatively biased.

The REML estimator of 𝚺(2) and 𝚺(3) maximizes the restricted log-likelihood function

ln𝐿REML (𝚺(2), 𝚺(3)) = ln𝐿ML (𝚺(2), 𝚺(3)) − 1
2
ln ∣

𝑀
∑
𝑗=1

X′
𝑗V

−1
𝑗 X𝑗∣ + 𝑝

2
ln(2𝜋)

The REML method estimates 𝚺(2) and 𝚺(3) by accounting for the uncertainty in the estimation of β,
which leads to a nearly unbiased estimate of 𝚺(2) and 𝚺(3). The optimization of the above log-likelihood

functions can be done using the machinery of the mixed-effects models to obtain the estimates β̂, 𝚺(2),

and 𝚺(3). For details, see Pinheiro and Bates (2000) and Methods and formulas of [ME] mixed. When

there are only two levels of hierarchy in the model and no random slopes, that is, in the context of

standard meta-analysis, the above ML and REML estimators reduce to their counterparts as reported by

meta regress.

Random-effects covariance structures

Several covariance structures may be assumed for the 𝑞𝑙 ×𝑞𝑙 random-effects covariance matrix𝚺(𝑙) at

a specific level of hierarchy 𝑙. The default covariance structure is independent, which assumes there are
𝑞𝑙 standard deviations to be estimated corresponding to the 𝑞𝑙 random effects at level 𝑙. Other covariance
structures are exchangeable, identity, unstructured, and custom matname. Structures that allow

the random effects to be correlated (unstructured, exchangeable, and potentially custom matname)

should be used only when adequate observations are available in order to produce stable estimates of the

correlations.

For example, when there are 3 random effects at level 𝑙 (𝑞𝑙 = 3), the covariance structures are

independent 𝚺(𝑙) = ⎡⎢
⎣

𝜎11
0 𝜎22
0 0 𝜎33

⎤⎥
⎦

exchangeable 𝚺(𝑙) = ⎡⎢
⎣

𝜎11
𝜎21 𝜎11
𝜎21 𝜎21 𝜎11

⎤⎥
⎦

identity 𝚺(𝑙) = ⎡⎢
⎣

𝜎11
0 𝜎11
0 0 𝜎11

⎤⎥
⎦

unstructured 𝚺(𝑙) = ⎡⎢
⎣

𝜎11
𝜎21 𝜎22
𝜎31 𝜎32 𝜎33

⎤⎥
⎦

For the custom covariance structure, see covariance(custom matname).

https://www.stata.com/manuals/memixed.pdf#memixedMethodsandformulas
https://www.stata.com/manuals/memixed.pdf#memixed
https://www.stata.com/manuals/metametaregress.pdf#metametaregress
https://www.stata.com/manuals/meta.pdf#metametameregressOptionscustomcov
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Multilevel meta-analysis
The formulas presented so far are derived for the general case of multilevel meta-regression. Methods

and formulas for the special case of multilevel meta-analysis (when no moderators are included) can be

obtained by taking x𝑗𝑘𝑟 = 1, z
(3)
𝑗𝑘𝑟 = 1, z

(2)
𝑗𝑘𝑟 = 1, and 𝑝 = 1. This model can be expressed as

̂𝜃𝑗𝑘𝑟 = 𝛽0 + 𝑢(3)
𝑗 + 𝑢(2)

𝑗𝑘 + 𝜖𝑗𝑘𝑟

where 𝑗 = 1, 2, . . . , 𝑀, 𝑘 = 1, 2, . . . , 𝑚𝑗, and 𝑟 = 1, 2, . . . , 𝑚𝑗𝑘. When there are only two levels of

hierarchy in the model, the REML and ML estimators reduce to the classical REML and ML estimators

described in [META] meta summarize for constant-only models.

Residual homogeneity test
Consider a test of residual homogeneity, which mathematically translates to 𝐻0∶ 𝚺(𝑙) = 0𝑞𝑙×𝑞𝑙

, 𝑙 =
2, 3, for the multilevel meta-regression. This test is based on the multivariate residual weighted sum of

squares, 𝑄M, defined as

𝑄M =
𝑀

∑
𝑗=1

(θ̂𝑗 − X𝑗β̂𝑓)
′
𝚲−1

𝑗 (θ̂𝑗 − X𝑗β̂𝑓)

where β̂𝑓 is a fixed-effects estimator obtained by fitting a standard fixed-effects meta-regression (see

[META] meta regress) of the ̂𝜃𝑗𝑘𝑟’s on the moderators defining the X𝑗 matrix.

Under the null hypothesis of residual homogeneity, 𝑄M follows a 𝜒2 distribution with 𝑛 − 𝑝 degrees

of freedom (Seber and Lee 2003, sec. 2.4). The 𝑄M statistic reduces to the classical residual homogene-

ity test statistic, 𝑄res, when there are two levels of hierarchy and no random slopes in the model (see

Residual homogeneity test in Methods and formulas in [META] meta regress). It also reduces to the

classical homogeneity statistic 𝑄 when no moderators are included (see Homogeneity test in Methods

and formulas in [META] meta summarize).
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