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Description
meta bias performs tests for the presence of small-study effects in a meta-analysis, also known as

tests for funnel-plot asymmetry and publication-bias tests. Three regression-based tests and a nonpara-

metric rank correlation test are available. For regression-based tests, you can include moderators to

account for potential between-study heterogeneity.

Quick start
Test for small-study effects by using the Egger regression-based test

meta bias, egger

Same as above, but include a moderator x1 to account for between-study heterogeneity induced by x1
meta bias x1, egger

Same as above, but assume a random-effects model with the empirical Bayes method for estimating 𝜏2

in the regression-based test

meta bias x1, egger random(ebayes)

With log risk-ratios, test for small-study effects by using the Harbord regression-based test with moder-

ators x1 and x2 to account for between-study heterogeneity

meta bias x1 i.x2, harbord

With log odds-ratios, test for small-study effects by using the Peters regression-based test and assuming

a common-effect model

meta bias, peters common

Menu
Statistics > Meta-analysis
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Syntax
Regression-based tests for small-study effects

Test using meta-analysis model as declared with meta set or meta esize

meta bias [moderators ] [ if ] [ in ], regtest [modelopts ]

Random-effects meta-analysis model

meta bias [moderators ] [ if ] [ in ], regtest random[ (remethod) ]
[ se(seadj) options ]

Common-effect meta-analysis model

meta bias [ if ] [ in ], regtest common [ options ]

Fixed-effects meta-analysis model

meta bias [moderators ] [ if ] [ in ], regtest fixed [ multiplicative options ]

Traditional test

meta bias [ if ] [ in ], regtest traditional [ options ]

Nonparametric rank correlation test for small-study effects

meta bias [ if ] [ in ], begg [ [ no ]metashow detail ]

regtest Description

egger Egger’s test

harbord Harbord’s test

peters Peters’s test

modelopts is any option relevant for the declared model.

remethod Description

reml restricted maximum likelihood; the default

mle maximum likelihood

ebayes empirical Bayes

dlaird DerSimonian–Laird

sjonkman Sidik–Jonkman

hedges Hedges

hschmidt Hunter–Schmidt
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options Description

Main

tdistribution report 𝑡 test instead of 𝑧 test
[ no ]metashow display or suppress meta settings in the output

detail display intermediate estimation results

Maximization

maximize options control the maximization process of the between-study variance

moderators may contain factor variables; see [U] 11.4.3 Factor variables.

collect is allowed; see [U] 11.1.10 Prefix commands.

Options

� � �
Main �

One of egger, harbord, peters, or begg (or their synonyms) must be specified. In addition to the

traditional versions of the regression-based tests, their random-effects versions and extensions to allow

for moderators are also available.

egger (synonym esphillips) specifies that the regression-based test of Egger, Davey Smith, and

Phillips (1997) be performed. This test is known as the Egger test in the literature. This is the test

of the slope in a weighted regression of the effect size, meta es, on its standard error, meta se,
optionally adjusted formoderators. This test tends to have an inflated type I error rate for two-sample

binary data.

harbord (synonym hesterne) specifies that the regression-based test of Harbord, Egger, and Sterne

(2006) be performed. This test is known as the Harbord test. This is the test of the slope in a weighted

regression of 𝑍𝑗/𝑉𝑗 on 1/√𝑉𝑗, optionally adjusting for moderators, where 𝑍𝑗 is the score of the

likelihood function and 𝑉𝑗 is the score variance. This test is used for two-sample binary data with

effect sizes log odds-ratio and log risk-ratio. It was designed to reduce the correlation between the

effect-size estimates and their corresponding standard errors, which is inherent to the Egger test with

two-sample binary data.

peters (synonym petersetal) specifies that the regression-based test of Peters et al. (2006) be per-

formed. This test is known as the Peters test in the literature. This is the test of the slope in a weighted

regression of the effect size, meta es, on the inverse sample size, 1/𝑛𝑗, optionally adjusted formod-

erators. The Peters test is used with two-sample binary data for log odds-ratios. Because it regresses

effect sizes on inverse sample sizes, they are independent by construction.

begg (synonym bmazumdar) specifies that the nonparametric rank correlation test of Begg and Mazum-

dar (1994) be performed. This is not a regression-based test, so only options metashow, nometashow,
and detail are allowed with it. This test is known as the Begg test in the literature. This test is no

longer recommended in the literature and provided for completeness.

Options random(), common, and fixed, when specified with meta bias for regression-based tests, tem-

porarily override the global model declared by meta set or meta esize during the computation. Op-

tions random(), common, and fixed may not be combined. If these options are omitted, the declared

meta-analysis model is assumed; see Declaring a meta-analysis model in [META] meta data. Also see

Meta-analysis models in [META] Intro.

random and random(remethod) specify that a random-effects model be assumed for regression-based

test; see Random-effects model in [META] Intro.
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remethod specifies the type of estimator for the between-study variance 𝜏2. remethod is one of

reml, mle, ebayes, dlaird, sjonkman, hedges, or hschmidt. random is a synonym for

random(reml). See Options in [META] meta esize for more information.

common specifies that a common-effect model be assumed for regression-based test; see Common-effect

(“fixed-effect”) model in [META] Intro. It uses the inverse-variance estimation method; see Meta-

analysis estimation methods in [META] Intro. Also see the discussion in [META] meta data about

common-effect versus fixed-effects models. common is not allowed in the presence of moderators.

fixed specifies that a fixed-effects model be assumed for regression-based test; see Fixed-effects model

in [META] Intro. It uses the inverse-variance estimation method; see Meta-analysis estimation meth-

ods in [META] Intro. Also see the discussion in [META]meta data about fixed-effects versus common-

effect models.

se(seadj) specifies that the adjustment seadj be applied to the standard errors of the coefficients. Addi-

tionally, the tests of significance of the coefficients are based on a Student’s 𝑡 distribution instead of
the normal distribution. se() is allowed only with random-effects models.

seadj is khartung[ , truncated ]. Adjustment khartung specifies that the Knapp–Hartung ad-

justment (Hartung and Knapp 2001a, 2001b; Knapp and Hartung 2003), also known as the

Sidik–Jonkman adjustment (Sidik and Jonkman 2002), be applied to the standard errors of the

coefficients. hknapp and sjonkman are synonyms for khartung. truncated specifies that the

truncated Knapp–Hartung adjustment (Knapp and Hartung 2003), also known as the modified

Knapp–Hartung adjustment, be used.

traditional specifies that the traditional version of the selected regression-based test be performed.

This option is equivalent to specifying options fixed, multiplicative, and tdistribution. It
may not be specified with moderators.

multiplicative performs a fixed-effects regression-based test that accounts for residual heterogeneity

by including amultiplicative variance parameter𝜙. 𝜙 is referred to as an “(over)dispersion parameter”.

See Introduction in [META] meta regress for details.

tdistribution reports a 𝑡 test instead of a 𝑧 test. This option may not be combined with option se().

metashow and nometashow display or suppress the meta setting information. By default, this informa-

tion is displayed at the top of the output. You can also specify nometashow with meta update to

suppress the meta setting output for the entire meta-analysis session.

detail specifies that intermediate estimation results be displayed. For regression-based tests, the results
from the regression estimation will be displayed. For the nonparametric test, the results from ktau
([R] spearman) will be displayed.

� � �
Maximization �

maximize options: iterate(#), tolerance(#), nrtolerance(#), nonrtolerance (see [R] Maxi-

mize), from(#), and showtrace. These options control the iterative estimation of the between-study
variance parameter, 𝜏2, with random-effects methods reml, mle, and ebayes. These options are

seldom used.

from(#) specifies the initial value for 𝜏2 during estimation. By default, the initial value for 𝜏2 is the

noniterative Hedges estimator.

showtrace displays the iteration log that contains the estimated parameter 𝜏2, its relative difference

with the value from the previous iteration, and the scaled gradient.
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Remarks and examples
Remarks are presented under the following headings:

Introduction
Using meta bias
Examples of using meta bias

Introduction
As we discussed in Introduction of [META] meta funnelplot, there is a tendency for smaller studies

to report different, often larger, effect sizes than the larger studies. There are various reasons that explain

this tendency, but the two more common ones are between-study heterogeneity and publication bias. We

covered the between-study heterogeneity in [META] meta summarize and [META] meta regress. Here

we focus on publication bias.

Publication bias often arises when the decision of whether to publish a study depends on the statis-

tical significance of the results of the study. Typically, nonsignificant results from small studies have a

tendency of not getting published. See Publication bias of [META] Intro for details.

The funnel plot ([META]meta funnelplot) is commonly used to investigate publication bias or, more

generally, small-study effects in meta-analysis. The presence of asymmetry in the funnel plot may indi-

cate the presence of publication bias. Graphical evaluation of funnel plots is useful for data exploration

but may be subjective when detecting the asymmetry. Thus, a more formal evaluation of funnel-plot

asymmetry is desired. Statistical tests were developed for detecting the asymmetry in a funnel plot; they

are often called tests for funnel-plot asymmetry. They are also sometimes referred to as tests of publi-

cation bias, but this terminology may be misleading because the presence of a funnel-plot asymmetry is

not always due to publication bias (for example, Sterne et al. [2011]). Thus, we prefer a more generic

term—tests for small-study effects—suggested by Sterne, Gavaghan, and Egger (2000).

There are two types of tests for small-study effects: regression-based tests and a nonparametric rank-

based test. The main idea behind these tests is to determine whether there is a statistically significant

association between the effect sizes and their measures of precision such as effect-size standard errors.

The Egger regression-based test (Egger et al. 1997) performs a weighted linear regression of the effect

sizes, ̂𝜃𝑗’s, on their standard errors, �̂�𝑗’s, weighted by the precision, 1/�̂�𝑗’s. The test for the zero slope

in that regression provides a formal test for small-study effects. In some cases, such as in the presence

of a large true effect or with two-sample binary data, the Egger test tends to have an inflated type I error

(for example, Harbord, Harris, and Sterne [2016]). Two alternative tests, the Harbord test and the Peters

test, were proposed to alleviate the type I error problem in those cases.

The Harbord regression-based test (Harbord, Egger, and Sterne 2006) corresponds to the zero-slope

test in a weighted regression of 𝑍𝑗/𝑉𝑗’s on 1/√𝑉𝑗’s, where 𝑍𝑗 is the score of the likelihood function

and 𝑉𝑗 is the score variance. The Peters regression-based test (Peters et al. 2006) corresponds to the

zero-slope test in a weighted regression of the effect sizes, ̂𝜃𝑗’s, on the respective inverse sample sizes,

1/𝑛𝑗’s. With two-sample binary data, these tests tend to perform better than the Egger test in terms of

the type I error while maintaining similar power.

The rank correlation Begg test (Begg and Mazumdar 1994) tests whether Kendall’s rank correlation

between the effect sizes and their variances equals zero. The regression-based tests tend to perform better

in terms of type I error than the rank correlation test. This test is provided mainly for completeness.

See Harbord, Harris, and Sterne (2016) and Steichen (2016) for more details about these tests.
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As we discussed in [META] meta funnelplot, the presence of between-study heterogeneity may af-

fect the symmetry of a funnel plot. Thus, any statistical method based on the funnel plot will also be

affected (Sutton 2009). To account for the between-study heterogeneity, the regression-based tests can

be extended to incorporate moderators that may help explain the heterogeneity (Sterne and Egger 2005).

The traditional version of the regression-based tests used a multiplicative fixed-effects meta-

regression to account for residual heterogeneity (see Introduction of [META]meta regress). In addition to

adjusting for moderators, a random-effects meta-regression is considered a better alternative to account

for residual heterogeneity.

Ioannidis and Trikalinos (2007) provide the following recommendations for when it is appropriate to

use small-study tests: a) the number of studies should be greater than 10; b) there should be at least one

study with a statistically significant result; c) there should be no significant heterogeneity (𝐼2 < 50%);

and d) the ratio of the maximum to minimum variances across studies should be larger than 4; that is,

max ({�̂�2
𝑗 }𝐾

𝑗=1) /min ({�̂�2
𝑗 }𝐾

𝑖=1) > 4. If a) is violated, the tests may have low power. If c) is violated,

the asymmetry of the funnel plot may be induced by between-study heterogeneity rather than publication

bias. If d) is violated, the funnel plot will look more like a horizontal line than an inverted funnel, and

the funnel-asymmetry tests will have an inflated type I error. Also see Sterne et al. (2011) for details.

The results of the tests of small-study effects should be interpreted with caution. In the presence of

small-study effects, apart from publication bias, other reasons should also be explored to explain the

presence of small-study effects. If small-study effects are not detected by a test, their existence should

not be ruled out because the tests tend to have low power.

Also see [META] meta trimfill for assessing the impact of publication bias on the results.

Using meta bias
meta bias performs tests for small-study effects. These tests are also known as the tests for funnel-

plot asymmetry and tests for publication bias. You can choose from three regression-based tests: the

Egger test (option egger), the Harbord test for two-sample binary data with effect sizes log odds-ratio

and log risk-ratio (option harbord), and the Peters test for log odds-ratios (option peters). You can

also perform the Begg nonparametric rank correlation test (option begg), but this test is no longer rec-

ommended in the meta-analysis literature.

Next, we describe the features that are relevant only to the regression-based tests. These tests are

based on meta-regression of effect sizes and their measures of precision.

The default meta-analysis model (and method) are as declared by meta set or meta esize; see
Declaring a meta-analysis model in [META] meta data. You can change the defaults by specifying one

of options random(), common(), or fixed().

Because the regression-based tests use meta-regression, many of the options of meta regress (see

[META] meta regress) apply to meta bias as well. For example, you can specify that a multiplicative

meta-regression be used by the test with option multiplicative. And you can specify to use the 𝑡 test
instead of a 𝑧 test for inference with option tdistribution.

The regression-based tests support the traditional option, which specifies that the tests be

performed as originally published. This option is a shortcut for fixed, multiplicative, and

tdistribution.

To account for between-study heterogeneity when checking for publication bias, you can specify

moderators with the regression-based tests.
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Examples of using meta bias
Recall the pupil IQ data (Raudenbush and Bryk 1985; Raudenbush 1984) described in Effects of

teacher expectancy on pupil IQ (pupiliq.dta) of [META]meta. Here we will use its declared version and

will focus on the demonstration of various options of meta bias and explanation of its output.

. use https://www.stata-press.com/data/r19/pupiliqset
(Effects of teacher expectancy on pupil IQ; set with -meta set-)
. meta query, short
-> meta set stdmdiff se , studylabel(studylbl) eslabel(Std. mean diff.)

Effect-size label: Std. mean diff.
Effect-size type: Generic

Effect size: stdmdiff
Std. err.: se

Model: Random effects
Method: REML

From the meta summary, our data were declared by using meta set with variables stdmdiff and se
specifying the effect sizes and their standard errors, respectively. The declared meta-analysis model is

the default random-effects model with the REML estimation method.

Examples are presented under the following headings:

Example 1: Small-study effects due to a confounding moderator
Example 2: Traditional tests and detailed output
Example 3: Harbord’s test for small-study effects

Example 1: Small-study effects due to a confounding moderator
Our main focus is on investigating the potential presence of small-study effects by using a regression-

based test. Because we are working with continuous data, we will use the Egger test.

. meta bias, egger
Effect-size label: Std. mean diff.

Effect size: stdmdiff
Std. err.: se

Regression-based Egger test for small-study effects
Random-effects model
Method: REML
H0: beta1 = 0; no small-study effects

beta1 = 1.83
SE of beta1 = 0.724

z = 2.53
Prob > |z| = 0.0115

From the output header, the regression-based test uses the declared random-effects model with REML

estimation to account for residual heterogeneity. The estimated slope, ̂𝛽1, is 1.83 with a standard error of

0.724, giving a test statistic of 𝑧 = 2.53 and a 𝑝-value of 0.0115. This means that there is some evidence
of small-study effects.

In example 9 of [META] meta summarize, we used subgroup-analysis on binary variable week1,
which records whether teachers had prior contact with students for more than 1 week or for 1 week or

less, to account for between-study heterogeneity. It explained most of the heterogeneity present among

the effect sizes, with generally higher effect sizes in the low contact group.

https://www.stata.com/manuals/metameta.pdf#metametaRemarksandexamplespupiliqdta
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Moderators that can explain a substantial amount of the heterogeneity should be included in the

regression-based test as a covariate. By properly accounting for heterogeneity through the inclusion

of week1, we can test for small-study effects due to reasons other than heterogeneity. We include factor

variable week1 as a moderator as follows:

. meta bias i.week1, egger
Effect-size label: Std. mean diff.

Effect size: stdmdiff
Std. err.: se

Regression-based Egger test for small-study effects
Random-effects model
Method: REML
Moderators: week1
H0: beta1 = 0; no small-study effects

beta1 = 0.30
SE of beta1 = 0.729

z = 0.41
Prob > |z| = 0.6839

Now that we have accounted for heterogeneity through moderator week1, the Egger test statistic is 0.41
with a 𝑝-value of 0.6839. Therefore, we have strong evidence to say that the presence of small-study

effects was the result of heterogeneity induced by teacher-student prior contact time.

Example 2: Traditional tests and detailed output
For illustration, we perform the traditional version of the Egger regression-based test by specifying

the traditional option. We also use the detail option to report the meta-regression results used to

construct the Egger test.

. meta bias, egger traditional detail
Effect-size label: Std. mean diff.

Effect size: stdmdiff
Std. err.: se

Fixed-effects meta-regression Number of obs = 19
Error: Multiplicative Dispersion phi = 1.69
Method: Inverse-variance Model F(1,17) = 4.17

Prob > F = 0.0571

_meta_es Coefficient Std. err. t P>|t| [95% conf. interval]

_meta_se 1.627717 .7975212 2.04 0.057 -.0549052 3.31034
_cons -.1797108 .126835 -1.42 0.175 -.4473093 .0878876

Test of residual homogeneity: Q_res = chi2(17) = 28.77 Prob > Q_res = 0.0367
Regression-based Egger test for small-study effects
Fixed-effects model
Method: Inverse-variance
H0: beta1 = 0; no small-study effects

beta1 = 1.63
SE of beta1 = 0.798

t = 2.04
Prob > |t| = 0.0571

The traditional version also suggests the presence of small-study effects, but its 𝑝-value, 0.0571, is larger
than that from example 1.

https://www.stata.com/manuals/meta.pdf#metametabiasRemarksandexamplesmbiasexsmd
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The results of the above command is identical to the following:

. meta regress _meta_se, fixed multiplicative tdistribution
Effect-size label: Std. mean diff.

Effect size: stdmdiff
Std. err.: se

Fixed-effects meta-regression Number of obs = 19
Error: Multiplicative Dispersion phi = 1.69
Method: Inverse-variance Model F(1,17) = 4.17

Prob > F = 0.0571

_meta_es Coefficient Std. err. t P>|t| [95% conf. interval]

_meta_se 1.627717 .7975212 2.04 0.057 -.0549052 3.31034
_cons -.1797108 .126835 -1.42 0.175 -.4473093 .0878876

Test of residual homogeneity: Q_res = chi2(17) = 28.77 Prob > Q_res = 0.0367

The header and coefficient table from meta bias’s detailed output is identical to that produced by meta
regress (see [META] meta regress).

Example 3: Harbord’s test for small-study effects
In example 1 of [META]meta funnelplot, we explored the presence of publication bias in the NSAIDS

data, which was described in Effectiveness of nonsteroidal anti-inflammatory drugs (nsaids.dta) of

[META] meta. The contour-enhanced funnel plot from example 5 of [META] meta funnelplot revealed

that the funnel-plot asymmetry was caused by the absence of small studies in the region where the tests

of the log odds-ratios equal to zero were not statistically significant. This may suggest the presence of

publication bias. We can explore this more formally by performing a test for small-study effects.

We use the declared version of the NSAIDS dataset.

. use https://www.stata-press.com/data/r19/nsaidsset, clear
(Effectiveness of nonsteroidal anti-inflammatory drugs; set with -meta esize-)
. meta query, short
-> meta esize nstreat nftreat nscontrol nfcontrol

Effect-size label: Log odds-ratio
Effect-size type: lnoratio

Effect size: _meta_es
Std. err.: _meta_se

Model: Random effects
Method: REML

https://www.stata.com/manuals/metametaregress.pdf#metametaregress
https://www.stata.com/manuals/metametafunnelplot.pdf#metametafunnelplotRemarksandexamplesmfunexdefault
https://www.stata.com/manuals/metametafunnelplot.pdf#metametafunnelplot
https://www.stata.com/manuals/metameta.pdf#metametaRemarksandexamplesnsaidsdta
https://www.stata.com/manuals/metameta.pdf#metameta
https://www.stata.com/manuals/metametafunnelplot.pdf#metametafunnelplotRemarksandexamplesmfunexcontours
https://www.stata.com/manuals/metametafunnelplot.pdf#metametafunnelplot
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The declared effect size is log odds-ratio, so we will use the Harbord regression-based test to inves-

tigate whether the small-study effects (or funnel-plot asymmetry) is present in these data.

. meta bias, harbord
Effect-size label: Log odds-ratio

Effect size: _meta_es
Std. err.: _meta_se

Regression-based Harbord test for small-study effects
Random-effects model
Method: REML
H0: beta1 = 0; no small-study effects

beta1 = 3.03
SE of beta1 = 0.741

z = 4.09
Prob > |z| = 0.0000

The 𝑝-value is less than 0.0001, so we reject the null hypothesis of no small-study effects. It is difficult
to be certain whether the small-study affects are driven by publication bias because of the presence of

substantial heterogeneity in these data (see [META]meta summarize). Note that the regression-based test

assumed an (REML) random-effects model, which accounts for heterogeneity present among the studies.

If we had access to study-level covariates for these data that could explain some of the between-study

variability, we could have specified them with meta bias.

Stored results
For regression-based tests, meta bias stores the following in r():

Scalars

r(beta1) estimate of the main slope coefficient

r(se) standard error for the slope estimate

r(z) 𝑧 statistic

r(t) 𝑡 statistic
r(p) two-sided 𝑝-value

Macros

r(testtype) type of test: egger, harbord, or peters
r(model) meta-analysis model

r(method) meta-analysis estimation method

r(moderators) moderators used in regression-based tests

Matrices

r(table) regression results

For Begg’s test, meta bias stores the following in r():

Scalars

r(score) Kendall’s score estimate

r(se score) standard error of Kendall’s score

r(z) 𝑧 test statistic

r(p) two-sided 𝑝-value
Macros

r(testtype) begg

https://www.stata.com/manuals/metametasummarize.pdf#metametasummarize
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Methods and formulas
Methods and formulas are presented under the following headings:

Regression-based tests
Egger’s linear regression test
Harbord’s test for log odds-ratios or log risk-ratios
Peters’s test for log odds-ratios

Begg’s rank correlation test

Let 𝐾 be the number of studies for a given meta-analysis. For the 𝑗th study, ̂𝜃𝑗 denotes the estimated

effect size, and �̂�2
𝑗 denotes the effect-size (within-study) variance. The tests are applicable to any type

of effect size as long as it is asymptotically normally distributed.

For two-sample binary data, also consider the following 2 × 2 table for the 𝑗th study.

group event no event size

treatment 𝑎𝑗 𝑏𝑗 𝑛1𝑗 = 𝑎𝑗 + 𝑏𝑗
control 𝑐𝑗 𝑑𝑗 𝑛2𝑗 = 𝑐𝑗 + 𝑑𝑗

The total sample size for the 𝑗th study is denoted by 𝑛𝑗 = 𝑛1𝑗 + 𝑛2𝑗.

Regression-based tests
Regression-based tests use meta-regression to examine a linear relationship between the individual

effect sizes and measures of study precision such as the effect-size standard errors, possibly adjusting for

moderators that explain some of the between-study variability.

In the subsections below, we provide the traditional versions of the regression-based tests. The ex-

tensions of traditional versions include the support of other models such as a random-effects model and

the support of moderators.

In the presence of moderators, the test for small-study effects is the test of 𝐻0∶ 𝛽1 = 0 in the corre-

sponding meta-regression with the following linear predictor,

x𝑗β = 𝛽0 + 𝛽1𝑚𝑗 + 𝛽2𝑥2,𝑗 + · · · + 𝛽𝑝−1𝑥𝑝−1,𝑗

where 𝑥2,𝑗, . . . , 𝑥𝑝−1,𝑗 represent the moderators specified with meta bias and 𝑚𝑗 = �̂�𝑗 for the Egger

test, 𝑚𝑗 = 1/√𝑉𝑗 for the Harbord test, and 𝑚𝑗 = 1/𝑛𝑗 for the Peters test. See the subsections below

for details about these tests. Also see Sterne and Egger (2005).

The computations of regression-based tests are based on the corresponding meta-regression models;

see Methods and formulas of [META] meta regress.

The formulas below are based on Harbord, Harris, and Sterne (2016), Sterne and Egger (2005), and

Peters et al. (2010).

https://www.stata.com/manuals/metametaregress.pdf#metametaregressMethodsandformulas
https://www.stata.com/manuals/metametaregress.pdf#metametaregress
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Egger’s linear regression test

The formulas and discussion in this subsection are based on Sterne and Egger (2005).

The test proposed by Egger, Davey Smith, Schneider, and Minder (1997) is based on a simple linear

regression of the standard normal variate, which is defined as the individual effect-size estimate divided

by its standard error, against the study precision, which is defined as the reciprocal of the standard error:

𝐸 (
̂𝜃𝑗

�̂�𝑗
) = 𝑏0 + 𝑏1

1
�̂�𝑗

(1)

The Egger test of no small-study effects is the test of 𝐻0∶ 𝑏0 = 0.

Linear regression model (1) is equivalent to the weighted linear regression of the effect sizes ̂𝜃𝑗’s on

their standard errors �̂�𝑗’s,

𝐸 ( ̂𝜃𝑗) = 𝑏1 + 𝑏0�̂�𝑗 (2)

withweights inversely proportional to the variances of the effect sizes,𝑤𝑗 = 1/�̂�2
𝑗 . Note that the intercept

𝑏0 in regression (1) corresponds to the slope in the weighted regression (2). Therefore, Egger test for

small-study effects corresponds to a test of a linear trend in a funnel plot (see [META] meta funnelplot)

of effect sizes against their standard errors.

Let’s denote 𝛽0 = 𝑏1 and 𝛽1 = 𝑏0. The statistical model for the traditional Egger’s test, as it originally

appeared in the literature (Egger et al. 1997), is given by

̂𝜃𝑗 = 𝛽0 + 𝛽1�̂�𝑗 + 𝜖𝑗 weighted by 𝑤𝑗 = 1/�̂�2
𝑗 , where 𝜖𝑗 ∼ 𝑁 (0, �̂�2

𝑗 𝜙)

and 𝜙 is the overdispersion parameter as defined in multiplicative meta-regression; see Introduction of

[META] meta regress.

Egger’s test for small-study effects is the test of 𝐻0∶ 𝛽1 = 0, and the null hypothesis is rejected if

𝑡egger = ∣
̂𝛽1

ŜE ( ̂𝛽1)
∣ > 𝑡𝐾−2,1−𝛼/2

where 𝑡𝐾−2,1−𝛼/2 is the (1 − 𝛼/2)th quantile of the Student’s 𝑡 distribution with 𝐾 − 2 degrees of

freedom. The above test is performed when you specify options egger and traditional.

Technical note
Sterne and Egger (2005) point out that, originally, Egger et al. (1997) used a weighted version of

(1) with weights equal to the inverse of the variances of effect sizes (1/�̂�2
𝑗 ’s). The authors strongly

recommend that this version of the test not be used because it does not have a theoretical justification.

Harbord’s test for log odds-ratios or log risk-ratios

Consider the fixed-effects model ̂𝜃𝑗 ∼ 𝑁(𝜃, �̂�2
𝑗 ). For a study 𝑗, let 𝑍𝑗 be the first derivative (score)

and 𝑉𝑗 be the negative second derivative (Fisher’s information) of the model log likelihood with respect

to 𝜃 evaluated at 𝜃 = 0 (Whitehead and Whitehead 1991; Whitehead 1997).

https://www.stata.com/manuals/meta.pdf#metametabiasMethodsandformulasmbiaseqeggerreg
https://www.stata.com/manuals/meta.pdf#metametabiasMethodsandformulasmbiaseqeggerreg
https://www.stata.com/manuals/meta.pdf#metametabiasMethodsandformulasmbiaseqeggerwreg
https://www.stata.com/manuals/metametafunnelplot.pdf#metametafunnelplot
https://www.stata.com/manuals/metametaregress.pdf#metametaregressRemarksandexamplesIntroduction
https://www.stata.com/manuals/metametaregress.pdf#metametaregress
https://www.stata.com/manuals/meta.pdf#metametabiasMethodsandformulasmbiaseqeggerreg
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For two-sample binary data, Harbord, Egger, and Sterne (2006) proposed a modification of the Egger

test based on the intercept in an unweighted regression of 𝑍𝑗/
√

𝑉𝑗 against √𝑉𝑗:

𝐸 (
𝑍𝑗

√𝑉𝑗
) = 𝑏0 + 𝑏1√𝑉𝑗 (3)

When the effect of interest is the log odds-ratio,

𝑍𝑗 =
𝑎𝑗 − (𝑎𝑗 + 𝑐𝑗) 𝑛1𝑗

𝑛𝑗
and 𝑉𝑗 =

𝑛1𝑗𝑛2𝑗 (𝑎𝑗 + 𝑐𝑗) (𝑏𝑗 + 𝑑𝑗)
𝑛2

𝑗 (𝑛𝑗 − 1)

Note that𝑍𝑗 and 𝑉𝑗 are the numerator and denominator of the log Peto’s odds-ratio as defined inMethods

and formulas of [META] meta esize.

When the effect of interest is the log risk-ratio,

𝑍𝑗 =
𝑎𝑗𝑛𝑗 − (𝑎𝑗 + 𝑐𝑗) 𝑛1𝑗

𝑏𝑗 + 𝑑𝑗
and 𝑉𝑗 =

𝑛1𝑗𝑛2𝑗 (𝑎𝑗 + 𝑐𝑗)
𝑛𝑗 (𝑏𝑗 + 𝑑𝑗)

Whitehead (1997) showed that when 𝜃𝑗 is small and 𝑛𝑗 is large,
̂𝜃𝑗 ≈ 𝑍𝑗/𝑉𝑗 and �̂�2

𝑗 ≈ 1/𝑉𝑗. In this

case, the Harbord regression model (3) is equivalent to Egger’s regression model (1). Thus, Harbord’s

test becomes equivalent to Egger’s test when all studies are large and have small effect sizes (Harbord,

Harris, and Sterne 2016).

As with Egger’s test, if we use the weighted version of regression model (3) and denote 𝛽0 = 𝑏1 and

𝛽1 = 𝑏0 in that model, the statistical model for the Harbord test, as it originally appeared in the literature,

is given by

𝑍𝑗

𝑉𝑗
= 𝛽0 + 𝛽1

1
√𝑉𝑗

+ 𝜖𝑗 weighted by 𝑤𝑗 = 𝑉𝑗, where 𝜖𝑗 ∼ 𝑁 (0, 𝜙
𝑉𝑗

)

where 𝜙 is the overdispersion parameter as defined in multiplicative meta-regression; see Introduction

of [META] meta regress.

Then, the traditional Harbord test is the test of 𝐻0 ∶ 𝛽1 = 0, and its null hypothesis is rejected if

𝑡harbord = ∣ ̂𝛽1/SE( ̂𝛽1)∣ > 𝑡𝐾−2,1−𝛼/2. This test can be performed when you specify options harbord
and traditional.

Peters’s test for log odds-ratios

Peters et al. (2006) provide a test based on the following model:

̂𝜃𝑗 = 𝛽0 + 𝛽1
1
𝑛𝑗

+ 𝜖𝑗 weighted by 𝑤𝑗 = (𝑎𝑗 + 𝑐𝑗) (𝑏𝑗 + 𝑑𝑗) /𝑛𝑗, where 𝜖𝑗 ∼ 𝑁 (0, �̂�2
𝑗 𝜙)

̂𝜃𝑗 = ln (ÔR𝑗), and 𝜙 is the overdispersion parameter as defined in multiplicative meta-regression; see

Introduction of [META] meta regress.

https://www.stata.com/manuals/metametaesize.pdf#metametaesizeMethodsandformulas
https://www.stata.com/manuals/metametaesize.pdf#metametaesizeMethodsandformulas
https://www.stata.com/manuals/metametaesize.pdf#metametaesize
https://www.stata.com/manuals/meta.pdf#metametabiasMethodsandformulasmbiaseqharbordreg
https://www.stata.com/manuals/meta.pdf#metametabiasMethodsandformulasmbiaseqeggerreg
https://www.stata.com/manuals/metametabias.pdf#metametabiasMethodsandformulasEggerslinearregressiontest
https://www.stata.com/manuals/meta.pdf#metametabiasMethodsandformulasmbiaseqharbordreg
https://www.stata.com/manuals/metametaregress.pdf#metametaregressRemarksandexamplesIntroduction
https://www.stata.com/manuals/metametaregress.pdf#metametaregress
https://www.stata.com/manuals/metametaregress.pdf#metametaregressRemarksandexamplesIntroduction
https://www.stata.com/manuals/metametaregress.pdf#metametaregress
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The traditional Peters test is the test of 𝐻0 ∶ 𝛽1 = 0, and its null hypothesis is rejected if

𝑡peters = ∣ ̂𝛽1/SE( ̂𝛽1)∣ > 𝑡𝐾−2,1−𝛼/2. This test can be performed when you specify options peters
and traditional.

When the test is based on the random-effects model, the weights are given by 𝑤𝑗 = 1/(�̂�2
𝑗 + ̂𝜏2).

Begg’s rank correlation test
Consider the standardized effect sizes

̂𝜃s
𝑗 =

̂𝜃𝑗 − ̂𝜃IV
√𝑣s

𝑗

where

̂𝜃IV =
∑𝐾

𝑗=1
̂𝜃𝑗/�̂�2

𝑗

∑𝐾
𝑗=1 1/�̂�2

𝑗

and

𝑣s
𝑗 = Var ( ̂𝜃𝑗 − ̂𝜃IV) = �̂�2

𝑗 − (
𝐾

∑
𝑗=1

�̂�−2
𝑗 )

−1

The Begg test (Begg andMazumdar 1994) is Kendall’s rank correlation test of independence between
̂𝜃s
𝑗’s and �̂�2

𝑗 ’s; see Methods and formulas of [R] spearman.
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