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Description

meta esize computes effect sizes from study summary data and uses the results to declare the
data in memory to be meta data, informing Stata of key variables and their roles in a meta-analysis.
It computes various effect sizes and their respective standard errors for two-group comparisons of
continuous and binary outcomes and for estimating a single proportion of a binary outcome. It then
uses the computed effect sizes and standard errors to declare the data in memory to be meta data.
If you do not have the summary data from individual studies and, instead, you have precalculated
effect sizes, you can use meta set to declare your meta-analysis data. You must use meta esize
or meta set to perform univariate meta-analysis using the meta command; see [META] meta data.

If you need to update some of the meta settings after the data declaration, see [META] meta update.
To display current meta settings, use meta query; see [META] meta update.

Quick start
Compute Hedges’s g standardized mean differences and their standard errors from variables nt (sample

size in treatment group), meant (mean of treatment group), sdt (standard deviation in treatment
group), and their counterparts in the control group: nc, meanc, and sdc

meta esize nt meant sdt nc meanc sdc

Same as above, but compute Cohen’s d instead of the default Hedges’s g, and use the DerSimonian–
Laird estimation method instead of the default REML method

meta esize nt meant sdt nc meanc sdc, esize(cohend) random(dlaird)

Compute log odds-ratios and their standard errors from variables nst (number of successes in treatment
group), nft (number of failures in treatment group), and their respective counterparts in control
group: nsc and nfc

meta esize nst nft nsc nfc

Same as above, but compute the log risk-ratios instead of the default log odds-ratios
meta esize nst nft nsc nfc, esize(lnrratio)

Same as above, but request a common-effect meta-analysis
meta esize nst nft nsc nfc, esize(lnrratio) common

Compute transformed proportions using the default Freeman–Tukey double-arcsine transformation
and their standard errors from variables ns (number of successes) and n (study sample size)

meta esize ns n

Same as above, but compute the logit-transformed proportions instead of the default Freeman–Tukey-
transformed proportions

meta esize ns n, esize(logitprop)

Menu
Statistics > Meta-analysis
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Syntax
Compute and declare effect sizes for two-group comparison of continuous outcomes

meta esize n1 mean1 sd1 n2 mean2 sd2
[

if
] [

in
] [

, options continuous options
]

Compute and declare effect sizes for two-group comparison of binary outcomes

meta esize n11 n12 n21 n22
[

if
] [

in
] [

, options binary options
]

Compute and declare effect sizes for estimating a single proportion (prevalence)

meta esize ns n
[

if
] [

in
] [

, options proportion options
]

Variables n1, mean1, and sd1 contain sample sizes, means, and standard deviations from individual
studies for group 1 (treatment), and variables n2, mean2, and sd2 contain the respective summaries
for group 2 (control).

Variables n11 and n12 contain numbers of successes and numbers of failures from individual studies
for group 1 (treatment), and variables n21 and n22 contain the respective numbers for group 2
(control). A single observation defined by variables n11, n12, n21, and n22 represents a 2 × 2
table from an individual study. Therefore, variables n11, n12, n21, and n22 represent a sample of
2× 2 tables from all studies. We will thus refer to observations on these variables as 2× 2 tables
and to values of these variables as cells.

Variables ns and n contain number of successes and sample sizes from individual studies. Here, the
values of the variable ns (number of successes) and the values of an implicit “variable” n − ns
(number of failures) are referred to as cells.

options continuous Description

Main

esize(esspeccnt) specify effect size for two-group comparison of continuous outcomes
to be used in the meta-analysis

Model

random
[
(remethod)

]
random-effects meta-analysis; default is random(reml)

common common-effect meta-analysis; implies inverse-variance method
fixed fixed-effects meta-analysis; implies inverse-variance method

options binary Description

Main

esize(estypebin) specify effect size for two-group comparison of binary outcomes
to be used in the meta-analysis

Model

random
[
(remethod)

]
random-effects meta-analysis; default is random(reml)

common
[
(cefemethod)

]
common-effect meta-analysis

fixed
[
(cefemethod)

]
fixed-effects meta-analysis

Options

zerocells(zcspec) adjust for zero cells during computation; default is to add 0.5 to all
cells of those 2× 2 tables that contain zero cells
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options proportion Description

Main

esize(estypeprop) specify effect size for estimating a single proportion to be used
in the meta-analysis

Model

random
[
(remethod)

]
random-effects meta-analysis; default is random(reml)

common common-effect meta-analysis; implies inverse-variance method
fixed fixed-effects meta-analysis; implies inverse-variance method

Options

zerocells(zcspec) adjust for zero cells during computation; default is to add 0.5 to all
cells of studies with zero successes or failures

options Description

Options

studylabel(varname) variable to be used to label studies in all meta-analysis output
eslabel(string) effect-size label to be used in all meta-analysis output; default is

eslabel(Effect size)

level(#) confidence level for all subsequent meta-analysis commands[
no
]
metashow display or suppress meta settings with other meta commands

The syntax of esspeccnt is

estypecnt
[
, esopts

]
estypecnt Description

hedgesg Hedges’s g standardized mean difference; the default
cohend Cohen’s d standardized mean difference
glassdelta2 Glass’s ∆ mean difference standardized by group 2 (control)

standard deviation; more common than glassdelta1

glassdelta1 Glass’s ∆ mean difference standardized by group 1 (treatment)
standard deviation

mdiff (unstandardized) mean difference

estypebin Description

lnoratio log odds-ratio; the default
lnrratio log risk-ratio (also known as log rate-ratio and log relative-risk)
rdiff risk difference
lnorpeto Peto’s log odds-ratio

https://www.stata.com/manuals/meta.pdf#metametaesizeSyntaxestypeprop
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estypeprop Description

ftukeyprop Freeman–Tukey-transformed proportion; the default
logitprop logit-transformed proportion
proportion untransformed (raw) proportion

remethod Description

reml restricted maximum likelihood; the default
mle maximum likelihood
ebayes empirical Bayes
dlaird DerSimonian–Laird
sjonkman Sidik–Jonkman
hedges Hedges
hschmidt Hunter–Schmidt

cefemethod Description

mhaenszel Mantel–Haenszel
invvariance inverse variance
ivariance synonym for invvariance

Options

� � �
Main �

esize(esspec) specifies the effect size to be used in the meta-analysis. For a two-group comparison
of continuous outcomes, esspec is estypecnt

[
, esopts

]
. For binary outcomes, esspec is estypebin

for a two-group comparison or estypeprop for estimating a single proportion (prevalence).

For a two-group comparison of continuous outcomes, estypecnt is one of the following: hedgesg,
cohend, glassdelta2, glassdelta1, or mdiff. Below, we describe each type with its specific
options, esopts.

hedgesg
[
, exact holkinse

]
computes the effect size as the Hedges’s g (1981) standardized

mean difference. This is the default. For consistency with meta-analysis literature, hedgesg
uses an approximation to compute g rather than the exact computation (see Methods and
formulas), as provided by esize’s option hedgesg. You can use the exact suboption to
match the results from esize (see [R] esize).

cohend
[
, holkinse

]
computes the effect size as the Cohen’s d (1969, 1988) standardized

mean difference.

glassdelta2 computes the effect size as the Glass’s ∆ standardized mean difference, where
the standardization uses the standard deviation of the group 2 (control group). glassdelta2
is more common in practice than glassdelta1.

glassdelta1 computes the effect size as the Glass’s ∆ standardized mean difference, where the
standardization uses the standard deviation of the group 1 (treatment group). glassdelta2
is more common in practice than glassdelta1.

mdiff
[
, unequal

]
computes the effect size as the unstandardized or raw mean difference.

https://www.stata.com/manuals/meta.pdf#metametaesizeOptionsesopts
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esopts are exact, holkinse, and unequal.

exact specifies that the exact computation be used for the bias-correction factor in Hedges’s
g instead of an approximation used by default.

holkinse specifies that the standard error of Hedges’s g and Cohen’s d be computed as
described in Hedges and Olkin (1985). This is another approximation to the standard error
of these effect sizes sometimes used in practice.

unequal specifies that the computation of the standard error of the mean difference (es-
ize(mdiff)) assume unequal group variances.

For a two-group comparison of binary outcomes, estypebin is one of the following: lnoratio,
lnrratio, rdiff, or lnorpeto.

lnoratio specifies that the effect size be the log odds-ratio. This is the default.

lnrratio specifies that the effect size be the log risk-ratio, also known as a log relative-risk
and a log risk-rate.

rdiff specifies that the effect size be the risk difference.

lnorpeto specifies that the effect size be the log odds-ratio as defined by Peto et al. (1977).
This effect size is preferable with rare events.

For estimating a proportion from one-sample binary or prevalence data, estypeprop is one of the
following: ftukeyprop, logitprop, or proportion.

ftukeyprop specifies that the effect size be the Freeman–Tukey-transformed proportion
(Freeman and Tukey 1950). This is the default. The Freeman–Tukey transformation is a
variance-stabilizing transformation and is preferable when the estimated proportions are close
to 0 or 1. This effect size does not require a zero-cell adjustment (continuity correction) for
studies with zero successes or failures.

logitprop specifies that the effect size be the logit-transformed proportion. When a study
proportion is close to 0 or 1, the estimated variance of this effect size is very large, and
thus the study is assigned an artificially small weight in the meta-analysis.

proportion specifies that the effect size be the raw (untransformed) proportion. When a study
proportion is close to 0 or 1, its estimated variance is very small, and thus the study is
assigned an artificially large weight in the meta-analysis. Moreover, the study confidence
limits may fall outside the [0, 1] range.

For effect sizes in the log metric such as log odds-ratios, the results by default are displayed in
the log metric. You can use eform option to obtain exponentiated results such as odds ratios. For
effect sizes ftukeyprop and logitprop, the results by default are displayed in the respective
Freeman–Tukey and logit metrics. You can use options transform() and proportion to report
results as proportions.

� � �
Model �

Options random(), common(), and fixed() declare the meta-analysis model globally throughout the
entire meta-analysis; see Declaring a meta-analysis model in [META] meta data. In other words, once
you set your meta-analysis model using meta esize, all subsequent meta commands will assume
that same model. You can update the declared model by using meta update or change it temporarily
by specifying the corresponding option with the meta commands. Options random(), common(),
and fixed() may not be combined. If these options are omitted, random(reml) is assumed; see
Default meta-analysis model and method in [META] meta data. Also see Meta-analysis models in
[META] Intro.

https://www.stata.com/manuals/metametasummarize.pdf#metametasummarizeOptionseform_option
https://www.stata.com/manuals/metametasummarize.pdf#metametasummarizeOptionstransfspec
https://www.stata.com/manuals/metametasummarize.pdf#metametasummarizeOptionsreport-prop
https://www.stata.com/manuals/metametadata.pdf#metametadataRemarksandexamplesDeclaringameta-analysismodel
https://www.stata.com/manuals/metametadata.pdf#metametadata
https://www.stata.com/manuals/metametaupdate.pdf#metametaupdate
https://www.stata.com/manuals/metametadata.pdf#metametadataRemarksandexamplesDefaultmeta-analysismodelandmethod
https://www.stata.com/manuals/metametadata.pdf#metametadata
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random and random(remethod) specify that a random-effects model be assumed for meta-analysis;
see Random-effects model in [META] Intro.

remethod specifies the type of estimator for the between-study variance τ2. remethod is one of
reml, mle, ebayes, dlaird, sjonkman, hedges, or hschmidt. random is a synonym for
random(reml). Below, we provide a short description for each method based on Veroniki et al.
(2016). Also see Declaring a meta-analysis estimation method in [META] meta data.

reml, the default, specifies that the REML method (Raudenbush 2009) be used to estimate τ2.
This method produces an unbiased, nonnegative estimate of the between-study variance and
is commonly used in practice. Method reml requires iteration.

mle specifies that the ML method (Hardy and Thompson 1996) be used to estimate τ2. It
produces a nonnegative estimate of the between-study variance. With a few studies or small
studies, this method may produce biased estimates. With many studies, the ML method is
more efficient than the REML method. Method mle requires iteration.

ebayes specifies that the empirical Bayes estimator (Berkey et al. 1995), also known as the
Paule–Mandel estimator (Paule and Mandel 1982), be used to estimate τ2. From simulations,
this method, in general, tends to be less biased than other random-effects methods, but it is
also less efficient than reml or dlaird. Method ebayes produces a nonnegative estimate
of τ2 and requires iteration.

dlaird specifies that the DerSimonian–Laird method (DerSimonian and Laird 1986) be used
to estimate τ2. This method, historically, is one of the most popular estimation methods
because it does not make any assumptions about the distribution of random effects and does
not require iteration. But it may underestimate the true between-study variance, especially
when the variability is large and the number of studies is small. This method may produce
a negative value of τ2 and is thus truncated at zero in that case.

sjonkman specifies that the Sidik–Jonkman method (Sidik and Jonkman 2005) be used to
estimate τ2. This method always produces a nonnegative estimate of the between-study
variance and thus does not need truncating at 0, unlike the other noniterative methods.
Method sjonkman does not require iteration.

hedges specifies that the Hedges method (Hedges 1983) be used to estimate τ2. When the
sampling variances of effect-size estimates can be estimated without bias, this estimator is
exactly unbiased (before truncation), but it is not widely used in practice (Veroniki et al. 2016).
Method hedges does not require iteration.

hschmidt specifies that the Hunter–Schmidt method (Schmidt and Hunter 2015) be used to
estimate τ2. Although this estimator achieves a lower MSE than other methods, except ML,
it is known to be negatively biased. Method hschmidt does not require iteration.

common specifies that a common-effect model be assumed for meta-analysis; see Common-effect
(“fixed-effect”) model in [META] Intro. It uses the inverse-variance estimation method; see Meta-
analysis estimation methods in [META] Intro. Also see the discussion in [META] meta data about
common-effect versus fixed-effects models.

common and common(cefemethod) specify that a common-effect model be assumed for meta-analysis;
see Common-effect (“fixed-effect”) model in [META] Intro. Also see the discussion in [META] meta
data about common-effect versus fixed-effects models.

common implies common(mhaenszel) for effect sizes lnoratio, lnrratio, and rdiff and
common(invvariance) for all other effect sizes.
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cefemethod is one of mhaenszel or invvariance (synonym ivariance). Below, we provide a
short description for each method. Also see Declaring a meta-analysis estimation method in
[META] meta data.

mhaenszel is available only for a two-group comparison of binary outcomes. It specifies a
meta-analysis using the Mantel–Haenszel method to estimate the overall effect size. This
method is the default for effect sizes lnoratio, lnrratio, and rdiff but is not available
for effect size lnorpeto.

invvariance specifies a meta-analysis using the inverse-variance method to estimate the
overall effect size. This method is available for all types of analyses and effect sizes. It is
the default for a two-group comparison of continuous outcomes, for a two-group comparison
of binary outcomes using effect size lnorpeto, and for estimating a single proportion (or
prevalence).

ivariance is a synonym for invvariance.

fixed and fixed(cefemethod) specify that a fixed-effects model be assumed for meta-analysis;
see Fixed-effects model in [META] Intro. Also see the discussion in [META] meta data about
fixed-effects versus common-effect models.

fixed implies fixed(mhaenszel) for effect sizes lnoratio, lnrratio, and rdiff and
fixed(invvariance) for all other effect sizes.

cefemethod is one of mhaenszel or invvariance (synonym ivariance); see descriptions above.

fixed specifies that a fixed-effects model be assumed for meta-analysis; see Fixed-effects model
in [META] Intro. It uses the inverse-variance estimation method; see Meta-analysis estimation
methods in [META] Intro. Also see the discussion in [META] meta data about fixed-effects versus
common-effect models.

� � �
Options �

zerocells(zcspec) is for use with binary outcomes when the effect size is either lnoratio or
lnrratio for the two-sample case or either logitprop or proportion for the one-sample case.
It specifies the adjustment to be used for the cells in the presence of zero cells. The cells are the
values of variables n11, n12, n21, and n22 for the two-sample case and the number of successes and
the number of failures for the one-sample case. The adjustment is applied during computation—the
original data are not modified. The default is zerocells(0.5, only0); it adds 0.5 to all cells of
studies with at least one zero cell. To request no adjustment, specify zerocells(none). More
generally, the syntax of zcspec is

#
[
, zcadj

]
where # is the adjustment value, also known as the continuity-correction value in the meta-analysis
literature, and zcadj is only0 or allif0.

only0 specifies that # be added to all cells of only those studies with at least one zero cell.
For the two-sample case, during computation, # is added to each observation defined by
variables n11, n12, n21, and n22 if that observation contains a value of zero in any of those
variables. For the one-sample case, # is added to all values (cells) corresponding to zero
successes and to zero failures.

allif0 specifies that # be added to all cells of all studies but only if there is at least one
study with a zero cell. For the two-sample case, during computation, # is added to all values
of variables n11, n12, n21, and n22 but only if there is a zero value in one of the four
variables. For the one-sample case, # is added to all cells (number of successes and number
of failures) if at least one study contains zero successes or zero failures.
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For the effect size lnoratio, zcspec may also be tacc, which implements the treatment-arm
continuity correction of Sweeting, Sutton, and Lambert (2004). This method estimates the group-
specific adjustment values from the data to minimize the bias of the overall odds-ratio estimator
in the presence of zero cells. This method is recommended when the groups are unbalanced.

studylabel(varname) specifies a string variable containing labels for the individual studies to be
used in all applicable meta-analysis output. The default study labels are Study 1, Study 2, . . . ,
Study K, where K is the total number of studies in the meta-analysis.

eslabel(string) specifies that string be used as the effect-size label in all relevant meta-analysis
output. The default label is Effect size.

level(#) specifies the confidence level, as a percentage, for confidence intervals. It will be used
by all subsequent meta-analysis commands when computing confidence intervals. The default is
level(95) or as set by set level; see [R] level. After the declaration, you can specify level()
with meta update to update the confidence level to be used throughout the rest of the meta-analysis
session. You can also specify level() directly with the meta commands to modify the confidence
level, temporarily, during the execution of the command.

metashow and nometashow display or suppress the meta setting information in the output of other
meta commands. By default, this information is displayed at the top of their output. You can
also specify nometashow with meta update to suppress the meta setting output for the entire
meta-analysis session after the declaration.

Remarks and examples stata.com

Remarks are presented under the following headings:
Meta-analysis for two-group comparison of binary outcomes
Meta-analysis for two-group comparison of continuous outcomes
Meta-analysis for estimating a single proportion

meta esize computes various effect sizes, their standard errors, and CIs for continuous and binary
outcomes from the summary data provided for each study. It then declares the computed effect-size
data as the meta data; see [META] meta data. Different types of effect sizes may be specified in the
esize() option. They depend on the type of analysis and outcome, so we describe them separately for
various situations below, together with other data-specific options. Also see Declaring meta-analysis
information in [META] meta data.

Meta-analysis for two-group comparison of binary outcomes

Meta-analysis is often used with studies comparing two groups. The first group is commonly
referred to as the experimental or treatment group. The second group is commonly referred to as the
control group.

For two-sample binary data, each study typically reports cell counts from the following 2×2 table.

group success failure size
treatment n11 n12 n1 = n11 + n12
control n21 n22 n2 = n21 + n22

The cells of the table are composed of the numbers of “successes” and “failures” within each of the
comparison groups. If a subject experiences an event of interest, it is a success; otherwise, it is a
failure. Thus, the summary data for a two-group comparison of binary outcomes include the above
2× 2 table for each study.

https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u12.pdf#u12.4Strings
https://www.stata.com/manuals/rlevel.pdf#rlevel
https://www.stata.com/manuals/metametaupdate.pdf#metametaupdate
http://stata.com
https://www.stata.com/manuals/metametadata.pdf#metametadata
https://www.stata.com/manuals/metametadata.pdf#metametadataRemarksandexamplesDeclaringmeta-analysisinformation
https://www.stata.com/manuals/metametadata.pdf#metametadataRemarksandexamplesDeclaringmeta-analysisinformation
https://www.stata.com/manuals/metametadata.pdf#metametadata
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In this case, meta esize requires that four variables be specified containing the numbers of
successes and failures in the treatment and control groups.

The goal of each study is to compare the probabilities of a success between the two groups. Various
effect-size measures can be used for the comparison. For two-sample binary data, meta esize provides
the following effect sizes: log odds-ratios (including Peto’s log odds-ratios), the default; log risk-
ratios; and risk differences. These are specified, respectively, as lnoratio, lnorpeto, lnrratio,
and rdiff in the esize() option.

As described in Declaring a meta-analysis model in [META] meta data, you can choose between
a random-effects, a fixed-effects, or a common-effect model. You can also choose from a number
of estimation methods that are specific to the chosen model. For fixed-effects and common-effect
models, in addition to the inverse-variance method, the Mantel–Haenszel method is available (and
is the default) with effect sizes lnoratio, lnrratio, and rdiff; see Declaring a meta-analysis
estimation method in [META] meta data and Meta-analysis estimation methods in [META] Intro for
details.

Zero cell counts are known to create computational difficulties for odds ratios and risk ratios. A
common solution is to add a small number, say, 0.5, to all cells of tables containing zero cells. This
and other zero-cells adjustments are available in the zerocells() option.

Let’s now look at several examples. Consider the following fictional meta-analysis dataset:

. use https://www.stata-press.com/data/r18/metaesbin
(Fictional data for binary outcomes)

. describe

Contains data from https://www.stata-press.com/data/r18/metaesbin.dta
Observations: 4 Fictional data for binary

outcomes
Variables: 5 23 Apr 2022 12:14

Variable Storage Display Value
name type format label Variable label

study str7 %9s Study label
tdead byte %9.0g Deaths in treatment group
tsurv int %9.0g Survivors in treatment group
cdead byte %9.0g Deaths in control group
csurv int %9.0g Survivors in control group

Sorted by:

We will use this dataset to demonstrate how to compute effect sizes, specify different meta-analysis
models, and adjust for zero cells with two-sample binary data.

Example 1: A simple case

When working with meta-analysis data that do not have precomputed effect sizes, we can choose
to compute effect sizes in a few different ways such as odds ratios and risk ratios. Using the simplest
syntactical specification, we can compute the effect sizes, their standard errors, and the corresponding
confidence intervals by specifying the number of successes and failures for one group, as well as the
successes and failures for the second group, in that order.

https://www.stata.com/manuals/metametadata.pdf#metametadataRemarksandexamplesDeclaringameta-analysismodel
https://www.stata.com/manuals/metametadata.pdf#metametadata
https://www.stata.com/manuals/metametadata.pdf#metametadataRemarksandexamplesDeclaringameta-analysisestimationmethod
https://www.stata.com/manuals/metametadata.pdf#metametadataRemarksandexamplesDeclaringameta-analysisestimationmethod
https://www.stata.com/manuals/metametadata.pdf#metametadata
https://www.stata.com/manuals/metaintro.pdf#metaIntroRemarksandexamplesMeta-analysisestimationmethods
https://www.stata.com/manuals/metaintro.pdf#metaIntro
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. meta esize tdead tsurv cdead csurv

Meta-analysis setting information

Study information
No. of studies: 4

Study label: Generic
Study size: _meta_studysize

Summary data: tdead tsurv cdead csurv

Effect size
Type: lnoratio

Label: Log odds-ratio
Variable: _meta_es

Zero-cells adj.: 0.5, only0

Precision
Std. err.: _meta_se

CI: [_meta_cil, _meta_ciu]
CI level: 95%

Model and method
Model: Random effects

Method: REML

The output indicates that there are 4 studies in the meta-analysis and, by default, a random-effects
meta-analysis is to be assumed, where the heterogeneity parameter τ2 is estimated via the REML
method. The default computed effect size is the log odds-ratio. meta esize creates multiple system
variables (see System variables in [META] meta data) that store the effect-size values, their standard
errors, and the upper and lower limits of the CIs for the effect sizes.

We can now use, for example, meta summarize to list the individual log odds-ratios and the
overall log odds-ratio, which is denoted as theta.

. meta summarize

Effect-size label: Log odds-ratio
Effect size: _meta_es

Std. err.: _meta_se

Meta-analysis summary Number of studies = 4
Random-effects model Heterogeneity:
Method: REML tau2 = 1.4417

I2 (%) = 69.33
H2 = 3.26

Study Log odds-ratio [95% conf. interval] % weight

Study 1 -0.600 -2.079 0.879 27.80
Study 2 0.351 -2.510 3.212 15.65
Study 3 0.778 -0.031 1.586 34.69
Study 4 -2.567 -4.638 -0.495 21.85

theta -0.403 -1.869 1.063

Test of theta = 0: z = -0.54 Prob > |z| = 0.5899
Test of homogeneity: Q = chi2(3) = 9.93 Prob > Q = 0.0192

See [META] meta summarize for details.

If we have a variable that stores the labels for each study, perhaps noting the study authors or
journal, we can specify it in the studylabel() option with meta esize. Because we do not have
such a variable in this dataset, each study is denoted generically by Study #. See example 4 in
[META] meta set for an example of how to specify the study label and effect-size label.

https://www.stata.com/manuals/metametadata.pdf#metametadataRemarksandexamplesSystemvariables
https://www.stata.com/manuals/metametadata.pdf#metametadata
https://www.stata.com/manuals/metametasummarize.pdf#metametasummarize
https://www.stata.com/manuals/metametaset.pdf#metametasetRemarksandexamplesmsetexother
https://www.stata.com/manuals/metametaset.pdf#metametaset
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Example 2: Specify the effect size

The default is to compute the log odds-ratio for the effect size. To specify another metric, we can
use the esize() option. For example, below we use the risk ratio (on the log scale) as our effect
size by specifying esize(lnrratio):

. meta esize tdead tsurv cdead csurv, esize(lnrratio)

Meta-analysis setting information

Study information
No. of studies: 4

Study label: Generic
Study size: _meta_studysize

Summary data: tdead tsurv cdead csurv

Effect size
Type: lnrratio

Label: Log risk-ratio
Variable: _meta_es

Zero-cells adj.: 0.5, only0

Precision
Std. err.: _meta_se

CI: [_meta_cil, _meta_ciu]
CI level: 95%

Model and method
Model: Random effects

Method: REML

Example 3: Sparse data and adjustments for zero cells

Note that when we list the data, one of the studies has zero deaths.

. list tdead tsurv cdead csurv

tdead tsurv cdead csurv

1. 2 116 17 541
2. 0 15 15 682
3. 8 61 37 614
4. 1 421 9 291
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By default, meta esize adds a constant value of 0.5 (that is, option zerocells(0.5, only0)
is assumed) to each cell of a study that has a zero cell; see Zero-cells adj.: in the output of
meta set in example 1. We can modify this adjustment by specifying a different constant factor. For
example, we might add 0.003 to each zero cell:

. meta esize tdead tsurv cdead csurv, zerocells(.003)

Meta-analysis setting information

Study information
No. of studies: 4

Study label: Generic
Study size: _meta_studysize

Summary data: tdead tsurv cdead csurv

Effect size
Type: lnoratio

Label: Log odds-ratio
Variable: _meta_es

Zero-cells adj.: .003, only0

Precision
Std. err.: _meta_se

CI: [_meta_cil, _meta_ciu]
CI level: 95%

Model and method
Model: Random effects

Method: REML

Or we may instead choose a different type of continuity correction, for example, the treatment-arm
continuity correction (TACC), which we specify as zerocells(tacc):

. meta esize tdead tsurv cdead csurv, zerocells(tacc)

Meta-analysis setting information

Study information
No. of studies: 4

Study label: Generic
Study size: _meta_studysize

Summary data: tdead tsurv cdead csurv

Effect size
Type: lnoratio

Label: Log odds-ratio
Variable: _meta_es

Zero-cells adj.: tacc

Precision
Std. err.: _meta_se

CI: [_meta_cil, _meta_ciu]
CI level: 95%

Model and method
Model: Random effects

Method: REML

Note that this option can be specified only when using the log odds-ratio as the effect size.

https://www.stata.com/manuals/meta.pdf#metametaesizeRemarksandexamplesmesexsimple
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Example 4: Specify the meta-analysis model

In the examples above, we have been using the default random-effects model, but we could specify
a different model. For example, we can use a common-effect model using the Mantel–Haenszel
method to estimate the overall effect size:

. meta esize tdead tsurv cdead csurv, common(mhaenszel)

Meta-analysis setting information

Study information
No. of studies: 4

Study label: Generic
Study size: _meta_studysize

Summary data: tdead tsurv cdead csurv

Effect size
Type: lnoratio

Label: Log odds-ratio
Variable: _meta_es

Zero-cells adj.: 0.5, only0

Precision
Std. err.: _meta_se

CI: [_meta_cil, _meta_ciu]
CI level: 95%

Model and method
Model: Common effect

Method: Mantel--Haenszel

In the above, we could have specified simply common because the Mantel–Haenszel method is the
default for a common-effect model with log odds-ratios.

Meta-analysis for two-group comparison of continuous outcomes

We can also use meta-analysis to compare two groups for continuous outcomes. As before, the
first group is commonly referred to as the experimental or treatment group, and the second group is
commonly referred to as the control group.

For a two-group comparison of continuous outcomes, each study often reports the numbers
of observations, means, and standard deviations in the two groups. Various effect sizes are then
computed from these summary data for each study. Thus, to compute effect sizes for two-sample
continuous data, meta esize requires that six variables be specified containing the numbers of
observations, means, and standard deviations of the treatment and control groups. The supported effect
sizes are the raw mean difference, esize(mdiff), and standardized mean differences: Hedges’s g,
esize(hedgesg) (the default); Cohen’s d, esize(cohend); and Glass’s ∆s, esize(glassdelta2)
and esize(glassdelta1); see Methods and formulas for their definitions.

As described in Declaring a meta-analysis model in [META] meta data, you can choose between
a random-effects, a fixed-effects, or a common-effect model. You can also choose from several
estimation methods for random-effects models. Fixed-effects and common-effect models assume
the inverse-variance estimation method. Also see Declaring a meta-analysis estimation method in
[META] meta data and Meta-analysis estimation methods in [META] Intro for details.

https://www.stata.com/manuals/meta.pdf#metametaesizeMethodsandformulas
https://www.stata.com/manuals/metametadata.pdf#metametadataRemarksandexamplesDeclaringameta-analysismodel
https://www.stata.com/manuals/metametadata.pdf#metametadata
https://www.stata.com/manuals/metametadata.pdf#metametadataRemarksandexamplesDeclaringameta-analysisestimationmethod
https://www.stata.com/manuals/metametadata.pdf#metametadata
https://www.stata.com/manuals/metaintro.pdf#metaIntroRemarksandexamplesMeta-analysisestimationmethods
https://www.stata.com/manuals/metaintro.pdf#metaIntro
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Let’s now demonstrate several usages of meta esize for a two-group comparison of continuous
outcomes. Consider the following fictional meta-analysis dataset:

. use https://www.stata-press.com/data/r18/metaescnt, clear
(Fictional summary data for continuous outcomes)

. describe

Contains data from https://www.stata-press.com/data/r18/metaescnt.dta
Observations: 10 Fictional summary data for

continuous outcomes
Variables: 6 19 Apr 2022 14:00

Variable Storage Display Value
name type format label Variable label

n1 byte %9.0g Study sizes of group 1
m1 float %9.0g Means of group 1
sd1 float %9.0g Std. dev. of group 1
n2 byte %9.0g Study sizes of group 2
m2 float %9.0g Means of group 2
sd2 float %9.0g Std. dev. of group 2

Sorted by:

We will use this dataset to demonstrate different usages of the meta esize command with
continuous-outcomes meta-analysis data.

Example 5: The assumed model

In the simplest specification, meta esize requires that we specify the sample sizes, means, and
standard deviations for each group in the meta-analysis.

. meta esize n1 m1 sd1 n2 m2 sd2

Meta-analysis setting information

Study information
No. of studies: 10

Study label: Generic
Study size: _meta_studysize

Summary data: n1 m1 sd1 n2 m2 sd2

Effect size
Type: hedgesg

Label: Hedges’s g
Variable: _meta_es

Bias correction: Approximate

Precision
Std. err.: _meta_se

Std. err. adj.: None
CI: [_meta_cil, _meta_ciu]

CI level: 95%

Model and method
Model: Random effects

Method: REML

We see from the output that the Hedges’s g standardized mean difference is used for the effect size,
and, as for binary outcomes, a random-effects REML model is assumed. See Meta settings with meta
esize in [META] meta data for a detailed description of all settings for this dataset.

https://www.stata.com/manuals/metametadata.pdf#metametadataRemarksandexamplesMetasettingswithmetaesize
https://www.stata.com/manuals/metametadata.pdf#metametadataRemarksandexamplesMetasettingswithmetaesize
https://www.stata.com/manuals/metametadata.pdf#metametadata
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Example 6: Selecting an effect size

If we do not feel the need to standardize the mean differences, we could instead use the raw mean
difference as the effect size by specifying esize(mdiff).

. meta esize n1 m1 sd1 n2 m2 sd2, esize(mdiff)

Meta-analysis setting information

Study information
No. of studies: 10

Study label: Generic
Study size: _meta_studysize

Summary data: n1 m1 sd1 n2 m2 sd2

Effect size
Type: mdiff

Label: Mean diff.
Variable: _meta_es

Precision
Std. err.: _meta_se

Std. err. adj.: None
CI: [_meta_cil, _meta_ciu]

CI level: 95%

Model and method
Model: Random effects

Method: REML

Example 7: Specifying different meta-analysis models and methods

Rather than using the default REML estimation method, we may want to use a different method,
such as the DerSimonian–Laird method. We can specify this method in the random() option.

. meta esize n1 m1 sd1 n2 m2 sd2, random(dlaird)

Meta-analysis setting information

Study information
No. of studies: 10

Study label: Generic
Study size: _meta_studysize

Summary data: n1 m1 sd1 n2 m2 sd2

Effect size
Type: hedgesg

Label: Hedges’s g
Variable: _meta_es

Bias correction: Approximate

Precision
Std. err.: _meta_se

Std. err. adj.: None
CI: [_meta_cil, _meta_ciu]

CI level: 95%

Model and method
Model: Random effects

Method: DerSimonian--Laird

Or, instead of the random-effects model, we may specify a fixed-effects model, which implies the
inverse-variance estimation method.
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. meta esize n1 m1 sd1 n2 m2 sd2, fixed

Meta-analysis setting information

Study information
No. of studies: 10

Study label: Generic
Study size: _meta_studysize

Summary data: n1 m1 sd1 n2 m2 sd2

Effect size
Type: hedgesg

Label: Hedges’s g
Variable: _meta_es

Bias correction: Approximate

Precision
Std. err.: _meta_se

Std. err. adj.: None
CI: [_meta_cil, _meta_ciu]

CI level: 95%

Model and method
Model: Fixed effects

Method: Inverse-variance

Meta-analysis for estimating a single proportion

Meta-analysis is also used to estimate an overall proportion (or prevalence) from one-sample binary
data by pooling proportions from single-arm studies whenever this is sensible.

The data contain the number of successes (or the number of events) and the study sample size for
each study. (Success is a generic term and occurs when a subject experiences an event of interest.) To
estimate a proportion, meta esize provides the following effect sizes: Freeman–Tukey-transformed
proportions (the default), logit-transformed proportions, and untransformed (raw) proportions. These
are specified, respectively, as ftukeyprop, logitprop, and proportion in the esize() option.

As described in Declaring a meta-analysis model in [META] meta data, you can choose between
a random-effects, a fixed-effects, or a common-effect model. You can also choose from several
estimation methods for random-effects models. Fixed-effects and common-effect models assume
the inverse-variance estimation method. Also see Declaring a meta-analysis estimation method in
[META] meta data and Meta-analysis estimation methods in [META] Intro for details.

Let’s now look at several examples. Consider the following fictional meta-analysis dataset:

. use https://www.stata-press.com/data/r18/metaesprop, clear
(Fictional summary data to estimate proportion)

. describe

Contains data from https://www.stata-press.com/data/r18/metaesprop.dta
Observations: 6 Fictional summary data to

estimate proportion
Variables: 3 26 Apr 2022 11:14

Variable Storage Display Value
name type format label Variable label

study str7 %9s Study label
nsucc byte %9.0g Number of successes
ssize int %9.0g Study sample size

Sorted by:

https://www.stata.com/manuals/metametadata.pdf#metametadataRemarksandexamplesDeclaringameta-analysismodel
https://www.stata.com/manuals/metametadata.pdf#metametadata
https://www.stata.com/manuals/metametadata.pdf#metametadataRemarksandexamplesDeclaringameta-analysisestimationmethod
https://www.stata.com/manuals/metametadata.pdf#metametadata
https://www.stata.com/manuals/metaintro.pdf#metaIntroRemarksandexamplesMeta-analysisestimationmethods
https://www.stata.com/manuals/metaintro.pdf#metaIntro
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We will use this dataset to demonstrate different usages of the meta esize command to declare
the data for meta-analysis of a single proportion.

Example 8: The default setting

In its most basic form, meta esize requires that we specify the number of successes (nsucc)
and the study sample sizes (ssize).

. meta esize nsucc ssize

Meta-analysis setting information

Study information
No. of studies: 6

Study label: Generic
Study size: _meta_studysize

Summary data: nsucc ssize

Effect size
Type: ftukeyprop

Label: Freeman--Tukey’s p
Variable: _meta_es

Precision
Std. err.: _meta_se

CI: [_meta_cil, _meta_ciu]
CI level: 95%

Model and method
Model: Random effects

Method: REML

The output shows that the summary data are defined by variables nsucc and ssize and that,
by default, the Freeman–Tukey-transformed proportion is used as the effect size. A random-effects
REML model is assumed. Other settings are exactly as described in example 1.

Example 9: Specify the effect size

Instead of using the default Freeman–Tukey-transformed proportion, we can choose a different
effect size, such as the logit-transformed proportion, using the esize() option.

. meta esize nsucc ssize, esize(logitprop)

Meta-analysis setting information

Study information
No. of studies: 6

Study label: Generic
Study size: _meta_studysize

Summary data: nsucc ssize

Effect size
Type: logitprop

Label: Logit proportion
Variable: _meta_es

Zero-cells adj.: None; no zero cells

Precision
Std. err.: _meta_se

CI: [_meta_cil, _meta_ciu]
CI level: 95%

Model and method
Model: Random effects

Method: REML

https://www.stata.com/manuals/meta.pdf#metametaesizeRemarksandexamplesmesexsimple
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The output differs from that in example 8 in the Effect size section. It now reflects that logit-
transformed proportion is the effect size of choice instead of the default Freeman–Tukey-transformed
proportion. There is also a new row for the zero-cells adjustment. This row did not show up in the
output of example 8 because the Freeman–Tukey-transformed proportion does not need continuity
correction. In our dataset, there are no zero cells, so the output in that row shows that no zero-cells
adjustment was applied.

The logit-transformed proportion (and the untransformed proportion, esize(proportion)) should
be avoided when there are study proportions that are close to 0 or 1.

Example 10: Specify an alternative meta-analysis model and method
Instead of using the default REML estimation method, you may specify an alternative random-effects

method, such as the DL method. This can be done via the random() option.
. meta esize nsucc ssize, random(dlaird)

Meta-analysis setting information

Study information
No. of studies: 6

Study label: Generic
Study size: _meta_studysize

Summary data: nsucc ssize

Effect size
Type: ftukeyprop

Label: Freeman--Tukey’s p
Variable: _meta_es

Precision
Std. err.: _meta_se

CI: [_meta_cil, _meta_ciu]
CI level: 95%

Model and method
Model: Random effects

Method: DerSimonian--Laird

Or perhaps you believe that your proportions are similar across the studies and that a common-effect
model is adequate to synthesize the overall proportion. You may request a common-effect model with
the inverse-variance method by specifying the common option.

. meta esize nsucc ssize, common

Meta-analysis setting information

Study information
No. of studies: 6

Study label: Generic
Study size: _meta_studysize

Summary data: nsucc ssize

Effect size
Type: ftukeyprop

Label: Freeman--Tukey’s p
Variable: _meta_es

Precision
Std. err.: _meta_se

CI: [_meta_cil, _meta_ciu]
CI level: 95%

Model and method
Model: Common effect

Method: Inverse-variance

https://www.stata.com/manuals/meta.pdf#metametaesizeRemarksandexamplesmesexprop
https://www.stata.com/manuals/meta.pdf#metametaesizeRemarksandexamplesmesexprop
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Stored results
meta esize stores the following characteristics and system variables:

Characteristics
dta[ meta marker] “ meta ds 1”
dta[ meta K] number of studies in the meta-analysis
dta[ meta studylabel] name of string variable containing study labels or Generic
dta[ meta estype] type of effect size; varies
dta[ meta eslabelopt] eslabel(eslab), if specified
dta[ meta eslabel] effect-size label from eslabel(); default varies
dta[ meta eslabeldb] effect-size label for dialog box
dta[ meta esvardb] meta es
dta[ meta level] default confidence level for meta-analysis
dta[ meta esizeopt] esize(estype), if specified
dta[ meta esopt exact] exact, if esize(, exact) is specified
dta[ meta esopt holkinse] holkinse, if esize(, holkinse) is specified
dta[ meta esopt unequal] unequal, if esize(, unequal) is specified
dta[ meta modellabel] meta-analysis model label: Random effects, Common effect, or

Fixed effects
dta[ meta model] meta-analysis model: random, common, or fixed
dta[ meta methodlabel] meta-analysis method label; varies by meta-analysis model
dta[ meta method] meta-analysis method; varies by meta-analysis model
dta[ meta randomopt] random(remethod), if specified
dta[ meta zcopt] zerocells(zcspec), if specified
dta[ meta zcadj] type of adjustment for zero cells, if zerocells()

specified
dta[ meta zcvalue] value added to cells to adjust for zero cells, if specified
dta[ meta show] empty or nometashow
dta[ meta n1var] name of group 1 sample-size variable; for two-sample continuous data
dta[ meta mean1var] name of group 1 mean variable; for two-sample continuous data
dta[ meta sd1var] name of group 1 std. dev. variable; for two-sample continuous data
dta[ meta n2var] name of group 2 sample-size variable; for two-sample continuous data
dta[ meta mean2var] name of group 2 mean variable; for two-sample continuous data
dta[ meta sd2var] name of group 2 std. dev. variable; for two-sample continuous data
dta[ meta n11var] name of n11 variable; for two-sample binary data (contingency table)
dta[ meta n12var] name of n12 variable; for two-sample binary data (contingency table)
dta[ meta n21var] name of n21 variable; for two-sample binary data (contingency table)
dta[ meta n22var] name of n22 variable; for two-sample binary data (contingency table)
dta[ meta nsvar] name of ns variable; for one-sample binary data (proportion)
dta[ meta nvar] name of n variable; for one-sample binary data (proportion)
dta[ meta datatype] data type; continuous, binary, or proportion
dta[ meta datavars] variables specified with meta esize
dta[ meta setcmdline] meta esize command line
dta[ meta ifexp] if specification
dta[ meta inexp] in specification

System variables
meta id study ID variable
meta es variable containing effect sizes
meta se variable containing effect-size standard errors
meta cil variable containing lower bounds of CIs for effect sizes
meta ciu variable containing upper bounds of CIs for effect sizes
meta studylabel string variable containing study labels
meta studysize variable containing total sample size per study

https://www.stata.com/manuals/meta.pdf#metametaesizeSyntaxn11
https://www.stata.com/manuals/meta.pdf#metametaesizeSyntaxn12
https://www.stata.com/manuals/meta.pdf#metametaesizeSyntaxn21
https://www.stata.com/manuals/meta.pdf#metametaesizeSyntaxn22
https://www.stata.com/manuals/meta.pdf#metametaesizeSyntaxns
https://www.stata.com/manuals/meta.pdf#metametaesizeSyntaxn
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Methods and formulas
Methods and formulas are presented under the following headings:

Effect sizes for two-group comparison of continuous outcomes
Unstandardized mean difference
Standardized mean difference

Effect sizes for two-group comparison of binary outcomes
Odds ratio
Risk ratio (rate ratio)
Risk difference
Zero-cells adjustments for two-sample case

Effect sizes for estimating a single proportion
Raw (untransformed) proportion
Freeman–Tukey-transformed proportion
Logit-transformed proportion
Zero-cells adjustments for one-sample case

Confidence intervals for effect sizes

Effect sizes for two-group comparison of continuous outcomes

As we described in Meta-analysis for two-group comparison of continuous outcomes, meta-analysis
often compares two groups: experimental (or treated) group and control group.

When the response (measurement) is continuous, studies typically report a mean and standard
deviation for each group. For a given study, the following table denotes the underlying population
parameters and the reported summary statistics (data) for each group.

population sample
group mean sd mean sd size
treatment µ1 σ1 x1 s1 n1
control µ2 σ2 x2 s2 n2

The majority of this section is based on Borenstein (2009).

Unstandardized mean difference

Consider the population mean difference

θ = µ1 − µ2

For each study in the meta-analysis, meta esize with option esize(mdiff) estimates θ using the
difference in sample means,

D = x1 − x2
The variance of D, assuming that the two population standard deviations are equal, is estimated by

V̂ar(D) =

(
1

n1
+

1

n2

)
s2

where s is the pooled sample standard deviation

s =

√
(n1 − 1) s21 + (n2 − 1) s22

n1 + n2 − 2
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For unequal population standard deviations, use option esize(mdiff, unequal); then the variance
of D is estimated by

V̂ar(D) =
s21
n1

+
s22
n2

Unstandardized (raw) mean differences are not comparable across studies if the underlying means
are measured on different scales.

Standardized mean difference

The standardized mean difference is

θ =
µ1 − µ2

σ

Note that θ does not depend on the scale of measurement. The definition of the standardized mean
difference implicitly assumes that the population standard deviations, σ1 and σ2, are the same:
σ1 = σ2 = σ.

meta esize with option esize(cohend) estimates θ using Cohen’s d statistic (Cohen 1969,
1988),

d =
x1 − x2

s

The estimated variance of d is given by

V̂ar(d) =
n1 + n2
n1n2

+
d2

2 (n1 + n2)

Hedges (1981) introduced an adjustment to Cohen’s d for small samples that accounts for a small
upward bias in the absolute value of θ. meta esize with option esize(hedgesg, exact) computes
Hedges’s g as

g = c(m)× d

where m = n1 + n2 − 2 is the degrees of freedom used to estimate s and

c(m) =
Γ
(
m
2

)√
m
2 Γ
(
m−1
2

)
The adjustment c(m) is less than 1 and approaches 1 as m gets large. The variance estimate of
Hedges’s g is

V̂ar(g) = c(m)2 × V̂ar(d)

Hedges (1981) also introduced an accurate approximation for c(m) that has been traditionally used
in meta-analysis. The approximation for c(m) is

J = 1− 3

4m− 1

meta esize with option esize(hedgesg) computes Hedges’s g using J for c(m); thus,

g = J × d
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and
V̂ar(g) = J2 × V̂ar(d)

meta esize with option esize(glassdelta2) estimates θ using Glass’s ∆ (Smith and
Glass 1977),

∆ =
x1 − x2
s2

Notice that the standard deviation in the denominator is s2, the sample standard deviation from the
control group, which is considered to be a more reliable estimate of the common variance. The
estimated variance of ∆ is given by

V̂ar(∆) =
n1 + n2
n1n2

+
∆2

2 (n2 − 1)

In the absence of the control group, such as in observational studies, Kline (2013), among others,
suggests providing statistics standardized by the standard deviation of each group. Glass’s ∆ where
standardization is based on the treatment group may be computed via option esize(glassdelta1).

Alternative standard error estimators are available for Hedges’s g and Cohen’s d effect sizes.

Hedges and Olkin (1985, eq. 8, 80) provide another commonly used estimator for the variance of
Hedges’s g.

V̂ar(g) =
n1 + n2
n1n2

+
g2

2 (m− 1.94)

meta esize uses this formula when option esize(hedgesg, holkinse) is specified.

The alternative variance estimator of d is given by

V̂ar(d) =
n1 + n2
n1n2

+
d2

2 (n1 + n2 − 2)

This variance estimator may be requested via option esize(cohend, holkinse).

Effect sizes for two-group comparison of binary outcomes

As we described in Meta-analysis for two-group comparison of binary outcomes, meta-analysis
often compares two groups: experimental (or treated) group and control group. When the response
(measurement) is binary, each study typically reports cell counts from the following 2× 2 table.

group success failure size
treatment a b n1 = a+ b

control c d n2 = c+ d

Here, for simplicity, we use a different notation for the cell counts (a, b, c, and d) compared with
the similar table in Meta-analysis for two-group comparison of binary outcomes.

For the treatment group, n1 is assumed fixed, a ∼ binomial(n1, π1), and π1 is the probability of a
success. For the control group, n2 is assumed fixed, c ∼ binomial(n2, π2), and π2 is the probability
of a success. The goal of each study is to compare the two success probabilities, π1 and π2.

Estimates of the success probabilities are π̂1 = a/n1 for the treatment group and π̂2 = c/n2 for
the control group.

https://www.stata.com/manuals/meta.pdf#metametaesizeRemarksandexamplesMeta-analysisfortwo-groupcomparisonofbinaryoutcomes
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Odds ratio

meta esize with option esize(lnoratio) computes estimates of the log odds-ratios. Odds ratio
is the ratio of the odds of a success in the treatment group over the odds of a success in the control
group.

OR =
π1/ (1− π1)

π2/ (1− π2)

The odds ratio is estimated by

ÔR =
ad

bc

The distribution of ÔR is typically skewed, but the natural logarithm of ÔR, ln(ÔR), is asymptotically
normally distributed. The estimate of the variance of ln(ÔR) is

V̂ar
{

ln(ÔR)
}

=
1

a
+

1

b
+

1

c
+

1

d

meta esize with option esize(lnorpeto) computes estimates of effect size using Peto’s log
odds-ratio (Peto et al. 1977; Yusuf et al. 1985). Peto’s odds ratio and log odds-ratio are

ÔR
Peto

= exp
{
a− E (a)

Var (a)

}
ln
(

ÔR
Peto

)
=
a− E (a)

Var (a)

where the expectation and variance of a are estimated assuming a hypergeometric distribution:

E (a) =
(a+ c)n1

n

Var (a) =
n1n2 (a+ c) (b+ d)

n2 (n− 1)

The variance estimate of ln
(

ÔR
Peto

)
is

V̂ar
{

ln
(

ÔR
Peto

)}
=

1

Var (a)

See, for instance, Fleiss 1993, Fleiss, Levin, and Paik 2003, and Bradburn et al. (2007) for a
discussion of potential bias of Peto’s odds ratio and its performance in sparse data.

Risk ratio (rate ratio)

meta esize with option esize(lnrratio) computes estimates of the log risk-ratios. The risk
ratio (RR), also known as the rate ratio or relative risk in the health sciences, is

RR =
π1
π2

RR is estimated by

R̂R =
a/n1
c/n2

Similarly to odds ratios, R̂R typically has a skewed distribution, but the natural logarithm of R̂R,
ln
(

R̂R
)
, is asymptotically normally distributed. The estimate of the variance of ln

(
R̂R
)

is

V̂ar
{

ln
(

R̂R
)}

=
1

a
+

1

c
− 1

a+ b
− 1

c+ d
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Risk difference

meta esize with option esize(rdiff) computes estimates of the risk differences. The risk
difference is

RD = π1 − π2
and is estimated by

R̂D =
a

n1
− c

n2

R̂D is asymptotically normally distributed and is thus typically used without a transformation in
meta-analysis.

The estimated variance of R̂D is

V̂ar
(

R̂D
)

=
ab

n31
+
cd

n32

Zero-cells adjustments for two-sample case

The variance estimates of ln(ÔR) and ln
(

R̂R
)

are not defined if there are any empty (zero count)
cells in a 2×2 table. In this case, it is customary to add a small value, often referred to as “continuity
correction”, to each cell prior to computing the log odds- or risk-ratio.

By default, meta esize adds 0.5 to each cell of 2 × 2 tables containing empty cells (Gart and
Zweifel 1967 and Gart, Pettigrew, and Thomas 1985). Alternatively, you can add a different number
or add a number to each cell of all 2× 2 tables, as long as there is at least one 2× 2 table with zero
cells; see option zerocells().

For odds ratios, Sweeting, Sutton, and Lambert (2004) proposed the treatment-arm continuity
correction (TACC) method, which estimates the continuity-correction values from the data separately
for each group; see zerocells(tacc).

Effect sizes for estimating a single proportion

As we described in Meta-analysis for estimating a single proportion, meta-analysis may be used to
aggregate proportions of a certain event of interest in single-group or single-arm studies. Each study
typically reports the number of successes (number of events), e, and the study sample size, n. The
number of successes e is assumed to follow a binomial(n, p) distribution, where p is the probability
of success. For details, see Barendregt et al. (2013) and Nyaga, Arbyn, and Aerts (2014).

Raw (untransformed) proportion

meta esize with option esize(proportion) computes estimates of proportions for each study
and uses them as effect sizes in the meta-analysis. The proportion is estimated by

p̂ =
e

n

When the proportion p is near 0.5 and when n is sufficiently large, the binomial distribution of e is
well approximated by the normal distribution, and a meta-analysis may be performed in the natural
(untransformed) metric.

https://www.stata.com/manuals/meta.pdf#metametaesizeRemarksandexamplesMeta-analysisforestimatingasingleproportion
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The estimated variance of p̂ is

V̂ar (p̂) =
p̂ (1− p̂)

n

Because the expression of the variance depends on p̂, meta-analysis of this effect size tends to
assign artificially large weights for studies with p̂ close to 0 or 1. In this case, the variance of p̂ is
close to 0, and the study weights, which are the inverse variances, will be large. Also, study-specific
CI limits may fall outside the range of [0, 1] and, in practice, are truncated when this happens.

Freeman–Tukey-transformed proportion

By default (or with option esize(ftukeyprop)), meta esize computes the Freeman–Tukey-
transformed proportions and uses them as effect sizes in the meta-analysis. The Freeman–Tukey
transformation is also known as the Freeman–Tukey double-arcsine transformation in the literature.
The Freeman–Tukey-transformed proportion is given by

p̂FT = asin

(√
e

n+ 1

)
+ asin

(√
e+ 1

n+ 1

)
(1)

with the corresponding estimated variance

V̂ar (p̂FT) =
1

n+ 0.5

This is a variance-stabilizing transformation (variance does not depend on e) and is particularly
preferable when p̂ is close to 0 or 1. This transformation also addresses the issue of assigning
artificially small or large weights to studies in the meta-analysis when e is close to 0 or n. And it
guarantees that the back-transformed CIs (see Inverse Freeman–Tukey transformation in Methods and
formulas in [META] meta summarize) fall within the [0, 1] range.

Logit-transformed proportion

meta esize with option esize(logitprop) computes logit-transformed proportions and uses
them as effect sizes in the meta-analysis. The logit-transformed proportion is estimated by

logit (p̂) = ln
(

p̂

1− p̂

)
with the corresponding estimated variance

V̂ar {logit (p̂)} =
1

np̂
+

1

n− np̂

This transformation allows aggregating the proportions in a metric that is closer to normality
and guarantees that the back-transformed CI limits (computed using the invlogit() function) are
between 0 and 1 (inclusive). Because the expression of the variance depends on p̂, meta-analysis of
this effect size tends to assign artificially low weights for studies with p̂ close to 0 or 1. In this case,
the variances for such studies are large, and the study weights, which are the inverse variances, will
be low.
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Zero-cells adjustments for one-sample case

When a study reports a zero cell (zero successes or zero failures), the variance of p̂ is equal to
0, and the variance of logit (p̂) is not defined. In this case, it is customary to add a small value,
often referred to as “continuity correction”, to each cell prior to computing the proportion or the
logit-transformed proportion.

By default, meta esize adds 0.5 to each cell of studies containing zero cells (Gart and Zweifel 1967
and Gart, Pettigrew, and Thomas 1985). In other words, for a study reporting zero cells, the number
of successes, e, will be incremented by 0.5, the number of failures will be incremented by 0.5, and
therefore, the total sample size, n, will increase by 1.

Alternatively, you can add a different number or add a number to each cell of all studies, as long
as there is at least one study with zero cells; see option zerocells().

Confidence intervals for effect sizes

For the jth study in a given meta-analysis, let θ̂j be one of the effect-size estimators described
above; then the asymptotic 100(1− α)% confidence interval computed by meta esize is

θ̂j ± z1−α/2
√

V̂ar(θ̂j)

where z1−α/2 is the usual critical value from the standard normal distribution.
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