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Cross-referencing the documentation

When reading this manual, you will find references to other Stata manuals, for example,
[U] 27 Overview of Stata estimation commands; [R] regress; and [D] reshape. The first ex-
ample is a reference to chapter 27, Overview of Stata estimation commands, in the User’s Guide;
the second is a reference to the regress entry in the Base Reference Manual; and the third is a
reference to the reshape entry in the Data Management Reference Manual.

All the manuals in the Stata Documentation have a shorthand notation:

[GSM] Getting Started with Stata for Mac
[GSU] Getting Started with Stata for Unix
[GSW] Getting Started with Stata for Windows
[U] Stata User’s Guide
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Description Remarks and examples References Also see

Description

Meta-analysis (Glass 1976) is a statistical technique for combining the results from several similar
studies. The results of multiple studies that answer similar research questions are often available
in the literature. It is natural to want to compare their results and, if sensible, provide one unified
conclusion. This is precisely the goal of the meta-analysis, which provides a single estimate of the
effect of interest computed as the weighted average of the study-specific effect estimates. When these
estimates vary substantially between the studies, meta-analysis may be used to investigate various
causes for this variation.

Another important focus of the meta-analysis may be the exploration and impact of small-study
effects, which occur when the results of smaller studies differ systematically from the results of larger
studies. One of the common reasons for the presence of small-study effects is publication bias, which
arises when the results of published studies differ systematically from all the relevant research results.

Comprehensive overview of meta-analysis may be found in Sutton and Higgins (2008); Cooper,
Hedges, and Valentine (2019); Borenstein et al. (2009); Higgins and Green (2017); Hedges and
Olkin (1985); Sutton et al. (2000a); and Palmer and Sterne (2016). A book dedicated to addressing
publication bias was written by Rothstein, Sutton, and Borenstein (2005).

This entry presents a general introduction to meta-analysis and describes relevant statistical
terminology used throughout the manual. For how to perform meta-analysis in Stata, see [META| meta.

Remarks and examples

Remarks are presented under the following headings:

Brief overview of meta-analysis
Meta-analysis models
Common-effect (“fixed-effect”) model
Fixed-effects model
Random-effects model
Comparison between the models and interpretation of their results
Meta-analysis estimation methods
Forest plots
Heterogeneity
Assessing heterogeneity
Addressing heterogeneity
Subgroup meta-analysis
Meta-regression
Publication bias
Funnel plots
Tests for funnel-plot asymmetry
The trim-and-fill method
Cumulative meta-analysis
Leave-one-out meta-analysis
Multivariate meta-regression
Multilevel meta-regression
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Brief overview of meta-analysis

The term meta-analysis refers to the analysis of the data obtained from a collection of studies that
answer similar research questions. These studies are known as primary studies. Meta-analysis uses
statistical methods to produce an overall estimate of an effect, explore between-study heterogeneity,
and investigate the impact of publication bias or, more generally, small-study effects on the final
results. Pearson (1904) provides the earliest example of what we now call meta-analysis. In that
reference, the average of study-specific correlation coefficients was used to estimate an overall effect
of vaccination against smallpox on subjects’ survival.

There is a lot of information reported by a myriad of studies, which can be intimidating and
difficult to absorb. Additionally, these studies may report conflicting results in terms of the magnitudes
and even direction of the effects of interest. For example, many studies that investigated the effect
of taking aspirin for preventing heart attacks reported contradictory results. Meta-analysis provides
a principled approach for consolidating all of this overwhelming information to provide an overall
conclusion or reasons for why such a conclusion cannot be reached.

Meta-analysis has been used in many fields of research. See the Cochrane Collaboration (https:
/lus.cochrane.org/) for a collection of results from meta-analysis that address various treatments from
all areas of healthcare. Meta-analysis has also been used in econometrics (for example, Dalhuisen et al.
[2003]; Woodward and Wui [2001]; Hay, Knechel, and Wang [2006]; Card, Kluve, and Weber [2010]);
education (for example, Bernard et al. [2004]; Fan and Chen [2001]); psychology (for example, Sin
and Lyubomirsky [2009]; Barrick and Mount [1991]; Harter, Schmidt, and Hayes [2002]); psychiatry
(for example, Hanji 2017); criminology (for example, Gendreau, Little, and Goggin [1996]; Pratt and
Cullen [2000]); and ecology (for example, Hedges, Gurevitch, and Curtis [1999]; Gurevitch, Curtis,
and Jones [2001]; Winfree et al. [2009]; Arnqvist and Wooster [1995]).

Meta-analysis is the statistical-analysis step of a systematic review. The term systematic review
refers to the entire process of integrating the empirical research to achieve unified and potentially more
general conclusions. Meta-analysis provides the theoretical underpinning of a systematic review and
sets it apart from a narrative review; in the latter, an area expert summarizes the study-specific results
and provides final conclusions, which could lead to potentially subjective and difficult-to-replicate
findings. The theoretical soundness of meta-analysis made systematic reviews the method of choice
for integrating empirical evidence from multiple studies. See Cooper, Hedges, and Valentine (2019)
for more information as well as for various stages of a systematic review.

In what follows, we briefly describe the main components of meta-analysis: effect sizes, forest
plots, heterogeneity, and publication bias.

Effect sizes. Effect sizes (or various measures of outcome) and their standard errors are the two
most important components of a meta-analysis. They are obtained from each of the primary studies
prior to the meta-analysis. Effect sizes of interest depend on the research objective and type of study.
For example, in a meta-analysis comparing two groups, odds ratios and risk ratios are commonly used
for binary outcomes and Hedges’s g and Cohen’s d measures for continuous outcomes. For meta-
analysis estimating a single proportion (prevalence), the Freeman—Tukey-transformed proportions are
typically used. An overall effect size is computed as a weighted average of study-specific effect sizes,
with more precise (larger) studies having larger weights. The weights are determined by the chosen
meta-analysis model; see Meta-analysis models. Also see [META] meta esize for how to compute
various effect sizes in a meta-analysis.

Meta-analysis models. Another important consideration for meta-analysis is that of the underlying
model. Three commonly used models are a common-effect, fixed-effects, and random-effects models.
The models differ in how they estimate and interpret parameters. See Meta-analysis models for details.
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Meta-analysis summary—forest plots. The results of meta-analysis are typically summarized on
a forest plot, which plots the study-specific effect sizes and their corresponding confidence intervals,
the combined estimate of the effect size and its confidence interval, and other summary measures
such as heterogeneity statistics. See Forest plots for details.

Heterogeneity. The estimates of effect sizes from individual studies will inherently vary from
one study to another. This variation is known as a study heterogeneity. Two types of heterogeneity
described by Deeks, Higgins, and Altman (2017) are methodological, when the studies differ in
design and conduct, and clinical, when the studies differ in participants, treatments, and exposures or
outcomes. The authors also define statistical heterogeneity, which exists when the observed effects
differ between the studies. It is typically a result of clinical heterogeneity, methodological heterogeneity,
or both. There are methods for assessing and addressing heterogeneity that we discuss in detail in
Heterogeneity.

Publication bias. The selection of studies in a meta-analysis is an important step. Ideally, all studies
that meet prespecified selection criteria must be included in the analysis. This is rarely achievable in
practice. For instance, it may not be possible to have access to some unpublished results. So some
of the relevant studies may be omitted from the meta-analysis. This may lead to what is known in
statistics as a sample-selection problem. In the context of meta-analysis, this problem is known as
publication bias or, more generally, reporting bias. Reporting bias arises when the omitted studies are
systematically different from the studies selected in the meta-analysis. For details, see Publication
bias.

Finally, you may ask, Does it make sense to combine different studies? According to Borenstein
et al. (2009, chap. 40), “in the early days of meta-analysis, Robert Rosenthal was asked whether it
makes sense to perform a meta-analysis, given that the studies differ in various ways and that the
analysis amounts to combining apples and oranges. Rosenthal answered that combining apples and
oranges makes sense if your goal is to produce a fruit salad.”

Meta-analysis would be of limited use if it could combine the results of identical studies only. The
appeal of meta-analysis is that it actually provides a principled way of combining a broader set of
studies and can answer broader questions than those originally posed by the included primary studies.
The specific goals of the considered meta-analysis should determine which studies can be combined
and, more generally, whether a meta-analysis is even applicable.

Meta-analysis models

The role of a meta-analysis model is important for the computation and interpretation of the meta-
analysis results. Different meta-analysis models make different assumptions and, as a result, estimate
different parameters of interest. In this section, we describe the available meta-analysis models and
point out the differences between them.

Suppose that there are K independent studies. Each study reports an estimate, 6;, of the unknown
true effect size 9j and an estimate, Ej, of its standard error, j = 1,2, ..., K. The goal of a meta-
analysis is to combine these estimates in a single result to obtain valid inference about the population
parameter of interest, Gpop.

Depending on the research objective and assumptions about studies, three approaches are available
to model the effect sizes: a common-effect model (historically known as a fixed-effect model—notice
the singular “effect”), a fixed-effects model (notice the plural “effects”), and a random-effects model.
We briefly define the three models next and describe them in more detail later.
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Consider the model

é\]:ej+€] j:1,2,...,K (]‘)

where €;’s are sampling errors and €; ~ N (0, 0]2). Although 0]2-’s are unknown, meta-analysis does
not estimate them. Instead, it treats the estimated values, ?7\?-’5, of these variances as known and uses
them during estimation. In what follows, we will thus write €; ~ N(0,57).

A common-effect model, as suggested by its name, assumes that all study effect sizes in (1) are
the same and equal to the true effect size ¢; that is, §; = 6, = 6 for j # j'. The research questions
and inference relies heavily on this assumption, which is often violated in practice.

A fixed-effects model assumes that the study effect sizes in (1) are different, 6; # 6, for j # j', and
“fixed”. That is, the studies included in the meta-analysis define the entire population of interest. So
the research questions and inference concern only the specific K studies included in the meta-analysis.

A random-effects model also assumes that the study effect sizes in (1) are different, Hj # 0, for
j # ', but that they are “random”. That is, the studies in the meta-analysis represent a sample from
a population of interest. The research questions and inference extend beyond the K studies included
in the meta-analysis to the entire population of interest.

The models differ in the population parameter, 6,5, they estimate; see Comparison between the
models and interpretation of their results. Nevertheless, they all use the weighted average as the
estimator for Opep:

Opop = % (2)

Zj:l wj

However, they differ in how they define the weights w;.

We describe each model and the parameter they estimate in more detail below.

Common-effect (“fixed-effect”’) model

As we mentioned earlier, a common-effect (CE) meta-analysis model (Hedges 1982; Rosenthal
and Rubin 1982) is historically known as a fixed-effect model. The term “fixed-effect model” is easy
to confuse with the “fixed-effects model” (plural), so we avoid it in our documentation. The term
“common-effect”, as suggested by Rice, Higgins, and Lumley (2018), is also more descriptive of the
underlying model assumption. A CE model assumes a common (one true) effect for all studies in (1):

~

9j29+6j j=12....K
The target of interest in a CE model is an estimate of a common effect size, onp = @. The CE

model generally uses the weights w; = 1/ 8]2 in (2) to estimate 6.

CE models are applicable only when the assumption that the same parameter underlies each study
is reasonable, such as with pure replicate studies.
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Fixed-effects model

A fixed-effects (FE) meta-analysis model (Hedges and Vevea 1998; Rice, Higgins, and Lumley 2018)
is defined by (1); it assumes that different studies have different effect sizes (61 # 6o # -+ - # Ok)
and that the effect sizes are fixed quantities. By fixed quantities, we mean that the studies included
in the meta-analysis define the entire population of interest. FE models are typically used whenever
the analyst wants to make inferences only about the included studies.

The target of interest in an FE model is an estimate of the weighted average of true study-specific
effect sizes,

B Zle W;H,
- K
Zj:l W

where Wj’s represent true, unknown weights, which are defined in Rice, Higgins, and Lumley (2018,
eq. 3). The estimated weights, w; =1/ 52, are generally used in (2) to estimate Opop-

Opop = Ave(0;)

Based on Rice, Higgins, and Lumley (2018), an FE model answers the question, “What is the
magnitude of the average true effects in the set of K studies included in the meta-analysis?” It is
appropriate when the true effects sizes are different across studies and the research interest lies in
their average estimate.

Random-effects model

A random-effects (RE) meta-analysis model (Hedges 1983; DerSimonian and Laird 1986) assumes
that the study effect sizes are different and that the collected studies represent a random sample from
a larger population of studies. (The viewpoint of random effect sizes is further explored by Bayesian
meta-analysis; see, for example, Random-effects meta-analysis of clinical trials in [BAYES] bayesmh.)
The goal of RE meta-analysis is to provide inference for the population of studies based on the sample
of studies used in the meta-analysis.

The RE model may be described as

~

9j=9j+€j=9+u]'+€j

where u; ~ N(0,72) and, as before, €; ~ N(0, 8?). Parameter 72 represents the between-study
variability and is often referred to as the heterogeneity parameter. It estimates the variability among
the studies, beyond the sampling variability. When 72 = 0, the RE model reduces to the CE model.

Here the target of inference is 6pop = E(6;), the mean of the distribution of effect sizes 6;s.
Opop 1s estimated from (2) with w; = 1/(5% +72).
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Comparison between the models and interpretation of their results

CE and FE models are computationally identical but conceptually different. They differ in their
target of inference and the interpretation of the overall effect size. In fact, all three models have
important conceptual and interpretation differences. table 1 summarizes the different interpretations
of 8,0p under the three models.

Table 1. Interpretation of 6., under various meta-analysis models

Model Interpretation of O
common-effect common effect (1 =03 =--- =0 = 0)
fixed-effects weighted average of the K true study effects
random-effects mean of the distribution of 6; = 0 4 u;

A CE meta-analysis model estimates the true effect size under the strong assumption that all studies
share the same effect and thus all the variability between the studies is captured by the sampling
errors. Under that assumption, the weighted average estimator indeed estimates the true common
effect size, 6.

In the presence of additional variability unexplained by sampling variations, the interpretation of
the results depends on how this variability is accounted for in the analysis.

An FE meta-analysis model uses the same weighted average estimator as a CE model, but the latter
now estimates the weighted average of the K true study-specific effect sizes, Ave(6;).

An RE meta-analysis model assumes that the study contributions, u;’s, are random. It decomposes
the variability of the effect sizes into the between-study and within-study components. The within-
~25

study variances, 05’s, are assumed known by design. The between-study variance, 72, is estimated

from the sample of the effect sizes. Thus, the extra variability attributed to 72 is accounted for during
the estimation of the mean effect size, £(6;).

So which model should you choose? The literature recommends to start with a random-effects
model, which is Stata’s default for most meta-analyses. If you are willing to assume that the studies
have different true effect sizes and you are interested only in providing inferences about these specific
studies, then the FE model is appropriate. If the assumption of study homogeneity is reasonable for
your data, a CE model may be considered.

Meta-analysis estimation methods

Depending on the chosen meta-analysis model, various methods are available to estimate the
weights w; in (2). The meta-analysis models from the previous sections assumed the inverse-variance
estimation method (Whitehead and Whitehead 1991) under which the weights are inversely related to
the variance. The inverse-variance estimation method is applicable to all meta-analysis models and
all types of effect sizes. Thus, it can be viewed as the most general approach.

For a two-group comparison of binary outcomes, CE and FE models also support the Mantel—
Haenszel estimation method, which can be used to combine odds ratios, risk ratios, and risk differences.
The classical Mantel-Haenszel method (Mantel and Haenszel 1959) is used for odds ratios, and its
extension by Greenland and Robins (1985) is used for risk ratios and risk differences. The Mantel—
Haenszel method is recommended with sparse data. Fleiss, Levin, and Paik (2003) also suggests that
it be used with small studies provided that there are many.
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In RE models, the weights are inversely related to the total variance, w; = 1/(3 + 72).

Different methods are proposed for estimating the between-study variability, 72, which is used in
the expression for the weights. These include the restricted maximum likelihood (REML), maximum
likelihood (ML), empirical Bayes (EB), DerSimonian—Laird (DL), Hedges (HE), Sidik—Jonkman (SJ),
and Hunter—Schmidt (HS).

REML, ML, and EB are iterative methods, whereas other methods are noniterative (have closed-form
expressions). The former estimators produce nonnegative estimates of 72. The other estimators, except
SJ, may produce negative estimates and are thus truncated at zero when this happens. The SJ estimator
always produces a positive estimate of 72.

REML, ML, and EB assume that the distribution of random effects is normal. The other estimators
make no distributional assumptions about random effects. Below, we briefly describe the properties
of each method. See Sidik and Jonkman (2007), Viechtbauer (2005), and Veroniki et al. (2016) for
a detailed discussion and the merit of each estimation method.

The REML method (Raudenbush 2009) produces an unbiased, nonnegative estimate of 72 and is
commonly used in practice. (It is the default estimation method in Stata because it performs well in
most scenarios.)

When the number of studies is large, the ML method (Hardy and Thompson 1998; Thompson and
Sharp 1999) is more efficient than the REML method but may produce biased estimates when the
number of studies is small, which is a common case in meta-analysis.

The EB estimator (Berkey et al. 1995), also known as the Paule-Mandel estimator (Paule and
Mandel 1982), tends to be less biased than other RE methods, but it is also less efficient than REML
or DL (Knapp and Hartung 2003).

The DL method (DerSimonian and Laird 1986), historically, is one of the most popular estimation
methods because it does not make any assumptions about the distribution of the random effects and
does not require iteration. But it may underestimate 72, especially when the variability is large and
the number of studies is small. However, when the variability is not too large and the studies are
of similar sizes, this estimator is more efficient than other noniterative estimators HE and SJ. See
Veroniki et al. (2016) for details and relevant references.

The SJ estimator (Sidik and Jonkman 2005), along with the EB estimator, is the best estimator
in terms of bias for large 72 (Sidik and Jonkman 2007). This method always produces a positive
estimate of 72 and thus does not need truncating at 0, unlike the other noniterative methods.

Like DL, the HE estimator (Hedges 1983) is a method of moments estimator, but, unlike DL, it
does not weight effect-size variance estimates (DerSimonian and Laird 1986). Veroniki et al. (2016)
note, however, that this method is not widely used in practice.

The HS estimator (Schmidt and Hunter 2015) is negatively biased and thus not recommended when
unbiasedness is important (Viechtbauer 2005). Otherwise, the mean squared error of HS is similar to
that of ML and is smaller than those of HE, DL, and REML.

Forest plots

Meta-analysis results are often presented using a forest plot (for example, Lewis and Ellis [1982]).
A forest plot shows study-specific effect sizes and an overall effect size with their respective confidence
intervals. The information about study heterogeneity and the significance of the overall effect size
are also typically presented. This plot provides a convenient way to visually compare the study effect
sizes, which can be any summary estimates available from primary studies, such as standardized and
unstandardized mean differences, (log) odds ratios, (log) risk ratios, and (log) hazard ratios.
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Below is an example of a forest plot.

exp(ES) Weight

Study with 95% ClI (%)
Rosenthal et al., 1974 —— 1.03[0.81, 1.32] 7.74
Conn et al., 1968 —— 1.13[0.85, 1.50] 6.60
Jose & Cody, 1971 —— 0.87[0.63, 1.21] 5.71
Pellegrini & Hicks, 1972 —®——3.25[1.57, 6.76] 1.69
Pellegrini & Hicks, 1972 R — 1.30[0.63, 2.67] 1.72
Evans & Rosenthal, 1969 - 0.94[0.77, 1.15] 9.06
Fielder et al., 1971 E B 0.98[0.80, 1.20] 9.06
Claiborn, 1969 —a— 0.73[0.47, 1.12] 3.97
Kester, 1969 —— 1.31[0.95, 1.81] 5.84
Maxwell, 1970 —— 2.23[1.36, 3.64] 3.26
Carter, 1970 —_— 1.72[0.95, 3.10] 2.42
Flowers, 1966 —— 1.20[0.77, 1.85] 3.89
Keshock, 1970 —a— 0.98[0.56, 1.73] 2.61
Henrikson, 1970 —a— 1.26[0.71, 2.22] 2.59
Fine, 1972 —i— 0.84[0.61, 1.14] 6.05
Grieger, 1970 —.— 0.94[0.68, 1.31] 5.71
Rosenthal & Jacobson, 1968 —— 1.35[1.03, 1.77] 6.99
Fleming & Anttonen, 1971 E B 1.07[0.89, 1.29] 9.64
Ginsburg, 1970 — 0.93[0.66, 1.31] 5.43
Overall X 2 1.09[0.98, 1.20]
Heterogeneity: T° = 0.02, I’ = 41.84%, H® = 1.72
Test of 6 = 6 Q(18) = 35.83, p = 0.01
Testof 6=0:z=1.62,p=0.11

12 1 2 4

Random-effects REML model

A blue square is plotted for each study, with the size of the square being proportional to the study
weight; that is, larger squares correspond to larger (more precise) studies. Studies’ CIs are plotted as
whiskers extending from each side of the square and spanning the width of the CI. The estimate of
the overall effect size, depicted here by a green diamond, is typically plotted following the individual
effect sizes. The diamond is centered at the estimate of the overall effect size and the width of
the diamond represents the corresponding CI width. Heterogeneity measures such as the 12 and H?
statistics, homogeneity test, and the significance test of the overall effect sizes are also commonly
reported.

Three further variations of forest plots are for cumulative, subgroup, and leave-one-out meta-
analyses; see Cumulative meta-analysis, Subgroup meta-analysis, and Leave-one-out meta-analysis.

For further details about forest plots, see [META] meta forestplot.

Heterogeneity

The exposition below is based on Deeks, Higgins, and Altman (2017) and references therein.

It is natural for effect sizes of studies collected in a meta-analysis to vary between the studies because
of sampling variability. However, when this variation exceeds the levels that could be explained by
sampling variation, it is referred to as the between-study heterogeneity. Between-study heterogeneity
may arise for different reasons and is generally divided into two types: clinical and methodological
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(Thompson 1994; Deeks, Higgins, and Altman 2017). Clinical heterogeneity is the variability in
the intervention strategies, outcomes, and study participants. Methodological heterogeneity is the
variability in the study design and conduct. Statistical heterogeneity refers to the cases when the
variability between the observed effects cannot be explained by sampling variability alone. It arises
when the true effects in each study are different and may be the result of clinical heterogeneity,
methodological heterogeneity, or both. In what follows, we refer to statistical heterogeneity simply
as heterogeneity.

Assessing heterogeneity

Forest plots are useful for visual examination of heterogeneity. Its presence can be evaluated by
looking at the plotted CIs, which are represented as horizontal lines on the plot. Heterogeneity is
suspect if there is a lack of overlap between the ClIs.

For many studies, Galbraith plots may be a more visually appealing alternative to forest plots for
assessing heterogeneity and presenting meta-analysis results. These plots graph standardized effect
sizes against precision for each study with a regression line through the origin with the overall effect
size as its slope. Excess variation of the scatter points around the regression line may suggest the
presence of heterogeneity. See [META] meta galbraithplot.

For a two-group comparison of binary outcomes, L’ Abbé plots may be used to assess heterogeneity
and compare study-specific event rates in the two groups; see [META] meta labbeplot.

You can also test for heterogeneity more formally by using Cochran’s homogeneity test. Additionally,
various heterogeneity measures such as the I2 statistic, which estimates the percentage of the between-
study variability, are available to quantify heterogeneity.

See [META| meta summarize for details.

Addressing heterogeneity

There are several strategies to address heterogeneity when it is present. Below, we summarize
some of the recommendations from Deeks, Higgins, and Altman (2017):

1. “Explore heterogeneity”. Subgroup analyses and meta-regression are commonly used to
explore heterogeneity. For such analyses to be proper, you must prespecify upfront (before
your meta-analysis) the study attributes you would like to explore. Often, meta-analysts are
already familiar with the studies, so the genuine prestudy specification may not be possible.
In that case, you should use caution when interpreting the results. Once heterogeneity is
established, its exploration after the fact is viewed as data snooping and should be avoided.

2. “Perform an RE meta-analysis”. After careful consideration of subgroup analysis and meta-
regression, you may consider an RE meta-analysis to account for the remaining unexplained
between-study heterogeneity. See Deeks, Higgins, and Altman (2017, sec. 9.5.4) for details.

3. “Exclude studies”. Generally, you should avoid excluding studies from a meta-analysis
because this may lead to bias. You may consider doing this in the presence of a few outlying
studies when the reasons for the outlying results are well understood and are unlikely to
interfere with your research objectives. Even then, you still need to perform sensitivity
analysis and report both the results with and without the outlying studies.

4. “Do not perform a meta-analysis”. In the presence of substantial variation that cannot be
explained, you may have to abandon the meta-analysis altogether. In this case, it will be
misleading to report a single overall estimate of an effect, especially if there is a disagreement
among the studies about the direction of the effect.

Below, we discuss ways of exploring heterogeneity via subgroup meta-analysis and meta-regression.
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Subgroup meta-analysis

It is not uncommon for the studies in a meta-analysis to report varying effect-size estimates. But it
is important to understand and account for such variation during the meta-analysis to obtain reliable
results (Thompson 1994; Berlin 1995). In the presence of substantial between-study variability, meta-
analysis may be used to explore the relationship between the effect sizes and study-level covariates of
interest, known in the meta-analysis literature as moderators. For example, the effect of a particular
vaccine may depend on a study location, the effect of a particular drug may depend on the studies’
dosages, and so on.

Depending on the type of covariates, subgroup meta-analysis or meta-regression may be used to
explore the between-study heterogeneity. Subgroup meta-analysis is commonly used with categorical
covariates, whereas meta-regression is used when at least one of the covariates is continuous.

In subgroup meta-analysis or simply subgroup analysis, the studies are grouped based on study
or participants’ characteristics, and an overall effect-size estimate is computed for each group. The
goal of subgroup analysis is to compare these overall estimates across groups and determine whether
the considered grouping helps explain some of the observed between-study heterogeneity. Note that
subgroup analysis can be viewed as a special case of a meta-regression with only one categorical
moderator.

For more details about subgroup analysis, see the subgroup() option in [META] meta summarize
and [META] meta forestplot.

Meta-regression

Meta-regression explores a relationship between the study-specific effect sizes and the study-level
covariates, such as a latitude of a study location or a dosage of a drug. These covariates are often
referred to as moderators. See, for instance, Greenland (1987), Berkey et al. (1995), Thompson and
Sharp (1999), Thompson and Higgins (2002), and Viechtbauer et al. (2015) for more information
about meta-regression.

Two types of meta-regression are commonly considered in the meta-analysis literature: fixed-effects
meta-regression and random-effects meta-regression.

An FE meta-regression (Greenland 1987) assumes that all heterogeneity between the study outcomes
can be accounted for by the specified moderators. Let x; be a 1 X p vector of moderators with the
corresponding unknown p X 1 coefficient vector 3. An FE meta-regression is given by

where €; ~ N(0,52)

é\j =x;8+¢; weighted by w; = 5

1
~9>
9j

A traditional FE meta-regression does not model residual heterogeneity, but it can be incorporated
by multiplying each of the variances, 3]2, by a common factor. This model is known as an FE

meta-regression with a multiplicative dispersion parameter or a multiplicative FE meta-regression
(Thompson and Sharp 1999).

An RE meta-regression (Berkey et al. 1995) can be viewed as a meta-regression that incorporates the
residual heterogeneity via an additive error term, which is represented in a model by a study-specific
random effect. These random effects are assumed to be normal with mean zero and variance 72,
which estimates the remaining between-study heterogeneity that is unexplained by the considered

moderators. An RE meta-regression is

lﬁ\j =x;B8+uj +¢ weighted by w} = where u; ~ N(0,72) and ¢; ~ N(O,EJQ-)

07+ 72



Intro — Introduction to meta-analysis 11

For more details about meta-regression, see [META] meta regress and [META] meta regress
postestimation.

Publication bias

Publication bias or, more generally, reporting bias occurs when the studies selected for a scientific
review are systematically different from all available relevant studies. Specifically, publication bias is
known in the meta-analysis literature as an association between the likelihood of a publication and the
statistical significance of a study result. The rise of systematic reviews for summarizing the results
of scientific studies elevated the importance of acknowledging and addressing publication bias in
research. Publication bias typically arises when nonsignificant results are being underreported in the
literature (for example, Rosenthal [1979]; Iyengar and Greenhouse [1988]; Begg and Berlin [1988];
Hedges [1992]; Stern and Simes [1997]; Givens, Smith, and Tweedie [1997]; Sutton et al. [2000b];
and Kicinski, Springate, and Kontopantelis [2015]).

Suppose that we are missing some of the studies in our meta-analysis. If these studies are simply
a random sample of all the studies that are relevant to our research question, our meta-analytic results
will remain valid but will not be as precise. That is, we will likely obtain wider confidence intervals
and less powerful tests. However, if the missing studies differ systematically from our observed
studies, such as when smaller studies with nonsignificant findings are suppressed from publication,
our meta-analytic results will be biased toward a significant result. Any health-policy or clinical
decisions based on them will be invalid.

Dickersin (2005) notes that to avoid potentially serious consequences of publication bias, many
researchers (for example, Simes [1986]; Dickersin [1988]; Hetherington et al. [1989]; Dickersin and
Rennie [2003]; Antes and Chalmers [2003]; and Krakovsky [2004]) called for the registration of
clinical trials worldwide at the outset to keep track of the findings, whether or not significant, from all
trials. Although this may not necessarily eradicate the problem of publication bias, this will make it
more difficult for the results of smaller trials to go undetected. Generally, when one selects the studies
for meta-analysis, the review of the literature should be as comprehensive as possible, including
searching the grey literature to uncover the relevant unpublished studies.

See Borenstein et al. (2009, chap. 30) for the summary of other factors for publication bias such
as language bias and cost bias.

Funnel plots

The funnel plot (Light and Pillemer 1984) is commonly used to explore publication bias (Sterne,
Becker, and Egger 2005). It is a scatterplot of the study-specific effect sizes versus measures of
study precision. In the absence of publication bias, the shape of the scatterplot should resemble a
symmetric inverted funnel. The funnel-plot asymmetry, however, may be caused by factors other than
publication bias such as a presence of a moderator correlated with the study effect and study size or,
more generally, the presence of substantial between-study heterogeneity (Egger et al. 1997; Peters
et al. 2008; Sterne et al. 2011). The so-called contour-enhanced funnel plots have been proposed to
help discriminate between the funnel-plot asymmetry because of publication bias versus other reasons.

See [META] meta funnelplot for details.
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Tests for funnel-plot asymmetry

Graphical evaluation of funnel plots is useful for data exploration but may be subjective when
detecting the asymmetry. Statistical tests provide a more formal evaluation of funnel-plot asymmetry.
These tests are also known as tests for small-study effects (Sterne, Gavaghan, and Egger 2000) and,
historically, as tests for publication bias. The tests are no longer referred to as “tests for publication
bias” because, as we commented earlier, the presence of the funnel-plot asymmetry may not necessarily
be attributed to publication bias, particularly in the presence of substantial between-study variability.
See Harbord, Harris, and Sterne (2016) for a summary of these tests.

Two types of tests for funnel-plot asymmetry are considered in the literature: regression-based tests
(Egger et al. 1997; Harbord, Egger, and Sterne 2006; and Peters et al. 2006) and a nonparametric
rank-based test (Begg and Mazumdar 1994). These tests explore the relationship between the study-
specific effect sizes and study precision. The presence of the funnel-plot asymmetry is declared when
the association between the two measures is greater than what would have been observed by chance.

For more details regarding the tests of funnel-plot asymmetry, see [META] meta bias.

The trim-and-fill method

Tests for funnel-plot asymmetry are useful for detecting publication bias but are not able to estimate
the impact of this bias on the final meta-analysis results. The nonparametric trim-and-fill method of
Duval and Tweedie (2000a, 2000b) provides a way to assess the impact of missing studies because of
publication bias on the meta-analysis. It evaluates the amount of potential bias present in meta-analysis
and its impact on the final conclusion. This method is typically used as a sensitivity analysis to the
presence of publication bias.

See [META] meta trimfill for more information about the trim-and-fill method.

Cumulative meta-analysis

Cumulative meta-analysis performs multiple meta-analyses, where each analysis is produced by
adding one study at a time. It is useful to identify various trends in the overall effect sizes. For example,
when the studies are ordered chronologically, one can determine the point in time of the potential
change in the direction or significance of the effect size. A well-known example of a cumulative
meta-analysis is presented in Cumulative meta-analysis of [META] meta for the study of the efficacy
of streptokinase after a myocardial infarction (Lau et al. 1992). Also see the cumulative() option
in [META] meta summarize and [META]| meta forestplot.

Leave-one-out meta-analysis

Just like cumulative meta-analysis, the leave-one-out meta-analysis also performs multiple meta-
analyses; however, in this case, each analysis is produced by excluding a single study. It is quite
common that studies yield effect sizes that are relatively exaggerated. Their presence in the meta-
analysis may distort the overall results, and it is of great importance to identify such studies for further
examination. The leave-one-out meta-analysis is a useful tool to investigate the influence of each
study on the overall effect size estimate. See the leaveoneout option in [META] meta summarize
and [META]| meta forestplot for more information.
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Multivariate meta-regression

Multivariate meta-analysis combines results from studies where multiple dependent effect sizes
(outcomes) are reported by each study. Let §j be a d X 1 vector of estimates of the true population
multivariate effect size 8; for study j. Let x; be a 1 X p vector of moderators with the corresponding
unknown p X 1 regression coefficient vector 3; for ¢ =1,...,d.

An FE multivariate meta-regression (Raudenbush, Becker, and Kalaian 1988) is given by

~

0, =X;B+¢€j, €~ Nq(0, Aj)

. . ’.
where X; = x; ® I is a d x dp matrix and 8 = (8],35,...,8}) is a dp x 1 vector of unknown
regression coefficients; ® is the Kronecker product. The within-study covariance matrices A;’s are
assumed known and thus do not require estimation.

The RE multivariate meta-regression (Berkey et al. 1998) can be expressed as

b\j = Xj,B-i- 6; = Xj,@+ u; + €5, where 6; ~ Ny (O,Aj + E)

where u; is a d x 1 vector of random effects corresponding to the d outcomes.

meta mvregress fits multivariate meta-regression; see [META] meta mvregress. By default, a
random-effects model is assumed. The goal of multivariate meta-regression is to estimate the regression
coefficients 3 and the random-effects covariance matrix 3, also known as the between-study covariance
matrix. Three estimation methods are available to fit the RE multivariate meta-regression model and
multiple covariance structures can be specified to model the between-study covariance 3. After fitting
the multivariate meta-regression model, you can assess heterogeneity; see [META] estat heterogeneity
(mv). Various postestimation tools are available such as predicting random effects, computing the linear
predictor, residuals, standardized residuals, and more; see [META| meta mvregress postestimation.

Multilevel meta-regression

Multilevel meta-analysis synthesizes the results from potentially dependent effect sizes that exhibit
a hierarchical or nested structure. For example, studies and their corresponding effect sizes may be
nested within higher-level groupings such as geographical locations (for example, states or countries)
or administrative units (for example, school districts).

When a hierarchical structure is present in the data, the multilevel meta-analysis is preferred over
the classical meta-analysis. By properly accounting for the hierarchical structure among the effect
sizes, we can obtain more accurate estimates of the overall effect size and better overall statistical
inference. We can also decompose the heterogeneity present among the effect sizes across the different
hierarchical levels, which can provide valuable insights into the factors that affect our outcome of
interest.

The three-level meta-regression model (for example, Goldstein et al. [2000]; Thompson, Turner,
and Warn [2001]; and Konstantopoulos [2011]) can be expressed as

é\jkr = xjkrlg + Zﬁ)rugg) + Z;i)rug?c) + €jkr

where j =1,2,..., M, k=1,2,...,m;,and r = 1,2,...,m . In this case,

Xjkr = (l,sclyjkr, - 7xp71,jkr) is a 1 X p vector of moderators and 3 is the corresponding p x 1
vector of unknown fixed-effects parameters. zﬁ)7 is a 1 X g3 vector of moderators associated with the
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level-3 g3 X 1 vector of random effects u;B) (1 intercept and g3 — 1 slopes), where u§3) ~ N(O0, 2(3)).

Similarly, zﬁ)r is a 1 X g9 vector of moderators associated with the level-2 (within-level-3) g2 X 1

vector of random effects uﬁ), where uﬁ) ~ N(0,=®). €jkr ~ N(0,52

Jkr), where 3J2~kr’s are
known sampling (effect-size) variances.

meta meregress fits multilevel meta-regression; see [META] meta meregress. If your model
contains only random intercepts (no random slopes), you may use the meta multilevel command,
which has a simpler syntax geared toward random-intercepts multilevel models; see [META] meta
multilevel. The goal of multilevel meta-regression is to estimate the regression coefficients 3 and the
random-effects covariance matrices 3V for each level [ > 1. By default, the REML estimation method
is assumed, but the MLE method is also supported. Multiple covariance structures can be specified to

model the 3 matrices. After fitting the multilevel meta-regression model, you can assess multilevel
heterogeneity; see [META] estat heterogeneity (me). Various postestimation tools are available, such
as predicting random effects and computing the linear predictor, residuals, standardized residuals, and
more; see [META] meta me postestimation.

References

Antes, G., and I. Chalmers. 2003. Under-reporting of clinical trials is unethical. Lancet 361: 978-979.
https://doi.org/10.1016/S0140-6736(03)12838-3.

Arngvist, G., and D. Wooster. 1995. Meta-analysis: Synthesizing research findings in ecology and evolution. Trends
in Ecology and Evolution 10: 236-240. https://doi.org/10.1016/S0169-5347(00)89073-4.

Barrick, M. R., and M. K. Mount. 1991. The big five personality dimensions and job performance: A meta-analysis.
Personnel Psychology 44: 1-26. https://doi.org/10.1111/j.1744-6570.1991.tb00688.x.

Begg, C. B., and J. A. Berlin. 1988. Publication bias: A problem in interpreting medical data. Journal of the Royal
Statistical Society, Series A 151: 419-463. https://doi.org/10.2307/2982993.

Begg, C. B., and M. Mazumdar. 1994. Operating characteristics of a rank correlation test for publication bias.
Biometrics 50: 1088-1101. https://doi.org/10.2307/2533446.

Berkey, C. S., D. C. Hoaglin, F. Mosteller, and G. A. Colditz. 1995. A random-effects regression model for
meta-analysis. Statistics in Medicine 14: 395—411. https://doi.org/10.1002/sim.4780140406.

——. 1998. Meta-analysis of multiple outcomes by regression with random effects. Statistics in Medicine 17:
2537-2550. https://doi.org/10.1002/(SICI)1097-0258(19981130)17:22%3C2537::AID-SIM953%3E3.0.CO;2-C.

Berlin, J. A. 1995. Invited commentary: Benefits of heterogeneity in meta-analysis of data from epidemiologic studies.
American Journal of Epidemiology 142: 383-387. https://doi.org/10.1093/oxfordjournals.aje.al17645.

Bernard, R. M., P. C. Abrami, Y. Lou, E. Borokhovski, A. Wade, L. Wozney, P. A. Wallet, M. Fiset, and B. Huang.
2004. How does distance education compare with classroom instruction? A meta-analysis of the empirical literature.
Review of Educational Research 74: 379-439. https://doi.org/10.3102/00346543074003379.

Borenstein, M., L. V. Hedges, J. P. T. Higgins, and H. R. Rothstein. 2009. Introduction to Meta-Analysis. Chichester,
UK: Wiley.

Card, D., J. Kluve, and A. Weber. 2010. Active labour market policy evaluations: A meta-analysis. Economic Journal
120: F452-F477. https://doi.org/10.1111/j.1468-0297.2010.02387 .x.

Cooper, H., L. V. Hedges, and J. C. Valentine, ed. 2019. The Handbook of Research Synthesis and Meta-Analysis.
3rd ed. New York: Russell Sage Foundation.

Dalhuisen, J. M., R. J. G. M. Florax, H. L. F. de Groot, and P. Nijkamp. 2003. Price and income elasticities of
residential water demand: A meta-analysis. Land Economics 79: 292-308. https://doi.org/10.2307/3146872.

Deeks, J. J., J. P. T. Higgins, and D. G. Altman. 2017. Analysing data and undertaking meta-analyses. In Cochrane
Handbook for Systematic Reviews of Interventions Version 5.2.0, ed. J. P. T. Higgins and S. Green, chap. 9.
London: The Cochrane Collaboration. https://training.cochrane.org/handbook.

DerSimonian, R., and N. M. Laird. 1986. Meta-analysis in clinical trials. Controlled Clinical Trials 7: 177-188.
https://doi.org/10.1016/0197-2456(86)90046-2.


https://doi.org/10.1016/S0140-6736(03)12838-3
https://doi.org/10.1016/S0169-5347(00)89073-4
https://doi.org/10.1111/j.1744-6570.1991.tb00688.x
https://doi.org/10.2307/2982993
https://doi.org/10.2307/2533446
https://doi.org/10.1002/sim.4780140406
https://doi.org/10.1002/(SICI)1097-0258(19981130)17:22%3C2537::AID-SIM953%3E3.0.CO;2-C
https://doi.org/10.1093/oxfordjournals.aje.a117645
https://doi.org/10.3102/00346543074003379
http://www.stata.com/bookstore/ima.html
https://doi.org/10.1111/j.1468-0297.2010.02387.x
https://doi.org/10.2307/3146872
https://training.cochrane.org/handbook
https://doi.org/10.1016/0197-2456(86)90046-2

Intro — Introduction to meta-analysis 15

Dickersin, K. 1988. Report from the panel on the case for registers of clinical trials at the eighth annual meeting of
the society for clinical trials. Controlled Clinical Trials 9: 76-80. https://doi.org/10.1016/0197-2456(88)90010-4.

——. 2005. Publication bias: Recognizing the problem, understanding its origins and scope, and preventing harm.
In Publication Bias in Meta-Analysis: Prevention, Assessment and Adjustments, ed. H. R. Rothstein, A. J. Sutton,
and M. Borenstein, 11-34. Chichester, UK: Wiley.

Dickersin, K., and D. Rennie. 2003. Registering clinical trials. Journal of the American Medical Association 290:
516-523. https://doi.org/10.1001/jama.290.4.516.

Duval, S., and R. L. Tweedie. 2000a. Trim and fill: A simple funnel-plot-based method of testing and adjusting for
publication bias in meta-analysis. Biometrics 56: 455-463. https://doi.org/10.1111/j.0006-341X.2000.00455.x.

——. 2000b. A nonparametric “trim and fill” method of accounting for publication bias in meta-analysis. Journal of
American Statistical Association 95: 89-98. https://doi.org/10.1080/01621459.2000.10473905.

Egger, M., G. Davey Smith, M. Schneider, and C. Minder. 1997. Bias in meta-analysis detected by a simple, graphical
test. BMJ 315: 629-634. https://doi.org/10.1136/bmj.315.7109.629.

Fan, X., and M. Chen. 2001. Parental involvement and students’ academic achievement: A meta-analysis. Educational
Psychology Review 13: 1-22. https://doi.org/10.1023/A:1009048817385.

Fleiss, J. L., B. Levin, and M. C. Paik. 2003. Statistical Methods for Rates and Proportions. 3rd ed. New York:
Wiley.

Gendreau, P, T. Little, and C. Goggin. 1996. A meta-analysis of the predictors of adult offender recidivism: What
works! Criminology 34: 575-608. https://doi.org/10.1111/j.1745-9125.1996.tb01220.x.

Givens, G. H., D. D. Smith, and R. L. Tweedie. 1997. Publication bias in meta-analysis: A Bayesian data-
augmentation approach to account for issues exemplified in the passive smoking debate. Statistical Science 12:
221-240. https://doi.org/10.1214/ss/1030037958.

Glass, G. V. 1976. Primary, secondary, and meta-analysis of research. Educational Researcher 5: 3-8.
https://doi.org/10.2307/1174772.

Goldstein, H., M. Yang, R. Omar, R. M. Turner, and S. G. Thompson. 2000. Meta-analysis using multilevel models
with an application to the study of class size effects. Journal of the Royal Statistical Society, Series C 49: 399—412.
https://doi.org/10.1111/1467-9876.00200.

Greenland, S. 1987. Quantitative methods in the review of epidemiologic literature. Epidemiologic Reviews 9: 1-30.
https://doi.org/10.1093/oxfordjournals.epirev.a036298.

Greenland, S., and J. M. Robins. 1985. Estimation of a common effect parameter from sparse follow-up data.
Biometrics 41: 55-68. https://doi.org/10.2307/2530643.

Gurevitch, J., P. S. Curtis, and M. H. Jones. 2001. Meta-analysis in ecology. Advances in Ecology 32: 199-247.
https://doi.org/10.1016/S0065-2504(01)32013-5.

Hanji, M. B. 2017. Meta-Analysis in Psychiatry Research: Fundamental and Advanced Methods. Waretown, NJ: Apple
Academic Press.

Harbord, R. M., M. Egger, and J. A. C. Sterne. 2006. A modified test for small-study effects in meta-analyses of
controlled trials with binary endpoints. Statistics in Medicine 25: 3443-3457. https://doi.org/10.1002/sim.2380.

Harbord, R. M., R. J. Harris, and J. A. C. Sterne. 2016. Updated tests for small-study effects in meta-analyses. In
Meta-Analysis in Stata: An Updated Collection from the Stata Journal, ed. T. M. Palmer and J. A. C. Sterne, 2nd
ed., 153-165. College Station, TX: Stata Press.

Hardy, R. J., and S. G. Thompson. 1998. Detecting and describing heterogeneity in meta-analysis. Statistics in
Medicine 17: 841-856. https://doi.org/lO.1002/(sici)1097—0258(19980430)17:8<841::aid—sim781>3.0.co;2—d.

Harter, J. K., F. L. Schmidt, and T. L. Hayes. 2002. Business-unit-level relationship between employee sat-
isfaction, employee engagement, and business outcomes: A meta-analysis. Applied Psychology 87: 268-279.
https://doi.org/10.1037/0021-9010.87.2.268.

Hay, D. C., W. R. Knechel, and N. Wang. 2006. Audit fees: A meta-analysis of the effect of supply and demand
attributes. Contemporary Accounting Research 23: 141-191. https://doi.org/10.1506/4XR4-KT5V-E8CN-91GX.

Hedges, L. V. 1982. Estimation of effect size from a series of independent experiments. Psychological Bulletin 92:
490-499. http://doi.org/10.1037/0033-2909.92.2.490.

——. 1983. A random effects model for effect sizes. Psychological Bulletin 93: 388-395. http://doi.org/10.1037/0033-
2909.93.2.388.


https://doi.org/10.1016/0197-2456(88)90010-4
https://doi.org/10.1001/jama.290.4.516
https://doi.org/10.1111/j.0006-341X.2000.00455.x
https://doi.org/10.1080/01621459.2000.10473905
https://doi.org/10.1136/bmj.315.7109.629
https://doi.org/10.1023/A:1009048817385
https://doi.org/10.1111/j.1745-9125.1996.tb01220.x
https://doi.org/10.1214/ss/1030037958
https://doi.org/10.2307/1174772
https://doi.org/10.1111/1467-9876.00200
https://doi.org/10.1093/oxfordjournals.epirev.a036298
https://doi.org/10.2307/2530643
https://doi.org/10.1016/S0065-2504(01)32013-5
https://doi.org/10.1002/sim.2380
http://www.stata-press.com/books/meta-analysis-in-stata
https://doi.org/10.1002/(sici)1097-0258(19980430)17:8<841::aid-sim781>3.0.co;2-d
https://doi.org/10.1037/0021-9010.87.2.268
https://doi.org/10.1506/4XR4-KT5V-E8CN-91GX
http://doi.org/10.1037/0033-2909.92.2.490
http://doi.org/10.1037/0033-2909.93.2.388
http://doi.org/10.1037/0033-2909.93.2.388

16 Intro — Introduction to meta-analysis

——. 1992. Modeling publication selection effects in meta-analysis. Statistical Science 7: 246-255.
https://doi.org/10.1214/ss/1177011364.

Hedges, L. V., J. Gurevitch, and P. S. Curtis. 1999. The meta-analysis of response ratios in experimental ecology.
Ecology 80: 1150-1156. https://doi.org/10.2307/177062.

Hedges, L. V., and 1. Olkin. 1985. Statistical Methods for Meta-Analysis. Orlando, FL: Academic Press.

Hedges, L. V., and J. L. Vevea. 1998. Fixed- and random-effects models in meta-analysis. Psychological Methods 3:
486-504. http://doi.org/10.1037/1082-989X.3.4.486.

Hetherington, J., K. Dickersin, I. Chalmers, and C. L. Meinert. 1989. Retrospective and prospective identification of
unpublished controlled trials: Lessons from a survey of obstetricians and pediatricians. Pediatrics 84: 374-380.

Higgins, J. P. T, and S. Green, ed. 2017. Cochrane Handbook for Systematic Reviews of Interventions Version 5.2.0.
London: The Cochrane Collaboration. https:/training.cochrane.org/handbook.

Iyengar, S., and J. B. Greenhouse. 1988. Selection models and the file drawer problem. Statistical Science 3: 109-117.
https://doi.org/10.1214/ss/1177013012.

Kicinski, M., D. A. Springate, and E. Kontopantelis. 2015. Publication bias in meta-analyses from the Cochrane
Database of Systematic Reviews. Statistics in Medicine 34: 2781-2793. https://doi.org/10.1002/sim.6525.

Knapp, G., and J. Hartung. 2003. Improved tests for a random effects meta-regression with a single covariate. Statistics
in Medicine 22: 2693-2710. https://doi.org/10.1002/sim.1482.

Konstantopoulos, S. 2011. Fixed effects and variance components estimation in three-level meta-analysis. Research
Synthesis Methods 2: 61-76. https://doi.org/10.1002/jrsm.35.

Kontopantelis, E., and D. Reeves. 2020. Pairwise meta-analysis of aggregate data using metaan in Stata. Stata Journal
20: 680-705.

Krakovsky, M. 2004. Register or perish: Looking to make the downside of therapies known. Scientific American 6:
18-20.

Lau, J., E. M. Antman, J. Jimenez-Silva, B. Kupelnick, F. Mosteller, and T. C. Chalmers. 1992. Cumulative
meta-analysis of therapeutic trials for myocardial infarction. New England Journal of Medicine 327: 248-254.
https://doi.org/10.1056/NEJM199207233270406.

Lewis, J. A,, and S. H. Ellis. 1982. A statistical appraisal of post-infarction beta-blocker trials. Primary Cardiology
Suppl. 1: 31-37.

Light, R. J., and D. B. Pillemer. 1984. Summing Up: The Science of Reviewing Research. Cambridge, MA: Harvard
University Press.

Linden, A. 2022. Computing the fragility index for randomized trials and meta-analyses using Stata. Stata Journal
22: 77-88.

Mantel, N., and W. Haenszel. 1959. Statistical aspects of the analysis of data from retrospective studies of disease.
Journal of the National Cancer Institute 22: 719-748. Reprinted in Evolution of Epidemiologic Ideas: Annotated
Readings on Concepts and Methods, ed. S. Greenland, pp. 112-141. Newton Lower Falls, MA: Epidemiology
Resources.

Palmer, T. M., and J. A. C. Sterne, ed. 2016. Meta-Analysis in Stata: An Updated Collection from the Stata Journal.
2nd ed. College Station, TX: Stata Press.

Paule, R. C., and J. Mandel. 1982. Consensus values and weighting factors. Journal of Research of the National
Bureau of Standards 87: 377-385. http://doi.org/10.6028/jres.087.022.

Pearson, K. 1904. Report on certain enteric fever inoculation statistics. BMJ 2: 1243-1246.
https://doi.org/10.1136/bmj.2.2288.1243.

Peters, J. L., A. J. Sutton, D. R. Jones, K. R. Abrams, and L. Rushton. 2006. Comparison of two meth-
ods to detect publication bias in meta-analysis. Journal of the American Medical Association 295: 676-680.
https://doi.org/10.1001/jama.295.6.676.

——. 2008. Contour-enhanced meta-analysis funnel plots help distinguish publication bias from other causes of
asymmetry. Journal of Clinical Epidemiology 61: 991-996. https://doi.org/10.1016/j.jclinepi.2007.11.010.

Pratt, T. C., and F. T. Cullen. 2000. The empirical status of Gottfredson and Hirschi’s general theory of crime: A
meta-analysis. Criminology 38: 931-964. https://doi.org/10.1111/j.1745-9125.2000.tb00911.x.

Raudenbush, S. W. 2009. Analyzing effect sizes: Random-effects models. In The Handbook of Research Synthesis


https://doi.org/10.1214/ss/1177011364
https://doi.org/10.1214/ss/1177011364
https://doi.org/10.2307/177062
http://doi.org/10.1037/1082-989X.3.4.486
https://training.cochrane.org/handbook
https://doi.org/10.1214/ss/1177013012
https://doi.org/10.1002/sim.6525
https://doi.org/10.1002/sim.1482
https://doi.org/10.1002/jrsm.35
https://doi.org/10.1177/1536867X20953575
https://doi.org/10.1056/NEJM199207233270406
https://doi.org/10.1177/1536867X221083856
http://www.stata-press.com/books/meta-analysis-in-stata
http://doi.org/10.6028/jres.087.022
https://doi.org/10.1136/bmj.2.2288.1243
https://doi.org/10.1136/bmj.2.2288.1243
https://doi.org/10.1001/jama.295.6.676
https://doi.org/10.1016/j.jclinepi.2007.11.010
https://doi.org/10.1111/j.1745-9125.2000.tb00911.x

Intro — Introduction to meta-analysis 17

and Meta-Analysis, ed. H. Cooper, L. V. Hedges, and J. C. Valentine, 2nd ed., 295-316. New York: Russell Sage
Foundation.

Raudenbush, S. W., B. J. Becker, and H. Kalaian. 1988. Modeling multivariate effect sizes. Psychological Bulletin
103: 111-120. https://psycnet.apa.org/doi/10.1037/0033-2909.103.1.111.

Rice, K., J. P. T. Higgins, and T. S. Lumley. 2018. A re-evaluation of fixed effect(s) meta-analysis. Journal of the
Royal Statistical Society, Series A 181: 205-227. https://doi.org/10.1111/rssa.12275.

Rosenthal, R. 1979. The file drawer problem and tolerance for null results. Psychological Bulletin 86: 638-641.
http://doi.org/10.1037/0033-2909.86.3.638.

Rosenthal, R., and D. B. Rubin. 1982. Comparing effect sizes of independent studies. Psychological Bulletin 92:
500-504. http://doi.org/10.1037/0033-2909.92.2.500.

Rothstein, H. R., A. J. Sutton, and M. Borenstein, ed. 2005. Publication Bias in Meta-Analysis: Prevention, Assessment
and Adjustments. Chichester, UK: Wiley.

Schmidt, F. L., and J. E. Hunter. 2015. Methods of Meta-Analysis: Correcting Error and Bias in Research Findings.
3rd ed. Thousand Oaks, CA: Sage.

Sidik, K., and J. N. Jonkman. 2005. A note on variance estimation in random effects meta-regression. Journal of
Biopharmaceutical Statistics 15: 823-838. https://doi.org/10.1081/BIP-200067915.

——. 2007. A comparison of heterogeneity variance estimators in combining results of studies. Statistics in Medicine
26: 1964-1981. https://doi.org/10.1002/sim.2688.

Simes, R. J. 1986. Publication bias: The case for an international registry of clinical trials. Journal of Clinical
Oncology 4: 1529-1541. https://doi.org/10.1200/JCO.1986.4.10.1529.

Sin, N. L., and S. Lyubomirsky. 2009. Enhancing well-being and alleviating depressive symptoms with pos-
itive psychology interventions: A practice-friendly meta-analysis. Journal of Clinical Psychology 65: 467-487.
https://doi.org/10.1002/jclp.20593.

Stern, J. M., and R. J. Simes. 1997. Publication bias: Evidence of delayed publication in a cohort study of clinical
research projects. BMJ 315: 640-645. https://doi.org/10.1136/bm;j.315.7109.640.

Sterne, J. A. C., B. J. Becker, and M. Egger. 2005. The funnel plot. In Publication Bias in Meta-Analysis: Prevention,
Assessment and Adjustments, ed. H. R. Rothstein, A. J. Sutton, and M. Borenstein, 75-98. Chichester, UK: Wiley.

Sterne, J. A. C., D. Gavaghan, and M. Egger. 2000. Publication and related bias in meta-analysis: Power of statistical
tests and prevalence in the literature. Journal of Clinical Epidemiology 53: 1119-1129. https://doi.org/10.1016/S0895-
4356(00)00242-0.

Sterne, J. A. C., A. J. Sutton, J. P. A. Ioannidis, N. Terrin, D. R. Jones, J. Lau, J. R. Carpenter, G. Riicker, R. M.
Harbord, C. H. Schmid, J. Tetzlaff, J. J. Deeks, J. L. Peters, P. Macaskill, G. Schwarzer, S. Duval, D. G. Altman,
D. Moher, and J. P. T. Higgins. 2011. Recommendations for examining and interpreting funnel plot asymmetry in
meta-analyses of randomised controlled trials. BMJ 343: d4002. https://doi.org/10.1136/bmj.d4002.

Sutton, A. J., K. R. Abrams, D. R. Jones, T. A. Sheldon, and F. Song. 2000a. Methods for Meta-Analysis in Medical
Research. New York: Wiley.

Sutton, A. J., S. Duval, R. L. Tweedie, K. R. Abrams, and D. R. Jones. 2000b. Empirical assessment of effect of
publication bias on meta-analyses. BMJ 320: 1574-1577. https://doi.org/10.1136/bmj.320.7249.1574.

Sutton, A. J., and J. P. T. Higgins. 2008. Recent developments in meta-analysis. Statistics in Medicine 27: 625-650.
https://doi.org/10.1002/sim.2934.

Thompson, S. G. 1994. Systematic review: Why sources of heterogeneity in meta-analysis should be investigated.
BMJ 309: 1351-1355. https://doi.org/10.1136/bmj.309.6965.1351.

Thompson, S. G., and J. P. T. Higgins. 2002. How should meta-regression analyses be undertaken and interpreted?
Statistics in Medicine 21: 1559-1573. https://doi.org/10.1002/sim.1187.

Thompson, S. G., and S. J. Sharp. 1999. Explaining heterogeneity in meta-analysis: A comparison of methods. Statistics
in Medicine 18: 2693-2708. https://doi.org/10. l()()2/(sici)1()97—()258(19991()30)18:2()<2693::aid-sim235>3.0.00;2-v.

Thompson, S. G., R. M. Turner, and D. E. Warn. 2001. Multilevel models for meta-analysis, and their application to
absolute risk differences. Statistical Methods in Medical Research 10: 375-392.
https://doi.org/10.1177/096228020101000602.

Veroniki, A. A., D. Jackson, W. Viechtbauer, R. Bender, J. Bowden, G. Knapp, O. Kuss, J. P. T. Higgins, D. Langan,


https://psycnet.apa.org/doi/10.1037/0033-2909.103.1.111
https://doi.org/10.1111/rssa.12275
http://doi.org/10.1037/0033-2909.86.3.638
http://doi.org/10.1037/0033-2909.92.2.500
https://doi.org/10.1081/BIP-200067915
https://doi.org/10.1002/sim.2688
https://doi.org/10.1200/JCO.1986.4.10.1529
https://doi.org/10.1002/jclp.20593
https://doi.org/10.1136/bmj.315.7109.640
https://doi.org/10.1016/S0895-4356(00)00242-0
https://doi.org/10.1016/S0895-4356(00)00242-0
https://doi.org/10.1136/bmj.d4002
http://www.stata.com/bookstore/meta.html
http://www.stata.com/bookstore/meta.html
https://doi.org/10.1136/bmj.320.7249.1574
https://doi.org/10.1002/sim.2934
https://doi.org/10.1136/bmj.309.6965.1351
https://doi.org/10.1002/sim.1187
https://doi.org/10.1002/(sici)1097-0258(19991030)18:20<2693::aid-sim235>3.0.co;2-v
https://doi.org/10.1177/096228020101000602
https://doi.org/10.1177/096228020101000602

18 Intro — Introduction to meta-analysis

and G. Salanti. 2016. Methods to estimate the between-study variance and its uncertainty in meta-analysis. Research
Synthesis Methods 7: 55-79. https://doi.org/10.1002/jrsm.1164.

Viechtbauer, W. 2005. Bias and efficiency of meta-analytic variance estimators in the random-effects model. Journal
of Educational and Behavioral Statistics 30: 261-293. https://doi.org/10.3102/10769986030003261.

Viechtbauer, W., J. A. Loépez-Lopez, J. Sanchez-Meca, and F. Marin-Martinez. 2015. A comparison of pro-
cedures to test for moderators in mixed-effects meta-regression models. Psychological Methods 20: 360-374.
https://doi.org/10.1037/met0000023.

Whitehead, A., and J. Whitehead. 1991. A general parametric approach to the meta-analysis of randomized clinical
trials. Statistics in Medicine 10: 1665-1677. http://doi.org/10.1002/sim.4780101105.

Winfree, R., R. Aguilar, D. P. Vdzquez, G. LeBuhn, and M. A. Aizen. 2009. A meta-analysis of bees’ responses to
anthropogenic disturbance. Ecology 90: 2068-2076. https://doi.org/10.1890/08-1245.1.

Woodward, R. T., and Y.-S. Wui. 2001. The economic value of wetland services: A meta-analysis. Ecological
Economics 37: 257-270. https://doi.org/10.1016/S0921-8009(00)00276-7.

Also see

[META] meta — Introduction to meta

[META] Glossary


https://doi.org/10.1002/jrsm.1164
https://doi.org/10.3102/10769986030003261
https://doi.org/10.1037/met0000023
http://doi.org/10.1002/sim.4780101105
https://doi.org/10.1890/08-1245.1
https://doi.org/10.1016/S0921-8009(00)00276-7

Title

meta — Introduction to meta

Description Remarks and examples Acknowledgments References
Also see

Description

The meta command performs meta-analysis. In a nutshell, you can do the following:
1. Compute or specify effect sizes; see [META] meta esize and [META] meta set.
2. Summarize meta-analysis data; see [META] meta summarize and [META] meta forestplot.

3. Examine heterogeneity and perform meta-regression; see [META] meta galbraithplot,
[META] meta labbeplot, and [META] meta regress.

4. Explore small-study effects and publication bias; see [META] meta funnelplot,
[META] meta bias, and [META] meta trimfill.

5. Perform multivariate meta-regression; see [META] meta mvregress.

6. Perform multilevel meta-regression; see [META] meta meregress and [META| meta
multilevel.

For software-free introduction to meta-analysis, see [META] Intro.

Declare, update, and describe meta data

meta data Declare meta-analysis data

meta esize Compute effect sizes and declare meta data

meta set Declare meta data using precalculated effect sizes
meta update Update current settings of meta data

meta query Describe current settings of meta data

meta clear Clear current settings of meta data

Summarize meta data by using a table

meta summarize Summarize meta-analysis data
meta summarize, subgroup() Perform subgroup meta-analysis
meta summarize, cumulative() Perform cumulative meta-analysis
meta summarize, leaveoneout Perform leave-one-out meta-analysis
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Summarize meta data by using a forest plot

meta forestplot Produce meta-analysis forest plots

meta forestplot, subgroup() Produce subgroup meta-analysis forest plots
meta forestplot, cumulative() Produce cumulative meta-analysis forest plots
meta forestplot, leaveoneout Produce leave-one-out meta-analysis forest plots

Explore heterogeneity and perform meta-regression

meta galbraithplot Produce Galbraith plots

meta labbeplot Produce L’ Abbé plots for two-group comparison
of binary outcomes

meta regress Fit meta-regression

estat bubbleplot Produce bubble plots after meta-regression

Explore and address small-study effects (funnel-plot asymmetry, publication bias)

meta funnelplot Produce funnel plots

meta funnelplot, contours() Produce contour-enhanced funnel plots

meta bias Test for small-study effects or funnel-plot asymmetry
meta trimfill Perform trim-and-fill analysis of publication bias

Perform multivariate meta-regression

meta mvregress Fit multivariate meta-regression
estat heterogeneity (mv) Assess heterogeneity in multivariate meta-regression

meta mvregress does not require your dataset to be meta set.

Perform multilevel meta-regression

meta meregress Fit multilevel meta-regression
meta multilevel Fit random-intercepts multilevel meta-regression
estat heterogeneity (me) Assess heterogeneity in multilevel meta-regression

meta meregress and meta multilevel do not require your dataset to be meta set.
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Remarks and examples

This entry describes Stata’s suite of commands, meta, for performing meta-analysis. For a software-
free introduction to meta-analysis, see [META] Intro.

Remarks are presented under the following headings:

Introduction to meta-analysis using Stata
Example datasets
Effects of teacher expectancy on pupil 1Q (pupilig.dta)
Effect of streptokinase after a myocardial infarction (strepto.dta)
Efficacy of BCG vaccine against tuberculosis (bcg.dta)
Effectiveness of nonsteroidal anti-inflammatory drugs (nsaids.dta)
Treatment of moderate periodontal disease (periodontal.dta)
Tour of meta-analysis commands
Prepare your data for meta-analysis in Stata
Basic meta-analysis summary
Subgroup meta-analysis
Cumulative meta-analysis
Heterogeneity: Galbraith plot, meta-regression, and bubble plot
Funnel plots for exploring small-study effects
Testing for small-study effects
Trim-and-fill analysis for addressing publication bias
Multivariate meta-regression
Multilevel meta-regression

Introduction to meta-analysis using Stata

Stata’s meta command offers full support for meta-analysis from computing various effect sizes and
producing basic meta-analytic summary and forest plots to accounting for between-study heterogeneity
and potential publication bias. Random-effects, common-effect, and fixed-effects meta-analyses are
supported.

Standard effect sizes, such as the log odds-ratio for a two-group comparison of binary outcomes,
Hedges’s g for a two-group comparison of continuous outcomes, or the Freeman—Tukey-transformed
proportion for estimating a single proportion (prevalence), may be computed using the meta esize
command; see [META] meta esize. Generic (precalculated) effect sizes may be specified by using the
meta set command; see [META] meta set.

meta esize and meta set are part of the meta-analysis declaration step, which is the first step of
meta-analysis in Stata. During this step, you specify the main information about your meta-analysis
such as the study-specific effect sizes and their corresponding standard errors and the meta-analysis
model and method. This information is then automatically used by all subsequent meta commands
for the duration of your meta-analysis session. You can use meta update to easily update some
of the specified information during the session; see [META] meta update. And you can use meta
query to remind yourself about the current meta settings at any point of your meta-analysis; see
[META] meta update. For more information about the declaration step, see [META] meta data. Also
see Prepare your data for meta-analysis in Stata.

Random-effects, common-effect, and fixed-effects meta-analysis models are supported. You can
specify them during the declaration step and use the same model throughout your meta-analysis or
you can specify a different model temporarily with any of the meta commands. You can also switch
to a different model for the rest of your meta-analysis by using meta update. See Declaring a
meta-analysis model in [META] meta data for details.

Traditionally, meta-analysis literature and software used the term “fixed-effect model” (notice
singular effect) to refer to the model that assumes a common effect for all studies. To avoid potential
confusion with the term “fixed-effects model” (notice plural effects), which is commonly used in
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various disciplines to refer to the model whose effects vary from one group to another, we adopted the
terminology from Rice, Higgins, and Lumley (2018) of the “common-effect model”. This terminology
is also reflected in the option names for specifying the corresponding models with meta commands:
common specifies a common-effect model and fixed specifies a fixed-effects model. (Similarly, random
specifies a random-effects model.) Although the overall effect-size estimates from the common-effect
and fixed-effects models are computationally identical, their interpretation is different. We provide
the two options to emphasize this difference and to encourage proper interpretation of the final results
given the specified model. See common-effect versus fixed-effects models in [META] meta data and
Meta-analysis models in [META] Intro for more information.

Depending on the chosen meta-analysis model, various estimation methods are available: inverse-
variance and Mantel-Haenszel for the common-effect and fixed-effects models and seven different
estimators for the between-study variance parameter for the random-effects model. See Declaring a
meta-analysis estimation method in [META] meta data.

Also see Default meta-analysis model and method in [META] meta data for the default model and
method used by the meta commands.

Results of a basic meta-analysis can be summarized numerically in a table by using meta summarize
(see [META] meta summarize) or graphically by using forest plots; see [META] meta forestplot. See
Basic meta-analysis summary.

To evaluate the trends in the estimates of the overall effect sizes, you can use the cumula-
tive() option with meta summarize or meta forestplot to perform cumulative meta-analysis.
See Cumulative meta-analysis.

In the presence of subgroup heterogeneity, you can use the subgroup() option with meta
summarize or meta forestplot to perform single or multiple subgroup analyses. See Subgroup
meta-analysis.

Heterogeneity can also be explored by fitting meta-regression using the meta regress command;
see [META] meta regress. After meta-regression, you can produce bubble plots (see [META] estat
bubbleplot) and perform other postestimation analysis (see [META] meta regress postestimation).
Also see Heterogeneity: Galbraith plot, meta-regression, and bubble plot.

In addition to forest plots, you can also visually explore heterogeneity using meta galbraithplot,
which works with any type of data (see [META] meta galbraithplot), and meta labbeplot, which
works with a two-group comparison of binary outcomes (see [META] meta labbeplot).

Publication bias, or more accurately, small-study effects or funnel-plot asymmetry, may be explored
graphically via standard or contour-enhanced funnel plots (see [META] meta funnelplot). Regression-
based and other tests for detecting small-study effects are available with the meta bias command; see
[META] meta bias. The trim-and-fill method for assessing the potential impact of publication bias on
the meta-analysis results is implemented in the meta trimfill command; see [META] meta trimfill.
See Funnel plots for exploring small-study effects, Testing for small-study effects, and Trim-and-fill
analysis for addressing publication bias.

Multivariate meta-regression can be fit via meta mvregress (see [META] meta mvregress).
After multivariate meta-regression, you can explore heterogeneity using estat heterogeneity
(see [META] estat heterogeneity (mv)) and conduct other postestimation analysis (see [META] meta
mvregress postestimation).

Multilevel meta-regression can be fit via meta meregress (see [META| meta meregress) or meta
multilevel ([META] meta multilevel). After multilevel meta-regression, you can explore multilevel
heterogeneity using estat heterogeneity (see [META] estat heterogeneity (me)) and conduct other
postestimation analysis (see [META] meta me postestimation).
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Example datasets

We present several datasets that we will use throughout the documentation to demonstrate the
meta suite. Feel free to skip over this section to Tour of meta-analysis commands and come back to
it later for specific examples.

Example datasets are presented under the following headings:

Effects of teacher expectancy on pupil IQ (pupilig.dta)

Effect of streptokinase after a myocardial infarction (strepto.dta)
Efficacy of BCG vaccine against tuberculosis (bcg.dta)
Effectiveness of nonsteroidal anti-inflammatory drugs (nsaids.dta)
Treatment of moderate periodontal disease (periodontal.dta)

Effects of teacher expectancy on pupil 1Q (pupiliq.dta)

This example describes a well-known study of Rosenthal and Jacobson (1968) that found the
so-called Pygmalion effect, in which expectations of teachers affected outcomes of their students. A
group of students was tested and then divided randomly into experimentals and controls. The division
may have been random, but the teachers were told that the students identified as experimentals were
likely to show dramatic intellectual growth. A few months later, a test was administered again to the
entire group of students. The experimentals outperformed the controls.

Subsequent researchers attempted to replicate the results, but many did not find the hypothesized
effect.

Raudenbush (1984) did a meta-analysis of 19 studies and hypothesized that the Pygmalion effect
might be mitigated by how long the teachers had worked with the students before being told about
the nonexistent higher expectations for the randomly selected subsample of students. We explore this
hypothesis in Subgroup meta-analysis.
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The data are saved in pupiliq.dta. Below, we describe some of the variables that will be used
in later analyses.
. use https://www.stata-press.com/data/r18/pupiliq
(Effects of teacher expectancy on pupil IQ)
. describe

Contains data from https://www.stata-press.com/data/r18/pupiliq.dta

Observations: 19 Effects of teacher expectancy

on pupil IQ
Variables: 14 24 Apr 2022 08:28
(_dta has notes)
Variable Storage Display Value
name type format label Variable label

study byte %9.0g Study number

author str20  %20s Author

year int %9.0g Publication year

nexper int %9.0g Sample size in experimental group

ncontrol int %9.0g Sample size in control group

stdmdiff double %9.0g Standardized difference in means

weeks byte %9.0g Weeks of prior teacher-student
contact

catweek byte %9.0g catwk Weeks of prior contact
(categorical)

weekl byte %9.0g catweekl Prior teacher-student contact > 1
week

se double %10.0g Standard error of stdmdiff

se_c float  %9.0g se from Pubbias book, p.322

setting byte %8.0g testtype Test setting

tester byte %8.0g tester Tester (blind or aware)

studylbl str26  %26s Study label

Sorted by:

Variables stdmdiff and se contain the effect sizes (standardized mean differences between the
experimental and control groups) and their standard errors, respectively. Variable weeks records the
number of weeks of prior contact between the teacher and the students. Its dichotomized version,
week1, records whether the teachers spent more than one week with the students (high-contact group,
weekl = 1) or one week and less (low-contact group, weekl = 0) prior to the experiment.

We perform basic meta-analysis summary of this dataset in Basic meta-analysis summary and
explore the between-study heterogeneity of the results with respect to the amount of the teacher—student
contact in Subgroup meta-analysis.

This dataset is also used in Examples of using meta summarize of [META] meta summarize,
example 5 of [META] meta forestplot, example 8 of [META] meta funnelplot, and Examples of using
meta bias of [META| meta bias.

See example 1 for the declaration of the pupiliq.dta. You can also use its predeclared version,
pupiligset.dta.

Effect of streptokinase after a myocardial infarction (strepto.dta)

Streptokinase is a medication used to break down clots. In the case of myocardial infarction (heart
attack), breaking down clots reduces damage to the heart muscle.

Lau et al. (1992) conducted a meta-analysis of 33 studies performed between 1959 and 1988. These
studies were of heart attack patients who were randomly treated with streptokinase or a placebo.
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Lau et al. (1992) introduced cumulative meta-analysis to investigate the time when the effect of
streptokinase became statistically significant. Studies were ordered by time, and as each was added
to the analysis, standard meta-analysis was performed. See Cumulative meta-analysis for details.

The data are saved in strepto.dta.

. use https://www.stata-press.com/data/r18/strepto
(Effect of streptokinase after a myocardial infarction)
. describe

Contains data from https://www.stata-press.com/data/r18/strepto.dta

Observations: 33 Effect of streptokinase after a
myocardial infarction
Variables: 7 14 May 2022 18:24
(_dta has notes)
Variable Storage Display Value
name type format label Variable label
study stri2  %12s Study name
year int %10.0g Publication year
ndeadt int %10.0g Number of deaths in treatment
group
nsurvt int %9.0g Number of survivors in treatment
group
ndeadc int %10.0g Number of deaths in control group
nsurvc int %9.0g Number of survivors in control
group
studyplus stri3  %13s Study label for cumulative MA
Sorted by:

The outcome of interest was death from myocardial infarction. Variables ndeadt and nsurvt contain
the numbers of deaths and survivals, respectively, in the treatment group and ndeadc and nsurvc
contain those in the control (placebo) group.

See example 5 for the declaration of the strepto.dta. You can also use its predeclared version,
streptoset.dta.

Efficacy of BCG vaccine against tuberculosis (bcg.dta)

BCG vaccine is a vaccine used to prevent tuberculosis (TB). The vaccine is used worldwide. Efficacy
has been reported to vary. Colditz et al. (1994) performed meta-analysis on the efficacy using 13
studies—all randomized trials—published between 1948 and 1980. The dataset, shown below, has
been studied by, among others, Berkey et al. (1995), who hypothesized that the latitude of the study
location might explain the variations in efficacy. We explore this via meta-regression in Heterogeneity:
Galbraith plot, meta-regression, and bubble plot.
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The data are saved in bcg.dta. Below, we describe some of the variables we will use in future
analyses.
. use https://www.stata-press.com/data/r18/bcg
(Efficacy of BCG vaccine against tuberculosis)
. describe

Contains data from https://www.stata-press.com/data/r18/bcg.dta

Observations: 13 Efficacy of BCG vaccine against
tuberculosis
Variables: 11 1 May 2022 14:40
(_dta has notes)
Variable Storage Display Value
name type format label Variable label
trial byte %9.0g Trial number
trialloc strid  %l4s Trial location
author str21  %21s Author
year int %9.0g Publication year
npost int %9.0g Number of TB positive cases in
treated group
nnegt long %9.0g Number of TB negative cases in
treated group
nposc int %9.0g Number of TB positive cases in
control group
nnegc long %9.0g Number of TB negative cases in
control group
latitude byte %9.0g Absolute latitude of the study
location (in degrees)
alloc byte %10.0g alloc Method of treatment allocation
studylbl str27  %27s Study label

Sorted by: trial

Variables npost and nnegt contain the numbers of positive and negative TB cases, respectively, in
the treatment group (vaccinated group) and nposc and nnegc contain those in the control group.
Variable latitude records the latitude of the study location, which is a potential moderator for the
vaccine efficacy. Studies are identified by studylbl, which records the names of the authors and the
year of the publication for each study.

This dataset is also used in example 3 of [META] meta data, Examples of using meta forestplot
of [META] meta forestplot, example 1 of [META] meta galbraithplot, example 1 of [META] meta
labbeplot, Examples of using meta regress of [META] meta regress, Remarks and examples of
[META] meta regress postestimation, and Examples of using estat bubbleplot of [META] estat
bubbleplot.

See example 7 for the declaration of the bcg.dta. You can also use its predeclared version,
bcgset.dta.

Effectiveness of nonsteroidal anti-inflammatory drugs (nsaids.dta)

Strains and sprains cause pain, and nonsteroidal anti-inflammatory drugs (NSAIDS) are used to
treat it. How well do they work? People who study such things define success as a 50-plus percent
reduction in pain. Moore et al. (1998) performed meta-analysis of 37 randomized trials that looked
into successful pain reduction via NSAIDS. Following their lead, we will explore publication bias or,
more generally, small-study effects in these data. See Funnel plots for exploring small-study effects,
Testing for small-study effects, and Trim-and-fill analysis for addressing publication bias.
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The data are saved in nsaids.dta.

. use https://www.stata-press.com/data/r18/nsaids
(Effectiveness of nonsteroidal anti-inflammatory drugs)

. describe

Contains data from https://www.stata-press.com/data/r18/nsaids.dta

Observations: 37 Effectiveness of nonsteroidal
anti-inflammatory drugs
Variables: 5 24 Apr 2022 17:09
(_dta has notes)
Variable Storage Display Value
name type format label Variable label
study byte %8.0g Study ID
nstreat byte %8.0g Number of successes in the
treatment arm
nftreat byte %9.0g Number of failures in the
treatment arm
nscontrol byte %8.0g Number of successes in the
control arm
nfcontrol byte %9.0g Number of failures in the control
arm
Sorted by:

Variables nstreat and nftreat contain the numbers of successes and failures, respectively, in the
experimental group and nscontrol and nfcontrol contain those in the control group.

This dataset is also used in Examples of using meta funnelplot of [META] meta funnelplot and
example 3 of [META] meta bias.

See example 11 for the declaration of the nsaids.dta. You can also use its predeclared version,

nsaidsset.dta.

Treatment of moderate periodontal disease (periodontal.dta)

Periodontal disease is the inflammation of the gum that may destroy the bone supporting the
teeth. Antczak-Bouckoms et al. (1993) investigated five randomized controlled trials that explored the
impact of two procedures, surgical and nonsurgical, on treating periodontal disease. This dataset was
also analyzed by Berkey et al. (1998). Subjects’ mouths were split into sections. These sections were
randomly allocated to the two treatment procedures. For each patient, at least one section was treated
surgically and at least one other section was treated nonsurgically. Two outcomes (effect sizes) of
interest were mean improvements from baseline (pretreatment) in probing depth (y1) and attachment
level (y2) around the teeth.
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The data are saved in periodontal.dta.
. use https://www.stata-press.com/data/r18/periodontal
(Treatment of moderate periodontal disease)
. describe

Contains data from https://www.stata-press.com/data/r18/periodontal.dta

Observations: 5 Treatment of moderate
periodontal disease
Variables: 9 13 Jan 2023 18:11

(_dta has notes)

Variable Storage Display Value
name type format label Variable label

trial str23  %23s Trial label

pubyear byte %9.0g Publication year centered at 1983

yi float  %6.2f Mean improvement in probing depth
(mm)

y2 float  %6.2f Mean improvement in attachment
level (mm)

vii float  %6.4f Variance of y1

vi2 float  %6.4f Covariance of yl and y2

v22 float  %6.4f Variance of y2

sl double %10.0g Standard error of yl

s2 double %10.0g Standard error of y2

Sorted by:

Other variables of interest that will be used in example 15 are the year of publication (pubyear)
and three variables defining the within-study covariance matrix for each study: v11, v12, and v22.

This dataset is also used in Examples of using meta mvregress of [META] meta mvregress.

Tour of meta-analysis commands

In this section, we provide a tour of Stata’s meta-analysis (meta) commands with applications to
several real-world datasets. We demonstrate the basic meta-analysis summary and a forest plot and
explore heterogeneity via subgroup analysis using the pupil 1Q dataset. We then demonstrate cumulative
meta-analysis using the streptokinase dataset. We continue with more heterogeneity analyses of the
BCG dataset. Finally, we explore and address publication bias for the NSAIDS dataset.

Examples are presented under the following headings:

Prepare your data for meta-analysis in Stata

Basic meta-analysis summary

Subgroup meta-analysis

Cumulative meta-analysis

Heterogeneity: Galbraith plot, meta-regression, and bubble plot
Funnel plots for exploring small-study effects

Testing for small-study effects

Trim-and-fill analysis for addressing publication bias
Multivariate meta-regression

Multilevel meta-regression
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Prepare your data for meta-analysis in Stata

The first step of meta-analysis in Stata is to declare your data as meta data. During this step, we
specify the main information needed for meta-analysis such as effect sizes and their standard errors.
We declare this information once by using either meta set or meta esize, and it is then used
by all meta commands. If needed, we can update our initial settings throughout the meta-analysis
session by using meta update. The declaration step helps minimize potential mistakes and typing;
see [META] meta data for details.

> Example 1: Set up your data for meta-analysis in Stata

Consider the pupil 1Q dataset described in Effects of teacher expectancy on pupil IQ (pupilig.dta).

. use https://www.stata-press.com/data/r18/pupiliq
(Effects of teacher expectancy on pupil IQ)

. describe studylbl stdmdiff se weekl

Variable Storage Display Value
name type format label Variable label
studylbl str26  %26s Study label
stdmdiff double %9.0g Standardized difference in means
se double %10.0g Standard error of stdmdiff
weekl byte %9.0g catweekl Prior teacher-student contact > 1

week

First, we prepare our data for use with meta commands. The dataset contains precomputed effect
sizes, standardized mean differences stored in variable stdmdiff, and their standard errors stored in
variable se. We will use meta set to declare these data. (If we needed to compute the individual effect
sizes and their standard errors from the available summary data, we would have used [META| meta
esize.)

We specify the effect sizes stdmdiff and their standard errors se with meta set. We also specify
the variable that contains the study labels in the studylabel() option and the effect-size label in
the eslabel () option. These are optional but useful for displaying the study and effect-size labels
instead of generic study numbers and the generic label Effect size.

. meta set stdmdiff se, studylabel(studylbl) eslabel(Std. mean diff.)
Meta-analysis setting information

Study information
No. of studies: 19
Study label: studylbl
Study size: N/A

Effect size
Type: <generic>
Label: Std. mean diff.
Variable: stdmdiff

Precision
Std. err.: se
CI: [_meta_cil, _meta_ciul
CI level: 95%
Model and method
Model: Random effects
Method: REML

The header reports that there are K = 19 studies in the meta-analysis and which variables contain
the study labels, the effect sizes, and the standard errors. The output also shows that we will be
using the random-effects model with the REML estimation method for our meta-analysis. This can be
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changed by specifying options with either meta set or the meta command of interest; see Declaring
a meta-analysis model in [META] meta data.

meta set creates some system variables beginning with _meta_ and stores some data characteristics.
For example, the system variables _meta_cil and _meta_ciu store the lower and upper limits of
the CIs for the effect sizes. See System variables in [META] meta data for details.

See [META]| meta set for more information about the command.

Basic meta-analysis summary

In this section, we focus on basic meta-analysis summary by using [META| meta summarize and
[META]| meta forestplot. See Introduction of [META| meta summarize and Overview of [META] meta
forestplot for an overview of the meta-analysis summary and forest plots.

> Example 2: Meta-analysis summary

Continuing with example 1, we use meta summarize to combine the studies and estimate the
overall effect size.

. meta summarize
Effect-size label: Std. mean diff.
Effect size: stdmdiff
Std. err.: se
Study label: studylbl

Meta-analysis summary Number of studies = 19

Random-effects model Heterogeneity:
Method: REML tau2 = 0.0188
I2 (X)) = 41.84
H2 = 1.72

Effect size: Std. mean diff.
Study Effect size [95% conf. intervall ¥ weight
Rosenthal et al., 1974 0.030 -0.215 0.275 7.74
Conn et al., 1968 0.120 -0.168 0.408 6.60
Jose & Cody, 1971 -0.140 -0.467 0.187 5.71
Pellegrini & Hicks, 1972 1.180 0.449 1.911 1.69
Pellegrini & Hicks, 1972 0.260 -0.463 0.983 1.72
Evans & Rosenthal, 1969 -0.060 -0.262 0.142 9.06
Fielder et al., 1971 -0.020 -0.222 0.182 9.06
Claiborn, 1969 -0.320 -0.751 0.111 3.97
Kester, 1969 0.270 -0.051 0.591 5.84
Maxwell, 1970 0.800 0.308 1.292 3.26
Carter, 1970 0.540 -0.052 1.132 2.42
Flowers, 1966 0.180 -0.257 0.617 3.89
Keshock, 1970 -0.020 -0.586 0.546 2.61
Henrikson, 1970 0.230 -0.338 0.798 2.59
Fine, 1972 -0.180 -0.492 0.132 6.05
Grieger, 1970 -0.060 -0.387 0.267 5.71
Rosenthal & Jacobson, 1968 0.300 0.028 0.572 6.99
Fleming & Anttonen, 1971 0.070 -0.114 0.254 9.64
Ginsburg, 1970 -0.070 -0.411 0.271 5.43
theta 0.084 -0.018 0.185

Test of theta = 0: z = 1.62 Prob > |z| = 0.1052
Test of homogeneity: Q = chi2(18) = 35.83 Prob > Q = 0.0074
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The output from the standard meta-analysis summary includes heterogeneity statistics, the individual
and overall effect sizes, and other information. The estimate of the overall effect size 6 is reported at
the bottom of the table and labeled as theta. It is computed as the weighted average of study-specific
effect sizes (standardized mean differences in our example). For these data, the overall estimate is
0.084 with a 95% CI of [—0.018,0.185]. The significance test of Hy: 6 = 0 is reported below the table
and has a p-value of 0.1052, which suggests that the overall effect size is not statistically significantly
different from zero.

We should be careful with our inferential conclusions about 6 because of the presence of between-
study heterogeneity, as indicated, for instance, by the homogeneity test of Hy: 6y = 6y = --- =
019 = 0 reported following the significance test. Its () test statistic is 35.83 with a p-value of 0. 0074
from which we can infer that there is significant heterogeneity between the individual studies.

The presence of heterogeneity among studies can be inferred also from the heterogeneity statistics
reported in the header. For instance, [ 2 = 41.84 indicates that about 42% of the variability in the
effect-size estimates is due to the differences between studies. The between-study heterogeneity must
be addressed before final meta-analytic conclusions; see Subgroup meta-analysis.

The table also reports the study-specific effect-sizes and their corresponding 95% CIs, but this
information can be suppressed, if desired, by specifying the nostudies option.

See [META| meta summarize for details.

> Example 3: Forest plot

The results of meta-analysis are commonly displayed graphically using a forest plot. Continuing
with example 2, we can use meta forestplot to produce a meta-analysis forest plot for the pupil
IQ data.



32 meta — Introduction to meta

. meta forestplot

Effect-size label: Std. mean diff.

Effect size: stdmdiff
Std. err.: se
Study label: studylbl
Std. mean diff. ~ Weight
Study with 95% CI (%)
Rosenthal et al., 1974 —- 0.03[-0.21, 0.27] 7.74
Conn et al., 1968 —— 0.12[-0.17, 0.41] 6.60
Jose & Cody, 1971 —— -0.14[-0.47, 0.19] 5.71
Pellegrini & Hicks, 1972 —®— 1.18[ 045, 1.91] 1.69
Pellegrini & Hicks, 1972 —_— 0.26 [-0.46, 0.98] 1.72
Evans & Rosenthal, 1969 B -0.06 [ -0.26, 0.14] 9.06
Fielder et al., 1971 - -0.02[-0.22, 0.18] 9.06
Claiborn, 1969 —a— -0.32[-0.75, 0.11] 3.97
Kester, 1969 —— 0.27[-0.05, 0.59] 5.84
Maxwell, 1970 —— 0.80[ 0.31, 1.29] 3.26
Carter, 1970 — 0.54[-0.05, 1.13] 2.42
Flowers, 1966 —— 0.18[-0.26, 0.62] 3.89
Keshock, 1970 — -0.02[-0.59, 0.55] 2.61
Henrikson, 1970 —a— 0.23[-0.34, 0.80] 2.59
Fine, 1972 —— -0.18[-0.49, 0.13] 6.05
Grieger, 1970 —— -0.06[-0.39, 0.27] 5.71
Rosenthal & Jacobson, 1968 —l— 0.30[ 0.03, 0.57] 6.99
Fleming & Anttonen, 1971 B 0.07[-0.11, 0.25] 9.64
Ginsburg, 1970 —.— -0.07[-0.41, 0.27] 543
Overall < 0.08[-0.02, 0.18]
Heterogeneity: 1> = 0.02, I* = 41.84%, H* = 1.72
Test of 6, = 6 Q(18) = 35.83, p = 0.01
Testof 6=0:z=1.62,p=0.11
8 1

Random-effects REML model

We obtain the same meta-analysis summary as with meta summarize in example 2, but it is now
displayed on a graph. In addition to the estimated values, the effect sizes are displayed graphically
as blue squares centered at their estimates with areas proportional to the study weights and with
horizontal lines or whiskers that represent the length of the corresponding CIs. The overall effect size
is displayed as a green diamond with its width corresponding to the respective CI. (Notice that only

the width and not the height of the diamond is relevant for the overall effect size.)

A forest plot provides an easy way to visually explore the agreement between the study-specific
effect sizes and how close they are to the overall effect size. We can also spot the studies with large
weights more easily by simply looking at the studies with large squares. In our example, the presence
of between-study heterogeneity is evident—there are several studies whose effect-size estimates are

very different from the overall estimate, and there are studies whose CIs do not even overlap.

See [META] meta forestplot for details.
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Subgroup meta-analysis

In example 2 and example 3, we established the presence of between-study heterogeneity in
the pupil 1Q dataset. Sometimes, the differences between studies may be explained by study-level
covariates available in the data. When these covariates are categorical, we can perform meta-analysis
separately for each category, which is known as subgroup meta-analysis; see Subgroup meta-analysis
of [META] Intro.

> Example 4: Subgroup meta-analysis

Raudenbush (1984) suspected that the amount of time the teachers spent with students before the
experiment could impact their susceptibility to researchers’ test results about children’s intellectual
abilities. If so, we would expect the effect sizes to be negatively associated with the amount of contact.

Continuing with example 2, we see that the dataset contains a binary variable week1 that records
whether the teachers spend more than one week with children (high-contact group) or one week and
less (low-contact group). Let’s perform meta-analysis separately for each group. Under Raudenbush’s
hypothesis, we should expect to see larger effect sizes in the low-contact group and smaller effect
sizes in the high-contact group.

We use the subgroup() option with meta summarize to perform a separate analysis for each
group of week1.
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. meta summarize, subgroup(weekl)

Effect-size label: Std. mean diff.
Effect size: stdmdiff
Std. err.: se
Study label: studylbl

Subgroup meta-analysis summary Number of studies = 19
Random-effects model

Method: REML

Group: weekl

Effect size: Std. mean diff.

Study Effect size [95% conf. interval] ¥ weight
Group: <= 1 week
Pellegrini & Hicks, 1972 1.180 0.449 1.911 1.69
Pellegrini & Hicks, 1972 0.260 -0.463 0.983 1.72
Kester, 1969 0.270 -0.051 0.591 5.84
Maxwell, 1970 0.800 0.308 1.292 3.26
Carter, 1970 0.540 -0.052 1.132 2.42
Flowers, 1966 0.180 -0.257 0.617 3.89
Keshock, 1970 -0.020 -0.586 0.546 2.61
Rosenthal & Jacobson, 1968 0.300 0.028 0.572 6.99
theta 0.373 0.189 0.557
Group: > 1 week
Rosenthal et al., 1974 0.030 -0.215 0.275 7.74
Conn et al., 1968 0.120 -0.168 0.408 6.60
Jose & Cody, 1971 -0.140 -0.467 0.187 5.71
Evans & Rosenthal, 1969 -0.060 -0.262 0.142 9.06
Fielder et al., 1971 -0.020 -0.222 0.182 9.06
Claiborn, 1969 -0.320 -0.751 0.111 3.97
Henrikson, 1970 0.230 -0.338 0.798 2.59
Fine, 1972 -0.180 -0.492 0.132 6.05
Grieger, 1970 -0.060 -0.387 0.267 5.71
Fleming & Anttonen, 1971 0.070 -0.114 0.254 9.64
Ginsburg, 1970 -0.070 -0.411 0.271 5.43
theta -0.021 -0.102 0.059
Overall
theta 0.084 -0.018 0.185
Heterogeneity summary
Group df Q P>Q tau2 % 12 H2
<= 1 week 7 11.20 0.130 0.015 22.40 1.29
> 1 week 10 6.40 0.780 0.000 0.00 1.00
Overall 18 35.83 0.007 0.019 41.84 1.72

Test of group differences: Q_b = chi2(1) = 14.77 Prob > Q_b = 0.000
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Indeed, if we look at the overall effect-size estimates for each group, the low-contact group has a
larger estimate of 0.373 with a 95% CI of [0.189,0.557], which suggests a statistically significant
effect in this group, whereas the high-contact group has a smaller estimate of —0.021 with a 95% CI of
[—0.102, 0.059], which suggests that the effect in this group is not different from 0 at a 5% significance
level. Clearly, the amount of teacher contact with students has an impact on the meta-analysis results.

If we look at the heterogeneity summary reported following the main table, we will see that
heterogeneity is reduced within each group. It is essentially nonexistent in the high-contact group and
is much smaller (for instance, I? = 22% versus the earlier 12 = 42%) in the low-contact group.

The test of group differences (with @, = 14.77 and the corresponding p-value of 0.000) reported
at the bottom of the output also indicates that the group-specific overall effect sizes are statistically
different.

We can also present the results of our subgroup analysis graphically by using the subgroup ()
option with meta forest:
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. meta forestplot, subgroup(weekl)

Effect-size label: Std. mean diff.
Effect size: stdmdiff
Std. err.: se
Study label: studylbl

Std. mean diff. ~ Weight

Study with 95% ClI (%)
<=1 week

Pellegrini & Hicks, 1972 —®—— 1.18][ 045, 1.91] 1.69
Pellegrini & Hicks, 1972 - 0.26[-0.46, 0.98] 1.72
Kester, 1969 —— 0.27[-0.05, 0.59] 5.84
Maxwell, 1970 —a— 0.80[ 0.31, 1.29] 3.26
Carter, 1970 R 0.54[-0.05, 1.13] 2.42
Flowers, 1966 —a— 0.18[-0.26, 0.62] 3.89
Keshock, 1970 . -0.02[-0.59, 0.55] 2.61
Rosenthal & Jacobson, 1968 —— 0.30[ 0.03, 0.57] 6.99
Heterogeneity: T° = 0.02, I = 22.40%, H* = 1.29 <o 0.37[ 0.19, 0.56]
Testof 6,=6;: Q(7) =11.20,p=0.13

Testof 6=0:z=3.97, p=0.00

> 1 week

Rosenthal et al., 1974 — 0.03[-0.21, 0.27] 7.74
Conn et al., 1968 —— 0.12[-0.17, 0.41] 6.60
Jose & Cody, 1971 . -0.14[-0.47, 0.19] 5.71
Evans & Rosenthal, 1969 -l -0.06[-0.26, 0.14] 9.06
Fielder et al., 1971 -l -0.02[-0.22, 0.18] 9.06
Claiborn, 1969 — -0.32[-0.75, 0.11] 3.97
Henrikson, 1970 —— 0.23[-0.34, 0.80] 2.59
Fine, 1972 —— -0.18[-0.49, 0.13] 6.05
Grieger, 1970 —— -0.06[-0.39, 0.27] 5.71
Fleming & Anttonen, 1971 E 3 0.07[-0.11, 0.25] 9.64
Ginsburg, 1970 —— -0.07[-0.41, 0.27] 5.43
Heterogeneity: T = 0.00, I* = 0.00%, H* = 1.00 Q -0.02 [ -0.10, 0.06]

Test of 6, = 6;: Q(10) = 6.40,p =0.78

Testof 6 =0: z=-0.52, p = 0.60

Overall ¢ 0.08[-0.02, 0.18]

Heterogeneity: T° = 0.02, I = 41.84%, H> = 1.72
Test of 6, = 6;: Q(18) = 35.83, p=0.01
Testof 6=0:z=1.62, p=0.11

Test of group differences: Q,(1) = 14.77, p = 0.00

Random-effects REML model

It appears that stratifying our meta-analysis on the amount of prior contact between students and
teachers explained most of the variability in the magnitudes of the effect sizes, at least in the
high-contact group.

d

When interpreting results from subgroup analysis, we should be mindful that the results are based
on fewer studies and thus may not be as precise, in general.

See [META] meta summarize and [META| meta forestplot.
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Cumulative meta-analysis

Cumulative meta-analysis performs multiple meta-analyses by accumulating studies one at a time
after ordering them with respect to a variable of interest. This analysis is useful to monitor the trend
in the estimates of the overall effect sizes with respect to some factor. For instance, it may be used
to detect the time when the effect size of interest became significant.

> Example 5: Computing log odds-ratios using meta esize

Consider the streptokinase dataset described in Effect of streptokinase after a myocardial infarction
(strepto.dta).
. use https://www.stata-press.com/data/r18/strepto, clear
(Effect of streptokinase after a myocardial infarction)
. describe

Contains data from https://www.stata-press.com/data/r18/strepto.dta

Observations: 33 Effect of streptokinase after a
myocardial infarction
Variables: 7 14 May 2022 18:24
(_dta has notes)
Variable Storage Display Value
name type format label Variable label
study stri2  %12s Study name
year int %10.0g Publication year
ndeadt int %10.0g Number of deaths in treatment
group
nsurvt int %9.0g Number of survivors in treatment
group
ndeadc int %10.0g Number of deaths in control group
nsurvc int %9.0g Number of survivors in control
group
studyplus str13  %13s Study label for cumulative MA
Sorted by:

As in example 1, first we prepare our data for use with meta commands. Our dataset contains the
summary data that represent the study-specific 2 X 2 tables. The variables ndeadt, nsurvt, ndeadc,
and nsurvc record the numbers of deaths and survivors in the treatment and control groups.

Lau et al. (1992) considered an odds ratio as the effect size of interest for these data. For odds ratios,
meta-analysis is performed in the log metric. We can use meta esize to compute study-specific log
odds-ratios and their corresponding standard errors and declare them for the subsequent meta-analysis.
To compute log odds-ratios, we specify the four variables containing table cell counts with meta
esize. As with meta set in example 1, we specify the study labels in the studylabel() option
with meta esize.
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. meta esize ndeadt nsurvt ndeadc nsurvc, studylabel(studyplus) common
Meta-analysis setting information

Study information
No. of studies: 33
Study label: studyplus
Study size: _meta_studysize
Summary data: ndeadt nsurvt ndeadc nsurvc

Effect size
Type: lnoratio
Label: Log odds-ratio
Variable: _meta_es
Zero-cells adj.: 0.5, onlyO

Precision
Std. err.: _meta_se

CI: [_meta_cil, _meta_ciul
CI level: 95Y%

Model and method
Model: Common effect
Method: Mantel-Haenszel

meta esize reports that there are 33 trials and that the computed effect size is log odds-ratio. This
is the default effect size with a two-group comparison of binary outcomes. You can specify other
effect sizes in the esize() option, which include a log risk-ratio, risk difference, and log Peto’s
odds-ratio. (After the declaration, you can use meta update to change the effect size more easily
without having to respecify your summary data variables; see [META] meta update.)

Lau et al. (1992) used a common-effect model with the Mantel-Haenszel method to perform their
cumulative meta-analysis. We will follow their approach. Thus, we also specified the common option
with meta esize. The command reported that the assumed meta-analysis model is a common-effect
model. The Mantel-Haenszel estimation method is the default method for log odds-ratios under a
common-effect model.

N

> Example 6: Cumulative meta-analysis

After the data declaration in example 5, we are ready to perform the cumulative meta-analysis. Lau
et al. (1992) used cumulative meta-analysis to investigate the trends in the effect of the streptokinase
drug used to prevent death after a myocardial infarction. We replicate their analysis below by producing
a cumulative meta-analysis plot over the years for these data. Also see Borenstein, Hedges, Higgins,
and Rothstein (2009) for the analysis of these data.

We use the meta forestplot command with the cumulative() option. We use the or option
to display odds ratios instead of the default log odds-ratios. To match figure 1 in Lau et al. (1992)
more closely, we also specify the crop(0.5 .) option to crop the lower CI limits and log odds-ratios
estimates that are smaller than 0.5.
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meta forestplot, cumulative(year) or crop(0.5 .)

Effect-size label: Log odds-ratio
Effect size: _meta_es
Std. err.: _meta_se
Study label: studyplus

Odds ratio
Study with 95% CI p-value year
Fletcher 0.16[0.01, 1.73] 0.131 1959
+Dewar — 0.35[0.10, 1.14] 0.081 1963
+European 1 0.95[0.51, 1.76] 0.874 1969
+European2 @ ————— 0.70[0.52, 0.95] 0.023 1971
+Heikinheimo —_— 0.78[0.59, 1.02] 0.072 1971
+ltalian —_— 0.81[0.62, 1.04] 0.097 1971
+Australian 1 —_—— 0.80[0.63, 1.00] 0.054 1973
+Franfurt 2 —_— 0.74[0.59, 0.92] 0.007 1973
+NHLBI SMIT e 0.77[0.62, 0.95] 0.015 1974
+Frank —_— 0.77[0.62, 0.95] 0.016 1975
+Valere —_— 0.78[0.63, 0.96] 0.020 1975
+Klein —— 0.79[0.64, 0.97] 0.027 1976
+UK-Collab —— 0.81[0.67, 0.98] 0.029 1976
+Austrian — 0.76[0.64, 0.91] 0.002 1977
+Australian 2 — 0.75[0.64, 0.89] 0.001 1977
+Lasierra — 0.75[0.63, 0.88] 0.001 1977
+N Ger Collab — 0.80[0.68, 0.93] 0.004 1977
+Witchitz — 0.80[0.68, 0.93] 0.004 1977
+European 3 — 0.78[0.67, 0.91] 0.001 1979
+ISAM — 0.79[0.69, 0.91] 0.001 1986
+GISSI-1 —— 0.80[0.73, 0.87] 0.000 1986
+Olson —— 0.80[0.73, 0.87] 0.000 1986
+Baroffio —— 0.80[0.73, 0.87] 0.000 1986
+Schreiber —— 0.79[0.73, 0.87] 0.000 1986
+Cribier —— 0.80[0.73, 0.87] 0.000 1986
+Sainsous —— 0.79[0.73, 0.87] 0.000 1986
+Durand —— 0.79[0.73, 0.86] 0.000 1987
+White —— 0.79[0.72, 0.86] 0.000 1987
+Bassand —e— 0.79[0.72, 0.86] 0.000 1987
+Vlay —— 0.78[0.72, 0.86] 0.000 1988
+Kennedy —— 0.78[0.72, 0.85] 0.000 1988
+ISIS-2 —— 0.77[0.72, 0.82] 0.000 1988
+Wisenberg —— 0.76[0.72, 0.82] 0.000 1988

172 1

Common-effect Mantel-Haenszel model
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The cumulative meta-analysis forest plot displays the overall effect-size estimates and the corresponding
CIs computed for the first study, for the first two studies, for the first three studies, and so on. The
point estimates are represented by green circles, and the ClIs are represented by the CI lines. The
change in style and color of the plotted markers emphasizes that the (cumulative) overall effect sizes
and not the study-specific effect sizes are being plotted.

The “4” sign in front of the study label we used for this analysis (variable studyplus) indicates
that each subsequent study is being added to the previous ones for each analysis. In addition to the
ordered values of the specified variable of interest (year in our example), the plot also displays the
p-values corresponding to the tests of significance of the computed overall effect sizes.

For example, the cumulative odds ratio in the fourth row marked as +European 2 is 0.70 with
a 95% C1 of [0.52, 0.95] and a p-value of 0.023. So, based on the first four trials, the overall odds
of death is roughly 30% less in the treatment group (treated with streptokinase) compared with the
placebo group.

Notice that the first two odds-ratio estimates (and their lower CI limits) are smaller than 0.5.
Because we used the crop(0.5 .) option, their values are not displayed on the graph. Instead, the
arrowheads are displayed at the lower ends of the CI lines to indicate that the lower limits and the
effect-size estimates are smaller than 0.5.

Borenstein, Hedges, Higgins, and Rothstein (2009) states that with the inclusion of additional trials
in the cumulative meta-analysis, the overall effect sizes become more uniform because the chance of
any new trial reporting a drastically different overall effect size is low. Also, the CIs become more
narrow because the precision increases as more data become available.

If we look back at the plot, we will notice that starting from 1977, the overall effect size becomes
(and stays) highly significant over the next decade of additional trials. Lau et al. (1992) and Borenstein
et al. (2009, chap. 42) noted that if cumulative meta-analysis was used at that time to monitor the
accumulated evidence from the trials, perhaps, the benefits from streptokinase could have been adopted
in practice as early as 1977.

We can also obtain the same results as above but in a table by using meta summarize.
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. meta summarize, cumulative(year) or

Effect-size label: Log odds-ratio
Effect size: _meta_es
Std. err.: _meta_se
Study label: studyplus

Cumulative meta-analysis summary Number of studies = 33
Common-effect model

Method: Mantel-Haenszel

Order variable: year

Study 0dds ratio [95%, conf. interval] p-value year
Fletcher 0.159 0.015 1.732 0.131 1959
+Dewar 0.345 0.104 1.141 0.081 1963
+European 1 0.952 0.514 1.760 0.874 1969
+European 2 0.702 0.517 0.951 0.023 1971
+Heikinheimo 0.776 0.589 1.023 0.072 1971
+Italian 0.806 0.624 1.040 0.097 1971
+Australian 1 0.796 0.632 1.004 0.054 1973
+Franfurt 2 0.740 0.594 0.921 0.007 1973
+NHLBI SMIT 0.765 0.616 0.950 0.015 1974
+Frank 0.770 0.623 0.953 0.016 1975
+Valere 0.781 0.635 0.962 0.020 1975
+Klein 0.792 0.644 0.974 0.027 1976
+UK-Collab 0.809 0.670 0.979 0.029 1976
+Austrian 0.762 0.641 0.906 0.002 1977
+Australian 2 0.751 0.636 0.887 0.001 1977
+Lasierra 0.746 0.632 0.881 0.001 1977

+N Ger Collab 0.797 0.683 0.930 0.004 1977
+Witchitz 0.797 0.683 0.928 0.004 1977
+European 3 0.781 0.673 0.906 0.001 1979
+ISAM 0.793 0.690 0.910 0.001 1986
+GISSI-1 0.801 0.734 0.874 0.000 1986
+0lson 0.800 0.733 0.873 0.000 1986
+Baroffio 0.796 0.730 0.869 0.000 1986
+Schreiber 0.795 0.729 0.867 0.000 1986
+Cribier 0.795 0.729 0.868 0.000 1986
+Sainsous 0.794 0.728 0.866 0.000 1986
+Durand 0.793 0.727 0.865 0.000 1987
+White 0.787 0.721 0.858 0.000 1987
+Bassand 0.785 0.721 0.856 0.000 1987
+Vlay 0.785 0.720 0.856 0.000 1988
+Kennedy 0.783 0.718 0.853 0.000 1988
+ISIS-2 0.766 0.718 0.817 0.000 1988
+Wisenberg 0.765 0.717 0.816 0.000 1988

See [META] meta summarize and [META]| meta forestplot.

Heterogeneity: Galbraith plot, meta-regression, and bubble plot

The Galbraith plot (Galbraith 1988) is mainly used to assess heterogeneity of the studies and detect
potential outliers. It may also be an alternative to forest plots for summarizing meta-analysis results,
especially when there are many studies. See [META] meta galbraithplot.

Meta-regression performs a weighted linear regression of effect sizes on moderators; see [META| meta
regress. With one moderator, the relationship between the effect sizes and the moderator may be
further explored via a bubble plot after meta-regression; see [META] estat bubbleplot.
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In this section, we will demonstrate how to use Galbraith plots, meta-regression, and bubble plots
to assess heterogeneity and examine relationships between effects sizes and moderators.

> Example 7: Computing log risk-ratios using meta esize

Consider the BCG dataset described in Efficacy of BCG vaccine against tuberculosis (bcg.dta).

. use https://www.stata-press.com/data/r18/bcg, clear
(Efficacy of BCG vaccine against tuberculosis)

. describe studylbl npost nnegt nposc nnegc latitude

Variable Storage Display Value
name type format label Variable label

studylbl str27  %27s Study label

npost int %9.0g Number of TB positive cases in
treated group

nnegt long %9.0g Number of TB negative cases in
treated group

nposc int %9.0g Number of TB positive cases in
control group

nnegc long %9.0g Number of TB negative cases in
control group

latitude byte %9.0g Absolute latitude of the study

location (in degrees)

As in example 5, this dataset also records summary data for a two-group comparison of binary
outcomes, so we will again use meta esize to compute our effect sizes.

In this example, our effect size of interest is a risk ratio. Just like with odds ratios, the meta-analysis
of risk ratios is performed in the log metric, so we will be computing log risk-ratios.

. meta esize npost nnegt nposc nnegc, esize(lnrratio) studylabel(studylbl)
Meta-analysis setting information

Study information
No. of studies: 13
Study label: studylbl
Study size: _meta_studysize
Summary data: npost nnegt nposc nnegc

Effect size
Type: lnrratio
Label: Log risk-ratio
Variable: _meta_es
Zero-cells adj.: None; no zero cells
Precision
Std. err.: _meta_se
CI: [_meta_cil, _meta_ciu]
CI level: 95%
Model and method
Model: Random effects
Method: REML

Our specification of meta esize is similar to that from example 5, except here we specify the
esize(lnrratio) option to compute log risk-ratios instead of the default log odds-ratios.
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The output indicates that there are K = 13 studies in the meta-analysis and the default random-
effects meta-analysis model (with the REML estimation method) will be used.

N

Let’s investigate the presence of heterogeneity in these data. For the purpose of illustration, we
will do this using a Galbraith plot; see [META] meta galbraithplot.

> Example 8: Galbraith plot

We use meta galbraithplot to produce a Galbraith plot for the BCG data.

. meta galbraithplot

Effect-size label: Log risk-ratio
Effect size: _meta_es
Std. err.: _meta_se
Model: Common effect
Method: Inverse-variance

Galbraith plot

o

95% ClI
°  Studies
Regression line
—— No effect

&
1

Standardized log risk-ratio (6/se;)

-10 T T T 1
0 5 10 15 20

Precision (1/se))

sej: estimated g;

The blue circles form a scatterplot of the study-specific standardized log risk-ratios against study
precisions. Studies that are close to the y axis have low precision. Precision of studies increases as
you move toward the right on the x axis.

The reference black line (y = 0) represents the “no-effect” line. If a circle is above the reference
line, the risk in the treatment group is higher than the risk in the control group for that study.
Conversely, if a circle is below the line, the risk in the treatment group is lower than the risk in the
control group.

The red line is the regression line through the origin. The slope of this line equals the estimate
of the overall effect size. In the absence of substantial heterogeneity, we expect around 95% of the
studies to lie within the 95% CI region (shaded area). In our example, there are 6 (out of 13) trials
that are outside the CI region. We should suspect the presence of heterogeneity in these data, and we
will investigate the reasons behind it in example 9. For more interpretation of the above Galbraith

plot, see [META] meta galbraithplot.
d

We have established that there is heterogeneity among the studies. Let’s explore this further using
meta-regression.
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> Example 9: Meta-regression

As we discussed in Subgroup meta-analysis, when effect sizes vary greatly between different
subgroups, one can perform separate meta-analysis on each subgroup to account for the between-
study heterogeneity. But what if there is an association between the effect sizes and other study-level
covariates or moderators that may be continuous? Meta-regression addresses this problem. Its goal
is to investigate whether the differences between the effect sizes can be explained by one or more
moderators. See Introduction of [META] meta regress.

The efficacy of the BCG vaccine against TB may depend on many factors such as the presence
of environmental mycobacteria that provides some immunity to TB. Berkey et al. (1995) suggested
that the distance of a study from the equator (the absolute latitude) may be used as a proxy for the
presence of environmental mycobacteria and perhaps explain the lower efficacy of the BCG vaccine
against TB in some studies. Borenstein et al. (2009) also commented that, in hotter climates, the
vaccine may lose potency and certain bacteria necessary for the vaccine to work well are less likely
to survive with more exposure to sunlight.

Following Berkey et al. (1995), we will explore these observations by using meta regress with
the centered latitude as the moderator.

First, we generate a new variable, latitude_c, that is the mean-centered version of latitude.
The mean value of latitude, 33.46, can be thought of as the latitude of the city of Atlanta in the
United States or the city of Beirut in Lebanon.

. summarize latitude, meanonly
. generate double latitude_c = latitude - r(mean)

. label variable latitude_c "Mean-centered latitude"

We then fit meta-regression with latitude_c as the moderator.

. meta regress latitude_c

Effect-size label: Log risk-ratio
Effect size: _meta_es

Std. err.: _meta_se

Random-effects meta-regression Number of obs = 13

Method: REML Residual heterogeneity:
tau2 = .07635
12 (W) = 68.39
H2 = 3.16
R-squared (%) = 75.63
Wald chi2(1) = 16.36
Prob > chi2 = 0.0001
_meta_es Coefficient Std. err. z P>|z]| [95% conf. intervall
latitude_c -.0291017 .0071953 -4.04 0.000 -.0432043 -.0149991
_cons -.7223204 .1076535 -6.71  0.000 -.9333174 -.5113234

Test of residual homogeneity: Q_res = chi2(11) = 30.73 Prob > Q_res = 0.0012

The regression coefficient for latitude_c is —0.0291, which means that every one degree of latitude
corresponds to a decrease of 0.0291 units in the log risk-ratio. In other words, the vaccine appears
to work better in colder climates.

The proportion of between-study variance explained by the covariates can be assessed via the R?
statistic. Here roughly 76% of the between-study variance is explained by the covariate latitude_c.
From the value of 7?2 in the output, roughly 68% of the residual variation is due to heterogeneity,
which may potentially be explained by other covariates, with the other 32% due to the within-study
sampling variability.
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The test statistic for residual homogeneity, Q,cs, is 30.73 with a p-value of 0.0012, so the null
hypothesis of no residual heterogeneity is rejected, which is consistent with the reported residual
heterogeneity summaries.

See [META] meta regress for more examples.

> Example 10: Bubble plot

Whenever there is one continuous covariate in the meta-regression, we may explore the relationship
between the effect sizes and that covariate via a bubble plot using the estat bubbleplot command.
Continuing with example 9, we explore the relationship between the log risk-ratios and latitude_c.

. estat bubbleplot

Bubble plot

95% ClI
Studies
— Linear prediction

Log risk-ratio

-20 -10 0 10 20
Mean-centered latitude
Weights: Inverse-variance

The bubble plot is a scatterplot of effect sizes and covariate values. Each study is represented by
a circle with the size of the circle proportional to the effect-size precision, 1/’0\]2-. The fitted line
(predicted log risk-ratios) is also plotted on the graph.

The log risk-ratio for the BCG vaccine decreases as the distance from the equator increases. The plot
also reveals a few outlying studies that require more thorough investigation. We continue exploring
this model in [META] meta regress postestimation.

See [META] estat bubbleplot.

Funnel plots for exploring small-study effects

A funnel plot (Light and Pillemer 1984) plots study-specific effect sizes against measures of study
precision such as standard errors. This plot is commonly used to explore publication bias or, more
precisely, small-study effects. Small-study effects (Sterne, Gavaghan, and Egger 2000) arise when
smaller studies tend to report different results such as larger effect-size estimates than larger studies.
In the absence of small-study effects, the shape of the plot should resemble a symmetric inverted
funnel.
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Publication bias arises when smaller studies with nonsignificant findings are being suppressed from
publication. It is one of the more common reasons for the presence of small-study effects, which
leads to the asymmetry of the funnel plot. Another common reason for the asymmetry in the funnel
plot is the presence of between-study heterogeneity.

See Introduction in [META] meta funnelplot for details.

> Example 11: Funnel plot

Let’s explore the funnel-plot asymmetry for the NSAIDS dataset described in Effectiveness of
nonsteroidal anti-inflammatory drugs (nsaids.dta).
. use https://www.stata-press.com/data/r18/nsaids, clear
(Effectiveness of nonsteroidal anti-inflammatory drugs)
. describe

Contains data from https://www.stata-press.com/data/r18/nsaids.dta

Observations: 37 Effectiveness of nonsteroidal
anti-inflammatory drugs
Variables: 5 24 Apr 2022 17:09
(_dta has notes)
Variable Storage Display Value
name type format label Variable label
study byte %8.0g Study ID
nstreat byte %8.0g Number of successes in the
treatment arm
nftreat byte %9.0g Number of failures in the
treatment arm
nscontrol byte %8.0g Number of successes in the
control arm
nfcontrol byte %9.0g Number of failures in the control
arm
Sorted by:

As before, our first step is to declare our data. nsaids.dta records summary data for a two-group
comparison of binary outcomes, so we will again use meta esize to compute our effect sizes as in
example 5 and example 7.
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Our effect size of interest is an odds ratio, so we can use the default specification of meta esize.

. meta esize nstreat-nfcontrol

Meta-analysis setting information

Study information
No. of studies:
Study label:
Study size:
Summary data:

Effect size
Type:

Label:

Variable:
Zero-cells adj.:

Precision

Std. err.:

CI:

CI level:

Model and method
Model:

Method:

37

Generic

_meta_studysize

nstreat nftreat nscontrol nfcontrol

Ilnoratio

Log odds-ratio
_meta_es

0.5, only0O

_meta_se
[_meta_cil, _meta_ciu]
95%

Random effects
REML

In the above, instead of listing all four variables with meta esize as we did in previous examples, we
use one of the varlist shortcuts (see [U] 11.4 varname and varlists) to include all variables between

nstreat and nfcontrol.

We could do this because our variables appear in the dataset in the same

order they need to be listed with meta esize: numbers of successes and failures in the treatment

group followed by those in the control group.

There are K = 37 trials in this dataset. We will continue using the default random-effects
meta-analysis model with the REML estimation method.

We use meta funnelplot to produce a funnel plot for the NSAIDS data.

. meta funnelplot

Effect-size label:

Log odds-ratio

Effect size: _meta_es
Std. err.: _meta_se
Model: Common effect
Method: Inverse-variance
Funnel plot
04
L]
®q o @
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. .
_ 51 e ,.‘ o®
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On a funnel plot, the more precise trials (with smaller standard errors) are displayed at the top of
the funnel, and the less precise ones (with larger standard errors) are displayed at the bottom. The
red reference line is plotted at the estimate of the overall effect size, the overall log odds-ratio in our
example. In the absence of small-study effects, we would expect the points to be scattered around
the reference line with the effect sizes from smaller studies varying more around the line than those
from larger studies, forming the shape of an inverted funnel.

In our plot, there is an empty space in the bottom left corner. This suggests that the smaller trials
with log odds-ratio estimates close to zero may be missing from the meta-analysis.

See [META] meta funnelplot for more examples.

> Example 12: Contour-enhanced funnel plot

The asymmetry is evident in the funnel plot from example 11, but we do not know the cause for
this asymmetry. The asymmetry can be the result of publication bias or may be because of other
reasons. The so-called contour-enhanced funnel plots can help determine whether the asymmetry of
the funnel plot is because of publication bias. The contour lines that correspond to certain levels of
statistical significance (1%, 5%, and 10%) of tests of individual effects are overlaid on the funnel plot.
Generally, publication bias is suspect when smaller studies are missing in the nonsignificant regions.

Let’s add the 1%, 5%, and 10% significance contours to our funnel plot by specifying them in
the contours() option.

. meta funnelplot, contours(l 5 10)

Effect-size label: Log odds-ratio
Effect size: _meta_es
Std. err.: _meta_se
Model: Common effect
Method: Inverse-variance

Contour-enhanced funnel plot

1% <p<5%
I 5% < p <10%
I > 10%
* Studies
Estimated 6,,

Standard error

159

T

4 -2 0 2 4
Log odds-ratio

From this plot, we can see that the reported effects of almost all smaller trials (those at the bottom
of the funnel) are statistically significant at a 5% level and less. On the other hand, a fair number of
the larger trials (at the top of the funnel) reported nonsignificant results. For the funnel plot to look
symmetric with respect to the reference line, we should have observed some trials in the middle and
the bottom of the darkest region (with p-values larger than 10%). This suggests that we are missing
some of the smaller trials with nonsignificant results, which would be consistent with the presence
of publication bias.
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There is also a chance that the funnel-plot asymmetry is induced by the between-study heterogeneity.
Using a random-effects model and investigating the study-level covariates that may account for the
heterogeneity should also be considered when exploring the funnel-plot asymmetry.

Also see example 5 of [META] meta funnelplot for more details about this example.

Testing for small-study effects

We can test for the presence of small-study effects or, technically, the asymmetry in the funnel
plot more formally by using, for example, one of the regression-based tests. The main idea behind
these tests is to determine whether there is a statistically significant association between the effect
sizes and their measures of precision such as effect-size standard errors.

See Introduction in [META] meta bias for details.

> Example 13: Harbord'’s regression-based test

In example 11, we investigated the funnel-plot asymmetry visually. Let’s check for it more formally
by using the meta bias command. We will use the Harbord regression-based test (Harbord, Egger,
and Sterne 2006), which is often recommended when the effect size of interest is an odds ratio (or
log odds-ratio).

To perform this test, we specify the harbord option with meta bias.

. meta bias, harbord

Effect-size label: Log odds-ratio
Effect size: _meta_es
Std. err.: _meta_se

Regression-based Harbord test for small-study effects
Random-effects model
Method: REML

HO: betal = 0; no small-study effects

betal = 3.03

SE of betal = 0.741
z = 4.09

Prob > |z| = 0.0000

The test uses a type of weighted regression that explores the relationship between the effect sizes and
their precision. The slope in that regression, labeled as betal in the output, describes the asymmetry
of the funnel plot and represents the magnitude of the small-study effects. The further it is from zero,
the more asymmetry is present in the funnel plot.

meta bias reports the z-test statistic of 4.09 with a p-value less than 0.0000 for the test
of HO: betal=0 assuming a random-effects model with the REML estimation method. We have
statistically significant evidence to reject the null hypothesis of the funnel-plot symmetry.

See [META] meta bias.
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Trim-and-fill analysis for addressing publication bias

When the presence of publication bias is suspected, it is important to explore its impact on the final
meta-analysis results. The trim-and-fill method of Duval and Tweedie (2000a, 2000b) provides a way
to evaluate the impact of publication bias on the results. The idea of the method is to estimate the
number of studies potentially missing because of publication bias, impute these studies, and use the
observed and imputed studies to obtain the overall estimate of the effect size. This estimate can then
be compared with the estimate obtained using only the observed studies. For details, see Introduction
in [META] meta trimfill.

> Example 14: Trim-and-fill analysis

From example 12 and example 13, we suspect the presence of publication bias in the meta-analysis
of the NSAIDS data. Let’s use the trim-and-fill method to investigate the impact of potentially missing
studies on the estimate of the overall log odds-ratio.

We use the meta trimfill command. We specify the eform option (synonym for or when the
computed effect sizes are log odds-ratios) to report the results as odds ratios instead of the default
log odds-ratios. We also draw a contour-enhanced funnel plot that contains both the observed and
imputed studies.

. meta trimfill, eform funnel(contours(1 5 10))

Effect-size label: Log odds-ratio
Effect size: _meta_es
Std. err.: _meta_se

Nonparametric trim-and-fill analysis of publication bias
Linear estimator, imputing on the left

Iteration Number of studies = a7
Model: Random-effects observed = 37
Method: REML imputed = 10
Pooling
Model: Random-effects
Method: REML
Studies 0dds ratio [95% conf. intervall
Observed 3.752 2.805 5.018
Observed + Imputed 2.815 2.067 3.832
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Contour-enhanced funnel plot

1% <p<5%
I 5% <p<10%
B p>10%
e Observed studies
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e Imputed studies

Standard error
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meta trimfill reports that 10 hypothetical studies are estimated to be missing. When 10 studies
are imputed and added to the meta-analysis, the overall odds ratio reduces from 3.752 (based on
37 observed studies) to 2.815 (based on 47 observed and imputed studies). This suggests that the
treatment benefit as reported in the literature may be larger than it would be in the absence of
publication bias.

From the funnel plot, almost all the imputed studies fall in the darkest-gray region corresponding
to a p-value of more than 10%. This further supports the conclusion that the small-study effect is
most likely because of publication bias.

See [META] meta trimfill.

Multivariate meta-regression

Multivariate meta-regression is a multivariate statistical technique used to investigate reasons behind
between-study heterogeneity of multiple dependent effect sizes. The technique explores whether there
are associations between the effect sizes and other study-level covariates or moderators. You can think
of multivariate meta-regression as an extension of meta-regression in univariate meta-analysis to the
multivariate setting.

> Example 15: Multivariate meta-regression

In this example, we will use the periodontal disease dataset described in Treatment of moderate
periodontal disease (periodontal.dta) to explore whether the moderator pubyear can explain some
of the between-study heterogeneity of the two dependent effect-size variables y1 and y2. We will
perform a random-effects multivariate meta-regression using the meta mvregress command. Unlike
other meta commands that are designed for standard meta-analysis, the meta mvregress command
does not require your dataset to be declared as meta data.
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. meta mvregress yl y2 = pubyear, wcovvariables(vil v12 v22)
Performing EM optimization ...

Performing gradient-based optimization:

Iteration 0: Log restricted-likelihood = -3.5544446
Iteration 1: Log restricted-likelihood = -3.5402086
Iteration 2: Log restricted-likelihood = -3.5399568
Iteration 3: Log restricted-likelihood = -3.5399567

Multivariate random-effects meta-regression Number of obs = 10
Method: REML Number of studies = 5
Obs per study:
min = 2
avg = 2.0
max = 2
Wald chi2(2) = 0.40
Log restricted-likelihood = -3.5399567 Prob > chi2 = 0.8197
Coefficient Std. err. z P>|z| [95% conf. intervall
yi
pubyear .0048615 .0218511 0.22 0.824 -.0379658 .0476888
_cons .3587569 .07345 4.88 0.000 .2147975 .5027163
y2
pubyear -.0115367 .0299635 -0.39 0.700 -.070264 .0471907
_cons -.3357368 .0979979 -3.43 0.001 -.5278091  -.1436645
Test of homogeneity: Q_M = chi2(6) = 125.76 Prob > Q_M = 0.0000
Random-effects parameters Estimate
Unstructured:
sd(y1) .1429917
sd(y2) .2021314
corr(yl,y2) .561385

The output shows information about the optimization algorithm, the iteration log, and the model
(random-effects) and method (REML) used for estimation. It also displays the number of studies,
K =5, and the total number of observations on the outcomes, N = 10, which is equal to Kd
because no observations are missing. The minimum, maximum, and average numbers of observations
per study are also reported. Because there were no missing observations, all of these numbers are
identical and are equal to 2. The Wald statistic, x> = 0.4, tests the joint hypothesis that the coefficients
of pubyear for outcomes y1 and y2 are equal to O.

The first table displays the fixed-effects coefficients for each dependent (outcome) variable. The
coefficients of pubyear for outcomes y1 and y2 are not significant (p = 0.824 and p = 0.7,
respectively), so it does not appear that pubyear explains much of the between-study heterogeneity
of effect sizes y1 and y2. In fact, the multivariate Cochran’s homogeneity test strongly suggests the
presence of a between-study heterogeneity even after accounting for pubyear: Qy = 125.76 with a
p < 0.0001.

The second table displays the random-effects parameters, which are used to compute an estimate
of the between-study covariance matrix 3. For details, see [META] meta mvregress.

After you fit your model, you can use estat heterogeneity to assess the residual heterogeneity
in your model. To conduct other postestimation analysis, see [META] meta mvregress postestimation.

N
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Multilevel meta-regression

Multilevel meta-regression is a statistical technique used to study the relationship between potentially
dependent effect sizes and covariates. The dependence among the effect sizes stems from a hierarchical
or multilevel structure that is assumed present in the data. The standard random-effects meta-analysis
can be viewed as a two-level meta-analysis model with studies as level-2 groups and subjects within
studies as level-1 observations. When the term “multilevel meta-analysis™ is used in the literature, it
typically refers to models that incorporate more than two levels of hierarchy.

> Example 16: Multilevel meta-regression

Mgller and Mousseau (2015) conducted a meta-analysis to investigate the effect of radiation from
Chernobyl on mutation rates across different taxonomic groups (taxon) and species (species). The
relation between radiation and mutation rates was quantified by Pearson’s product-moment correlation
coefficient (correlation). Study labels are stored in variable studylbl. A key feature of this
dataset is that most studies contributed more than one observed effect size. Therefore, the effect sizes,
identified by variable id (level 2), can be seen as nested within studylbl (level 3). The original
dataset had 45 studies reporting 172 effect sizes corresponding to 8 different taxonomic groups. Here
we focus only on the radiation effect on mutation rates for the largest two taxonomic groups in
the dataset: mammals and plants. This leaves us with 42 studies reporting 158 effect sizes. We first
describe the variables that will be used in our model:

. use https://www.stata-press.com/data/r18/chernobyl
(Effect of radiation from Chernobyl on mutation rates)

. describe studylbl - taxon

Variable Storage Display Value
name type format label Variable label

studylbl str29  %29s Study label

id int %9.0g Effect-size ID

z double %10.0g Fisher’s z-transformed
correlations

var float  %9.0g Variance of Fisher’s
z-transformed correlations

taxon byte %9.0g taxonl Taxonomic group

Variables z and var store Fisher’s z-transformed correlation values and their variances. This trans-
formed metric is typically used for estimation when pooling correlations; see example 10 of [META] meta
summarize for details about Fisher’s z-transformed correlations and their asymptotic standard-errors
computation.

Because multiple effect sizes are nested within each study, we fit the three-level random-intercepts
model

(2

G pul) ren, j=1,...,42

zj, = P11 (taxon; = mammals) + 2/ (taxon; = plants) + u,
where u§3) ~ N(0,73), uﬁ) ~ N(0,73), and € ~ N(0,varjg). I(taxon; = mammals) and
I(taxon; = plants) are indicator variables for the mammals and plants taxonomic groups, respec-
tively. You can think of the above model as a form of multilevel subgroup analysis.

We will perform a multilevel meta-regression using the meta meregress command. Unlike other
meta commands that are designed for standard meta-analysis, the meta meregress command does
not require your dataset to be declared as meta data.
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. meta meregress z ibn.taxon, noconstant || studylbl:|| id:, esvarvariable(var)
Performing EM optimization ...

Performing gradient-based optimization:

Iteration 0: Log restricted-likelihood = -321.43393 (not concave)
Iteration 1: Log restricted-likelihood = -187.61074
Iteration 2: Log restricted-likelihood = -183.46421
Iteration 3: Log restricted-likelihood = -181.89438
Iteration 4: Log restricted-likelihood = -181.83596
Iteration 5: Log restricted-likelihood = -181.83585
Iteration 6: Log restricted-likelihood = -181.83585

Computing standard errors ...

Multilevel REML meta-regression Number of obs = 158
Grouping information
No. of Observations per group
Group variable groups Minimum Average Maximum
studylbl 42 1 3.8 22
id 158 1 1.0 1
Wald chi2(2) = 130.11
Log restricted-likelihood = -181.83585 Prob > chi2 = 0.0000
z | Coefficient Std. err. z P>|z| [95% conf. intervall
taxon
Mammals .6622741 .1066936 6.21  0.000 .4531586 .8713897
Plants 1.031014 .1077358 9.57  0.000 .8198556 1.242172
Test of homogeneity: Q_M = chi2(1566) = 1.0e+05 Prob > Q_M = 0.0000
Random-effects parameters Estimate

studylbl: Identity
sd(_cons) .2427429

id: Identity
sd(_cons) .7406531

In the syntax, we wrote z ibn.taxon, noconstant to specify the response (z) and the fixed-
effects part of the model. The esvarvariable(var) option specifies the variable (var in our case)
that stores the effect-size variances (sampling variances). The || studylbl: || id: portion of the

syntax adds to the model the random intercepts (the u(3)’s and u'? )’s) at the respective studylbl
and id levels. The order in which the levels are specified (from left to right) is important—meta
meregress assumes that id is nested within studylbl. Because the above model is a random-
intercepts three-level meta-regression (that is, a model without random slopes), it could have also been
fit by using the meta multilevel command ([META] meta multilevel), which provides a simpler
syntax for models with only random intercepts:

. meta multilevel z ibn.taxon, noconstant relevels(studylbl id) esvarvariable(var)

The output shows information about the optimization algorithm, the iteration log, and the estimation
method (REML). It also displays the total number of effect sizes, n = 158. The minimum, maximum,
and average numbers of observations per group at each hierarchical level are also reported. The Wald
statistic, x2 = 130.11, tests the joint hypothesis that Fisher’s z values for mammals and plants are
equal to 0.
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The second table displays the fixed-effects coefficients. Both overall effect sizes for mammals
and plants are different from 0. The interpretation of the results, however, is easier in the natural
correlation-coefficient metric, which we can compute using the inverse transformation:

-1
1 = tanh(z)

For example, you may obtain the value of the correlation coefficient corresponding to mammals and
its confidence interval as follows:

. display tanh(e(b)[1,1])
.57987485

. display "[" tanh(r(table)["11",1]) ", " tanh(r(table)["ul",1]) "]"
[.42449189, .70207952]

The multilevel Cochran’s homogeneity test strongly suggests the presence of heterogeneity among
the effect sizes even after partitioning the data by taxonomic groups (p < 0.0001).

The third table displays the random-effects parameters, which are estimates of the level-3 and
level-2 random-effects standard deviations, 73 and 7o, respectively. For details, see [META] meta
meregress.

After you fit your model, you can use estat heterogeneity to assess the multilevel heterogeneity
in your model. To conduct other postestimation analysis, see [META] meta me postestimation.
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Description

This entry describes how to prepare your data for meta-analysis using the meta commands.
In a nutshell, do the following:

1. If you have access to summary data, use meta esize to compute and declare effect sizes
such as an odds ratio or a Hedges’s g.

2. Alternatively, if you have only precomputed (generic) effect sizes, use meta set.
3. To update some of your meta-analysis settings after the declaration, use meta update.

4. To check whether your data are already meta set or to see the current meta settings, use
meta query.

5. If you want to perform multivariate meta-regression using meta mvregress, you do not
need to meta set your data.

Remarks and examples

Remarks are presented under the following headings:

Overview

Declaring meta-analysis information
Declaring effect sizes and their precision
Declaring a meta-analysis model
Declaring a meta-analysis estimation method
Detault meta-analysis model and method
Declaring a confidence level for meta-analysis
Declaring display settings for meta-analysis
Moditying default meta settings

Meta-analysis information
Meta settings with meta set
Meta settings with meta esize

System variables

Examples of data declaration for meta-analysis
Declaring precomputed effect sizes using meta set
Computing and declaring effect sizes using meta esize
Displaying and updating meta settings

Overview

The declaration of your data to be meta data is the first step of your meta-analysis in Stata. meta
data are your original data that also store key variables and characteristics about your specifications,
which will be used by all meta commands during your meta-analysis session. The declaration step
helps minimize mistakes and saves you time—you only need to specify the necessary information
once.
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You can use meta set or meta esize to declare your data to be meta data. If you have access
only to precomputed effect sizes and their standard errors, use meta set. If you have access to
summary data such as means and standard deviations from individual studies, use meta esize to
compute the effect sizes and their standard errors and declare them. The latter is preferable because
it provides access to more features such as the Mantel-Haenszel estimation method for a two-group
comparison of binary outcomes, which needs access to the actual 2 X 2 tables and not only the effect
sizes for the computations.

For example, suppose that you have variables es and se, which contain the effect sizes and the
corresponding standard errors. You can use

. meta set es se

to declare your data, and all subsequent meta commands will automatically use these variables in
the meta-analysis.

To review the current meta settings or to check whether the data are meta set, you can use
meta query; see [META] meta update. After your data are declared, you can update some of the
meta-analysis specifications by using meta update. If you wish to clear the meta settings after your
meta-analysis, you can use meta clear; see [META| meta update.

Declaring meta-analysis information

Two main components of meta-analysis are study-specific effect sizes and their precision. You must
specify them during declaration. Other important components include the underlying meta-analysis
model and an estimation method. You can specify them during declaration or later during analysis
or use Stata’s defaults. You can also specify options that affect the output of the meta commands.
Below, we describe how you can declare various meta-analysis information.

Declaring effect sizes and their precision

As we mentioned above, you must declare study-specific effect sizes and their precision. This is
done differently for meta set and meta esize.

meta esize computes effect sizes and their standard errors from summary data and then declares
them. meta set declares already precomputed effect sizes and their standard errors. Thus, to use
meta set, you do not need summary data from each study, but you need them for meta esize.
Some analysis may not be available after meta set such as the Mantel-Haenszel estimation method
and Harbord’s test for the funnel-plot asymmetry because they require access to summary data.

Effect sizes and their precision using meta set. To use meta set, you must specify variables
containing study-specific effect sizes and their precision. There are two ways to specify the precision
of the effect sizes. You can either specify a variable containing the standard errors,

. meta set es se

Or, instead of the standard errors, specify the confidence intervals, and meta set will compute the
corresponding standard errors based on them:

. meta set es cil ciu

In the above, the specified CI variables will be assumed to correspond to the 95% CIs. You can
change this by specifying the civarlevel() option:

. meta set es cil ciu, civarlevel(90)
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But do not confuse civarlevel() with level(). The former affects the confidence level only for
the specified CI variables. The latter specifies the confidence level for the meta-analysis.

Effect sizes and their precision using meta esize. To use meta esize, you must specify summary
data for each study. The type of summary data you specify depends on the effect size you wish to
compute and consequently on the outcome of interest and type of analysis in the original studies.

meta esize computes and declares various effect sizes for two-group comparisons of continuous
and binary outcomes and for estimating a single proportion or prevalence. For a two-group comparison
of continuous outcomes, you must specify the number of observations, means, and standard deviations
for each treatment group (group 1) and control group (group 2).

. meta esize nl ml sdl n2 m2 sd2

To compute effect sizes and their standard errors, meta esize also needs to know the type of the
effect size. The above assumes Hedges’s g standardized mean difference, but you can specify others
in the esize() option; see effect sizes for a two-group comparison of continuous outcomes in the
estypecnt table in Syntax of [META] meta esize.

For a two-group comparison of binary outcomes, you must specify 2 X 2 contingency tables for
each study. You specify them as follows. Each of the four cells is represented by a variable such that
each row represents a 2 X 2 table from a specific study. For instance,

. meta esize nil nl12 n21 n22
The order in which you specify the four variables is important: the top-left cell first, the top-right cell
next, followed by the bottom-left cell, and finally the bottom-right cell. The above computes the log

odds-ratio as an effect size, but you can select a different effect size; see effect sizes for a two-group
comparison of binary outcomes in the estypebin table in Syntax of [META] meta esize.

meta esize can also compute effect sizes for estimating a single proportion. You must specify
the number of successes (events) and the study sample size.

. meta esize ns n

The above computes the Freeman—Tukey-transformed proportions, but you can specify other effect
sizes in the esize () option; see effect sizes for a single proportion in the estypeprop table in Syntax
of [META] meta esize.

Options affecting effect-size and precision computations with meta esize. Depending on the
chosen effect size, meta esize provides alternative ways of computing effect sizes and their standard
errors.

For the Hedges’s g effect size, there are two ways to compute the bias-correction factor used in
its formula. For consistency with meta-analysis literature, meta esize uses an approximation, but
you can specify the exact option within esize() to use the exact computation:

. meta esize nl ml sdl n2 m2 sd2, esize(hedgesg, exact)

Note that the esize command uses the exact computation.

Both Hedges’s g and Cohen’s d effect sizes support standard error adjustment of Hedges and
Olkin (1985) with esize()’s option holkinse:

. meta esize n1 ml sdl n2 m2 sd2, esize(cohend, holkinse)

For the (unstandardized) mean difference, you can choose to compute standard errors assuming
unequal variance between the two groups:

. meta esize nl ml sdl n2 m2 sd2, esize(mdiff, unequal)
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For two-sample binary data with log odds-ratios or log risk-ratios as effect sizes, meta esize
automatically adjusts for zero cells when computing effect sizes. By default, it adds 0.5 to all cells
of the 2 x 2 tables that contain at least one zero cell. You can specify other adjustments in the
zerocells(zespec) option. For example, with log odds-ratios, you can specify the treatment-arm
continuity correction of Sweeting, Sutton, and Lambert (2004) as zerocells(tacc), or you can
request no zero-cell adjustment:

. meta esize nll nl12 n21 n22, zerocells(none)

Similarly, for one-sample binary data with the logit-transformed proportions or raw proportions as
effect sizes, meta esize also adjusts for zero cells when computing effect sizes. By default, it adds
0.5 to the number of successes and to the number of failures for studies containing zero successes
or zero failures. Other adjustments are also possible via the zerocells (zcspec) option.

See Options in [META] meta esize.

Declaring a meta-analysis model

Before you proceed with performing meta-analysis, we want you to think about the model
underlying your meta-analysis. This decision is important because the selected meta-analysis model
will determine the availability of some of the meta-analysis methods and, more importantly, how
you interpret the obtained results; see Comparison between the models and interpretation of the
results in [META] Intro. Also, most likely, you will want to use the chosen model during your entire
meta-analysis session. Thus, we made the choices for the meta-analysis model and, consequently, the
meta-analysis estimation method be part of the initial declaration step. But fear not! If desired, you
can easily switch to a different meta-analysis model or method for the rest of your meta-analysis
session or reset it temporarily for a particular analysis; see Modifying default meta settings.

We discuss the available models and the differences between them in detail in Meta-analysis models
in [META] Intro.

Briefly, there are three models to choose from: a common-effect, fixed-effects, or random-effects
model. They can be requested by specifying options common, fixed, or random. If you omit all of
these options, the random-effects model will be assumed.

A common-effect model makes a strong assumption about the underlying true effect size being the
same across (common to) all studies. When this assumption is true, this model is a reasonable choice.
Most likely, you will want to verify the plausibility of this assumption for your data. So a model that
allows the study effect sizes to be different may be a better choice during the initial analysis.

A fixed-effects model allows the effect sizes to be different across studies and assumes that they
are fixed. You may ask: What does “fixed” mean? Different disciplines may have different definitions
of a fixed effect. In the context of meta-analysis, you can think of fixed effects as effects of particular
interest. In other words, your research questions and final inference are focused only on the specific
studies that were selected in the meta-analysis.

Conversely, a random-effects model assumes that the study effect sizes are random, meaning that
they represent a random sample from a larger population of similar studies. The results obtained from
a random-effects model can be extended to the entire population of similar studies and not just the
ones that were selected in the meta-analysis. The meta-analysis literature recommends to start with
a random-effects model, which is also Stata’s default for most meta commands.

So, which model should you choose? Our recommendation is to start with a random-effects model
and explore the heterogeneity, publication bias, and other aspects of your meta-analysis data. If you
are interested only in the inference about the particular studies in your data, a fixed-effects model may
be a reasonable alternative. We suggest that you avoid using, or at least starting with, a common-effect
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model unless you verified that the underlying assumption of the common study effects is plausible
for your data.

As we described in Comparison between the models and interpretation of their results in [META] In-
tro, a fixed-effects model and a common-effect model produce the same results in a meta-analysis.
Although the final estimates are the same, their interpretation is different! In a common-effect model,
the estimate of the overall effect size is an estimate of the true common effect size, whereas in a
fixed-effects model, it is an estimate of the average of true, different study-specific effect sizes. Thus,
the meta suite provides the two options common and fixed to emphasize the conceptual differences
between the two models. Additionally, when you assume a common-effect model, you essentially
imply that certain issues such as study heterogeneity are of no concern in your data. Therefore, when
you specify the common option, certain commands such as meta regression will not be available.
This is again our way of reminding you of the underlying assumption of a common-effect model. For
other meta commands, specifying common versus fixed will merely change the reported title from,
say, “Common-effect meta-analysis” to “Fixed-effects meta-analysis”. Nevertheless, the title change
is important because it encourages proper interpretation of the results.

Declaring a meta-analysis estimation method

Depending on a chosen meta-analysis model and effect size, there are a number of methods available
to estimate the overall effect size. For a common-effect model and a fixed-effects model, the inverse-
variance method, common (invvariance) and fixed(invvariance), is used with generic effect
sizes, which are declared by meta set, and with effect sizes for two-sample continuous data and for
one-sample binary data, which are declared by meta esize. With effect sizes for two-sample binary
data (except Peto’s log odds-ratio), which are also declared by meta esize, the Mantel-Haenszel
method, common (mhaenszel) or fixed(mhaenszel), is also available.

For a random-effects model, there are several different methods to estimate the between-study
variance, which contributes to the weights used to estimate the overall effect size. The default method
is REML, random(reml), but other methods such as ML, random(ml), and DerSimonian—Laird,
random(dlaird), are also available. See Syntax in [META] meta set for a full list.

When you specify random, the REML method is assumed. When you specify common or fixed,
the inverse-variance method is assumed for all effect sizes except log odds-ratios, log risk-ratios, and
risk differences, as specified with meta esize. For these effect sizes, the Mantel-Haenszel method
is the default method.

See Meta-analysis estimation methods in [META] Intro for detailed descriptions of the methods.

Default meta-analysis model and method

During declaration, meta set and meta esize assume a random-effects model unless you specify
one of options fixed or common. It also assumes the REML estimation method unless you specify
some other method in option random(); see Declaring a meta-analysis estimation method.

The declared model will be used by all meta commands except meta funnelplot, meta
galbraithplot, and meta labbeplot, which, for historical reasons, assume a common-effect
model with the inverse-variance estimation method. But you can change the assumed model and
method by specifying the corresponding options such as random(dlaird) with a meta command.

Also see Modifying default meta settings for details.
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Declaring a confidence level for meta-analysis

By default, meta set and meta esize assume the 95% confidence level (or as set by set
level) for the entire meta-analysis. You can change this by specifying the level() option with
these commands. You can also modify the confidence level after the declaration as we describe in
Modifying default meta settings.

Declaring display settings for meta-analysis

meta set and meta esize also provide options to control the output of meta commands.

The studylabel (varname) option specifies a string variable that will be used by meta commands
such as meta summarize and meta forestplot to label the studies in the output. By default, the
generic labels—Study 1, Study 2, and so on—will be used.

The eslabel (string) option specifies a string that will be used by meta commands such as meta
summarize and meta forestplot to label effect sizes in the output. The default label with meta
set is Effect size. The default label with meta esize is specific to the chosen effect size. For
instance, it is Log Odds-Ratio for log odds-ratios.

By default, all meta commands display a short summary about the declared meta settings such
as the variables containing effect sizes and their standard errors. After the declaration, the meta
commands do not require you to specify the effect-size variables and standard error variables again.
They simply use the corresponding system variables (see System variables) created during declaration.
The reported summary reminds you that those variables are part of your meta-analysis. You can
suppress this summary from all meta commands by specifying the nometashow option with meta
set ormeta esize. You can also suppress this summary for a particular meta command by specifying
the option with that command; see Modifying default meta settings.

Modifying default meta settings

You can modify the default meta settings both during and after the declaration. Some of the settings
may even be modified (temporarily) for a particular meta command.

You can modify the default settings during the declaration by simply specifying the corresponding
options with meta set or meta esize. For example, when we type

. meta set ...

a random-effects model with the REML estimation method is assumed. We can specify another
estimation method, for example, ML, by using random(ml):

. meta set ... , random(ml)

Or we can specify a different meta-analysis model, for example, a fixed-effects model:

. meta set ... , fixed

After the declaration, you can use meta update to modify the current settings. For example, we
can switch to a common-effect model for the rest of our meta-analysis by typing

. meta update, common

Now all subsequent meta commands will automatically assume a common-effect model.

In the above examples, we used meta set, but you can use the same specifications with meta
esize. We also demonstrated only a few options, but the same principles apply to the other options
supported by meta set and meta esize.
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For options random(), common() (and common), fixed() (and fixed), level(), and
nometashow, we can also modify the current setting temporarily while running a particular meta
command. For example, suppose that we want to obtain the results assuming a 90% confidence level
with meta summarize. We can type

. meta summarize, level(90)

If we wanted all relevant meta commands to use the 90% confidence level, we would have typed

. meta update, level(90)

Meta-analysis information

When you use meta set or meta esize, they record information about your study, effect sizes and
their precision, and meta-analysis model and meta-analysis estimation method, among other things.
This information will be used by subsequent meta commands. The summary information is mostly
the same between the two commands, but meta esize records several additional settings.

Let’s get familiar with the meta setting information by looking at examples.

Meta settings with meta set

Consider a fictional dataset, metaset.dta, containing generic effect sizes and their standard errors
stored in the corresponding variables es and se.
. use https://www.stata-press.com/data/r18/metaset
(Generic effect sizes; fictional data)

. describe es se

Variable Storage Display Value
name type format label Variable label
es double %10.0g Effect sizes
se double %10.0g Std. err. for effect sizes

At the minimum, with meta set, we must specify the variables containing effect sizes and their
standard errors. (For other uses of meta set, see Remarks and examples in [META] meta set.)

. meta set es se
Meta-analysis setting information

Study information
No. of studies: 10
Study label: Generic
Study size: N/A

Effect size
Type: <generic>
Label: Effect size
Variable: es

Precision
Std. err.: se

CI: [_meta_cil, _meta_ciu]
CI level: 95%

Model and method
Model: Random effects
Method: REML
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The summary is divided into four categories: information about the study, the specified effect sizes,
their precision, and meta-analysis model and method. Below, we describe in detail each output
category.

Study information
No. of studies: 10
Study label: Generic
Study size: N/A

The study information consists of the number of studies (10 in our example), a study label (Generic),
and a study size (N/A). If the studylabel (varname) option is specified, the Study label: will
contain the name of the specified variable. Otherwise, a generic study label—Study 1, Study 2,
and so on—will be used in the output of meta commands. If the studysize (varname) option is
specified with meta set, the Study size: will contain the name of the specified variable.

Effect size
Type: Generic
Label: Effect size
Variable: es

The effect-size information consists of the type of the effect size, its label, and the variable containing
study-specific effect sizes. The effect-size Type: is always Generic with meta set. The effect-size
Label: is either a generic Effect size or as specified in the eslabel (string) option. This label
will be used to label the effect sizes in the output of all meta commands. The effect-size Variable:
displays the name of the declared variable containing effect sizes. After the declaration, both commands
store study-specific effect sizes in the system variable _meta_es (see System variables). meta set
simply copies them from the declared effect-size variable. Thus, Variable: will contain the name
of the esvar variable, es in our example, with meta set.

Precision
Std. err.: se

CI: [_meta_cil, _meta_ciu]
CI level: 95%

The precision information consists of variables containing effect-size standard errors, confidence
intervals, and the declared confidence level. As with the effect sizes, meta set uses the standard
errors specified in the sevar variable (variable se here). The corresponding confidence intervals are
computed using the effect sizes and their standard errors and stored in the system variables _meta_cil
and _meta_ciu. With meta set, you can specify confidence intervals instead of the standard errors,
in which case the standard errors will be computed from the effect sizes and confidence intervals and
stored in _meta_se, in which case Std. err.: will contain _meta_se; see Syntax in [META] meta
set. CI: always contains _meta_cil and _meta_ciu. The specified CI variables will be reported in
User CI: with their corresponding confidence level reported in User CI level:, which is controlled
by the civarlevel() option. The declared CI variables and the system CI variables will be the same
only when civarlevel() is the same as level(), and the system variables are the ones that are
used in the meta-analysis.

CI level: reports the confidence level, controlled by the level () option, that will be used by
all meta commands when computing confidence intervals for various meta-analyses such as the CIs
of the overall effect size, regression coefficients, and so on. The default confidence level is 95% or
as set by set level.

Model and method
Model: Random-effects
Method: REML
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As we pointed out in Declaring a meta-analysis model, the meta-analysis model and, consequently, the
meta-analysis estimation method are important aspects of your meta-analysis. As such, we made them
be part of your declaration step too. By default, a random-effects model with the REML estimation
method is assumed for most meta commands; see Default meta-analysis model and method. You can
change the defaults as we describe in Modifying default meta settings.

Meta settings with meta esize

Consider metaescnt.dta, containing fictional study-specific summary data for continuous out-
comes for group 1 and group 2.
. use https://www.stata-press.com/data/r18/metaescnt, clear
(Fictional summary data for continuous outcomes)
. describe nl ml sdl n2 m2 sd2

Variable Storage Display Value

name type format label Variable label
nil byte %9.0g Study sizes of group 1
ml float  %9.0g Means of group 1
sdl float  %9.0g Std. dev. of group 1
n2 byte %9.0g Study sizes of group 2
m2 float  %9.0g Means of group 2
sd2 float  %9.0g Std. dev. of group 2

With meta esize, we must specify the summary data to compute an effect size. Let’s focus on
the studies comparing the mean differences between the two groups. Our summary data include the
numbers of observations and the estimates of means and standard deviations for each group. We
specify the variables containing these summaries following the command name.

. meta esize nl ml sdl n2 m2 sd2
Meta-analysis setting information
Study information
No. of studies: 10
Study label: Generic
Study size: _meta_studysize
Summary data: nl ml sdl n2 m2 sd2
Effect size
Type: hedgesg
Label: Hedges’s g
Variable: _meta_es
Bias correction: Approximate
Precision
Std. err.: _meta_se
Std. err. adj.: None
CI: [_meta_cil, _meta_ciu]
CI level: 95%
Model and method
Model: Random effects
Method: REML

The meta setting information from meta esize is almost the same as the one produced by meta
set, which we described in Meta settings with meta set, but has several additional settings. The
summary-data variables are listed under Summary data:. As we mentioned earlier, meta esize
computes the effect sizes and their standard errors from the specified summary data, so effect-size
Variable: and Std. err.: contain the names of the corresponding system variables, _meta_es
and _meta_se. The summary data also include the information about the study size, so Study size:
displays the name of the system variable, _meta_studysize, that contains study size, which is equal
to the sum of n1 and n2 in our example.
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By default, meta esize computes the Hedges’s g effect size for the two-group mean comparison.
You can specify the esize (esspec) option to select a different effect size. For the Hedges’s g effect
size, there are two methods to compute the underlying bias-correction term: approximate or exact.
For consistency with the meta-analysis literature, meta esize, by default, uses an approximation,
as indicated in Bias correction: under Effect size. But you can change this by specifying the
exact option within esize().

Another additional setting describes the type of adjustment applied when computing the standard
errors of the effect sizes; see Std. err. adj.: under Precision. This adjustment is applicable
only with the Hedges’s g or Cohen’s d effect size. No adjustment is made by default, but you can
use the holkinse option within esize() to specify the adjustment of Hedges and Olkin (1985).
For the mean-difference effect size, you can request the adjustment for unequal group variances by
specifying esize()’s option unequal.

Finally, for log odds-ratios or log risk-ratios, meta esize additionally reports the type of adjustment
made to the zero cells of contingency tables, which represent the summary data for a two-group
comparison of binary outcomes. For these effect sizes, the type of adjustment will be listed in
Zero-cells adj.: under Effect size (not applicable in our example). By default, 0.5 is added
to each zero cell, but you can specify the zerocells() option with meta esize to apply a different
adjustment or none. The zero-cells adjustment is also reported for meta-analysis of a single proportion
when effect sizes are logit-transformed proportions or raw proportions.

System variables
meta set and meta esize store information about the meta-analysis settings in data characteristics
([P] char) and system variables.

meta system variables are the variables that begin with _meta_. There are four main variables
that are stored by the two commands.

_meta_es stores study-specific effect sizes.
_meta_se stores the standard errors of study-specific effect sizes.

_meta_cil and _meta_ciu store the lower and upper limits of the CIs for study-specific effect
sizes. These variables correspond to the confidence level declared for the meta-analysis, the value of
which is stored in the data characteristic _meta_level.

Other system variables include integer study identifiers stored in _meta_id, study labels
stored in a string variable _meta_studylabel, and study sizes stored in _meta_studysize.
_meta_studysize is always stored with meta esize. With meta set, it is stored only when the
variable containing study sizes is specified in the studysize () option.

Also see Stored results in [META] meta set and Stored results in [META] meta esize.

Examples of data declaration for meta-analysis

In this section, we demonstrate how to prepare data for meta-analysis in Stata for several case
studies.
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Declaring precomputed effect sizes using meta set

We will demonstrate how to use meta set to declare generic effect sizes.

> Example 1: Precomputed log hazard-ratios using meta set

We demonstrate how to declare the meta-analysis data from Steurer et al. (2006), who studied the
effect of purine analogues for the treatment of chronic lymphocytic leukemia. Variables loghr and
seloghr contain the log hazard-ratios and their standard errors.

. use https://www.stata-press.com/data/r18/leukemia2, clear
(Single-agent purine analogue treatment for leukemia)
. describe

Contains data from https://www.stata-press.com/data/r18/leukemia2.dta

Observations: 4 Single-agent purine analogue
treatment for leukemia
Variables: 6 25 Apr 2022 12:09
(_dta has notes)
Variable Storage Display Value
name type format label Variable label
author stri4  %l4s * Author
year int %8.0g Publication year
ntreat int %8.0g Treatment-group sample size
ncontrol int %8.0g Control-group sample size
loghr float  %9.0g Log hazard-ratio
seloghr float  %9.0g Standard error for loghr
* indicated variables have notes
Sorted by:

We use the meta set command to declare the effect sizes (log hazard-ratios) and their standard
errors.

. meta set loghr seloghr
Meta-analysis setting information
Study information
No. of studies: 4
Study label: Generic
Study size: N/A
Effect size
Type: <generic>
Label: Effect size
Variable: loghr
Precision
Std. err.: seloghr
CI: [_meta_cil, _meta_ciul
CI level: 95%
Model and method
Model: Random effects
Method: REML

meta set reports that there are 4 studies in this dataset. The type of effect size is Generic because
we used the precalculated effect size. The default label Effect size will be used in the output.
The command also reports the variables that were used to declare the effect sizes, loghr, and their
standard errors, seloghr. The other settings are as we described in Meta settings with meta set.
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As we described in System variables, meta set created several system variables that will be used

by other meta commands in the computations:

. describe _metax

Variable Storage Display Value
name type format label Variable label

_meta_id byte %9.0g Study ID

_meta_studyla~l str7 %9s Study label

_meta_es float %9.0g Generic ES

_meta_se float  %9.0g Std. err. for ES

_meta_cil double %10.0g 95% lower CI limit for ES

_meta_ciu double %10.0g 95% upper CI limit for ES

. list _metax

_meta_id _meta~el _meta_es _meta_se _meta_cil _meta_ciu

1. 1 Study 1 -.592 .345 -1.2681876 .08418756
2. 2 Study 2 -.0791 .0787  -.23334916 .07514916
3. 3 Study 3 -.237 .144  -.51923481 .0452348
4. 4 Study 4 .163 .312  -.44850877 .77450878

_meta_id contains integers identifying the studies, and _meta_studylabel contains the study labels.
_meta_es and _meta_se contain log hazard-ratios and their standard errors, and _meta_cil and
_meta_ciu contain the corresponding lower and upper bounds of the 95% CIs for log hazard-ratios.

We did not specify the studylabel() option in this example, so generic labels will be used in
the output of other meta commands such as meta summarize:

. meta summarize

Effect-size label: Effect size
Effect size: loghr

Std. err.: seloghr
Meta-analysis summary Number of studies = 4
Random-effects model Heterogeneity:
Method: REML tau2 = 0.0000
12 (%) = 0.00
H2 = 1.00
Study Effect size [95% conf. intervall 7 weight
Study 1 -0.592 -1.268 0.084 3.68
Study 2 -0.079 -0.233 0.075 70.70
Study 3 -0.237 -0.519 0.045 21.12
Study 4 0.163 -0.449 0.775 4.50
theta -0.120 -0.250 0.009
Test of theta = 0: z = -1.82 Prob > |z| = 0.0688
Test of homogeneity: Q = chi2(3) = 3.62 Prob > Q = 0.3049

Generic labels Study 1, Study 2, Study 3, and Study 4 are used to label the studies. Also, the
generic label Effect size is used to label the log hazard-ratios. See [META] meta summarize for
details about meta summarize.

We can provide more descriptive labels for the studies and the effect sizes by specifying options
studylabel() and eslabel().
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. generate studylbl

= author + " (" + string(year) + ")"

. meta set loghr seloghr, studylabel(studylbl) eslabel("Ln(HR)")

Meta-analysis setting information

Study information
No. of studies:
Study label:

Study size:

Effect size

Type:

Label:

Variable:

Precision
Std. err.:

CI:
CI level:

Model and method
Model:
Method:

We created a new variable,

4
studylbl
N/A

<generic>
Ln(HR)
loghr

seloghr

[_meta_cil, _meta_ciu]

95%

Random effects
REML

studylbl, that combines the author and year information of the published
studies to use as our study labels. meta set reported that studylbl will be used to label the studies
and Ln(HR) to label the effect sizes.

If we now rerun meta summarize (suppressing the table header), we see the new labels in the

output.

. meta summarize, noheader

Effect-size label: Ln(HR)
Effect size: loghr
Std. err.: seloghr
Study label: studylbl
Study Ln(HR) [95% conf. interval] Y weight
Johnson et al. (1996) -0.592 -1.268 0.084 3.68
Leporrier (2001) -0.079 -0.233 0.075 70.70
Rai (2000) -0.237 -0.519 0.045 21.12
Robak (2000) 0.163 -0.449 0.775 4.50
theta -0.120 -0.250 0.009
Test of theta = 0: z = -1.82 Prob > |z| = 0.0688
Test of homogeneity: Q = chi2(3) = 3.62 Prob > Q = 0.3049

After the original declaration, we can use meta

repeating meta set; see example 5.

Also see Remarks and examples in [META] meta

update to update the meta settings instead of

N

set for more examples of using meta set.

Computing and declaring effect sizes using meta esize

We demonstrate how to use meta esize to compute and declare effect sizes for continuous and

binary outcomes.



70 meta data — Declare meta-analysis data

> Example 2: Mean differences for two-sample continuous data using meta esize

Consider the study of Gibson et al. (2002), who compared the performance of asthma-management

programs for adults with asthma.

The asthma dataset contains the following summary-data variables:

use https://www.stata-press.com/data/r18/asthma, clear
(Education and medical review for asthma patients)

. describe ni meani sdi nc meanc sdc

Variable Storage Display Value
name type format label Variable label

ni int %9.0g Intervention-group sample size

meani double %9.0g Average days off work/school for
intervention group

sdi double %9.0g Std. dev. of days off work/school
for intervention group

nc int %9.0g Control-group sample size

meanc double %9.0g Average days off work/school for
control group

sdc double %9.0g Std. dev. of days off work/school

for control group

Variables ni, meani, and sdi record the study-specific sample sizes, mean numbers of days off
work/school, and standard deviations in the intervention group, and variables nc, meanc, and sdc

record those items in the control group.

To illustrate, we will compute and declare a couple of effect sizes using meta esize. We will
start with the default effect size—Hedges’s g standardized mean. We use meta esize to compute
this effect size for each study from the summary variables and declare them for further meta-analysis.

. meta esize ni meani sdi nc meanc sdc
(2 missing values generated)

Meta-analysis setting information

Study information
No. of studies: 13
Study label: Generic
Study size: _meta_studysize
Summary data: ni meani sdi nc meanc sdc

Effect size
Type: hedgesg
Label: Hedges’s g
Variable: _meta_es
Bias correction: Approximate

Precision
Std. err.: _meta_se
Std. err. adj.: None
CI: [_meta_cil, _meta_ciul
CI level: 95Y%

Model and method
Model: Random effects
Method: REML

There are missing values in the summary variables, so some of the generated system variables will

also contain missing values as reported by the note.

meta esize reports that the computed effect size is Hedges’s g. See Meta settings with meta

esize for the explanation of other settings.
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The above command is equivalent to

. meta esize ni meani sdi nc meanc sdc, esize(hedgesg)
(output omitted )

With this effect size, we can specify that the adjustment of Hedges and Olkin (1985) be applied
to the standard errors.

. meta esize ni meani sdi nc meanc sdc, esize(hedgesg, holkinse)
(2 missing values generated)

Meta-analysis setting information

Study information
No. of studies: 13
Study label: Generic
Study size: _meta_studysize
Summary data: ni meani sdi nc meanc sdc

Effect size
Type:

Label:

Variable:

Bias correction:

hedgesg
Hedges’s g
_meta_es
Approximate

Precision
Std. err.: _meta_se
err. adj.: Hedges—0Olkin
CI: [_meta_cil, _meta_ciul
CI level: 95%

Model and method
Model:
Method:

Std.

Random effects
REML

meta esize updates the adjustment in Std. err. adj.: under Precision to Hedges-0lkin.

Because all studies measured our outcome of interest on the same scale (number of days off work
or school), we may consider the raw (unstandardized) mean difference as our effect size. We can
compute it by specifying the esize(mdiff) option.

. meta esize ni meani sdi nc meanc sdc, esize(mdiff)
(2 missing values generated)
Meta-analysis setting information

Study information
No. of studies: 13
Study label: Generic

Study size:
Summary data:

Effect size

_meta_studysize
ni meani sdi nc meanc sdc

Type: mdiff

Label: Mean diff.
Variable: _meta_es
Precision
Std. err.: _meta_se

Std. err. adj.: None
CI: [_meta_cil, _meta_ciul

CI level: 95Y%

Model and method

Model:
Method:

The information about the type of the effect size and its label is updated to correspond to the mean

differences.

Random effects
REML
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As with meta set, we could have used meta update to update the meta settings after the initial
declaration instead of using meta esize; see example 5.

> Example 3: Log odds-ratios and log risk-ratios for two-sample binary data

N

Let’s revisit the declaration we used in example 1 in [META] meta for the bcg dataset from the
BCG vaccine study (Colditz et al. 1994). The summary data (contingency tables) are recorded in the

following variables:

use https://www.stata-press.com/data/r18/bcg, clear

(Efficacy of BCG vaccine against tuberculosis)

. describe npost nnegt nposc nnegc

Variable Storage Display Value
name type format label Variable label

npost int %9.0g Number of TB positive cases in
treated group

nnegt long %9.0g Number of TB negative cases in
treated group

nposc int %9.0g Number of TB positive cases in
control group

nnegc long %9.0g Number of TB negative cases in

The summary variables represent the cells of the 2 x 2 tables for

control

group

each study.

As with continuous data, we specify the summary variables for binary data following meta esize:

. meta esize npost nnegt nposc nnegc

Meta-analysis setting information

Study information
No. of studies:
Study label:

Study size:
Summary data:

Effect size
Type:

Label:

Variable:
Zero-cells adj.:

Precision

Std. err.:

CI:

CI level:

Model and method
Model:

Method:

13

Generic

_meta_studysize

npost nnegt nposc nnegc

lnoratio

Log odds-ratio
_meta_es

None; no zero cells

_meta_se
[_meta_cil, _meta_ciu]
95%

Random effects
REML

The computed default effect sizes are log odds-ratios, whereas the effect of interest in this study is
the risk ratio or, equivalently, the log risk-ratio.
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To compute log risk-ratios, we specify esize (lnrratio). We also specify the variable studylbl

containing study labels in the studylabel() option.

. meta esize npost nnegt nposc nnegc, esize(lnrratio) studylabel(studylbl)

Meta-analysis setting information

Study information
No. of studies: 13
Study label: studylbl

Study size: _meta_studysize
Summary data: npost nnegt nposc nnegc

Effect size
Type: lnrratio

Label: Log risk-ratio

Variable: _meta_es
Zero-cells adj.:

Precision

Std. err.: _meta_se

CI: [_meta_cil, _meta_ciul

CI level: 95Y%
Model and method

Model: Random effects

Method: REML

None; no zero cells

Notice that there are no zero cells in our data, so there is no zero-cells adjustment (see Zero-cells

adj.: under Effect size).

4

Also see example 5 for how to update the above meta settings without having to respecify the

summary variables.

> Example 4: Freeman—Tukey-transformed proportions for one-sample binary data

We will consider a dataset from Miller (1978) to illustrate meta esize to set up data for meta-
analysis of a single proportion. The summary data consist of the number of animal deaths (ndeaths)

and the animal pen size (pensize):

use https://www.stata-press.com/data/r18/miller1978, clear

(Number of animal deaths)

. describe

Contains data from https://www.stata-press.com/data/r18/miller1978.dta

Observations: 4 Number of animal deaths
Variables: 2 15 Mar 2022 17:04
(_dta has notes)
Variable Storage Display Value
name type format label Variable label
ndeaths byte %9.0g Number of animal deaths
pensize byte %9.0g Size of animal pen

Sorted by:
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As with two-group comparisons of continuous and binary data, we specify the summary variables
following meta esize:

. meta esize ndeaths pensize
Meta-analysis setting information

Study information
No. of studies: 4
Study label: Generic
Study size: _meta_studysize
Summary data: ndeaths pensize

Effect size
Type: ftukeyprop
Label: Freeman-Tukey’s p
Variable: _meta_es

Precision
Std. err.: _meta_se
CI: [_meta_cil, _meta_ciul
CI level: 95Y%
Model and method

Model: Random effects
Method: REML

By default, meta esize computes the Freeman—Tukey-transformed proportions. For meta-analysis
using the untransformed (raw) proportions, you can specify the esize (proportion) option:

. meta esize ndeaths pensize, esize(proportion)
Meta-analysis setting information

Study information
No. of studies: 4
Study label: Generic
Study size: _meta_studysize
Summary data: ndeaths pensize
Effect size
Type: proportion
Label: Proportion
Variable: _meta_es
Zero-cells adj.: None; no zero cells

Precision
Std. err.: _meta_se
CI: [_meta_cil, _meta_ciu]
CI level: 95%

Model and method
Model: Random effects
Method: REML

Unlike the Freeman—Tukey-transformed proportions, in the presence of zero successes or failures, the
raw proportions require zero-cell adjustments; otherwise, their variances will be undefined. In our
example, there are no zero cells, so no zero-cells adjustment was applied (see Zero-cells adj.:
under Effect size).

d

We could have also used meta update to modify the above meta settings without having to
respecify the summary variables; see example 5.
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Displaying and updating meta settings

We show examples of how to display the current meta settings by using meta query and update
them by using meta update.

> Example 5: Commands meta query and meta update

Recall example 3. Let’s reload the dataset and use meta query to check whether the dataset is
meta set.
. use https://www.stata-press.com/data/r18/bcg, clear
(Efficacy of BCG vaccine against tuberculosis)

. meta query
(data not meta set; use meta set or meta esize to declare as meta data)

The data are not meta set.

Let’s again use meta esize to declare the data (quietly) and use meta query to display the
current settings.

. quietly meta esize npost nnegt nposc nnegc

. meta query
-> meta esize npost nnegt nposc nnegc

Meta-analysis setting information from meta esize

Study information
No. of studies: 13
Study label: Generic
Study size: _meta_studysize
Summary data: npost nnegt nposc nnegc

Effect size
Type: lnoratio
Label: Log odds-ratio
Variable: _meta_es
Zero-cells adj.: None; no zero cells

Precision
Std. err.: _meta_se
CI: [_meta_cil, _meta_ciul
CI level: 95%
Model and method
Model: Random effects
Method: REML

In example 3, we redeclared the data to use the log risk-ratios as effect sizes. After the initial
declaration, it is more convenient to use meta update to update the meta settings because we do
not need to respecify the summary variables with meta update.
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. meta update, esize(lnrratio) studylabel(studylbl)
-> meta esize npost nnegt nposc nnegc , esize(lnrratio) studylabel(studylbl)

Meta-analysis setting information from meta esize

Study information
No. of studies: 13
Study label: studylbl
Study size: _meta_studysize
Summary data: npost nnegt nposc nnegc

Effect size

Type: lnrratio

Label: Log risk-ratio
Variable: _meta_es

Zero-cells adj.: None; no zero cells
Precision
Std. err.: _meta_se
CI: [_meta_cil, _meta_ciu]

CI level: 95%

Model and method
Model: Random effects
Method: REML

If your summary variables change, however, you must specify them with meta esize.

You can use meta update after either meta esize or meta set. meta update will respect the
options of meta esize and meta set.

For example, recall the meta set declaration from example 1:

. use https://www.stata-press.com/data/r18/leukemia2, clear
(Single-agent purine analogue treatment for leukemia)

. quietly meta set loghr seloghr

Let’s update the meta settings to include the variable containing study sizes.

. generate ssize = ntreat + ncontrol

. meta update, studysize(ssize)
-> meta set loghr seloghr , random(reml) studysize(ssize)

Meta-analysis setting information from meta set

Study information
No. of studies: 4
Study label: Generic
Study size: ssize

Effect size
Type: <generic>
Label: Effect size
Variable: loghr
Precision
Std. err.: seloghr
CI: [_meta_cil, _meta_ciul
CI level: 95%
Model and method
Model: Random effects
Method: REML

The studysize() option is supported only with meta set. If we tried to specify this option with
meta update after meta esize, we would have received an error message.

4
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meta esize — Compute effect sizes and declare meta-analysis data

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description

meta esize computes effect sizes from study summary data and uses the results to declare the
data in memory to be meta data, informing Stata of key variables and their roles in a meta-analysis.
It computes various effect sizes and their respective standard errors for two-group comparisons of
continuous and binary outcomes and for estimating a single proportion of a binary outcome. It then
uses the computed effect sizes and standard errors to declare the data in memory to be meta data.
If you do not have the summary data from individual studies and, instead, you have precalculated
effect sizes, you can use meta set to declare your meta-analysis data. You must use meta esize
or meta set to perform univariate meta-analysis using the meta command; see [META]| meta data.

If you need to update some of the meta settings after the data declaration, see [META] meta update.
To display current meta settings, use meta query; see [META] meta update.

Quick start

Compute Hedges’s g standardized mean differences and their standard errors from variables nt (sample
size in treatment group), meant (mean of treatment group), sdt (standard deviation in treatment
group), and their counterparts in the control group: nc, meanc, and sdc

meta esize nt meant sdt nc meanc sdc

Same as above, but compute Cohen’s d instead of the default Hedges’s ¢, and use the DerSimonian—
Laird estimation method instead of the default REML method
meta esize nt meant sdt nc meanc sdc, esize(cohend) random(dlaird)

Compute log odds-ratios and their standard errors from variables nst (number of successes in treatment
group), nft (number of failures in treatment group), and their respective counterparts in control
group: nsc and nfc

meta esize nst nft nsc nfc

Same as above, but compute the log risk-ratios instead of the default log odds-ratios
meta esize nst nft nsc nfc, esize(lnrratio)

Same as above, but request a common-effect meta-analysis
meta esize nst nft nsc nfc, esize(lnrratio) common

Compute transformed proportions using the default Freeman—Tukey double-arcsine transformation
and their standard errors from variables ns (number of successes) and n (study sample size)
meta esize ns n

Same as above, but compute the logit-transformed proportions instead of the default Freeman—Tukey-
transformed proportions
meta esize ns n, esize(logitprop)

Menu

Statistics > Meta-analysis

78
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Syntax
Compute and declare effect sizes for two-group comparison of continuous outcomes

meta esize nl meanl sdl n2 mean2 sd2 [lf ] [in} [, options_continuous r)ptir)ns]

Compute and declare effect sizes for two-group comparison of binary outcomes

meta esize nll nl2 n2l n22 [i}"] [m] [, options_binary options]

Compute and declare effect sizes for estimating a single proportion (prevalence)
meta esize ns n [lf] [m] [ , options_proportion options]

Variables nl, meanl, and sdl contain sample sizes, means, and standard deviations from individual
studies for group 1 (treatment), and variables n2, mean2, and sd2 contain the respective summaries
for group 2 (control).

Variables n// and nl2 contain numbers of successes and numbers of failures from individual studies
for group 1 (treatment), and variables n2] and n22 contain the respective numbers for group 2
(control). A single observation defined by variables nll, ni2, n21, and n22 represents a 2 X 2
table from an individual study. Therefore, variables nl1, ni2, n21, and n22 represent a sample of
2 x 2 tables from all studies. We will thus refer to observations on these variables as 2 x 2 tables
and to values of these variables as cells.

Variables ns and n contain number of successes and sample sizes from individual studies. Here, the
values of the variable ns (number of successes) and the values of an implicit “variable” n — ns
(number of failures) are referred to as cells.

options_continuous Description
Main
esize (esspeccnt) specify effect size for two-group comparison of continuous outcomes

to be used in the meta-analysis

Model
random[ (remethod) ] random-effects meta-analysis; default is random (reml)
common common-effect meta-analysis; implies inverse-variance method
fixed fixed-effects meta-analysis; implies inverse-variance method
options_binary Description

Main
esize (estypebin) specify effect size for two-group comparison of binary outcomes

to be used in the meta-analysis

Model
random[ (remethod) ] random-effects meta-analysis; default is random (reml)

common[ (cefemethod) ] common-effect meta-analysis

f ixed[ (cefemethod) ] fixed-effects meta-analysis

Options
zerocells (zespec) adjust for zero cells during computation; default is to add 0.5 to all
cells of those 2 x 2 tables that contain zero cells
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options_proportion Description
Main
esize (estypeprop) specify effect size for estimating a single proportion to be used

in the meta-analysis

Model
random[ (remethod) ] random-effects meta-analysis; default is random (reml)
common common-effect meta-analysis; implies inverse-variance method
fixed fixed-effects meta-analysis; implies inverse-variance method
Options
zerocells (zespec) adjust for zero cells during computation; default is to add 0.5 to all

cells of studies with zero successes or failures

options Description
Options
studylabel (varname) variable to be used to label studies in all meta-analysis output
eslabel (string) effect-size label to be used in all meta-analysis output; default is
eslabel(Effect size)
level (#) confidence level for all subsequent meta-analysis commands
[no}metashow display or suppress meta settings with other meta commands

The syntax of esspeccnt is

estypecnt [, esopts]

estypecnt Description

hedgesg Hedges’s g standardized mean difference; the default

cohend Cohen’s d standardized mean difference

glassdelta?2 Glass’s A mean difference standardized by group 2 (control)
standard deviation; more common than glassdeltal

glassdeltal Glass’s A mean difference standardized by group 1 (treatment)
standard deviation

mdiff (unstandardized) mean difference

estypebin Description

lnoratio log odds-ratio; the default

lnrratio log risk-ratio (also known as log rate-ratio and log relative-risk)

rdiff risk difference

lnorpeto Peto’s log odds-ratio
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estypeprop Description
ftukeyprop Freeman—Tukey-transformed proportion; the default
logitprop logit-transformed proportion
proportion untransformed (raw) proportion
remethod Description
reml restricted maximum likelihood; the default
mle maximum likelihood
ebayes empirical Bayes
dlaird DerSimonian—Laird
sjonkman Sidik—Jonkman
hedges Hedges
hschmidt Hunter—Schmidt
cefemethod Description
mhaenszel Mantel-Haenszel
invvariance inverse variance
ivariance synonym for invvariance
Options
Main

esize (esspec) specifies the effect size to be used in the meta-analysis. For a two-group comparison

of continuous outcomes, esspec is estypecnt

for a two-group comparison or estypeprop for estimating a single proportion (prevalence).

[ s esopts]. For binary outcomes, esspec is estypebin

For a two-group comparison of continuous outcomes, estypecnt is one of the following: hedgesg,
cohend, glassdelta2, glassdeltal, or mdiff. Below, we describe each type with its specific

options, esopts.

hedgesg [ , exact holkinse] computes the effect size as the Hedges’s g (1981) standardized

mean difference. This is the default. For consistency with meta-analysis literature, hedgesg
uses an approximation to compute g rather than the exact computation (see Methods and
formulas), as provided by esize’s option hedgesg. You can use the exact suboption to
match the results from esize (see [R] esize).

cohend [ , holkinse} computes the effect size as the Cohen’s d (1969, 1988) standardized

mean difference.

glassdelta2 computes the effect size as the Glass’s A standardized mean difference, where
the standardization uses the standard deviation of the group 2 (control group). glassdelta?2
is more common in practice than glassdeltal.

glassdeltal computes the effect size as the Glass’s A standardized mean difference, where the
standardization uses the standard deviation of the group 1 (treatment group). glassdelta2
is more common in practice than glassdeltal.

mdiff [ s unequal] computes the effect size as the unstandardized or raw mean difference.
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esopts are exact, holkinse, and unequal.

exact specifies that the exact computation be used for the bias-correction factor in Hedges’s
g instead of an approximation used by default.

holkinse specifies that the standard error of Hedges’s g and Cohen’s d be computed as
described in Hedges and Olkin (1985). This is another approximation to the standard error
of these effect sizes sometimes used in practice.

unequal specifies that the computation of the standard error of the mean difference (es-
ize(mdiff)) assume unequal group variances.

For a two-group comparison of binary outcomes, estypebin is one of the following: lnoratio,
Inrratio, rdiff, or 1norpeto.

lnoratio specifies that the effect size be the log odds-ratio. This is the default.

lnrratio specifies that the effect size be the log risk-ratio, also known as a log relative-risk
and a log risk-rate.

rdiff specifies that the effect size be the risk difference.

lnorpeto specifies that the effect size be the log odds-ratio as defined by Peto et al. (1977).
This effect size is preferable with rare events.

For estimating a proportion from one-sample binary or prevalence data, estypeprop is one of the
following: ftukeyprop, logitprop, or proportion.

ftukeyprop specifies that the effect size be the Freeman—Tukey-transformed proportion
(Freeman and Tukey 1950). This is the default. The Freeman—Tukey transformation is a
variance-stabilizing transformation and is preferable when the estimated proportions are close
to 0 or 1. This effect size does not require a zero-cell adjustment (continuity correction) for
studies with zero successes or failures.

logitprop specifies that the effect size be the logit-transformed proportion. When a study
proportion is close to O or 1, the estimated variance of this effect size is very large, and
thus the study is assigned an artificially small weight in the meta-analysis.

proportion specifies that the effect size be the raw (untransformed) proportion. When a study
proportion is close to 0 or 1, its estimated variance is very small, and thus the study is
assigned an artificially large weight in the meta-analysis. Moreover, the study confidence
limits may fall outside the [0, 1] range.

For effect sizes in the log metric such as log odds-ratios, the results by default are displayed in
the log metric. You can use eform_option to obtain exponentiated results such as odds ratios. For
effect sizes ftukeyprop and logitprop, the results by default are displayed in the respective
Freeman—Tukey and logit metrics. You can use options transform() and proportion to report
results as proportions.

Model

Options random (), common (), and fixed () declare the meta-analysis model globally throughout the
entire meta-analysis; see Declaring a meta-analysis model in [META] meta data. In other words, once
you set your meta-analysis model using meta esize, all subsequent meta commands will assume
that same model. You can update the declared model by using meta update or change it temporarily
by specifying the corresponding option with the meta commands. Options random(), common(),
and fixed() may not be combined. If these options are omitted, random(reml) is assumed; see
Detault meta-analysis model and method in [META] meta data. Also see Meta-analysis models in
[META] Intro.
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random and random(remethod) specify that a random-effects model be assumed for meta-analysis;
see Random-effects model in [META]| Intro.

remethod specifies the type of estimator for the between-study variance 72. remethod is one of

reml, mle, ebayes, dlaird, sjonkman, hedges, or hschmidt. random is a synonym for
random(reml). Below, we provide a short description for each method based on Veroniki et al.
(2016). Also see Declaring a meta-analysis estimation method in [META] meta data.

reml, the default, specifies that the REML method (Raudenbush 2009) be used to estimate 72,
This method produces an unbiased, nonnegative estimate of the between-study variance and
is commonly used in practice. Method reml requires iteration.

mle specifies that the ML method (Hardy and Thompson 1996) be used to estimate 72. It
produces a nonnegative estimate of the between-study variance. With a few studies or small
studies, this method may produce biased estimates. With many studies, the ML method is
more efficient than the REML method. Method mle requires iteration.

ebayes specifies that the empirical Bayes estimator (Berkey et al. 1995), also known as the
Paule—Mandel estimator (Paule and Mandel 1982), be used to estimate 72. From simulations,
this method, in general, tends to be less biased than other random-effects methods, but it is
also less efficient than reml or dlaird. Method ebayes produces a nonnegative estimate
of 72 and requires iteration.

dlaird specifies that the DerSimonian—Laird method (DerSimonian and Laird 1986) be used
to estimate 72. This method, historically, is one of the most popular estimation methods
because it does not make any assumptions about the distribution of random effects and does
not require iteration. But it may underestimate the true between-study variance, especially
when the variability is large and the number of studies is small. This method may produce
a negative value of 72 and is thus truncated at zero in that case.

sjonkman specifies that the Sidik—Jonkman method (Sidik and Jonkman 2005) be used to
estimate 72. This method always produces a nonnegative estimate of the between-study
variance and thus does not need truncating at O, unlike the other noniterative methods.
Method sjonkman does not require iteration.

hedges specifies that the Hedges method (Hedges 1983) be used to estimate 72. When the
sampling variances of effect-size estimates can be estimated without bias, this estimator is
exactly unbiased (before truncation), but it is not widely used in practice (Veroniki et al. 2016).
Method hedges does not require iteration.

hschmidt specifies that the Hunter—Schmidt method (Schmidt and Hunter 2015) be used to
estimate 72. Although this estimator achieves a lower MSE than other methods, except ML,
it is known to be negatively biased. Method hschmidt does not require iteration.

common specifies that a common-effect model be assumed for meta-analysis; see Common-effect
(“fixed-effect”) model in [META] Intro. It uses the inverse-variance estimation method; see Meta-
analysis estimation methods in [META] Intro. Also see the discussion in [META] meta data about
common-effect versus fixed-effects models.

common and common (cefemethod) specify that a common-effect model be assumed for meta-analysis;
see Common-effect (“fixed-effect””) model in [META]| Intro. Also see the discussion in [META| meta
data about common-effect versus fixed-effects models.

common implies common(mhaenszel) for effect sizes lnoratio, lnrratio, and rdiff and
common (invvariance) for all other effect sizes.
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cefemethod is one of mhaenszel or invvariance (synonym ivariance). Below, we provide a
short description for each method. Also see Declaring a meta-analysis estimation method in
[META] meta data.

mhaenszel is available only for a two-group comparison of binary outcomes. It specifies a
meta-analysis using the Mantel-Haenszel method to estimate the overall effect size. This
method is the default for effect sizes lnoratio, lnrratio, and rdiff but is not available
for effect size 1norpeto.

invvariance specifies a meta-analysis using the inverse-variance method to estimate the
overall effect size. This method is available for all types of analyses and effect sizes. It is
the default for a two-group comparison of continuous outcomes, for a two-group comparison
of binary outcomes using effect size 1lnorpeto, and for estimating a single proportion (or
prevalence).

ivariance is a synonym for invvariance.

fixed and fixed(cefemethod) specify that a fixed-effects model be assumed for meta-analysis;
see Fixed-effects model in [META] Intro. Also see the discussion in [META] meta data about
fixed-effects versus common-effect models.

fixed implies fixed(mhaenszel) for effect sizes lnoratio, lnrratio, and rdiff and
fixed(invvariance) for all other effect sizes.

cefemethod is one of mhaenszel or invvariance (synonym ivariance); see descriptions above.

fixed specifies that a fixed-effects model be assumed for meta-analysis; see Fixed-effects model
in [META] Intro. It uses the inverse-variance estimation method; see Meta-analysis estimation
methods in [META] Intro. Also see the discussion in [META] meta data about fixed-effects versus
common-effect models.

zerocells (zespec) is for use with binary outcomes when the effect size is either lnoratio or
Inrratio for the two-sample case or either logitprop or proportion for the one-sample case.
It specifies the adjustment to be used for the cells in the presence of zero cells. The cells are the
values of variables n/1, n12, n21, and n22 for the two-sample case and the number of successes and
the number of failures for the one-sample case. The adjustment is applied during computation—the
original data are not modified. The default is zerocells (0.5, only0); it adds 0.5 to all cells of
studies with at least one zero cell. To request no adjustment, specify zerocells(none). More
generally, the syntax of zcspec is

# [, zcadj]

where # is the adjustment value, also known as the continuity-correction value in the meta-analysis
literature, and zcadj is onlyO or allifO.

onlyO specifies that # be added to all cells of only those studies with at least one zero cell.
For the two-sample case, during computation, # is added to each observation defined by
variables nl1, n12, n21, and n22 if that observation contains a value of zero in any of those
variables. For the one-sample case, # is added to all values (cells) corresponding to zero
successes and to zero failures.

allifO specifies that # be added to all cells of all studies but only if there is at least one
study with a zero cell. For the two-sample case, during computation, # is added to all values
of variables nl1, nl2, n21, and n22 but only if there is a zero value in one of the four
variables. For the one-sample case, # is added to all cells (number of successes and number
of failures) if at least one study contains zero successes or zero failures.
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For the effect size lnoratio, zcspec may also be tacc, which implements the treatment-arm
continuity correction of Sweeting, Sutton, and Lambert (2004). This method estimates the group-
specific adjustment values from the data to minimize the bias of the overall odds-ratio estimator
in the presence of zero cells. This method is recommended when the groups are unbalanced.

studylabel (varname) specifies a string variable containing labels for the individual studies to be
used in all applicable meta-analysis output. The default study labels are Study 1, Study 2, ...,
Study K, where K is the total number of studies in the meta-analysis.

eslabel (string) specifies that string be used as the effect-size label in all relevant meta-analysis
output. The default label is Effect size.

level (#) specifies the confidence level, as a percentage, for confidence intervals. It will be used
by all subsequent meta-analysis commands when computing confidence intervals. The default is
level(95) or as set by set level; see [R] level. After the declaration, you can specify level ()
with meta update to update the confidence level to be used throughout the rest of the meta-analysis
session. You can also specify level () directly with the meta commands to modify the confidence
level, temporarily, during the execution of the command.

metashow and nometashow display or suppress the meta setting information in the output of other
meta commands. By default, this information is displayed at the top of their output. You can
also specify nometashow with meta update to suppress the meta setting output for the entire
meta-analysis session after the declaration.

Remarks and examples

Remarks are presented under the following headings:
Meta-analysis for two-group comparison of binary outcomes
Meta-analysis for two-group comparison of continuous outcomes
Meta-analysis for estimating a single proportion
meta esize computes various effect sizes, their standard errors, and CIs for continuous and binary
outcomes from the summary data provided for each study. It then declares the computed effect-size
data as the meta data; see [META] meta data. Different types of effect sizes may be specified in the
esize() option. They depend on the type of analysis and outcome, so we describe them separately for
various situations below, together with other data-specific options. Also see Declaring meta-analysis
information in [META] meta data.

Meta-analysis for two-group comparison of binary outcomes

Meta-analysis is often used with studies comparing two groups. The first group is commonly
referred to as the experimental or treatment group. The second group is commonly referred to as the
control group.

For two-sample binary data, each study typically reports cell counts from the following 2 X 2 table.

group success  failure size
treatment ni1 nio n1 = ni1 + N2
control n91 N92 N2 = N21 + Nog

The cells of the table are composed of the numbers of “successes” and “failures” within each of the
comparison groups. If a subject experiences an event of interest, it is a success; otherwise, it is a
failure. Thus, the summary data for a two-group comparison of binary outcomes include the above
2 x 2 table for each study.
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In this case, meta esize requires that four variables be specified containing the numbers of
successes and failures in the treatment and control groups.

The goal of each study is to compare the probabilities of a success between the two groups. Various
effect-size measures can be used for the comparison. For two-sample binary data, meta esize provides
the following effect sizes: log odds-ratios (including Peto’s log odds-ratios), the default; log risk-
ratios; and risk differences. These are specified, respectively, as lnoratio, lnorpeto, lnrratio,
and rdiff in the esize() option.

As described in Declaring a meta-analysis model in [META] meta data, you can choose between
a random-effects, a fixed-effects, or a common-effect model. You can also choose from a number
of estimation methods that are specific to the chosen model. For fixed-effects and common-effect
models, in addition to the inverse-variance method, the Mantel-Haenszel method is available (and
is the default) with effect sizes lnoratio, lnrratio, and rdiff; see Declaring a meta-analysis
estimation method in [META] meta data and Meta-analysis estimation methods in [META] Intro for
details.

Zero cell counts are known to create computational difficulties for odds ratios and risk ratios. A
common solution is to add a small number, say, 0.5, to all cells of tables containing zero cells. This
and other zero-cells adjustments are available in the zerocells() option.

Let’s now look at several examples. Consider the following fictional meta-analysis dataset:

. use https://www.stata-press.com/data/r18/metaesbin
(Fictional data for binary outcomes)
. describe

Contains data from https://www.stata-press.com/data/r18/metaesbin.dta

Observations: 4 Fictional data for binary
outcomes
Variables: 5 23 Apr 2022 12:14
Variable Storage Display Value
name type format label Variable label
study str7 %9s Study label
tdead byte %9.0g Deaths in treatment group
tsurv int %9.0g Survivors in treatment group
cdead byte %9.0g Deaths in control group
csurv int %9.0g Survivors in control group
Sorted by:

We will use this dataset to demonstrate how to compute effect sizes, specify different meta-analysis
models, and adjust for zero cells with two-sample binary data.

> Example 1: A simple case

When working with meta-analysis data that do not have precomputed effect sizes, we can choose
to compute effect sizes in a few different ways such as odds ratios and risk ratios. Using the simplest
syntactical specification, we can compute the effect sizes, their standard errors, and the corresponding
confidence intervals by specifying the number of successes and failures for one group, as well as the
successes and failures for the second group, in that order.
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. meta esize tdead tsurv cdead csurv

Meta-analysis setting information

Study information
No.

Effect size

Type:

Label:

Variable:
Zero-cells adj.:

Precision

Std. err.:

CI:

CI level:

Model and method
Model:

Method:

of studies:
Study label:
Study size:
Summary data:

4

Generic

_meta_studysize

tdead tsurv cdead csurv

Ilnoratio

Log odds-ratio
_meta_es

0.5, only0

_meta_se
[_meta_cil, _meta_ciu]
95%

Random effects
REML

The output indicates that there are 4 studies in the meta-analysis and, by default, a random-effects
meta-analysis is to be assumed, where the heterogeneity parameter 72 is estimated via the REML
method. The default computed effect size is the log odds-ratio. meta esize creates multiple system
variables (see System variables in [META]| meta data) that store the effect-size values, their standard
errors, and the upper and lower limits of the CIs for the effect sizes.

We can now use, for example, meta summarize to list the individual log odds-ratios and the
overall log odds-ratio, which is denoted as theta.

. meta summarize

Effect-size label: Log odds-ratio

Effect size: _meta_es
Std. err.: _meta_se
Meta-analysis summary Number of studies = 4
Random-effects model Heterogeneity:
Method: REML tau2 = 1.4417
12 () = 69.33
H2 = 3.26
Study | Log odds-ratio [95% conf. interval]l ¥, weight
Study 1 -0.600 -2.079 0.879 27.80
Study 2 0.351 -2.510 3.212 15.65
Study 3 0.778 -0.031 1.586 34.69
Study 4 -2.567 -4.638 -0.495 21.85
theta -0.403 -1.869 1.063
Test of theta = 0: z = -0.54 Prob > |z| = 0.5899
Test of homogeneity: Q = chi2(3) = 9.93 Prob > Q = 0.0192

See [META] meta summarize for details.

If we have a variable that stores the labels for each study, perhaps noting the study authors or
journal, we can specify it in the studylabel() option with meta esize. Because we do not have
such a variable in this dataset, each study is denoted generically by Study #. See example 4 in
[META] meta set for an example of how to specify the study label and effect-size label. q
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> Example 2: Specify the effect size

The default is to compute the log odds-ratio for the effect size. To specify another metric, we can
use the esize() option. For example, below we use the risk ratio (on the log scale) as our effect
size by specifying esize(lnrratio):

. meta esize tdead tsurv cdead csurv, esize(lnrratio)

Meta-analysis setting information

Study information
No. of studies: 4
Study label: Generic
Study size: _meta_studysize
Summary data: tdead tsurv cdead csurv

Effect size
Type: lnrratio
Label: Log risk-ratio
Variable: _meta_es
Zero-cells adj.: 0.5, onlyO

Precision
Std. err.: _meta_se
CI: [_meta_cil, _meta_ciul
CI level: 95%
Model and method
Model: Random effects
Method: REML

> Example 3: Sparse data and adjustments for zero cells
Note that when we 1list the data, one of the studies has zero deaths.

. list tdead tsurv cdead csurv

tdead tsurv cdead csurv

1. 2 116 17 541
2. 0 15 15 682
3. 8 61 37 614
4. 1 421 9 291
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By default, meta esize adds a constant value of 0.5 (that is, option zerocells (0.5, only0)
is assumed) to each cell of a study that has a zero cell; see Zero-cells adj.: in the output of
meta set in example 1. We can modify this adjustment by specifying a different constant factor. For
example, we might add 0.003 to each zero cell:

. meta esize tdead tsurv cdead csurv, zerocells(.003)
Meta-analysis setting information

Study information
No. of studies: 4
Study label: Generic
Study size: _meta_studysize
Summary data: tdead tsurv cdead csurv

Effect size
Type: lnoratio
Label: Log odds-ratio
Variable: _meta_es
Zero-cells adj.: .003, onlyO

Precision
Std. err.: _meta_se

CI: [_meta_cil, _meta_ciu]
CI level: 95Y%

Model and method
Model: Random effects
Method: REML

Or we may instead choose a different type of continuity correction, for example, the treatment-arm
continuity correction (TACC), which we specify as zerocells(tacc):

. meta esize tdead tsurv cdead csurv, zerocells(tacc)
Meta-analysis setting information

Study information
No. of studies: 4
Study label: Generic
Study size: _meta_studysize
Summary data: tdead tsurv cdead csurv

Effect size
Type: lnoratio
Label: Log odds-ratio
Variable: _meta_es
Zero-cells adj.: tacc

Precision
Std. err.: _meta_se

CI: [_meta_cil, _meta_ciul
CI level: 95Y%

Model and method
Model: Random effects
Method: REML

Note that this option can be specified only when using the log odds-ratio as the effect size.
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> Example 4: Specify the meta-analysis model

In the examples above, we have been using the default random-effects model, but we could specify
a different model. For example, we can use a common-effect model using the Mantel-Haenszel
method to estimate the overall effect size:

. meta esize tdead tsurv cdead csurv, common(mhaenszel)
Meta-analysis setting information
Study information
No. of studies: 4
Study label: Generic
Study size: _meta_studysize
Summary data: tdead tsurv cdead csurv

Effect size
Type: lnoratio
Label: Log odds-ratio
Variable: _meta_es
Zero-cells adj.: 0.5, onlyO

Precision
Std. err.: _meta_se

CI: [_meta_cil, _meta_ciul
CI level: 95%

Model and method
Model: Common effect
Method: Mantel-Haenszel

In the above, we could have specified simply common because the Mantel-Haenszel method is the
default for a common-effect model with log odds-ratios.

d

Meta-analysis for two-group comparison of continuous outcomes

We can also use meta-analysis to compare two groups for continuous outcomes. As before, the
first group is commonly referred to as the experimental or treatment group, and the second group is
commonly referred to as the control group.

For a two-group comparison of continuous outcomes, each study often reports the numbers
of observations, means, and standard deviations in the two groups. Various effect sizes are then
computed from these summary data for each study. Thus, to compute effect sizes for two-sample
continuous data, meta esize requires that six variables be specified containing the numbers of
observations, means, and standard deviations of the treatment and control groups. The supported effect
sizes are the raw mean difference, esize (mdiff), and standardized mean differences: Hedges’s g,
esize(hedgesg) (the default); Cohen’s d, esize (cohend); and Glass’s As, esize(glassdelta2)
and esize(glassdeltal); see Methods and formulas for their definitions.

As described in Declaring a meta-analysis model in [META] meta data, you can choose between
a random-effects, a fixed-effects, or a common-effect model. You can also choose from several
estimation methods for random-effects models. Fixed-effects and common-effect models assume
the inverse-variance estimation method. Also see Declaring a meta-analysis estimation method in
[META] meta data and Meta-analysis estimation methods in [META] Intro for details.
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Let’s now demonstrate several usages of meta esize for a two-group comparison of continuous
outcomes. Consider the following fictional meta-analysis dataset:
. use https://www.stata-press.com/data/r18/metaescnt, clear
(Fictional summary data for continuous outcomes)
. describe

Contains data from https://www.stata-press.com/data/r18/metaescnt.dta

Observations: 10 Fictional summary data for
continuous outcomes
Variables: 6 19 Apr 2022 14:00
Variable Storage Display Value
name type format label Variable label
nil byte %9.0g Study sizes of group 1
ml float  %9.0g Means of group 1
sdl float  %9.0g Std. dev. of group 1
n2 byte %9.0g Study sizes of group 2
m2 float  %9.0g Means of group 2
sd2 float  %9.0g Std. dev. of group 2
Sorted by:

We will use this dataset to demonstrate different usages of the meta esize command with
continuous-outcomes meta-analysis data.

> Example 5: The assumed model

In the simplest specification, meta esize requires that we specify the sample sizes, means, and
standard deviations for each group in the meta-analysis.

. meta esize nl ml sdl n2 m2 sd2
Meta-analysis setting information

Study information
No. of studies: 10
Study label: Generic
Study size: _meta_studysize
Summary data: nl ml sdl n2 m2 sd2

Effect size
Type: hedgesg
Label: Hedges’s g
Variable: _meta_es
Bias correction: Approximate
Precision
Std. err.: _meta_se
Std. err. adj.: None
CI: [_meta_cil, _meta_ciul
CI level: 95%
Model and method
Model: Random effects
Method: REML

We see from the output that the Hedges’s g standardized mean difference is used for the effect size,
and, as for binary outcomes, a random-effects REML model is assumed. See Meta settings with meta
esize in [META] meta data for a detailed description of all settings for this dataset. q
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> Example 6: Selecting an effect size

If we do not feel the need to standardize the mean differences, we could instead use the raw mean
difference as the effect size by specifying esize (mdiff).

. meta esize nl1 ml sdl n2 m2 sd2, esize(mdiff)

Meta-analysis setting information

Study information
No.

Effect size

of studies:
Study label:
Study size:
Summary data:

10

Generic
_meta_studysize

nl ml sdl n2 m2 sd2

Type: mdiff

Label: Mean diff.
Variable: _meta_es
Precision
Std. err.: _meta_se

Std. err. adj.: None
CI: [_meta_cil, _meta_ciu]

CI level: 95%

Model and method

Model:
Method:

Random effects
REML

> Example 7: Specifying different meta-analysis models and methods

Rather than using the default REML estimation method, we may want to use a different method,
such as the DerSimonian—Laird method. We can specify this method in the random() option.

. meta esize nl1l ml sdl n2 m2 sd2, random(dlaird)

Meta-analysis setting information

Study information
No.

Effect size

of studies:
Study label:
Study size:
Summary data:

10

Generic
_meta_studysize

nl ml sdl n2 m2 sd2

Type: hedgesg
Label: Hedges’s g
Variable: _meta_es
Bias correction: Approximate
Precision
Std. err.: _meta_se
Std. err. adj.: None
CI: [_meta_cil, _meta_ciu]
CI level: 95%

Model and method

Model:
Method:

Or, instead of the random-effects model, we may specify a fixed-effects model, which implies the

Random effects
DerSimonian-Laird

inverse-variance estimation method.
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. meta esize nl ml sdl n2 m2 sd2, fixed

Meta-analysis setting information

Study information
No.

Effect size

of studies:
Study label:
Study size:
Summary data:

10

Generic
_meta_studysize

nl ml sdl n2 m2 sd2

Type: hedgesg
Label: Hedges’s g
Variable: _meta_es
Bias correction: Approximate
Precision
Std. err.: _meta_se
Std. err. adj.: None
CI: [_meta_cil, _meta_ciu]
CI level: 95%

Model and method

Model:
Method:

Fixed effects
Inverse-variance

Meta-analysis for estimating a single proportion

Meta-analysis is also used to estimate an overall proportion (or prevalence) from one-sample binary
data by pooling proportions from single-arm studies whenever this is sensible.

The data contain the number of successes (or the number of events) and the study sample size for
each study. (Success is a generic term and occurs when a subject experiences an event of interest.) To
estimate a proportion, meta esize provides the following effect sizes: Freeman—Tukey-transformed
proportions (the default), logit-transformed proportions, and untransformed (raw) proportions. These
are specified, respectively, as ftukeyprop, logitprop, and proportion in the esize() option.

As described in Declaring a meta-analysis model in [META] meta data, you can choose between
a random-effects, a fixed-effects, or a common-effect model. You can also choose from several
estimation methods for random-effects models. Fixed-effects and common-effect models assume
the inverse-variance estimation method. Also see Declaring a meta-analysis estimation method in
[META] meta data and Meta-analysis estimation methods in [META] Intro for details.

Let’s now look at several examples. Consider the following fictional meta-analysis dataset:

. use https://www.stata-press.com/data/r18/metaesprop, clear
(Fictional summary data to estimate proportion)
. describe

Contains data from https://www.stata-press.com/data/r18/metaesprop.dta

Observations: 6 Fictional summary data to
estimate proportion

Variables: 3 26 Apr 2022 11:14

Variable Storage Display Value
name type format label Variable label

study str7 %9s Study label

nsucc byte %9.0g Number of successes

ssize int %9.0g Study sample size

Sorted by:
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We will use this dataset to demonstrate different usages of the meta esize command to declare
the data for meta-analysis of a single proportion.

~> Example 8: The default setting

In its most basic form,

meta esize requires that we specify the number of successes (nsucc)

and the study sample sizes (ssize).

. meta esize nsucc ssize

Meta-analysis setting information

Study information

No. of studies:
Study label:
Study size:
Summary data:

Effect size

Type:

Label:

Variable:
Precision

Std. err.:

CI:

CI level:

Model and method
Model:

Method:

The output shows that

6

Generic
_meta_studysize
nsucc ssize

ftukeyprop
Freeman-Tukey’s p
_meta_es

_meta_se
[_meta_cil, _meta_ciu]
95%

Random effects
REML

the summary data are defined by variables nsucc and ssize and that,

by default, the Freeman—Tukey-transformed proportion is used as the effect size. A random-effects
REML model is assumed. Other settings are exactly as described in example 1.

4

> Example 9: Specify the effect size

Instead of using the default Freeman—Tukey-transformed proportion, we can choose a different
effect size, such as the logit-transformed proportion, using the esize () option.

. meta esize nsucc ssize, esize(logitprop)

Meta-analysis setting information

Study information

No. of studies:
Study label:
Study size:
Summary data:

Effect size

Type:

Label:

Variable:
Zero-cells adj.:

Precision

Std. err.:
CI:
CI level:

Model and method

Model:
Method:

6

Generic
_meta_studysize
nsucc ssize

logitprop

Logit proportion
_meta_es

None; no zero cells

_meta_se
[_meta_cil, _meta_ciu]
95%

Random effects
REML
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The output differs from that in example 8 in the Effect size section. It now reflects that logit-
transformed proportion is the effect size of choice instead of the default Freeman—Tukey-transformed
proportion. There is also a new row for the zero-cells adjustment. This row did not show up in the
output of example 8 because the Freeman—Tukey-transformed proportion does not need continuity
correction. In our dataset, there are no zero cells, so the output in that row shows that no zero-cells
adjustment was applied.

The logit-transformed proportion (and the untransformed proportion, esize (proportion)) should
be avoided when there are study proportions that are close to O or 1. q

> Example 10: Specify an alternative meta-analysis model and method

Instead of using the default REML estimation method, you may specify an alternative random-effects
method, such as the DL method. This can be done via the random() option.

. meta esize nsucc ssize, random(dlaird)
Meta-analysis setting information
Study information
No. of studies: 6
Study label: Generic
Study size: _meta_studysize
Summary data: nsucc ssize
Effect size
Type: ftukeyprop
Label: Freeman-Tukey’s p
Variable: _meta_es
Precision
Std. err.: _meta_se
CI: [_meta_cil, _meta_ciul
CI level: 95%
Model and method
Model: Random effects
Method: DerSimonian-Laird

Or perhaps you believe that your proportions are similar across the studies and that a common-effect
model is adequate to synthesize the overall proportion. You may request a common-effect model with
the inverse-variance method by specifying the common option.

. meta esize nsucc ssize, common
Meta-analysis setting information

Study information
No. of studies: 6
Study label: Generic
Study size: _meta_studysize
Summary data: nsucc ssize

Effect size
Type: ftukeyprop
Label: Freeman-Tukey’s p
Variable: _meta_es
Precision
Std. err.: _meta_se
CI: [_meta_cil, _meta_ciul
CI level: 95%
Model and method
Model: Common effect
Method: Inverse-variance
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Stored results
meta esize stores the following characteristics and system variables:

Characteristics

_dta[_meta_marker]
_dta[_meta_K]
_dta[_meta_studylabel]
_dta[_meta_estype]
_dta[_meta_eslabelopt]
_dta[_meta_eslabel]
_dta[_meta_eslabeldb]
_dta[_meta_esvardb]
_dta[_meta_level]
_dta[_meta_esizeopt]
_dta[_meta_esopt_exact]

_dta[-meta_esopt_holkinse]
_dta[_meta_esopt_unequal]

_dta[_meta_modellabel]

_dta[_meta_model]
_dta[_meta_methodlabel]
_dta[_meta_method]
_dta[_meta_randomopt]
_dta[_meta_zcopt]
_dtal[_meta_zcadj]

_dta[_meta_zcvalue]
_dta[_meta_show]
_dta[_meta_nlvar]
_dta[_meta_meanlvar]
_dta[_meta_sdlvar]
_dta[_meta_n2var]
_dta[_meta_mean2var]
_dta[_meta_sd2var]
_dta[_meta_nllvar]
_dta[_meta_n12var]
_dta[_meta_n21var]
_dta[_meta_n22var]
_dta[_meta_nsvar]
_dta[_meta_nvar]
_dta[_meta_datatypel
_dta[_meta_datavars]
_dta[_meta_setcmdline]
_dta[_meta_ifexp]
_dta[_meta_inexp]

System variables

—_meta_id
_meta_es
_meta_se
—meta_cil
_meta_ciu
_meta_studylabel
—meta_studysize

“_meta_ds_1"
number of studies in the meta-analysis
name of string variable containing study labels or Generic
type of effect size; varies
eslabel (eslab), if specified
effect-size label from eslabel(); default varies
effect-size label for dialog box
-meta_es
default confidence level for meta-analysis
esize (estype), if specified
exact, if esize(, exact) is specified
holkinse, if esize(, holkinse) is specified
unequal, if esize(, unequal) is specified
meta-analysis model label: Random effects, Common effect, or
Fixed effects
meta-analysis model: random, common, or fixed
meta-analysis method label; varies by meta-analysis model
meta-analysis method; varies by meta-analysis model
random (remethod), if specified
zerocells(zcspec), if specified
type of adjustment for zero cells, if zerocells()
specified
value added to cells to adjust for zero cells, if specified
empty or nometashow
name of group 1 sample-size variable; for two-sample continuous data
name of group 1 mean variable; for two-sample continuous data
name of group 1 std. dev. variable; for two-sample continuous data
name of group 2 sample-size variable; for two-sample continuous data
name of group 2 mean variable; for two-sample continuous data
name of group 2 std. dev. variable; for two-sample continuous data
name of n/] variable; for two-sample binary data (contingency table)
name of n/2 variable; for two-sample binary data (contingency table)
name of n2/ variable; for two-sample binary data (contingency table)
name of n22 variable; for two-sample binary data (contingency table)
name of ns variable; for one-sample binary data (proportion)
name of n variable; for one-sample binary data (proportion)
data type; continuous, binary, or proportion
variables specified with meta esize
meta esize command line
if specification
in specification

study ID variable

variable containing effect sizes

variable containing effect-size standard errors

variable containing lower bounds of CIs for effect sizes
variable containing upper bounds of Cls for effect sizes
string variable containing study labels

variable containing total sample size per study
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Methods and formulas

Methods and formulas are presented under the following headings:

Effect sizes for two-group comparison of continuous outcomes
Unstandardized mean difference
Standardized mean difference
Effect sizes for two-group comparison of binary outcomes
Odds ratio
Risk ratio (rate ratio)
Risk difference
Zero-cells adjustments for two-sample case
Effect sizes for estimating a single proportion
Raw (untransformed) proportion
Freeman—Tukey-transformed proportion
Logit-transformed proportion
Zero-cells adjustments for one-sample case
Confidence intervals for effect sizes

Effect sizes for two-group comparison of continuous outcomes

As we described in Meta-analysis for two-group comparison of continuous outcomes, meta-analysis
often compares two groups: experimental (or treated) group and control group.

When the response (measurement) is continuous, studies typically report a mean and standard
deviation for each group. For a given study, the following table denotes the underlying population
parameters and the reported summary statistics (data) for each group.

population sample
group mean sd mean sd size
treatment 1 o1 1 S1 ny
control L2 o9 ) So N9

The majority of this section is based on Borenstein (2009).

Unstandardized mean difference

Consider the population mean difference

0= p1 — p2

For each study in the meta-analysis, meta esize with option esize (mdiff) estimates 6 using the
difference in sample means,

D=7 — T
The variance of D, assuming that the two population standard deviations are equal, is estimated by
. 1 1
Var(D) = ( + ) s
n1 o

where s is the pooled sample standard deviation

(n1—1)s? + (ng — 1) s3
n1+no—2

S =
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For unequal population standard deviations, use option esize (mdiff, unequal); then the variance
of D is estimated by

2 2
m@p%+%

Unstandardized (raw) mean differences are not comparable across studies if the underlying means
are measured on different scales.

Standardized mean difference

The standardized mean difference is

9 — H1 — f2
o

Note that # does not depend on the scale of measurement. The definition of the standardized mean
difference implicitly assumes that the population standard deviations, o; and oo, are the same:
01 =09 = 0.

meta esize with option esize(cohend) estimates # using Cohen’s d statistic (Cohen 1969,
1988),

The estimated variance of d is given by

n1 + no n d?
nin9 2 (n1 + ng)

Var(d) =

Hedges (1981) introduced an adjustment to Cohen’s d for small samples that accounts for a small
upward bias in the absolute value of 0. meta esize with option esize (hedgesg, exact) computes
Hedges’s g as

g=c(m)xd

where m = n1 + no — 2 is the degrees of freedom used to estimate s and

)
VEL (25

The adjustment ¢(m) is less than 1 and approaches 1 as m gets large. The variance estimate of
Hedges’s g is

c(m) =

Var(g) = c(m)? x Var(d)

Hedges (1981) also introduced an accurate approximation for ¢(m) that has been traditionally used
in meta-analysis. The approximation for c¢(m) is

3
4dm — 1

J=1-

meta esize with option esize (hedgesg) computes Hedges’s g using J for ¢(m); thus,

g=Jxd
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and . -
Var(g) = J* x Var(d)

meta esize with option esize(glassdelta2) estimates 6 using Glass’s A (Smith and

Glass 1977),
T T
A=2L—2

52
Notice that the standard deviation in the denominator is So, the sample standard deviation from the
control group, which is considered to be a more reliable estimate of the common variance. The
estimated variance of A is given by

ni + na A2

Var(A) - ning 2 (n2 — 1)

In the absence of the control group, such as in observational studies, Kline (2013), among others,
suggests providing statistics standardized by the standard deviation of each group. Glass’s A where
standardization is based on the treatment group may be computed via option esize(glassdeltal).

Alternative standard error estimators are available for Hedges’s g and Cohen’s d effect sizes.

Hedges and Olkin (1985, eq. 8, 80) provide another commonly used estimator for the variance of

Hedges’s g.
ni + N2 92

\7\ =
ar(9) ning 2(m —1.94)

meta esize uses this formula when option esize(hedgesg, holkinse) is specified.

The alternative variance estimator of d is given by

ni + no d?
nin9 2 (n1 + no — 2)

Var(d) =

This variance estimator may be requested via option esize(cohend, holkinse).

Effect sizes for two-group comparison of binary outcomes

As we described in Meta-analysis for two-group comparison of binary outcomes, meta-analysis
often compares two groups: experimental (or treated) group and control group. When the response
(measurement) is binary, each study typically reports cell counts from the following 2 X 2 table.

group success failure size
treatment a b n=a+b
control c d no =c+d

Here, for simplicity, we use a different notation for the cell counts (a, b, ¢, and d) compared with
the similar table in Meta-analysis for two-group comparison of binary outcomes.

For the treatment group, n; is assumed fixed, a ~ binomial(ny, 1), and 71 is the probability of a
success. For the control group, ng is assumed fixed, ¢ ~ binomial(ng, m2), and 72 is the probability
of a success. The goal of each study is to compare the two success probabilities, 71 and 7s.

Estimates of the success probabilities are 71 = a/nq for the treatment group and 7o = ¢/no for
the control group.
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Odds ratio

meta esize with option esize(lnoratio) computes estimates of the log odds-ratios. Odds ratio
is the ratio of the odds of a success in the treatment group over the odds of a success in the control

group.
1—
or = M/ (A —m)
71'2/ (1 - 7T2)
The odds ratio is estimated by
o5 ad
~ be

The distribution of OR is typically skewed, but the natural logarithm of OR, ln((/)ﬁ), is asymptotically
normally distributed. The estimate of the variance of ln((/)ﬁ) is

— _ 1 1 1 1
Var{In(OR)} = — 4+ - + — + =
{InOR)} = —+ 24—+ -
meta esize with option esize(lnorpeto) computes estimates of effect size using Peto’s log
odds-ratio (Peto et al. 1977; Yusuf et al. 1985). Peto’s odds ratio and log odds-ratio are

—Peto {a - F (a) }
OR =expy

Var (a)
In <6§Peto) _ a—F (Cl)
Var (a)
where the expectation and variance of a are estimated assuming a hypergeometric distribution:
B(a) = @FIm
n
ning (a +¢) (b+d)
V =
ar (a) 2= 1)

. . _~Peto .
The variance estimate of In (OR N O) is

— — 1
Var{ In (ORPew) } =
Var (a)
See, for instance, Fleiss 1993, Fleiss, Levin, and Paik 2003, and Bradburn et al. (2007) for a
discussion of potential bias of Peto’s odds ratio and its performance in sparse data.

Risk ratio (rate ratio)

meta esize with option esize(lnrratio) computes estimates of the log risk-ratios. The risk
ratio (RR), also known as the rate ratio or relative risk in the health sciences, is

1
RR = —
T
RR is estimated by
—~ a/ny
RR = /
¢/ng

Similarly to odds ratios, RR typically has a skewed distribution, but the natural logarithm of RR,
In (RR), is asymptotically normally distributed. The estimate of the variance of In (RR) is

—~ s 1 1 1 1

Var {n(fR)} =~ 4-— ——
a
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Risk difference

meta esize with option esize(rdiff) computes estimates of the risk differences. The risk
difference is
RD =71 — o
and is estimated by
o~ a c
RD= — — —
n1 no
RD is asymptotically normally distributed and is thus typically used without a transformation in
meta-analysis.

The estimated variance of RD is

—~ ab cd
Var (RD) = 7”713 + 77%

Zero-cells adjustments for two-sample case

The variance estimates of ln(61\2) and In (ﬁﬁ) are not defined if there are any empty (zero count)
cells in a 2 X 2 table. In this case, it is customary to add a small value, often referred to as “continuity
correction”, to each cell prior to computing the log odds- or risk-ratio.

By default, meta esize adds 0.5 to each cell of 2 X 2 tables containing empty cells (Gart and
Zweifel 1967 and Gart, Pettigrew, and Thomas 1985). Alternatively, you can add a different number
or add a number to each cell of all 2 X 2 tables, as long as there is at least one 2 X 2 table with zero
cells; see option zerocells().

For odds ratios, Sweeting, Sutton, and Lambert (2004) proposed the treatment-arm continuity
correction (TACC) method, which estimates the continuity-correction values from the data separately
for each group; see zerocells(tacc).

Effect sizes for estimating a single proportion

As we described in Meta-analysis for estimating a single proportion, meta-analysis may be used to
aggregate proportions of a certain event of interest in single-group or single-arm studies. Each study
typically reports the number of successes (number of events), e, and the study sample size, n. The
number of successes e is assumed to follow a binomial(n, p) distribution, where p is the probability
of success. For details, see Barendregt et al. (2013) and Nyaga, Arbyn, and Aerts (2014).

Raw (untransformed) proportion

meta esize with option esize(proportion) computes estimates of proportions for each study
and uses them as effect sizes in the meta-analysis. The proportion is estimated by

. e
p=~-
n
When the proportion p is near 0.5 and when n is sufficiently large, the binomial distribution of e is
well approximated by the normal distribution, and a meta-analysis may be performed in the natural
(untransformed) metric.
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The estimated variance of D is

—~  p(1=9%

Var (p) = p(1-p)

n
Because the expression of the variance depends on p, meta-analysis of this effect size tends to

assign artificially large weights for studies with p close to 0 or 1. In this case, the variance of D is
close to 0, and the study weights, which are the inverse variances, will be large. Also, study-specific
CI limits may fall outside the range of [0, 1] and, in practice, are truncated when this happens.

Freeman—Tukey-transformed proportion

By default (or with option esize(ftukeyprop)), meta esize computes the Freeman—Tukey-
transformed proportions and uses them as effect sizes in the meta-analysis. The Freeman—Tukey
transformation is also known as the Freeman—Tukey double-arcsine transformation in the literature.
The Freeman—Tukey-transformed proportion is given by

1
DPpr = asin (“nil) +asin< Z:l) (1)

with the corresponding estimated variance

1

Var (Pe) n+0.5

This is a variance-stabilizing transformation (variance does not depend on e) and is particularly
preferable when p is close to 0 or 1. This transformation also addresses the issue of assigning
artificially small or large weights to studies in the meta-analysis when e is close to O or n. And it
guarantees that the back-transformed CIs (see Inverse Freeman—Tukey transformation in Methods and
formulas in [META] meta summarize) fall within the [0, 1] range.

Logit-transformed proportion

meta esize with option esize(logitprop) computes logit-transformed proportions and uses
them as effect sizes in the meta-analysis. The logit-transformed proportion is estimated by

logit (§) = In (&)

with the corresponding estimated variance

—~ B 1 1
Var {logit (D)} = s + n—np

This transformation allows aggregating the proportions in a metric that is closer to normality
and guarantees that the back-transformed CI limits (computed using the invlogit() function) are
between 0 and 1 (inclusive). Because the expression of the variance depends on P, meta-analysis of
this effect size tends to assign artificially low weights for studies with p close to 0 or 1. In this case,
the variances for such studies are large, and the study weights, which are the inverse variances, will
be low.
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Zero-cells adjustments for one-sample case

When a study reports a zero cell (zero successes or zero failures), the variance of p is equal to
0, and the variance of logit (p) is not defined. In this case, it is customary to add a small value,
often referred to as “continuity correction”, to each cell prior to computing the proportion or the
logit-transformed proportion.

By default, meta esize adds 0.5 to each cell of studies containing zero cells (Gart and Zweifel 1967
and Gart, Pettigrew, and Thomas 1985). In other words, for a study reporting zero cells, the number
of successes, e, will be incremented by 0.5, the number of failures will be incremented by 0.5, and

therefore, the total sample size, n, will increase by 1.

Alternatively, you can add a different number or add a number to each cell of all studies, as long
as there is at least one study with zero cells; see option zerocells().

Confidence intervals for effect sizes

For the jth study in a given meta-analysis, let @\j be one of the effect-size estimators described
above; then the asymptotic 100(1 — «)% confidence interval computed by meta esize is

~ o~ o~

0; + Z1-a)2 Var(Qj)

where 21_, /2 is the usual critical value from the standard normal distribution.
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meta set — Declare meta-analysis data using generic effect sizes

Description Quick start Menu Syntax
Options Remarks and examples Stored results References
Also see

Description

meta set declares the data in memory to be meta data, informing Stata of key variables and their
roles in a meta-analysis. It is used with generic (precomputed) effect sizes specified in the metric
closest to normality; see [META] meta esize if you need to compute and declare effect sizes. You

must use meta set or meta esize to perform univariate meta-analysis using the meta command;
see [META] meta data.

If you need to update some of the meta settings after the data declaration, see [META] meta update.
To display current meta settings, use meta query; see [META] meta update.

Quick start
Declare generic effect sizes and their standard errors from individual studies stored in variables es
and se

meta set es se

Same as above, but request a random-effects meta-analysis where between-study heterogeneity is
estimated using the DerSimonian—Laird method instead of the default REML method

meta set es se, random(dlaird)

Specify a common-effect meta-analysis, study labels stored in a string variable studylab, and label
effect sizes as log(HR) in the output

meta set es se, common studylabel(studylab) eslabel("log(HR)")

Use 90% confidence level, and suppress the display of meta settings for all subsequent meta-analysis
commands

meta set es se, level(90) nometashow

Specify study sizes stored in variable ssize
meta set es se, studysize(ssize)

Declare generic effect sizes, and compute their standard errors based on the specified 90% CI variables,
cil and ciu

meta set es cil ciu, civarlevel(90)

Menu

Statistics > Meta-analysis
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Syntax
Specity generic effect sizes and their standard errors

meta set esvar sevar [lf] [in] [, ()pti(ms]

Specity generic effect sizes and their confidence intervals
meta set esvar cilvar ciuvar [lf] [ln} [, civarlevel (#) civartolerance (#)

options |

esvar specifies a variable containing the effect sizes, sevar specifies a variable containing standard
errors of the effect sizes, and cilvar and ciuvar specify variables containing the respective lower and
upper bounds of (symmetric) confidence intervals for the effect sizes. esvar and the other variables
must correspond to effect sizes specified in the metric closest to normality, such as log odds-ratios
instead of odds ratios.

options Description
Model
random[ (remethod) ] random-effects meta-analysis; default is random (reml)
common common-effect meta-analysis; implies inverse-variance method
fixed fixed-effects meta-analysis; implies inverse-variance method
Options
studylabel (varname) variable to be used to label studies in all meta-analysis output
studysize (varname) total sample size per study
eslabel (string) effect-size label to be used in all meta-analysis output; default is
eslabel(Effect size)
level (#) confidence level for all subsequent meta-analysis commands
[no}metashow display or suppress meta settings with other meta commands
remethod Description
reml restricted maximum likelihood; the default
mle maximum likelihood
ebayes empirical Bayes
dlaird DerSimonian—Laird
sjonkman Sidik—Jonkman
hedges Hedges

hschmidt Hunter—Schmidt
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Options

Main

civarlevel (#) is relevant only when you specify CI variables cilvar and ciuvar with meta set. It
specifies the confidence level corresponding to these variables. The default is civarlevel (95).
This option affects the computation of the effect-size standard errors stored in the system variable
_meta_se.

Do not confuse civarlevel() with level (). The former affects the confidence level only for
the specified CI variables. The latter specifies the confidence level for the meta-analysis.

civartolerance(#) is relevant only when you specify CI variables cilvar and ciuvar with
meta set. cilvar and ciuvar must define a symmetric CI based on the normal distribution.
civartolerance() specifies the tolerance to check whether the CI is symmetric. The de-
fault is civartolerance(le-6). Symmetry is declared when reldif (ciuvar — esvar,esvar —
cilvar) < #.

meta set expects the effect sizes and CIs to be specified in the metric closest to normality, which
implies symmetric CIs. Effect sizes and their CIs are often reported in the original metric and with
limited precision that, after the normalizing transformation, may lead to asymmetric CIs. In that
case, the default of 1e—6 may be too stringent. You may use civartolerance() to loosen the
default.

Model

Options random(), common, and fixed declare the meta-analysis model globally throughout the
entire meta-analysis; see Declaring a meta-analysis model in [META] meta data. In other words, once
you set your meta-analysis model using meta set, all subsequent meta commands will assume that
same model. You can update the declared model by using meta update or change it temporarily
by specifying the corresponding option with the meta commands. Options random(), common, and
fixed may not be combined. If these options are omitted, random(reml) is assumed; see Default
meta-analysis model and method in [META] meta data. Also see Meta-analysis models in [META] Intro.

random and random(remethod) specify that a random-effects model be assumed for meta-analysis;
see Random-effects model in [META] Intro.

remethod specifies the type of estimator for the between-study variance 72. remethod is one of

reml, mle, ebayes, dlaird, sjonkman, hedges, or hschmidt. random is a synonym for
random(reml). Below, we provide a short description for each method based on Veroniki et al.
(2016). Also see Declaring a meta-analysis estimation method in [META] meta data.

reml, the default, specifies that the REML method (Raudenbush 2009) be used to estimate T2,
This method produces an unbiased, nonnegative estimate of the between-study variance and
is commonly used in practice. Method reml requires iteration.

mle specifies that the ML method (Hardy and Thompson 1996) be used to estimate 72. It
produces a nonnegative estimate of the between-study variance. With a few studies or small
studies, this method may produce biased estimates. With many studies, the ML method is
more efficient than the REML method. Method mle requires iteration.

ebayes specifies that the empirical Bayes estimator (Berkey et al. 1995), also known as the
Paule—Mandel estimator (Paule and Mandel 1982), be used to estimate 72. From simulations,
this method, in general, tends to be less biased than other random-effects methods, but it is
also less efficient than reml or dlaird. Method ebayes produces a nonnegative estimate
of 72 and requires iteration.
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dlaird specifies that the DerSimonian—Laird method (DerSimonian and Laird 1986) be used
to estimate 72. This method, historically, is one of the most popular estimation methods
because it does not make any assumptions about the distribution of random effects and does
not require iteration. But it may underestimate the true between-study variance, especially
when the variability is large and the number of studies is small. This method may produce
a negative value of 72 and is thus truncated at zero in that case.

sjonkman specifies that the Sidik—Jonkman method (Sidik and Jonkman 2005) be used to
estimate 72. This method always produces a nonnegative estimate of the between-study
variance and thus does not need truncating at O, unlike the other noniterative methods.
Method sjonkman does not require iteration.

hedges specifies that the Hedges method (Hedges 1983) be used to estimate 72. When the
sampling variances of effect-size estimates can be estimated without bias, this estimator is
exactly unbiased (before truncation), but it is not widely used in practice (Veroniki et al. 2016).
Method hedges does not require iteration.

hschmidt specifies that the Hunter—Schmidt method (Schmidt and Hunter 2015) be used to
estimate 72. Although this estimator achieves a lower MSE than other methods, except ML,
it is known to be negatively biased. Method hschmidt does not require iteration.

common specifies that a common-effect model be assumed for meta-analysis; see Common-effect
(“fixed-effect”) model in [META] Intro. It uses the inverse-variance estimation method; see Meta-
analysis estimation methods in [META] Intro. Also see the discussion in [META] meta data about
common-effect versus fixed-effects models.

fixed specifies that a fixed-effects model be assumed for meta-analysis; see Fixed-effects model
in [META] Intro. It uses the inverse-variance estimation method; see Meta-analysis estimation
methods in [META] Intro. Also see the discussion in [META] meta data about fixed-effects versus
common-effect models.

studylabel (varname) specifies a string variable containing labels for the individual studies to be
used in all applicable meta-analysis output. The default study labels are Study 1, Study 2, ...,
Study K, where K is the total number of studies in the meta-analysis.

studysize (varname) specifies the variable that contains the total sample size for each study. This
option is useful for subsequent meta commands that use this information in computations such as
meta funnelplot using the sample-size metric.

eslabel (string) specifies that string be used as the effect-size label in all relevant meta-analysis
output. The default label is Effect size.

level (#) specifies the confidence level, as a percentage, for confidence intervals. It will be used
by all subsequent meta-analysis commands when computing confidence intervals. The default is
level(95) or as set by set level; see [R] level. After the declaration, you can specify level ()
with meta update to update the confidence level to be used throughout the rest of the meta-analysis
session. You can also specify level() directly with the meta commands to modify the confidence
level, temporarily, during the execution of the command.

metashow and nometashow display or suppress the meta setting information in the output of other
meta commands. By default, this information is displayed at the top of their output. You can
also specify nometashow with meta update to suppress the meta setting output for the entire
meta-analysis session after the declaration.
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Remarks and examples

Remarks are presented under the following headings:

Overview
Using meta set

Overview

When you perform meta-analysis, it is common for studies included in the meta-analysis to contain
precalculated effect sizes, which we refer to as generic effect sizes, such as mean differences, odds
ratios, correlations, and hazard ratios. You can use meta set to declare the generic effect sizes
specified in the metric closest to normality. (If you have summary data from which effect sizes can
be computed, use [META] meta esize instead.)

In addition to effect sizes, their standard errors must be available for meta-analysis. Sometimes,
the standard errors are not available, but the confidence intervals (CIs) are. In that case, the standard
errors can be computed from the effect-size estimates and CIs. meta set supports both cases. You
can supply the variables containing effect sizes and their standard errors, or, instead of the standard
errors, you can specify the variables containing the CIs.

When you specify the CI variables, you can specify their corresponding confidence level in the
civarlevel() option. (Do not confuse this option with the level () option. The former corresponds
to the specified CI variables, whereas the latter specifies the confidence level for the entire meta-analysis.)

Meta-analysis uses effect sizes in a metric that makes them approximately normally distributed
such as log odds-ratios instead of odds ratios and log hazard-ratios instead of hazard ratios. As such,
meta set expects the effect sizes and measures of their precision to be specified in the metric closest
to normality. So, the corresponding standard errors or CIs should be provided in the same metric as
effect sizes. For example, if you are working with hazard ratios, you should specify log hazard-ratios
with meta set and provide CIs for the log hazard-ratios and not the hazard ratios.

See [META| meta data for more details.
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Using meta set

Consider the following fictional meta-analysis dataset:

. use https://www.stata-press.com/data/r18/metaset
(Generic effect sizes; fictional data)

. describe

Contains data from https://www.stata-press.com/data/r18/metaset.dta

Observations: 10 Generic effect sizes; fictional
data
Variables: 9 19 Apr 2022 01:28
Variable Storage Display Value
name type format label Variable label
study byte %9.0g Study ID
es double %10.0g Effect sizes
se double %10.0g Std. err. for effect sizes
cil double %10.0g 95%, lower CI limit
ciu double %10.0g 95% upper CI limit
cil90 double %10.0g 90% lower CI limit
ciu90 double %10.0g 907% upper CI limit
studylab str23  %23s Study label
ssize byte %9.0g Study size
Sorted by:

We will use it to describe various usages of the meta set command. For examples of declarations of
real datasets, see [META] meta data. We assume that es contains the effect sizes that are approximately
normal (perhaps after a suitable transformation) and that se, cil, and ciu contain their corresponding
standard errors and CIs.

> Example 1: Declaring effect sizes and standard errors

Meta-analysis datasets often contain precomputed effect sizes and their standard errors. To declare
them for meta-analysis using the meta commands, we specify the corresponding variables with meta

set.
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. meta set es se

Meta-analysis setting information

Study information
No.

Effect size

Type:
Label:
Variable:

Precision
Std.

Model and method

Model:
Method:

of studies:
Study label:
Study size:

err.:
CI:
CI level:

10
Generic
N/A

<generic>
Effect size
es

se
[_meta_cil, _meta_ciul
95%

Random effects
REML

Briefly, meta set reports that there are 10 studies, that es and se are the variables used to declare
effect sizes and their standard errors, that the default confidence level is 95%, and more. See Meta
settings with meta set in [META] meta data for a detailed description of all settings for this dataset.

We can now use, for example, meta summarize to compute the overall effect size (labeled as

theta in the output below).

. meta summarize

Effect-size label: Effect size
Effect size: es

Std. err.: se

Meta-analysis summary Number of studies = 10

Random-effects model Heterogeneity:
Method: REML tau2 = 0.0157
12 (%) = 5.30
H2 = 1.06
Study Effect size [95% conf. intervall 7 weight
Study 1 1.480 -0.352 3.311 2.30
Study 2 0.999 -0.933 2.931 2.07
Study 3 1.272 0.427 2.117 10.15
Study 4 1.001 0.750 1.252 63.77
Study 5 1.179 -0.527 2.884 2.65
Study 6 1.939 0.427 3.452 3.35
Study 7 2.377 1.005 3.750 4.05
Study 8 0.694 -0.569 1.956 4.75
Study 9 1.099 -0.147 2.345 4.88
Study 10 1.805 -0.151 3.761 2.02

theta 1.138 0.857 1.418

Test of theta = 0: z = 7.95 Prob > |z| = 0.0000
Test of homogeneity: Q = chi2(9) = 6.34 Prob > Q = 0.7054

See [META] meta summarize for details about this

command.
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> Example 2: Declaring effect sizes and confidence intervals

Continuing with example 1, we find that some meta-analysis datasets contain confidence intervals
associated with effect sizes instead of standard errors. In that case, you can specify confidence intervals
with meta set instead of the standard errors. For example, variables cil and ciu contain the 95%
lower and upper CI limits for the effect sizes stored in variable es. We can declare them as follows.

. meta set es cil ciu

Meta-analysis setting information

Study information
No.

Effect size

Type:
Label:
Variable:

Precision
Std.

Model and method

Model:
Method:

Compared with Std. err.:

of studies:
Study label:
Study size:

err.:
CI:
CI level:

User CI:

User CI level:

10
Generic
N/A

<generic>
Effect size
es

_meta_se

[_meta_cil, _meta_ciul

95%, controlled by level()
[cil, ciul

95%, controlled by civarlevel()

Random effects
REML

in example 1, Std. err.: under Precision now contains the system

variable _meta_se; see System variables in [META] meta data. The standard errors are computed
from cil and ciu and stored in this system variable. The CI values are stored in the corresponding
system variables _meta_cil and _meta_ciu.

The output additionally reports the user-specified CI variables, cil and ciu, under User CI: and
their corresponding confidence level, 95%, under User CI level:. As we will see later, User CI
level, controlled by the civarlevel() option, and CI level, controlled by the level() option,

may be different.
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Let’s now check that we obtain the same results as before using the equivalent CI declaration.

. meta summarize

Effect-size label: Effect size
Effect size: es

Std. err.: _meta_se

Meta-analysis summary Number of studies = 10

Random-effects model Heterogeneity:
Method: REML tau2 = 0.0157
2 (B = 5.30
H2 = 1.06
Study Effect size [95% conf. intervall ¥ weight
Study 1 1.480 -0.352 3.311 2.30
Study 2 0.999 -0.933 2.931 2.07
Study 3 1.272 0.427 2.117 10.15
Study 4 1.001 0.750 1.252 63.77
Study 5 1.179 -0.527 2.884 2.65
Study 6 1.939 0.427 3.452 3.35
Study 7 2.377 1.005 3.750 4.05
Study 8 0.694 -0.569 1.956 4.75
Study 9 1.099 -0.147 2.345 4.88
Study 10 1.805 -0.151 3.761 2.02

theta 1.138 0.857 1.418

Test of theta = 0: z = 7.95 Prob > |z| = 0.0000
Test of homogeneity: Q = chi2(9) = 6.34 Prob > Q = 0.7054

In the earlier meta set, we assumed that the cil and ciu variables correspond to the 95% CIs.
Although typical, this may not always be the case. You can use the civarlevel () option to specify
the confidence level of the CI variables. We have variables ¢il90 and ciu90 in our dataset, which
contain the 90% CIs for es. We can use them in the declaration as long as we also specify the
civarlevel(90) option.

. meta set es cil90 ciu90, civarlevel(90)
Meta-analysis setting information

Study information
No. of studies: 10
Study label: Generic
Study size: N/A
Effect size
Type: <generic>
Label: Effect size
Variable: es

Precision
Std. err.: _meta_se
CI: [_meta_cil, _meta_ciul
CI level: 95%, controlled by level()
User CI: [cil90, ciu90]
User CI level: 90%, controlled by civarlevel()

Model and method
Model: Random effects
Method: REML

The User CI level now contains 90%. Do not confuse the civarlevel() option, whose value is
reported in User CI level, with the level() option, whose value is reported in CI level. The
former specifies the confidence level corresponding to the declared CI variables. The latter specifies the
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confidence level that will be used to compute various confidence intervals during your meta-analysis
session. Note that the system CI variables, _meta_cil and _meta_ciu, always correspond to the
confidence level controlled by level().

. meta summarize

Effect-size label: Effect size
Effect size: es

Std. err.: _meta_se

Meta-analysis summary Number of studies = 10

Random-effects model Heterogeneity:
Method: REML tau2 = 0.0157
12 (%) = 5.30
H2 = 1.06
Study Effect size [95% conf. intervall 7 weight
Study 1 1.480 -0.352 3.311 2.30
Study 2 0.999 -0.933 2.931 2.07
Study 3 1.272 0.427 2.117 10.15
Study 4 1.001 0.750 1.252 63.77
Study 5 1.179 -0.527 2.884 2.65
Study 6 1.939 0.427 3.452 3.35
Study 7 2.377 1.005 3.750 4.05
Study 8 0.694 -0.569 1.956 4.75
Study 9 1.099 -0.147 2.345 4.88
Study 10 1.805 -0.151 3.761 2.02

theta 1.138 0.857 1.418

Test of theta = 0: z = 7.95 Prob > |z| = 0.0000
Test of homogeneity: Q = chi2(9) = 6.34 Prob > Q = 0.7054

Although the specified CI variables corresponded to the 90% confidence level, the CIs reported by
meta summarize are the 95% CIs because the default confidence level is 95%, level (95).

d

Q Technical note

As we mentioned earlier, meta set expects the effect sizes and measures of their precision such
as CIs to be specified in the metric closest to normality, which implies symmetric CIs. When you
specify CIs with meta set, the command checks that the CIs are symmetric within a certain tolerance.
The default tolerance is 1e—6.

In practice, effect sizes and their CIs are often reported in the original metric and with limited
precision that, after the normalizing transformation, may lead to asymmetric CIs. In that case, the default
of le—6 may be too stringent. You may loosen the tolerance by specifying the civartolerance()
option.

a
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> Example 3: Declaring meta-analysis methods and models

In Declaring a meta-analysis model in [META] meta data, we describe the importance of choosing
the appropriate meta-analysis model and method for the analysis. Here we demonstrate how to specify
different meta-analysis models and methods.

From example 1 and as described in Default meta-analysis model and method in [META] meta
data, the default meta-analysis model and estimation method are random-effects and REML. We
can specify a different random-effects method in the random() option. For example, let’s use the
DerSimonian—Laird estimation method.

. meta set es se, random(dlaird)
Meta-analysis setting information
Study information
No. of studies: 10
Study label: Generic
Study size: N/A
Effect size
Type:
Label:
Variable:

<generic>
Effect size
es

Precision
Std. err.: se
CI: [_meta_cil, _meta_ciul
CI level: 95%
Model and method

Model:
Method:

Random effects
DerSimonian-Laird

meta set reports in Method: that the current method is now DerSimonian—Laird.

We can also choose a different meta-analysis model. For example, we can specify a fixed-effects
model by using the fixed option.

. meta set es se, fixed

Meta-analysis setting information

Study information
No. of studies: 10
Study label: Generic

Study size:

Effect size

Type:
Label:
Variable:

Precision
Std.

Model and method

Model:
Method:

The inverse-variance estimation method is assumed for the fixed-effects model.

err.:
CI:
CI level:

N/A

<generic>
Effect size
es

se
[_meta_cil, _meta_ciul
95%

Fixed effects
Inverse-variance
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We can also specify a common-effect model, although the literature does not recommend starting
your meta-analysis with this model.

. meta set es se, common
Meta-analysis setting information
Study information
No. of studies: 10

Study label: Generic
Study size: N/A
Effect size
Type: <generic>
Label: Effect size
Variable: es

Precision
Std. err.: se

CI: [_meta_cil, _meta_ciu]
CI level: 95%

Model and method
Model: Common effect
Method: Inverse-variance

The inverse-variance estimation method is assumed for the common-effect model.

As we describe in Declaring a meta-analysis model in [META] meta data, some of the meta-analysis
will not be available for common-effect models. For example, because a common-effect model implies
no heterogeneity, you will not be able to perform tests of small-study effects using meta bias in the
presence of moderators.

. meta bias x, egger

meta bias with moderators not supported with a common-effect model
The declared model is a common-effect model, which assumes no
heterogeneity. Specifying moderators that account for potential
heterogeneity is not valid in this case. You may override this
assumption by specifying one of options fixed or random(remethod).

r(498);

See [META| meta bias.

> Example 4: Specifying study and effect-size labels, confidence level, and more

In Declaring display settings for meta-analysis of [META] meta data, we describe the options to
control the display from the meta commands. Below, we use studylabel() and eslabel() to
specify our own study and effect-size labels, 1evel (90) to report the 90% CIs, and nometashow to
suppress the information about the effect-size variables and standard error variables in the output of
all meta commands.
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. meta set es se, studylabel(studylab) eslabel("Mean diff.") level(90)

> nometashow

Meta-analysis setting information

Study information
No.

Effect size

Type:
Label:
Variable:

Precision
Std.

Model and method

Model:
Method:

If we now run meta summarize, we will see the new labels for the studies in the Study column,
the effect-size column labeled as Mean diff., the 90% CIs, and no meta setting information above

the table header.

. meta summarize

of studies:
Study label:
Study size:

err.:
CI:
CI level:

10
studylab
N/A

<generic>
Mean diff.
es

se
[_meta_cil, _meta_ciu]
90%

Random effects
REML

Meta-analysis summary Number of studies = 10
Random-effects model Heterogeneity:

Method: REML tau2 = 0.0157

2 (W) = 5.30

H2 = 1.06

Study Mean diff [90% conf. interval] Y weight

Smith et al. (1984) 1.480 -0.057 3.016 2.30

Jones and Miller (1989) 0.999 -0.622 2.620 2.07

Johnson et al. (1991) 1.272 0.563 1.981 10.15

Brown et al. (1995) 1.001 0.790 1.211 63.77

Clark and Thomas (1998) 1.179 -0.252 2.610 2.65

Williams et al. (2003) 1.939 0.670 3.209 3.35

Davis and Wilson (2010) 2.377 1.226 3.529 4.05

Moore and Parker (2014) 0.694 -0.366 1.753 4.75

Miller et al. (2018) 1.099 0.053 2.144 4.88

Assaad et al. (2019) 1.805 0.164 3.446 2.02
theta 1.138 0.902 1.373

Test of theta = 0: z = 7.95 Prob > |z| = 0.0000

Test of homogeneity: Q = chi2(9) = 6.34

Prob > Q = 0.7054
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> Example 5: Specifying study size

Some analysis such as a funnel plot with sample-size metrics (see [META] meta funnelplot) requires
that you specify the sample size for each study with meta set. You can use the studysize () option
for this.

. meta set es se, studysize(ssize)
Meta-analysis setting information

Study information
No. of studies: 10
Study label: Generic
Study size: ssize

Effect size
Type: <generic>
Label: Effect size
Variable: es

Precision
Std. err.: se
CI: [_meta_cil, _meta_ciul
CI level: 95%
Model and method
Model: Random effects
Method: REML

The name of the study-size variable, ssize, is now reported in Study size:.

Stored results

meta set stores the following characteristics and system variables:

Characteristics

_dta[-meta_marker] “_meta_ds_1”

_dta[_meta_K] number of studies in the meta-analysis

_dta[-meta_studylabel] name of string variable containing study labels or Generic

_dta[_meta_studysize] name of numeric variable containing study sizes, when
studysize() specified

_dta[_meta_estypel type of effect size; Generic

_dta[_meta_eslabelopt] eslabel (eslab), if specified

_dta[_meta_eslabel] effect-size label from eslabel(); default is Effect size

_dta[-meta_eslabeldb] effect-size label for dialog box

_dta[_meta_esvar] name of effect-size variable

_dta[_meta_esvardb] abbreviated name of effect-size variable for dialog box

_dta[_meta_sevar] name of standard-error variable, if specified, or _meta_se

_dta[_meta_cilvar] name of variable containing lower CI bounds, if specified, or
_meta_cil

_dta[_meta_ciuvar] name of variable containing upper CI bounds, if specified, or
_meta_ciu

_dta[_meta_civarlevel] confidence level associated with CI variables, if specified

_dta[-meta_civartol] tolerance for checking CI symmetry; default is 1e-6

_dta[-meta_level] default confidence level for meta-analysis

_dta[_meta_modellabel] meta-analysis model label: Random effects, Common effect, or
Fixed effects

_dta[_meta_modell] meta-analysis model: random, common, or fixed

_dta[_meta_methodlabel] meta-analysis method label; varies by meta-analysis model

_dta[_meta_method] meta-analysis method; varies by meta-analysis model

_dta[_meta_randomopt] random (remethod), if specified

_dta[_meta_show] empty or nometashow

_dta[_meta_datatypel data type; Generic
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_dta[_meta_datavars] variables specified with meta set

_dta[-meta_setcmdline] meta set command line

_dta[_meta_ifexp] if specification

_dta[_meta_inexp] in specification

System variables

_meta_id study ID variable

_meta_es variable containing effect sizes

_meta_se variable containing effect-size standard errors

_meta_cil variable containing lower bounds of Cls for effect sizes

_meta_ciu variable containing upper bounds of CIs for effect sizes

_meta_studylabel string variable containing study labels

_meta_studysize variable containing total sample size per study
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Title

meta update — Update, describe, and clear meta-analysis settings

Description Quick start Menu Syntax
Options Remarks and examples Stored results Also see
Description

meta update updates certain components of the meta-analysis after it was declared by meta set
or meta esize. This command is useful for updating some of the meta settings without having to
fully respecify your meta-analysis variables. The updated settings will be used throughout the rest of
your meta-analysis session.

meta query reports whether the data in memory are meta data and, if they are, displays the
current meta setting information identical to that produced by meta set or meta esize.

meta clear clears meta settings, including meta data characteristics and system variables. The
original data remain unchanged. You do not need to use meta clear before doing another meta set
or meta esize.

Quick start

Check whether data are declared as meta data, and, if they are, describe their current meta-analysis
setting information

meta query

Keep the same meta-analysis setting (specified earlier using meta set or meta esize), but use a
DerSimonian—Laird random-effects model

meta update, random(dlaird)

Keep the same meta-analysis setting (specified earlier using meta esize), but use the log risk-ratio
as the effect size

meta update, esize(lnrratio)

Clear meta-analysis declaration
meta clear

Menu

Statistics > Meta-analysis

120
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Syntax

Update meta-analysis settings declared using meta esize for two-group comparison of continuous
outcomes

meta update [, options_continuous oplions}

Update meta-analysis settings declared using meta esize for two-group comparison of binary outcomes

meta update [, options_binary ()pti()ns]

Update meta-analysis settings declared using meta esize for estimating a single proportion

meta update [, options_proportion options}

Update meta-analysis settings declared using meta set

meta update [, options_generic options]

Describe meta data

meta query [, short]

Clear meta data

meta clear

options_continuous

Description

esize (esspeccnt)

random[ (remethod) ]
common

fixed

specify effect size for two-group comparison of continuous outcomes
to be used in the meta-analysis
random-effects meta-analysis

common-effect meta-analysis; implies inverse-variance method

fixed-effects meta-analysis; implies inverse-variance method

options_binary

Description

esize (estypebin)

random[ (remethod) ]
common[ (cefemethod) ]
fixed[ (cefemethod) ]

zerocells (zcspec)

specify effect size for two-group comparison of binary outcomes
to be used in the meta-analysis
random-effects meta-analysis

common-effect meta-analysis
fixed-effects meta-analysis

adjust for zero cells during computation; default is to add 0.5 to all
cells of those 2 x 2 tables that contain zero cells
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options_proportion Description
esize (estypeprop) specify effect size for estimating a single proportion to be used

in the meta-analysis
random[ (remethod) ] random-effects meta-analysis
common common-effect meta-analysis; implies inverse-variance method
fixed fixed-effects meta-analysis; implies inverse-variance method
zerocells (zcspec) adjust for zero cells during computation; default is to add 0.5 to all

cells of a study with zero successes or failures

options_generic Description

random[ (remethod) ] random-effects meta-analysis

common common-effect meta-analysis; implies inverse-variance method

fixed fixed-effects meta-analysis; implies inverse-variance method

studysize (varname) total sample size per study

options Description

studylabel (varname) variable to be used to label studies in all meta-analysis output

eslabel (string) effect-size label to be used in all meta-analysis output; default is
eslabel (Effect size)

level (#) confidence level for all subsequent meta-analysis commands

[no}metashow display or suppress meta settings in the output

Options

For meta update options, see Options of [META] meta set and Options of [META] meta esize.

short is used with meta query. It displays a short summary of the meta settings containing the
information about the declared type of the effect size, effect-size variables and standard error
variables, and meta-analysis model and estimation method. This option does not appear on the
dialog box.

Remarks and examples

When conducting a meta-analysis, you may wish to explore how your results are affected by
modifying certain characteristics of your model. For example, suppose you are using log odds-ratios
as your effect sizes and the DerSimonian—Laird random-effects model. You want to investigate how
your results would change if you were to use log risk-ratios instead. You could use meta esize, but
you would need to respecify all four of your summary-data variables.

. meta esize summary'data, esize(lnrratio) random(dlaird)

Instead, you can use meta update to simply update the effect sizes.

. meta update, esize(lnrratio)
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meta update will run meta esize keeping all the model components unchanged except for those
you specified.

You can use meta query to describe the current meta-analysis settings. With meta data in memory,
meta query produces the same output as meta set and meta esize. If the data in memory are not
declared to be meta data, meta query will report the following:

. meta query
(data not meta set; use meta set or meta esize to declare as meta data)

To clear meta settings, use meta clear.

For more details and examples, see Modifying default meta settings and Displaying and updating
meta settings in [META] meta data.

Stored results

meta update updates characteristics and contents of system variables described in Stored results
of [META] meta set and Stored results of [META| meta esize.

Also see

[META] meta data — Declare meta-analysis data

[META] meta esize — Compute effect sizes and declare meta-analysis data
[META] meta set — Declare meta-analysis data using generic effect sizes
[META] meta — Introduction to meta

[META] Glossary

[META] Intro — Introduction to meta-analysis
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meta forestplot — Forest plots

Description Quick start Menu Syntax
Options Remarks and examples Methods and formulas References
Also see

Description

meta forestplot summarizes meta data in a graphical format. It reports individual effect sizes
and the overall effect size (ES), their confidence intervals (CIs), heterogeneity statistics, and more.
meta forestplot can perform random-effects (RE), common-effect (CE), and fixed-effects (FE)
meta-analyses. It can also perform subgroup, cumulative, and sensitivity meta-analyses. For tabular
display of meta-analysis summaries, see [META| meta summarize.

Quick start

Default forest plot after data are declared by using either meta set or meta esize
meta forestplot

Same as above, but apply the hyperbolic tangent transformation to effect sizes and their CIs
meta forestplot, transform(tanh)

Add vertical lines at the overall effect-size and no-effect values
meta forestplot, esrefline nullrefline

Customize the overall effect-size line, and annotate the sides of the plot, with respect to the no-effect
line, favoring the treatment or control

meta forestplot, esrefline(lcolor(green)) ///
nullrefline(favorsleft("Favors vaccine") ///
favorsright ("Favors control"))

Add a custom diamond with a label for the overall effect-size ML estimate by specifying its value
and CI limits

meta forestplot, customoverall(-.71 -1.05 -.37, label("{bf:ML Overalll}"))

Forest plot based on subgroup meta-analysis
meta forestplot, subgroup(groupvar)

Forest plot based on cumulative meta-analysis
meta forestplot, cumulative(ordervar)

Forest plot based on leave-one-out meta-analysis
meta forestplot, leaveoneout

Default forest plot after data are declared with meta set but with the columns spelled out
meta forestplot _id _plot _esci _weight

Default forest plot after data are declared with meta esize but with the columns spelled out
meta forestplot _id _data _plot _esci _weight
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Same as above, but with the weights omitted
meta forestplot _id _data _plot _esci

Same as above, but the columns are rearranged
meta forestplot _id _data _esci _plot

Same as above, but plot variables x1 and x2 as the second and last columns
meta forestplot _id x1 _data _esci _plot x2

Change the format of the _esci column
meta forestplot, columnopts(_esci, format(%7.4f))

Menu

Statistics > Meta-analysis
Syntax
meta forestplot [column_list] [lf] [in] [, ()pti()ns]

column_list is a list of column names given by col. In the Meta-Analysis Control Panel, the columns
can be specified on the Forest plot tab of the Forest plot pane.
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options

Description

Main
random[ (remethod) }
common[ (cefemethod) ]
fixed[ (cefemethod) ]
reopts
subgroup (varlist)
cumulative (cumulspec)
leaveoneout

Options
level (#)
citype (citype)

eform_option
transform(transfspec)
sort(varhst[, ...})
tdistribution
proportion
Egggalence

[ no } metashow

Maximization
maximize_options

Forest plot
columnopts(col, [ col()pts} )
cibind (bind)

sebind (bind)

nohrule
hruleopts (hrule_options)
text_options

plot_options
test_options
graph_options

nooverall
olabel (string)

random-effects meta-analysis
common-effect meta-analysis
fixed-effects meta-analysis

random-effects model options

subgroup meta-analysis for each variable in varlist
cumulative meta-analysis

leave-one-out meta-analysis

set confidence level; default is as declared for meta-analysis
specify the type of study CI (for meta-analysis of a single
proportion)
report exponentiated results
report transformed results
sort studies according to varlist
report ¢ test instead of z test
report proportions (for meta-analysis of a single proportion)
synonym for proportion but labels the effect sizes
as Prevalence in the output
display or suppress meta settings in the output

control the maximization process; seldom used

column options; can be repeated

change binding of CIs for columns _esci and _ci;
default is cibind(brackets)

change binding of standard errors for column _esse;
default is sebind (parentheses)

suppress horizontal rule

change look of horizontal rule

change looks of text options such as column titles, supertitles,
and more

change look or suppress markers, restrict range of CIs, and more

suppress information about heterogeneity statistics and tests

change the lines, labels, ticks, titles, scheme, etc. on the forest plot

suppress row corresponding to the overall effect size

modify default overall effect-size label under the _id column;

default label is Overall

nooverall and olabel() do not appear in the dialog box.
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col

Description

Default columns and order
_id
_data
_plot

_esci
_weight

Summary-data columns and order
Two-sample continuous data

Treatment group
_datal
_nl
_meanl
_sdi
Control group
_data?2
_n2
_mean?2
_sd2
Two-sample binary data
Treatment group
_datal
_a
_b
Control group
_data?2
_c
_d
One-sample binary data
_data
_e
_n

Other columns

—es

_ci

_1b

—ub

_se
_esse
_pvalue

_K
_size
_order
varname

study label

summary data; _datal and _data2 for two-group comparisons
of continuous and binary outcomes (only after meta esize)

forest graph

effect size and its confidence interval

percentage of total weight given to each study

summary data for treatment group; _nl1, _meanl, and _sd1
sample size in the treatment group

mean in the treatment group

standard deviation in the treatment group

summary data for control group; _n2, _mean2, and _sd2
sample size in the control group

mean in the control group

standard deviation in the control group

summary data for treatment group; _a and _b
number of successes in the treatment group
number of failures in the treatment group

summary data for control group; —c and _d
number of successes in the control group
number of failures in the control group

summary data; —e and _n
number of successes
study sample size

effect size

confidence interval for effect size

lower confidence limit for effect size

upper confidence limit for effect size

standard error of effect size

effect size and its standard error

p-value for significance test with subgroup(), cumulative(),
or leaveoneout

number of studies with subgroup ()

within-group sample size with subgroup ()

order variable for cumulative meta-analysis with cumulative ()

variable in the dataset (except meta system variables)
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Columns _data, —datal, _data2, and the other corresponding data columns are not available after the declaration
by using meta set.

Columns _n1, _meanl, _sdl, _n2, _mean2, and _sd2 are available only after the declaration by using meta esize
for a two-group comparison of continuous outcomes.

Columns _a, _b, _c, and _d are available only after the declaration by using meta esize for a two-group comparison
of binary outcomes.

Columns —e and _n are available only after the declaration by using meta esize for estimating a single proportion.

Column _pvalue is available only when option subgroup() with multiple variables is specified or when cumulative ()
or leaveoneout is specified.

Columns _K and _size are available only when option subgroup() with multiple variables is specified.

Column varname is not available when option subgroup() with multiple variables is specified.

colopts Description

supertitle (string) super title specification
title(string) title specification

format (% fint) numerical format for column items
mask (mask) string mask for column items
plotregion(region_options)  attributes of plot region
textbox_options appearance of textboxes
text_options Description

coltitleopts (textbox_options) change look of column titles and supertitles
itemopts (textbox_options) change look of study rows

overallopts (textbox_options) change look of the overall row

groupopts (fextbox_options) change look of subgroup rows

bodyopts (textbox_options) change look of study, subgroup, and overall rows
nonotes suppress notes about the meta-analysis model, method, and more
plot_options Description

crop(# #) restrict the range of CI lines

ciopts (ci_options) change look of CI lines (size, color, etc.)
nowmarkers suppress weighting of study markers

nomarkers suppress study markers

markeropts (marker_options)  change look of study markers (size, color, etc.)
noomarker suppress the overall marker

omarkeropts (marker_options) change look of the overall marker (size, color, etc.)
nogmarkers suppress subgroup markers

gmarkeropts (marker_options) change look of subgroup markers (size, color, etc.)
insidemarker[ (marker_options) ] add a marker at the center of the study marker

esref line[ (line_options) } add a vertical line corresponding to the overall effect size

noesrefline suppress vertical line corresponding to the overall effect size
plotted on leave-one-out forest plot

nullref line[ (nullopts) ] add a vertical line corresponding to no effect

customoverall (customspec)  add a custom diamond representing an overall effect;
can be repeated
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test_options

Description

ohetstatstext (string)
noohetstats
ohomtesttext (string)
noohomtest
osigtesttext (string)
noosigtest
ghetstats#text (string)

noghetstats
gwhomtest#text (string)

nogwhomtests
gsigtest#text (string)

nogsigtests
gbhomtest#text (string)

nogbhomtests

modify default text for overall heterogeneity statistics

suppress overall heterogeneity statistics

modify default text for overall homogeneity test

suppress overall homogeneity test

modify default text for test of significance of overall effect size

suppress test of significance of overall effect size

modify default text for subgroup heterogeneity statistics in the
#th subgroup

suppress subgroup heterogeneity statistics

modify default text for within-subgroup homogeneity test in the
#th subgroup

suppress within-subgroup homogeneity tests

modify default text for test of significance of the subgroup effect
size in the #th subgroup

suppress tests of significance of subgroup effect size

modify default text for between-subgroup homogeneity test in the
#th subgroup

suppress between-subgroup homogeneity tests

graph_options

Description

xline (linearg)

xtitle (axis_title)
xlabel (rule_or_values)
xtick (rule_or_values)
xmlabel (rule_or_values)
xmtick (rule_or_values)
title(tinfo)

subtitle (tinfo)

note (tinfo)
caption(tinfo)

add vertical lines at specified = values
specify z-axis title

major ticks plus labels

major ticks only

minor ticks plus labels

minor ticks only

overall title

subtitle of title

note about graph

explanation of graph

tititle(rinfo) t2title(finfo) rarely used
bititle(rinfo) b2title (tinfo) rarely used
lititle(tinfo) 12title(tinfo) vertical text
rititle(tinfo) r2title(tinfo) vertical text

scheme (schemename)
nodraw

name (name, ...)
saving(filename, ...)

overall look

suppress display of graph
specify name for graph
save graph in file
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nullopts Description

favorsleft (string[ s Zextbox_options])

add a label to the left of the no-effect reference line
favorsright (string[ s textbox_options])

add a label to the right of the no-effect reference line
line_options affect the rendition of the no-effect reference line

Options
Main

Is

random[ (remethod) J, common[ (cefemethod) ], fixed[ (cefemethod) ], subgroup (varlist) , cumu-
lative (cumulspec), and leaveoneout; see Options in [META] meta summarize.

reopts are tau2(#), i2(#), predinterval, predinterval (#[ s line_options} ), and se(sead)).
These options are used with random-effects meta-analysis. See Options in [META] meta summarize.

predinterval and predinterval (#[ s line_options] ) draw whiskers extending from the overall
effect marker and spanning the width of the prediction interval. line_options affect how the
whiskers are rendered; see [G-3] line_options.

level (#), citype (), eform_option, transform(), sort (varlist[ y e ]), tdistribution, pro-
portion, prevalence, and [no]metashow; see Options in [META] meta summarize.

Maximization

maximize_options: iterate(#), tolerance(#), nrtolerance(#), nonrtolerance, from(#),
and showtrace; see Options in [META] meta summarize.

Forest plot

columnopts (col [ , colopts]) changes the look of the column identified by col. This option can be
repeated.

colopts are the following options:
supertitle(string) specifies that the column’s supertitle is string.
title(string) specifies that the column’s title is string.
format (% fint) specifies the format for the column’s numerical values.

mask (mask) specifies a string composed of formats for the column’s statistics. For example,
mask for column _weight that identifies the column of weight percentages may be specified
as "%6.2f %h".

plotregion (region_options) modifies attributes for the plot region. You can change the
margins, background color, an outline, and so on; see [G-3] region_options.

textbox_options affect how the column’s items (study and group) are rendered. These options
override what is specified in global options bodyopts (), itemopts(), and groupopts().
See [G-3] textbox _options.

Options format (), mask(), and textbox_options are ignored by _plot.
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cibind (bind) changes the binding of the CIs for columns _esci and _ci. bind is one of brackets,
parentheses, or none. By default, the CIs are bound by using brackets, cibind(brackets).
This option is relevant only when _esci or _ci appears in the plot.

sebind (bind) changes the binding of the standard errors for column _esse. bind is one of
parentheses, brackets, or none. By default, the standard errors are bound by using parentheses,
cibind(parentheses). This option is relevant only when _esse appears in the plot.

nohrule suppresses the horizontal rule.
hruleopts (hrule_options) affects the look of the horizontal rule.
hrule_options are the following options:
1color(colorstyle) specifies the color of the rule; see [G-4] colorstyle.
lwidth(linewidthstyle) specifies the width of the rule; see [G-4] linewidthstyle.
lalign(linealignmentstyle) specifies the alignment of the rule; see [G-4] linealignmentstyle.
lpattern(linepatternstyle) specifies the line pattern of the rule; see [G-4] linepatternstyle.

1style (linestyle) specifies the overall style of the rule; see [G-4] linestyle.

margin (marginstyle) specifies the margin of the rule; see [G-4] marginstyle.
text_options are the following options:

coltitleopts (fextbox_options) affects the look of text for column titles and supertitles. See
[G-3] textbox_options.

itemopts (textbox_options) affects the look of text for study rows; see [G-3] textbox_options.
This option is ignored when option subgroup() is specified and contains multiple variables
or when option cumulative() or leaveoneout is specified.

overallopts (textbox_options) affects the look of text for the overall row.
See [G-3] textbox_options.

groupopts (textbox_options) (synonym subgroupopts()) affects the look of text for subgroup
rows when option subgroup () is specified. See [G-3] textbox_options.

bodyopts (textbox_options) affects the look of text for study, subgroup, and overall rows. See
[G-3] textbox_options.

nonotes suppresses the notes displayed on the graph about the specified meta-analysis model and
method and the standard error adjustment.

plot_options are the following options:

crop(#; #2) restricts the range of the CI lines to be between #; and #,. A missing value may
be specified for any of the two values to indicate that the corresponding limit should not be
cropped. Otherwise, lines that extend beyond the specified value range are cropped and adorned
with arrows. This option is useful in the presence of small studies with large standard errors,
which lead to confidence intervals that are too wide to be displayed nicely on the graph. Option
crop() may be used to handle this case.

ciopts (ci_options) affects the look of the CI lines and, in the presence of cropped CIs (see option
crop()), arrowheads.

ci_options are any options documented in [G-3] line_options and the following options of
[G-2] graph twoway pcarrow: mstyle(), msize(), mangle(), barbsize(), mcolor(),
mfcolor(), mlcolor(), mlwidth(), mlstyle(), and color().

nowmarkers suppresses weighting of the study markers.
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nomarkers suppresses the study markers.
markeropts (marker_options) affects the look of the study markers.

marker—_options: msymbol (), mcolor (), mfcolor(), mlcolor(), mlwidth(), mlalign(),
mlstyle(), and mstyle(); see [G-3] marker_options.

nowmarkers, nomarkers, and markeropts () are ignored when option subgroup () is specified
and contains multiple variables or when option cumulative() or leaveoneout is specified.

noomarker suppresses the overall marker.
omarkeropts (marker_options) affects the look of the overall marker.

marker—_options: mcolor (), mfcolor(), mlcolor(), mlwidth(), mlalign(), mlstyle(),
and mstyle(); see [G-3] marker_options.

nogmarkers suppresses the subgroup markers.
gmarkeropts (marker_options) affects the look of the subgroup markers.

marker_options: mcolor (), mfcolor(), mlcolor (), mlwidth(), mlalign(), mlstyle(),
and mstyle(); see [G-3] marker_options.

nogmarkers and gmarkeropts() are ignored when option subgroup() is not specified.

insidemarker and insidemarker (marker_options) add markers at the center of study markers.
marker_options control how the added markers are rendered.

marker_options: msymbol (), mcolor (), mfcolor(), mlcolor(), mlwidth(), mlalign(),
mlstyle(), and mstyle(); see [G-3] marker_options.

insidemarker () is not allowed when option subgroup() is specified and contains multiple
variables or when option cumulative() or leaveoneout is specified.

esrefline and esrefline(line_options) specify that a vertical line be drawn at the value
corresponding to the overall effect size. The optional line_options control how the line is
rendered; see [G-3] line_options.

noesrefline suppresses the overall effect-size line plotted by default on the leave-one-out forest
plot, which is produced when you specify option leaveoneout.

nullrefline and nullrefline(nullopts) specify that a vertical line be drawn at the value
corresponding to no overall effect. nullopts are the following options:

favorsleft (string[ , textbox_options]) adds a label, string, to the left side (with respect
to the no-effect line) of the forest graph. fextbox_options affect how string is rendered; see
[G-3] textbox_options.

favorsright (string[ , textb()x_options]) adds a label, string, to the right side (with respect
to the no-effect line) of the forest graph. fextbox_options affect how string is rendered; see
[G-3] textbox _options.

favorsleft() and favorsright () are typically used to annotate the sides of the forest
graph (column _plot) favoring the treatment or control.

line_options affect the rendition of the vertical line; see [G-3] line_options.

customoverall (customspec) draws a custom-defined diamond representing an overall effect size.
This option can be repeated. customspec is #es #1b #ub [ s customopts}, where #es, #Ib, and
#ub correspond to an overall effect-size estimate and its lower and upper CI limits, respectively.
customopts are the following options:

label (string) adds a label, string, under the _id column describing the custom diamond.
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textbox_options affect how label (string) is rendered; see [G-3] fextbox_options.

marker—options affect how the custom diamond is rendered. marker_options are mcolor (),
mfcolor(), mlcolor(), mlwidth(), mlalign(), mlstyle(), and mstyle(); see
[G-3] marker_options.

Option customoverall () may not be combined with option cumulative () or leaveoneout.

test_options are defined below. These options are not relevant with cumulative and leave-one-out
meta-analysis.

ohetstatstext (string) modifies the default text for the overall heterogeneity statistics reported
under the Overall row heading on the plot.

noohetstats suppresses overall heterogeneity statistics reported under the Overall row heading
on the plot.

ohomtesttext (string) modifies the default text for the overall homogeneity test labeled as Test
of §;=0; under the Overall row heading on the plot.

noohomtest suppresses the overall homogeneity test labeled as Test of 6;=0; under the Overall
row heading on the plot.

osigtesttext (string) modifies the default text of the test of significance of the overall effect
size labeled as Test of 6=0 under the Overall row heading on the plot.

noosigtest suppresses the test of significance of the overall effect size labeled as Test of 6=0
under the Overall row heading on the plot.

ghetstats#text (string) modifies the default text for the heterogeneity statistics in the #th
subgroup. These statistics are reported under the group-specific row headings when a single
subgroup analysis is performed, that is, when option subgroup () is specified with one variable.

noghetstats suppresses subgroup heterogeneity statistics reported when a single subgroup analysis
is performed, that is, when option subgroup() is specified with one variable. These statistics
are reported under the group-specific row headings.

gwhomtest#text (string) modifies the default text for the within-subgroup homogeneity test in
the #th subgroup. This test is reported when a single subgroup analysis is performed, that is,
when option subgroup () is specified with one variable. The test is labeled as Test of 6;=0;
under the group-specific row headings.

nogwhomtests suppresses within-subgroup homogeneity tests. These tests investigate the differ-
ences between effect sizes of studies within each subgroup. These tests are reported when a
single subgroup analysis is performed, that is, when option subgroup() is specified with one
variable. The tests are labeled as Test of 0;=0; under the group-specific row headings.

gsigtest#text (string) modifies the default text for the test of significance of the subgroup effect
size labeled as Test of #=0 in the #th subgroup.

nogsigtests suppresses tests of significance of the subgroup effect size labeled as Test of 6=0
within each subgroup. These tests are reported when a single subgroup analysis is performed,
that is, when option subgroup () is specified with one variable.

gbhomtest#text (string) modifies the default text for the between-subgroup homogeneity test in
the #th subgroup. The #th between-subgroup homogeneity test corresponds to the #th variable
specified within option subgroup(). The test is labeled as Test of group differences on
the plot.

nogbhomtests suppresses between-subgroup homogeneity tests. These tests investigate the differ-
ences between the subgroup effect sizes reported when any subgroup analysis is performed, that
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is, when option subgroup () is specified. The tests are labeled as Test of group differences
on the plot.

graph_options: x1ine(), xtitle(), xlabel(), xtick(), xmlabel (), xmtick(), title(), sub-
title(), note(), caption(), tititle(), t2title(), bititle(), b2title(), 11title(),
12title(), rititle(), r2title(), scheme(), nodraw, name(), and saving(); see
[G-3] twoway _options for details.

The following options are available with meta forestplot but are not shown in the dialog box:
nooverall suppresses the row corresponding to the overall effect size in the forest plot.

olabel (string) modifies the default overall effect-size label under the _id column, which, by default,
is Overall.

Remarks and examples

Remarks are presented under the following headings:
Overview
Using meta forestplot
Plot columns
Examples of using meta forestplot

Overview

Meta-analysis results are often presented using a forest plot (for example, Lewis and Ellis [1982]).
A forest plot shows effect-size estimates and their confidence intervals for each study and, usually, the
overall effect size from the meta-analysis (for example, Lewis and Clarke [2001]; Harris et al. [2016];
and Fisher 2016). Each study is represented by a square with the size of the square being proportional
to the study weight; that is, larger squares correspond to larger (more precise) studies. The weights
depend on the chosen meta-analysis model and method. Studies’ CIs are plotted as whiskers extending
from each side of the square and spanning the width of the CI. Heterogeneity measures such as the
I? and H? statistics, homogeneity test, and the significance test of the overall effect sizes are also
commonly reported.

A subgroup meta-analysis forest plot also shows group-specific results. Additionally, it reports
a test of the between-group differences among the overall effect sizes. A cumulative meta-analysis
forest plot shows the overall effect sizes and their CIs by accumulating the results from adding one
study at a time to each subsequent analysis. Similarly, a leave-one-out meta-analysis forest plot shows
the overall effect sizes and their CIs resulting from meta-analyses omitting one study at a time. By
convention, group-specific and overall effect sizes are represented by diamonds centered on their
estimated values with the diamond width corresponding to the CI length.

For more details about forest plots, see, for instance, Anzures-Cabrera and Higgins (2010). Also
see Schriger et al. (2010) for an overview of their use in practice.

Using meta forestplot

meta forestplot produces meta-analysis forest plots. It provides a graphical representation of the
results produced by meta summarize and thus supports most of its options such as those specifying
a meta-analysis model and estimation method; see [META] meta summarize.
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The default look of the forest plot produced by meta forestplot depends on the type of analysis.
For basic meta-analysis, meta forestplot plots the study labels, effect sizes and their confidence
intervals, and percentages of total weight given to each study. If meta esize was used to declare
meta data, summary data are also plotted. That is,

. meta forestplot

is equivalent to typing

. meta forestplot _id _plot _esci _weight

after declaration by using meta set and to typing

. meta forestplot _id _data _plot _esci _weight

after declaration by using meta esize.
If multiple variables are specified in the subgroup() option,

. meta forestplot, subgroup(varlist)

is equivalent to typing

. meta forestplot _id _K _plot _esci _pvalue, subgroup(varﬁsﬂ

For cumulative meta-analysis,

. meta forestplot, cumulative(varname)

is equivalent to typing

. meta forestplot _id _plot _esci _pvalue _order, cumulative(varname)

For leave-one-out meta-analysis,

. meta forestplot, leaveoneout

is equivalent to typing

. meta forestplot _id _plot _esci _pvalue, leaveoneout

You can also specify any of the supported columns with meta forestplot, including variables
in your dataset. For example, you may include, say, variables x1 and x2, as columns in the forest
plot by simply specifying them in the column list,

. meta forestplot _id x1 _plot _esci _weight x2

See Plot columns for details about the supported columns.

The CIs correspond to the confidence level as declared by meta set or meta esize. You can
specify a different level in the 1evel () option. Also, by default, the CIs are bound by using brackets.
You can specify cibind(parentheses) to use parentheses instead.

As we mentioned earlier, you can produce forest plots for subgroup analysis by using the
subgroup() option, for cumulative meta-analysis by using the cumulative() option, and for
leave-one-out meta-analysis by using the leaveoneout option.

You can modify the default column supertitles, titles, formats, and so on by specifying the
columnopts() option. You can repeat this option to modify the look of particular columns. If
you want to apply the same formatting to multiple columns, you can specify these columns within
columnopts (). See Options for the list of supported column options.
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Options esrefline() and nullrefline() are used to draw vertical lines at the overall effect-
size and no-effect values, respectively. For the leave-one-out forest plot, produced when you specify
option leaveoneout, the overall effect-size line is drawn by default. You may suppress it by using
option noesrefline. Suboptions favorsleft() and favorsright() of nullrefline() may be
specified to annotate the sides (with respect to the no-effect line) of the plot favoring treatment or
control.

Another option you may find useful is crop (#; #2). Sometimes, some of the smaller studies may
have large standard errors that lead to CIs that are too wide to be displayed on the plot. You can
“crop” such CIs by restricting their range. The restricted range will be indicated by the arrowheads
at the corresponding ends of the CIs. You can crop both limits or only one of the limits. You can
modify the default look of the arrowheads or CI lines, in general, by specifying ciopts().

You may sometimes want to show the overall effect-size estimates from multiple meta-analysis
models (for example, common versus random), from different estimation methods (REML versus
DL), or for specific values of moderators from a meta-regression. This may be accomplished via
the customoverall (#es #Ib #ub [ ,customopts]) option. This option may be repeated to display
multiple diamonds depicting multiple custom-defined overall effect sizes.

You can specify many more options to customize the look of your forest plot such as modifying
the look of text for column titles in coltitleopts () or the column format in format (); see Syntax
for details.

meta forestplot uses the following default convention when displaying the results. The results
from individual studies—individual effects sizes—are plotted as blue squares with areas proportional
to study weights. The overall effect size is plotted as a green (or, more precisely, forest green using
Stata’s color convention) diamond with the width corresponding to its CI. The results of a single
subgroup analysis—subgroup effect sizes—are plotted as red diamonds with the widths determined
by the respective CIs. The results of multiple subgroup analyses are plotted as red circles with the CI
lines. The cumulative meta-analysis results—cumulative overall effect sizes—are displayed as green
circles with CI lines. Similarly, the leave-one-out meta-analysis results—overall effect size with one
study omitted—are also displayed as green circles with CI lines.

Options itemopts (), nomarkers, and markeropts () control the look of study rows and markers,
which represent individual effect sizes. These options are not relevant when individual studies are
not reported such as with multiple subgroup analysis, cumulative meta-analysis, and leave-one-out
meta-analysis.

Options groupopts (), nogmarkers, and gmarkeropts () control the look of subgroup rows and
markers and are relevant only when subgroup analysis is performed by specifying the subgroup ()
option.

Options overallopts (), noomarker, and omarkeropts() control the look of overall rows and
markers, which represent the overall effect sizes. These options are always applicable because the
overall results are always displayed by default. With cumulative and leave-one-out meta-analysis,
these options affect the displayed overall effect sizes.

Graphs created by meta forestplot cannot be combined with other Stata graphs using graph
combine.
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Plot columns

meta forestplot supports many columns that you can include in your forest plot; see the list
of supported columns in Syntax. The default columns plotted for various analyses were described in
Using meta forestplot above. Here we provide more details about some of the supported columns.

meta forestplot provides individual columns such as _es and _se and column shortcuts such
as _esse. Column shortcuts are typically shortcuts for specifying multiple columns. For instance,
when dealing with two-group comparison of binary or continuous outcomes, column _data is a
shortcut for columns _datal and _data2, which themselves are shortcuts to individual summary-data
columns. For a two-group comparison of continuous outcomes, _datal is a shortcut for columns
_nl1, _meanl, and _sd1, and _data2 is a shortcut for _n2, _mean2, and _sd2. For a two-group
comparison of binary outcomes, —_datal corresponds to the treatment-group numbers of successes
and failures, _a and _b, and _data2 to the respective numbers in the control group, _c and _d.
For estimating a single proportion, the case of one-sample binary data, columns _datal and _data2
are not available. In this case, column _data corresponds to columns —e and _n, which are the
number of successes and the study sample size, respectively. Column _data and the corresponding
summary-data columns are available only after declaration by using meta esize.

The other column shortcuts are _ci, _esci, and _esse. In addition to serving as shortcuts to the
respective columns (_1b and _ub; _es, _1b, and _ub; and _es and _se), these shortcut columns
have additional properties. For instance, when you specify _ci, the lower and upper CI bounds are
separated with a comma, bounded in brackets, and share a title. That is,

. meta forestplot _ci

is similar to specifying

. meta forestplot _lb _ub,

> columnopts(_lb _ub, title(95% CI))
> columnopts(_lb, mask("[%6.2f,"))

> columnopts(_ub, mask("%6.2£f]1"))

Similarly, _esci additionally combines _es and _ci with the common column title, and _esse
combines —_es and _se and bounds the standard errors in parentheses. —_ci, _esci, and _esse also
apply other properties to improve the default look of the specified columns such as modifying the
default column margins by specifying plotregion(margin()).

If you want to modify the individual columns of the shortcuts, you need to specify the corresponding
column names in columnopts (). For instance, if we want to display the effect sizes of the _esci
column with three decimal digits but continue using the default format for CIs, we can type

. meta forestplot _esci, columnopts(_es, format(%6.3f))

If we specify _esci instead of _es in columnopts(),

. meta forestplot _esci, columnopts(_esci, format(%6.3f))

both effect sizes and CIs will be displayed with three decimal digits. On the other hand, if we want
to change the default title and supertitle for _esci, we should specify _esci in columnopts(),

. meta forestplot _esci, columnopts(_esci, supertitle("My ES") title("with my CI"))

Also see example 7 and example 8 for more examples of customizing the default look of columns.

Column _plot corresponds to the plot region that contains graphical representation of the effect
sizes and their confidence intervals. You can modify the default look of the plot by specifying the
plot_options in Syntax.
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Column _es corresponds to the plotted effect sizes. For basic meta-analysis, this column displays
the individual and overall effect sizes. For subgroup meta-analysis, it also displays subgroup-specific
overall effect sizes. For cumulative meta-analysis, it displays the overall effect sizes corresponding to the
accumulated studies. For leave-one-out meta-analysis, it displays the overall effect sizes corresponding
to the meta-analyses omitting one study at a time.

Some of the columns such as _pvalue, _K, _size, and _order are available only with specific
meta-analyses. _pvalue is available only with multiple subgroup analyses, with cumulative analysis,
or with leave-one-out analysis; it displays the p-values of the significant tests of effect sizes. K is
available with multiple subgroup analyses and displays the number of studies within each subgroup.
_order is available only with cumulative meta-analysis; it displays the values of the specified ordering
variable.

You may also add variables in your dataset to the forest plot. For instance, if you want to display
variables x1 and x2 in the second and last columns, you may type

. meta forestplot _id x1 _plot _esci _weight x2

Duplicate columns are ignored with meta forestplot. Also, column shortcuts take precedence.
That is, if you specified both _es and _esci, the latter will be displayed.

Examples of using meta forestplot

In this section, we demonstrate some of the uses of meta forestplot. The examples are presented
under the following headings:

Example 1: Forest plot for two-group comparison of binary outcomes
Example 2: Subgroup-analysis forest plot
Example 3: Cumulative forest plot

Example 4: Leave-one-out forest plot
Example 5: Forest plot for precomputed effect sizes
Example 6: Multiple subgroup-analyses forest plot
Example 7: Modifying columns’ order and cropping confidence intervals
Example 8: Applying transformations and changing titles and supertitles
Example 9: Changing columns’ formatting
Example 10: Changing axis range and adding center study markers
11

Example 11: Prediction intervals and sides favoring control or treatment
Example 12: Adding custom columns and overall effect sizes

Example 13: Forest plot for meta-analysis of a single proportion
Example 14: Increasing plot-region margin

Example 15: Prediction intervals with subgroup analysis and eliminating space in the _esci column
Example 16: Modifying default text for heterogeneity statistics and statistical tests

> Example 1: Forest plot for two-group comparison of binary outcomes

Consider the dataset from Colditz et al. (1994) of clinical trials that studies the efficacy of a Bacillus
Calmette-Guérin (BCG) vaccine in the prevention of tuberculosis (TB). This dataset was introduced in
Efficacy of BCG vaccine against tuberculosis (bcg.dta) of [META] meta. In this section, we use its
declared version and focus on the demonstration of various options of meta forest.

. use https://www.stata-press.com/data/r18/bcgset
(Efficacy of BCG vaccine against tuberculosis; set with -meta esize-)
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Let’s construct a basic forest plot by simply typing

. meta forestplot

Effect-size label: Log risk-ratio
Effect size: _meta_es
Std. err.: _meta_se
Study label: studylbl

Treatment Control Log risk-ratio Weight
Study Yes No Yes No with 95% CI (%)
Aronson, 1948 4 119 11 128 —a— -0.89[-2.01, 0.23] 5.06
Ferguson & Simes, 1949 6 300 29 274 —i— -1.59[-2.45, -0.72] 6.36
Rosenthal et al., 1960 3 228 11 209 —a— -1.35[-2.61, -0.08] 4.44
Hart & Sutherland, 1977 62 13,536 248 12,619 B -1.44[-1.72, -1.16] 9.70
Frimodt-Moller et al., 1973 33 5,036 47 5,761 - -0.22[-0.66, 0.23] 8.87
Stein & Aronson, 1953 180 1,361 372 1,079 [ ] -0.79[-0.95, -0.62] 10.10
Vandiviere et al., 1973 8 2537 10 619 —i— -1.62[-2.55, -0.70] 6.03
TPT Madras, 1980 505 87,886 499 87,892 [ ] 0.01[-0.11, 0.14] 10.19
Coetzee & Berjak, 1968 29 7470 45 7,232 - -0.47[-0.94, -0.00] 8.74
Rosenthal et al., 1961 17 1,699 65 1,600 —- -1.37[-1.90, -0.84] 8.37
Comstock et al., 1974 186 50,448 141 27,197 [ ] -0.34[-0.56, -0.12] 9.93
Comstock & Webster, 1969 5 2493 3 2,338 —#—— 045[-0.98, 1.88] 3.82
Comstock et al., 1976 27 16,886 29 17,825 —- -0.02[-0.54, 0.51] 8.40
Overall 2 -0.71[-1.07, -0.36]

Heterogeneity: 1° = 0.31, I” = 92.22%, H* = 12.86
Test of 6, = 6; Q(12) = 152.23, p = 0.00
Testof 6 =0:z=-3.97, p=0.00

Random-effects REML model

By default, the basic forest plot displays the study labels (column _id), the summary data (—data),
graphical representation of the individual and overall effect sizes and their CIs (—plot), the corre-
sponding values of the effect sizes and CIs (_esci), and the percentages of total weight for each study
(—weight). You can also customize the columns on the forest plot; see example 7 and example 12.

In the graph, each study corresponds to a blue square centered at the point estimate of the effect
size with a horizontal line (whiskers) extending on either side of the square. The centers of the squares
(the values of study effect sizes) may be highlighted via the insidemarker () option; see example 10.
The horizontal line depicts the CI. The area of the square is proportional to the corresponding study
weight.

The overall effect size corresponds to the green diamond centered at the estimate of the overall
effect size. The width of the diamond corresponds to the width of the overall CI. Note that the height
of the diamond is irrelevant. It is customary in meta-analysis forest plots to display an overall effect
size as a diamond filled inside with color. This, however, may overemphasize the actual area of the
diamond whereas only the width of it matters. If desired, you may suppress the fill color by specifying
the omarkeropts (mfcolor(none)) option.

Under the diamond, three lines are reported. The first line contains heterogeneity measures I2,
H?, and 72. The second line displays the homogeneity test based on the @ statistic. The third line
displays the test of the overall effect size being equal to zero. These lines may be suppressed by
specifying options noohetstats, noohomtest, and noosigtest. Alternatively, the default text in
these lines may be modified via options ohetstatstext (), ohomtesttext (), and osigtesttext(),
respectively; see example 16. See [META] meta summarize for a substantive interpretation of these
results.
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Some forest plots show vertical lines at the no-effect and overall effect-size values. These may
be added to the plot via options nullrefline() and esrefline(), respectively; see example 5.
Also, you may sometimes want to plot custom-defined overall effect sizes such as based on multiple
meta-analysis models. This may be accomplished via the customoverall(); see example 12.

meta forestplot provides a quick way to assess between-study heterogeneity visually. In the
absence of heterogeneity, we would expect to see that the middle points of the squares are close to
the middle of the diamond and the CIs are overlapping. In these data, there is certainly evidence of
some heterogeneity because the squares for some studies are far away from the diamond and there
are studies with nonoverlapping ClIs.

4

> Example 2: Subgroup-analysis forest plot

Continuing with example 1, let’s now perform a subgroup meta-analysis based on the method
of treatment allocation recorded in variable alloc. We specify subgroup(alloc) and also use
the eform option to display exponentiated results, risk ratios (RRs) instead of log risk-ratios in our
example.



meta forestplot — Forest plots 141

. meta forestplot, subgroup(alloc) eform

Effect-size label: Log risk-ratio
Effect size: _meta_es
Std. err.: _meta_se
Study label: studylbl

Treatment Control Risk ratio Weight
Study Yes No Yes No with 95% CI (%)
Alternate
Frimodt-Moller et al., 1973 33 5036 47 5,761 —— 0.80[0.52, 1.25] 8.87
Stein & Aronson, 1953 180 1,361 372 1,079 [ | 0.46[0.39, 0.54] 10.10
Heterogeneity: T° = 0.13, I> = 82.02%, H’ = 5.56 . 0.58[0.34, 1.01]

Test of 6 = 6: Q(1) = 5.56, p = 0.02
Testof6=0:z=-1.92, p=0.05

Random

Aronson, 1948 4 119 11 128 —a— 0.41[0.13, 1.26] 5.06
Ferguson & Simes, 1949 6 300 29 274 —@— 0.20[0.09, 0.49] 6.36
Rosenthal et al., 1960 3 228 11 209 —@W— 0.26[0.07, 0.92] 4.44
Hart & Sutherland, 1977 62 13,536 248 12,619 L 3 0.24[0.18, 0.31] 9.70
Vandiviere et al., 1973 8 2537 10 619 —l—— 0.20[0.08, 0.50] 6.03
TPT Madras, 1980 505 87,886 499 87,892 [ | 1.01[0.89, 1.14] 10.19
Coetzee & Berjak, 1968 29 7,470 45 7,232 —- 0.63[0.39, 1.00] 8.74
Heterogeneity: T = 0.39, I” = 89.93%, H* = 9.93 R 0.38[0.22, 0.65]

Test of 6 = 6: Q(6) = 110.21, p = 0.00
Testof 8 =0:z=-3.52, p=0.00

Systematic

Rosenthal et al., 1961 17 1,699 65 1,600 —— 0.25[0.15, 0.43] 8.37
Comstock et al., 1974 186 50,448 141 27,197 ] 0.71[0.57, 0.89] 9.93
Comstock & Webster, 1969 5 2493 3 2338 ——®———156[0.37, 6.53] 3.82
Comstock et al., 1976 27 16,886 29 17,825 —— 0.98[0.58, 1.66] 8.40
Heterogeneity: T = 0.40, I” = 86.42%, H* = 7.36 e 0.65[0.32, 1.32]

Test of 6, = 6; Q(3) = 16.59, p = 0.00
Testof6=0:z=-1.18,p=0.24

Overall <o 0.49[0.34, 0.70]
Heterogeneity: T2 = 0.31, I’ = 92.22%, H* = 12.86

Test of 6 = 6: Q(12) = 152.23, p = 0.00

Testof 8 =0: z=-3.97, p=0.00

Test of group differences: Q,(2) = 1.86, p = 0.39
—r T T —
18 1/4 1/2 1 2 4
Random-effects REML model

In addition to the overall results, the forest plot shows the results of meta-analysis for each of the three
groups. With subgroup meta-analysis, each group gets its own red diamond marker that represents the
group-specific overall effect size. Just like with the overall diamond, only the widths (not the heights)
of the group-specific diamonds are relevant on the plot. Similarly to the overall marker, you can
specify the gmarkeropts (mfcolor(none)) option to suppress the fill color for the group-specific
diamonds.

Heterogeneity measures, homogeneity tests, and significance tests are reported at the bottom (below
the group-specific diamond marker) within each group. These provide information regarding the hetero-
geneity among the studies within each group and the statistical significance of the group-specific overall
effect size. They may be suppressed with options noghetstats, nogwhomtests, and nogsigtests,
respectively. Alternatively, you may specify options ghetstats#text (), gwhomtest#text (), and
gsigtest#text () to modify the default text reported within the #th subgroup (# can be 1, 2, or 3
in this case); see example 16.
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A test of between-group differences based on the (), statistic is reported at the bottom. This
test investigates the difference between the group-specific overall effect sizes. It may be suppressed
with nogbhomtests. Alternatively, the default text for this test may be modified using option
gbhomtest#text (); see example 16.

You may also specify multiple variables in subgroup (), in which case a separate subgroup analysis
is performed for each variable; see example 6 for details.

4

> Example 3: Cumulative forest plot

Continuing with example 1, we now perform a cumulative meta-analysis in the ascending order
of variable latitude. You can specify suboption descending within the cumulative () option to
request a descending order.

We also specify rr, which is a synonym of the eform option we used in example 2, to display
the RRs instead of the default log risk-ratios.

. meta forestplot, cumulative(latitude) rr

Effect-size label: Log risk-ratio
Effect size: _meta_es
Std. err.: _meta_se
Study label: studylbl

Risk ratio
Study with 95% CI p-value latitude
Frimodt-Moller et al., 1973 ———<———0.80[0.52, 1.25] 0.336 13
TPT Madras, 1980 —e— 1.00[0.88, 1.12] 0.940 13
Comstock et al., 1974 ———— 0.85[0.67, 1.09] 0.209 18
Vandiviere et al., 1973 0.66[0.39, 1.14] 0.139 19
Coetzee & Berjak, 1968 —_——— 0.69[0.48, 0.99] 0.045 27
Comstock & Webster, 1969 —_——— 0.72[0.52, 1.01] 0.056 33
Comstock et al., 1976 —_—— 0.77[0.59, 1.00] 0.048 33
Rosenthal et al., 1960 —_—— 0.72[0.54, 0.97] 0.029 42
Rosenthal et al., 1961 —_—————— 0.61[0.40, 0.90] 0.014 42
Aronson, 1948 —_——— 0.59[0.41, 0.86] 0.006 44
Stein & Aronson, 1953 —_——— 0.58[0.41, 0.80] 0.001 44
Hart & Sutherland, 1977 —_———— 0.52[0.36, 0.74] 0.000 52
Ferguson & Simes, 1949 —_————— 0.49[0.34, 0.70] 0.000 55

172 1

Random-effects REML model

By default, the cumulative meta-analysis forest plot displays the study labels (_id), the plot of effect
sizes and their CIs (—plot), the values of effect sizes and their CIs (—esci), the p-values (_pvalue) of
the corresponding significance tests of the effect sizes, and the values of the order variable (—order).

The displayed effect sizes correspond to cumulative overall effect sizes or the overall effect sizes
computed for each set of accumulated studies. To distinguish them from study-specific effect sizes,
we plot them as unweighted circles using the same color, green, as the overall effect size in a standard
meta-analysis forest plot. You can change the default style and color of the markers by specifying the
omarkeropts () option. The corresponding CIs of the cumulative effect sizes are plotted as CI lines.

We may construct a cumulative forest plot stratified by a covariate by specifying by () within
cumulative (). For example, let’s stratify our cumulative analysis by the method of treatment
allocation recorded in variable alloc.
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. meta forestplot, cumulative(latitude, by(alloc) descending) rr

Effect-size label: Log risk-ratio
Effect size: _meta_es
Std. err.: _meta_se
Study label: studylbl

Risk ratio
Study with 95% CI p-value latitude
Alternate
Stein & Aronson, 1953 —— 0.46 [ 0.39, 0.54] 0.000 44
Frimodt-Moller et al., 1973 —_— 0.58[0.34, 1.01] 0.055 13
Random
Ferguson & Simes, 1949 —_———— 0.20[0.09, 0.49] 0.000 55
Hart & Sutherland, 1977 — 0.23[0.18, 0.30] 0.000 52
Aronson, 1948 — 0.24[0.19, 0.31] 0.000 44
Rosenthal et al., 1960 — 0.24[0.19, 0.31] 0.000 42
Coetzee & Berjak, 1968 —— 0.33[0.20, 0.54] 0.000 27
Vandiviere et al., 1973 — 0.30[0.19, 0.48] 0.000 19
TPT Madras, 1980 —_— 0.38[0.22, 0.65] 0.000 13
Systematic
Rosenthal et al., 1961 —_—— 0.25[0.15, 0.43] 0.000 42
Comstock et al., 1976 0.50[0.13, 1.88] 0.306 33
Comstock & Webster, 1969 —<——0.66[0.22, 1.93] 0.445 33
Comstock et al., 1974 —_— 0.65[0.32, 1.32] 0.238 18

Us U4 12 1

Random-effects REML model

We specified that the analysis be conducted in the descending order of the latitude variable. The
stratified forest plot shows the same columns as before but the cumulative analysis is performed
separately for each group of alloc. A consistent pattern is observed across all three groups—RRs
tend to increase as latitude decreases.

4
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> Example 4: Leave-one-out forest plot

Continuing with example 1, we now perform a leave-one-out meta-analysis by specifying the
leaveoneout option.

. meta forestplot, leaveoneout rr

Effect-size label: Log risk-ratio
Effect size: _meta_es
Std. err.: _meta_se
Study label: studylbl

Risk ratio
Omitted study with 95% CI p-value
Aronson, 1948 0.49[0.34, 0.72] 0.000
Ferguson & Simes, 1949 0.52[0.36, 0.74] 0.000
Rosenthal et al., 1960 0.50[0.35, 0.73] 0.000
Hart & Sutherland, 1977 0.53[0.38, 0.75] 0.000
Frimodt-Moller et al., 1973 0.47[0.32, 0.68] 0.000
Stein & Aronson, 1953 0.49[0.33, 0.73] 0.000
Vandiviere et al., 1973 0.52[0.36, 0.74] 0.000
TPT Madras, 1980 0.45[0.32, 0.64] 0.000
Coetzee & Berjak, 1968 0.48[0.32, 0.70] 0.000
Rosenthal et al., 1961 0.52[0.36, 0.75] 0.000
Comstock et al., 1974 0.47[0.32, 0.69] 0.000
Comstock & Webster, 1969 0.47[0.33, 0.67] 0.000
Comstock et al., 1976 0.46 [ 0.32, 0.66] 0.000

0.32 0.75

Random-effects REML model

By default, the leave-one-out meta-analysis forest plot displays the study labels (_id), the plot of
effect sizes and their CIs (—plot), the values of effect sizes and their CIs (—esci), and the p-values
(—pvalue) of the corresponding significance tests of the effect sizes.

For each study, the displayed effect size corresponds to an overall effect size computed from
a meta-analysis excluding that study. Similarly to the case with cumulative forest plots, we will
distinguish the overall effect sizes from study-specific effect sizes by plotting them as unweighted
circles using the same color, green, as the overall effect size in a standard meta-analysis forest plot.
You can change the default style and color of the markers by specifying the omarkeropts () option.
The corresponding CIs of the overall effect sizes are plotted as CI lines.

By default, the leave-one-out forest plot displays a vertical line at the overall effect size based on
the complete set of studies (with no omission) to facilitate the detection of influential studies. You
may suppress this line by specifying option noesrefline.

All the overall effect sizes from the leave-one-out meta-analysis are close to the overall effect-size
vertical line, and their CI lines intersect with the vertical red line based on all the studies, which
means that there are no studies that substantially influence the results of our meta-analysis.

N
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> Example 5: Forest plot for precomputed effect sizes

Recall the pupil 1Q data (Raudenbush and Bryk 1985; Raudenbush 1984) described in Effects of
teacher expectancy on pupil IQ (pupilig.dta) of [META] meta. Here we will use its declared version
(declared with meta set) to construct a forest plot of precomputed effect sizes.

. use https://www.stata-press.com/data/r18/pupiligset, clear
(Effects of teacher expectancy on pupil IQ; set with -meta set-)

We specify the nullrefline option to show the no-effect line at 0. Effect sizes with corresponding
CIs that cross this line are not statistically significant at the 5% level. We also specify the esrefline
option to draw a vertical line at the overall effect-size value. The default look of both lines may
be modified by specifying options nullrefline (line_options) and esrefline (line_options). See
[G-3] line_options.

. meta forestplot, nullrefline esrefline

Effect-size label: Std. mean diff.
Effect size: stdmdiff
Std. err.: se
Study label: studylbl

Std. mean diff. ~ Weight

Study with 95% CI (%)
Rosenthal et al., 1974 i 0.03[-0.21, 0.27] 7.74
Conn et al., 1968 0.12[-0.17, 0.41] 6.60
Jose & Cody, 1971 —it -0.14[-0.47, 0.19] 5.71
Pellegrini & Hicks, 1972 ——®&——— 1.18[ 0.45, 1.91] 1.69
Pellegrini & Hicks, 1972 = 0.26 [ -0.46, 0.98] 1.72
Evans & Rosenthal, 1969 - -0.06 [ -0.26, 0.14] 9.06
Fielder et al., 1971 ::» -0.02[-0.22, 0.18] 9.06
Claiborn, 1969 —] -0.32[-0.75, 0.11] 3.97
Kester, 1969 +i— 0.27[-0.05, 0.59] 5.84
Maxwell, 1970 —— 0.80[ 0.31, 1.29] 3.26
Carter, 1970 - 0.54[-0.05, 1.13] 2.42
Flowers, 1966 —i— 0.18[-0.26, 0.62] 3.89
Keshock, 1970 —.— -0.02[-0.59, 0.55] 2.61
Henrikson, 1970 — i — 0.23[-0.34, 0.80] 2.59
Fine, 1972 —T -0.18[-0.49, 0.13] 6.05
Grieger, 1970 — -0.06 [-0.39, 0.27] 5.71
Rosenthal & Jacobson, 1968 -+l 0.30[ 0.03, 0.57] 6.99
Fleming & Anttonen, 1971 0.07[-0.11, 0.25] 9.64
Ginsburg, 1970 -0.07[-0.41, 0.27] 5.43
Overall 0.08 [ -0.02, 0.18]
Heterogeneity: T° = 0.02, I° = 41.84%, H* = 1.72
Test of 6 = 6;: Q(18) = 35.83, p = 0.01
Testof6=0:z=1.62,p=0.11

A 0 1 2

Random-effects REML model

When meta data are declared by using meta set (that is, when we are working with precomputed
effect sizes), the _data column is not available. If desired, you may plot the values of effect sizes and
their standard errors by specifying the _esse column. Other components of the graph are interpreted
as in example 1.

4
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> Example 6: Multiple subgroup-analyses forest plot

Continuing with example 5, we will conduct multiple subgroup analyses and summarize their
results on a forest plot. We specify variables tester and weekl in subgroup() as follows:

. meta forestplot, subgroup(weekl tester)

Effect-size label: Std. mean diff.
Effect size: stdmdiff
Std. err.: se
Study label: studylbl

Std. mean diff.
Study K with 95% CI p-value
weekl
<=1lweek 8 ——e—— 0.37[ 0.19, 0.56] 0.000
>1week 11 — -0.02 [-0.10, 0.06] 0.603
Test of group differences: Q,(1) = 14.77, p = 0.00
tester
Aware 10 —_— 0.05[-0.10, 0.19] 0.520
Blind 9 —_— 0.15[-0.02, 0.31] 0.083
Test of group differences: Q,(1) = 0.81, p = 0.37
Overall P 0.08[-0.02, 0.18] 0.105

Heterogeneity: 1° = 0.02, I = 41.84%, H> = 1.72
Test of ;= 6;: Q(18) = 35.83, p=0.01

Random-effects REML model

By default, the forest plot displays the study labels (_id), the number of studies within each group
(=K), the plot of effect sizes and their CIs (—plot), the values of effect sizes and their CIs (—esci),
and the p-values (_pvalue) of the corresponding significance tests.

To keep the output compact, the forest plot does not report individual studies, only the number
of studies in each group. The between-group homogeneity test based on the @ is reported for each
subgroup analysis. For example, for subgroup analysis based on variable week1, there are two groups,
<=1 week and > 1 week. The test investigates whether the overall effect sizes corresponding to these
two groups are the same. The results of this test are identical to those we would have obtained if we
had specified subgroup(weekl). You may specify option nogbhomtests to suppress these tests.
Alternatively, you may modify the default text for the between-group homogeneity tests using option
gbhomtest#text () (# can be equal to 1 or 2 in this example); see example 16.

Just like with cumulative meta-analysis in example 3, meta forestplot uses unweighted circles
and CI lines to display the overall group-specific effect sizes and their CIs. But here the circles are
displayed in red—the same color used to display the group-specific diamonds in a single-variable
subgroup analysis (see example 2).

N
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> Example 7: Modifying columns’ order and cropping confidence intervals

For this and the following examples, let’s return to our BCG dataset from example 1.

. use https://www.stata-press.com/data/r18/bcgset, clear
(Efficacy of BCG vaccine against tuberculosis; set with -meta esize-)

. meta update, nometashow

We used meta update to suppress the meta setting information displayed by meta forest for the

rest of our meta-analysis.

We can choose which columns to display and the order in which to display them in the forest plot
by specifying the corresponding column names in the desired order. In the code below, we display
the study labels first, followed by the effect sizes and their CIs, then weights, and finally the plot.
We also use the crop(-2 .) option to restrict the range of the CIs at a lower limit of —2.

. meta forestplot _id _esci _weight _plot, crop(-2 .

Log risk-ratio Weight
Study with 95% CI (%)
Aronson, 1948 -0.89[-2.01, 0.23] 506 «—W——
Ferguson & Simes, 1949 -1.59[-2.45, -0.72] 6.36 <W—
Rosenthal et al., 1960 -1.35[-2.61, -0.08] 444 <—W——
Hart & Sutherland, 1977 -1.44[-1.72, -1.16] 9.70 E N
Frimodt-Moller et al., 1973  -0.22[-0.66, 0.23] 8.87 ——
Stein & Aronson, 1953 -0.79[-0.95, -0.62] 10.10 B
Vandiviere et al., 1973 -1.62[-2.55, -0.70] 6.03 <l—
TPT Madras, 1980 0.01[-0.11, 0.14] 10.19 [ |
Coetzee & Berjak, 1968 -0.47 [-0.94, -0.00] 8.74 ——
Rosenthal et al., 1961 -1.37[-1.90, -0.84] 837 —l—
Comstock et al., 1974 -0.34[-0.56, -0.12] 9.93 E 3
Comstock & Webster, 1969  0.45[-0.98, 1.88] 3.82 i
Comstock et al., 1976 -0.02[-0.54, 0.51] 8.40 ——
Overall -0.71 [ -1.07, -0.36] L
Heterogeneity: 1° = 0.31, I° = 92.22%, H’ = 12.86
Test of 6, = 6: Q(12) = 152.23, p = 0.00
Testof 6 =0:z=-3.97, p=0.00

1 0 1 2

Random-effects REML model

CIs that extend beyond the lower limit of —2 are identified with an arrow head at the cropped endpoint.
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> Example 8: Applying transformations and changing titles and supertitles

Continuing with the BCG dataset from example 7, we demonstrate how to override the default title
and supertitle for the _data column. The summary data we have correspond to a 2 X 2 table with
cells _a, _b, _c, and _d. Cells _a and _b may be referred to as _datal, and cells _c and _d may
be referred to as _data2.

We override the supertitle for the _datal column to display “Vaccinated” and the titles for each
cell to display either a “4” or a “—” as follows. We also use the transform() option to report
vaccine efficacies instead of log risk-ratios. Vaccine efficacy is defined as 1 —RR and may be requested
by specifying transform(efficacy).

. meta forestplot, transform(Vaccine efficacy: efficacy)

> columnopts(_datal, supertitle(Vaccinated))
> columnopts(_a _c, title(+)) columnopts(_b _d, title(-))

Vaccinated Control Vaccine efficacy Weight
Study + - + - with 95% CI (%)
Aronson, 1948 4 119 11 128 —a— 0.59[-0.26, 0.87] 5.06
Ferguson & Simes, 1949 6 300 29 274 —i— 0.80[ 0.51, 0.91] 6.36
Rosenthal et al., 1960 3 228 11 209 —a— 0.74[ 0.08, 0.93] 4.44
Hart & Sutherland, 1977 62 13,536 248 12,619 ] 0.76 [ 0.69, 0.82] 9.70
Frimodt-Moller et al., 1973 33 5036 47 5761 - 0.20[-0.25, 0.48] 8.87
Stein & Aronson, 1953 180 1,361 372 1,079 [ | 0.54[ 0.46, 0.61] 10.10
Vandiviere et al., 1973 8 2,537 10 619 —i— 0.80[ 0.50, 0.92] 6.03
TPT Madras, 1980 505 87,886 499 87,892 [ ] -0.01[-0.14, 0.11] 10.19
Coetzee & Berjak, 1968 29 7470 45 7,232 - 0.37[ 0.00, 0.61] 8.74
Rosenthal et al., 1961 17 1,699 65 1,600 - 0.75[ 057, 0.85] 8.37
Comstock et al., 1974 186 50,448 141 27,197 [ ] 0.29[ 0.11, 0.43] 9.93
Comstock & Webster, 1969 5 2,493 3 2338 —®— -0.56 [ -5.53, 0.63] 3.82
Comstock et al., 1976 27 16,886 29 17,825 - 0.02[-0.66, 0.42] 8.40
Overall < 0.51[ 0.30, 0.66]

Heterogeneity: T = 0.31, I’ = 92.22%, H* = 12.86
Test of § = 8: Q(12) = 152.23, p = 0.00
Testof 6=0:z=-3.97, p=0.00

639 000 086 098

Random-effects REML model

By specifying transform(Vaccine efficacy: efficacy), we also provided a meaningful
label, “Vaccine efficacy”, to be used for the transformed effect sizes. The overall vaccine efficacy is
0.51, which can be interpreted as a reduction of 51% in the risk of having tuberculosis among the
vaccinated group.

N
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> Example 9: Changing columns’ formatting

Following example 8, we now demonstrate how to override the default formats for the _esci
and _weight columns. For the _esci column, we also specify that the CIs be displayed inside
parentheses instead of the default brackets. For the _weight column, we specify that the plotted
weights be adorned with a % sign and modify the title and supertitle accordingly.

meta forestplot, eform cibind(parentheses)

> columnopts(_esci, format(%6.3f))
> columnopts(_weight, mask(%6.1£f%%) title(Weight) supertitle(""))

Treatment Control Risk ratio

Study Yes No Yes No with 95% CI Weight
Aronson, 1948 4 119 11 128 —— 0.411(0.134, 1.257) 5.1%
Ferguson & Simes, 1949 6 300 29 274 —@— 0.205 ( 0.086, 0.486) 6.4%
Rosenthal et al., 1960 3 228 11 209 —@—— 0.260 ( 0.073, 0.919) 4.4%
Hart & Sutherland, 1977 62 13,536 248 12,619 - 0.237(0.179, 0.312) 9.7%
Frimodt-Moller et al., 1973 33 5,036 47 5,761 —- 0.804 ( 0.516, 1.254) 8.9%
Stein & Aronson, 1953 180 1,361 372 1,079 [ ] 0.456 ( 0.387, 0.536) 10.1%
Vandiviere et al., 1973 8 2537 10 619 —l— 0.198 ( 0.078, 0.499) 6.0%
TPT Madras, 1980 505 87,886 499 87,892 [ ] 1.012 ( 0.895, 1.145) 10.2%
Coetzee & Berjak, 1968 29 7,470 45 7,232 —— 0.625 ( 0.393, 0.996) 8.7%
Rosenthal et al., 1961 17 1699 65 1,600 —— 0.254 ( 0.149, 0.431) 8.4%
Comstock et al., 1974 186 50,448 141 27,197 B 0.712 ( 0.573, 0.886) 9.9%
Comstock & Webster, 1969 5 2,493 3 2338 — W 1.562 ( 0.374, 6.528) 3.8%
Comstock et al., 1976 27 16,886 29 17,825 —— 0.983(0.582, 1.659) 8.4%
Overall <o 0.489 ( 0.344, 0.696)

Heterogeneity: 1° = 0.31, I = 92.22%, H” = 12.86
Test of 6, = 6; Q(12) = 152.23, p = 0.00
Testof 6=0:z=-3.97, p=0.00

>

Us 14 12 1 2
Random-effects REML model
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> Example 10: Changing axis range and adding center study markers

In this example, we specify the xscale(range(.125 8)) and xlabel (#7) options to specify
that the x-axis range be symmetric (on the risk-ratio scale) about the no-effect value of 1 and that 7
tick marks be shown on the axis.

. meta forest, eform xscale(range(.125 8)) xlabel(#7) insidemarker

Treatment Control Risk ratio Weight
Study Yes No Yes No with 95% CI (%)
Aronson, 1948 4 19 11 128 —a— 0.41[0.13, 1.26] 5.06
Ferguson & Simes, 1949 6 300 29 274 —B— 0.20[0.09, 0.49] 6.36
Rosenthal et al., 1960 3 228 11 209 —@— 0.26[0.07, 0.92] 4.44
Hart & Sutherland, 1977 62 13,536 248 12,619 L - 3 0.24[0.18, 0.31] 9.70
Frimodt-Moller et al., 1973 33 5036 47 5,761 - 0.80[0.52, 1.25] 8.87
Stein & Aronson, 1953 180 1,361 372 1,079 a 0.46[0.39, 0.54] 10.10
Vandiviere et al., 1973 8 2,537 10 619 —B— 0.20[0.08, 0.50] 6.03
TPT Madras, 1980 505 87,886 499 87,892 a 1.01[0.89, 1.14] 10.19
Coetzee & Berjak, 1968 29 7,470 45 7,232 - 0.63[0.39, 1.00] 8.74
Rosenthal et al., 1961 17 1,699 65 1,600 —— 0.25[0.15, 0.43]  8.37
Comstock et al., 1974 186 50,448 141 27,197 - ] 0.71[0.57, 0.89] 9.93
Comstock & Webster, 1969 5 2493 3 2338 ——B— 1.56[0.37, 6.53] 3.82
Comstock et al., 1976 27 16,886 29 17,825 —— 0.98[0.58, 1.66] 8.40
Overall <o 0.49[0.34, 0.70]

Heterogeneity: T° = 0.31, I° = 92.22%, H* = 12.86
Test of 8 = 6: Q(12) = 152.23, p = 0.00
Testof 8=0:z=-3.97, p=0.00

Us 142 1 2 4 8
Random-effects REML model

We also used the insidemarker option to insert a marker (yellow circle) at the center of the study
markers (blue squares) to indicate the study-specific effect sizes. The default attributes of the inserted
markers may be modified by specifying insidemarker (marker_options); see [G-3] marker_options.

N
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> Example 11: Prediction intervals and sides favoring control or treatment

Below, we specify the favorsleft() and favorsright() suboptions of the nullrefline()
option to annotate the sides of the plot (with respect to the no-effect line) favoring the treatment or
control. We will also specify the predinterval option to draw the prediction interval for the overall

effect size.

meta forest, eform predinterval

> nullrefline(

> favorsleft("Favors vaccine", color(green))

> favorsright ("Favors control")

>)

Treatment Control Risk ratio Weight

Study Yes No Yes No with 95% ClI (%)
Aronson, 1948 4 119 11 128 —— 0.41[0.13, 1.26] 5.06
Ferguson & Simes, 1949 300 29 274 —W— 0.20[0.09, 0.49] 6.36
Rosenthal et al., 1960 3 228 11 209 —— 0.26[0.07, 0.92] 4.44
Hart & Sutherland, 1977 62 13,536 248 12,619 -l 0.24[0.18, 0.31] 9.70
Frimodt-Moller et al., 1973 33 5,036 47 5,761 —- 0.80[0.52, 1.25] 8.87
Stein & Aronson, 1953 180 1,361 372 1,079 [ ] 0.46[0.39, 0.54] 10.10
Vandiviere et al., 1973 8 2,537 10 619 —l—— 0.20[0.08, 0.50] 6.03
TPT Madras, 1980 505 87,886 499 87,892 [ ] 1.01[0.89, 1.14] 10.19
Coetzee & Berjak, 1968 29 7,470 45 7,232 — 0.63[0.39, 1.00] 8.74
Rosenthal et al., 1961 17 1,699 65 1,600 —— 0.25[0.15, 0.43] 8.37
Comstock et al., 1974 186 50,448 141 27,197 B 0.71[0.57, 0.89] 9.93
Comstock & Webster, 1969 5 2,493 3 2,338 — @ —156[0.37, 6.53] 3.82
Comstock et al., 1976 27 16,886 29 17,825 —— 0.98[0.58, 1.66] 8.40
Overall —— 0.49[0.34, 0.70]

Heterogeneity: 1° = 0.31, I° = 92.22%, H* = 12.86
Test of 6, = 6;: Q(12) = 152.23, p = 0.00

Testof 6=0:z=-3.97, p=0.00

Random-effects REML model
95% prediction interval

Favors vaccine | Favors control

Us U4 12 1 2 4

In our example, the effect sizes that are falling on the “Favors vaccine” side (left side) reported that
the treatment (vaccine) reduced the risk of tuberculosis. The default placement of the labels may be
modified using the Graph Editor; see [G-1] Graph Editor.

The prediction interval, represented by the green whiskers extending from the overall diamond,
provides a plausible range for the effect size in a future, new study.

N
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> Example 12: Adding custom columns and overall effect sizes

Consider example 2 of [META] meta regress postestimation. We will use the results of the margins
command from that example to display overall effect sizes at the specified latitudes on the forest plot.
This may be done by specifying multiple customoverall() options, as we show below.

We also add the latitude variable to the forest plot (as the last column) to show study effect
sizes as a function of that variable. And we swap the _esci and _plot columns compared with the
default forest plot.

. local col mcolor("stred")

. meta forest _id _esci _plot _weight latitude, nullrefline

> columnopts(latitude, title("Latitude"))

> customoverall(-.184 -.495 .127, label("{bf:latitude = 15}") ‘col’)
> customoverall(-.562 -.776 -.348, label("{bf:latitude = 28}") ‘col’)
> customoverall(-1.20 -1.54 -.867, label("{bf:latitude = 50}") ‘col’)
>

rr
Risk ratio Weight
Study with 95% Cl (%) Latitude
Aronson, 1948 0.41[0.13, 1.26] — 5.06 44
Ferguson & Simes, 1949 0.20[0.09, 0.49] —— 6.36 55
Rosenthal et al., 1960 0.26 [0.07, 0.92] — 4.44 42
Hart & Sutherland, 1977 0.24[0.18, 0.31] E 9.70 52
Frimodt-Moller et al., 1973  0.80[0.52, 1.25] —— 8.87 13
Stein & Aronson, 1953 0.46 [ 0.39, 0.54] B 10.10 44
Vandiviere et al., 1973 0.20[0.08, 0.50] —a— 6.03 19
TPT Madras, 1980 1.01[0.89, 1.14] [ | 10.19 13
Coetzee & Berjak, 1968 0.63[0.39, 1.00] —— 8.74 27
Rosenthal et al., 1961 0.25[0.15, 0.43] —— 837 42
Comstock et al., 1974 0.71[0.57, 0.89] E 3 9.93 18
Comstock & Webster, 1969  1.56 [ 0.37, 6.53] — % 382 33
Comstock et al., 1976 0.98[0.58, 1.66] —— 8.40 33
Overall 0.49[0.34, 0.70] <P
latitude = 15 0.83[0.61, 1.14] <o
latitude = 28 0.57[0.46, 0.71] <&
latitude = 50 0.30[0.21, 0.42] L 2
Heterogeneity: 1° = 0.31, I” = 92.22%, H® = 12.86
Test of 6, = 6: Q(12) = 152.23, p = 0.00
Testof 86 =0:z=-3.97, p=0.00
T

Us U4 12 1 2 4
Random-effects REML model

The latitude-specific overall effect sizes from the meta-regression model are shown as red diamonds
(stred is the red associated with the stcolor scheme). In the customoverall() options, we
specified the values of log risk-ratios, effect sizes in the estimation metric. But because we used the
rr option, meta forestplot displayed the overall diamonds as risk ratios. For example, the mean
risk ratio for studies conducted at latitude = 50 is roughly 0.30 with a CI of [0.2, 0.4].

d
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> Example 13: Forest plot for meta-analysis of a single proportion

Continuing from the meta esize ndeaths pensize setting in example 4 of [META] meta data,
we will construct a forest plot to summarize our meta-analysis.

. meta forestplot

Number of Freeman-Tukey'sp Weight
Study successes Total with 95% CI (%)
Study 1 3 11 —a— 1.14[0.56, 1.72]  20.18
Study 2 6 17 — 1.29[0.82, 1.76]  30.70
Study 3 10 21 —@— 153[1.10, 1.95] 37.72
Study 4 1 6 _—.—— 0.95[0.18, 1.72]  11.40
Overall e 1.31[1.05, 1.57]

Heterogeneity: 1 = 0.00, I> = 0.00%, H® = 1.00
Testof 6, =6;: Q(3) =2.18, p=0.54
Testof 8=0:z=7.67, p=0.00

Random-effects REML model

By default, the data displayed on the forest plot for pooling proportions are very similar to those
displayed on a forest plot for two-sample binary data; see example 1. The only difference here is
the summary data columns. Here _data corresponds to the number of events/successes (column _e,
labeled as Number of successes on the forest plot) and the study sample size (column _n, labeled
as Total). The displayed effect sizes are Freeman—Tukey-transformed proportions.

Below, we report our results as proportions using the proportion option. When the effect
sizes are the Freeman—Tukey-transformed proportions, this option is equivalent to specifying option
transform(invftukey, hmean).

. meta forestplot, proportion

Number of Proportion Weight
Study successes Total with 95% CI (%)
Study 1 3 11 — 0.27[0.04, 0.58] 20.18
Study 2 6 17 —— 0.35[0.14, 0.60] 30.70
Study 3 10 21 ——— 048[0.26, 0.69] 37.72
Study 4 1 6 -————— 0.17[0.15, 0.59] 11.40
Overall - 0.36 [ 0.23, 0.50]

Heterogeneity: T = 0.00, I” = 0.00%, H* = 1.00
Testof B, = 8: Q(3) =2.18, p=0.54
Testof 8=0:z=7.67, p=0.00

Random-effects REML model

One unique characteristic of forest plots based on Freeman—Tukey-transformed proportions is that
when you back-transform the effect sizes and their CIs (to report proportions), the back-transformed
CIs are no longer symmetric. This is different from two-sample binary data with log odds-ratios or log
risk-ratios as effect sizes. When you back-transform (exponentiate) these effect sizes to report odds
ratios or risk ratios, the axis labels are also exponentiated to maintain the graphical representation of
the CIs as symmetric. This is not possible for the one-sample case when the effect size is ftukeyprop
because the back-transformation (the inverse Freeman—Tukey function) depends on sample size n; see
Inverse Freeman—Tukey transformation in Methods and formulas in [META] meta summarize. The
sample size varies between the studies, making it impossible to apply one transformation to the axis
labels to make all study CIs symmetric. Therefore, if option proportion or transform(invftukey)
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is specified, no transformation is applied to the x-axis labels, and the plotted CIs for proportions will
no longer be symmetric.

Next, we will use the scale(1000) suboption of transform(invftukey) to report our results
as the number of deaths per 1,000 animals. We will also report the effect sizes and their CIs as
integers using the format (%3.0f) suboption of columnopts(_esci).

. meta forestplot,

> transform("# of deaths per 1,000 animals": invftukey, scale(1000))
> xlabel(, format(%3.0f)) columnopts(_esci, format(}%3.0f))

Number of # of deaths per 1,000 animals  Weight
Study successes Total with 95% CI (%)
Study 1 3 11 . 273[ 44, 579] 20.18
Study 2 6 17 —— 353 [ 140, 598] 30.70
Study 3 10 21 —— 476 [ 264, 693] 37.72
Study 4 1 6 -— 167 [ 145, 586] 11.40
Overall - 360 [ 230, 499]

Heterogeneity: T = 0.00, I* = 0.00%, H’ = 1.00
Test of 6, = 6; Q(3) = 2.18, p = 0.54
Testof 6=0:z=7.67, p=0.00

0 200 400 600 800
Random-effects REML model

~> Example 14: Increasing plot-region margin

Continuing with example 8 of [META]| meta esize, we will construct a forest plot to summarize our
meta-analysis. It is quite common with forest plots of proportions for some study CIs in the _plot
column to be very close to the _esci column (see Study 6 in our example).

. meta forestplot, proportion

Number of Proportion Weight
Study successes Total with 95% CI (%)
Study 1 27 116 —— 0.23[0.16, 0.31] 17.57
Study 2 4 15 —— 0.27[0.07, 0.52] 12.36
Study 3 8 61 —— 0.13[0.06, 0.23] 16.61
Study 4 85 421 . 3 0.20[0.16, 0.24] 18.43
Study 5 31 84 —— 0.37[0.27, 0.48] 17.15
Study 6 97 162 —Jl—0.60[0.52, 0.67] 17.89
Overall i 0.29[0.17, 0.44]

Heterogeneity: T° = 0.12, I* = 93.68%, H’ = 15.83
Test of 6= 6: Q(5) = 95.28, p = 0.00
Testof 6=0:z=6.67, p=0.00

Random-effects REML model
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Below, we increase the margin between the plot region of column _plot and that of column
_esci using the columnopts(_plot, plotregion(margin(right))) option.

. meta forestplot, proportion columnopts(_plot, plotregion(margin(right)))

Number of Proportion Weight
Study successes Total with 95% CI (%)
Study 1 27 116 —— 0.23[0.16, 0.31] 17.57
Study 2 4 15 —a— 0.27[0.07, 0.52] 12.36
Study 3 8 61 —— 0.13[0.06, 0.23] 16.61
Study 4 85 421 . 3 0.20[0.16, 0.24] 18.43
Study 5 31 84 —— 0.37[0.27, 0.48] 17.15
Study 6 97 162 —— 060[0.52, 0.67] 17.89
Overall e 0.29[0.17, 0.44]

Heterogeneity: T° = 0.12, I” = 93.68%, H’ = 15.83
Test of 6, = 6 Q(5) = 95.28, p = 0.00
Testof 6=0:z=6.67, p=0.00

Random-effects REML model
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> Example 15: Prediction intervals with subgroup analysis and eliminating space in the
_esci column

Continuing with example 2, we will add a 90% prediction interval within each subgroup. Notice
that a predication interval is defined only when there are at least three studies; therefore, it is not
computable for the first subgroup (Alternate).

meta forest, subgroup(alloc) rr predinterval(90, lcolor(stred))

Treatment Control Risk ratio Weight
Study Yes No Yes No with 95% CI (%)
Alternate
Frimodt-Moller et al., 1973 33 5036 47 5,761 - 0.80[0.52, 1.25] 8.87
Stein & Aronson, 1953 180 1,361 372 1,079 | ] 0.46[0.39, 0.54] 10.10
Heterogeneity: T = 0.13, I = 82.02%, H? = 5.56 -2 0.58[0.34, 1.01]

Test of 6, = 6: Q(1) =5.56, p = 0.02
Testof 6=0:z=-1.92, p=0.05

Random

Aronson, 1948 4 119 11 128 —— 0.41[0.13, 1.26] 5.06
Ferguson & Simes, 1949 6 300 20 274 —W— 0.20[0.09, 0.49] 6.36
Rosenthal et al., 1960 3 228 11 209 —— 0.26[0.07, 0.92] 4.44
Hart & Sutherland, 1977 62 13,536 248 12,619 £ B 0.24[0.18, 0.31] 9.70
Vandiviere et al., 1973 8 2537 10 619 —MW—— 0.20[0.08, 0.50]  6.03
TPT Madras, 1980 505 87,886 499 87,892 [ | 1.01[0.89, 1.14] 10.19
Coetzee & Berjak, 1968 29 7,470 45 7,232 —- 0.63[0.39, 1.00] 8.74
Heterogeneity: T° = 0.39, I* = 89.93%, H* = 9.93 ——P— 0.38[0.22, 0.65]

Test of 6 = 6: Q(6) = 110.21, p = 0.00
Testof 6=0:z=-3.52, p=0.00

Systematic

Rosenthal et al., 1961 17 1,699 65 1,600 —— 0.25[0.15, 0.43] 837
Comstock et al., 1974 186 50,448 141 27,197 » 0.71[0.57, 0.89] 9.93
Comstock & Webster, 1969 5 2493 3 2338 — @ ———156[0.37, 6.53] 3.82
Comstock et al., 1976 27 16,886 29 17,825 —;— 0.98[0.58, 1.66] 8.40
Heterogeneity: 1 = 0.40, I” = 86.42%, H’ = 7.36 —— = 065[032, 1.32]

Test of 6, = 6: Q(3) = 16.59, p = 0.00
Testof 6=0:z=-1.18,p=0.24

Overall — 0.49[0.34, 0.70]

Heterogeneity: 1° = 0.31, I° = 92.22%, H* = 12.86
Test of 8 = 8: Q(12) = 152.23, p = 0.00
Testof 6=0:z=-3.97, p=0.00

Test of group differences: Q,(2) = 1.86, p = 0.39

Us U4 U2 1 2 4

Random-effects REML model
90% prediction intervals
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Next, we will eliminate the space in the _esci column right after the left bracket of the effect-size
CIL This is done by removing the default binding of the CIs using option cibind (none) and specifying
our own custom binding for columns _1b and _ub as follows:

meta forest, subgroup(alloc) rr

> columnopts(_1lb, mask("[%4.2f"))
> columnopts(_ub, mask("%4.2f]")) cibind(none)

Treatment Control Risk ratio Weight
Study Yes No Yes No with 95% CI (%)
Alternate
Frimodt-Moller et al., 1973 33 5036 47 5,761 - 0.80[0.52 1.25] 8.87
Stein & Aronson, 1953 180 1,361 372 1,079 [ ] 0.46 [0.39 0.54] 10.10
Heterogeneity: ° = 0.13, I” = 82.02%, H* = 5.56 . 0.58 [0.34 1.01]

Test of 6 = 6: Q(1) = 5.56, p = 0.02
Testof 0= 0:z=-1.92, p = 0.05

Random

Aronson, 1948 4 119 11 128 —— 0.41[0.13 1.26] 5.06
Ferguson & Simes, 1949 6 300 29 274 —W— 0.20[0.09 0.49] 6.36
Rosenthal et al., 1960 3 228 11 209 —@—— 0.26 [0.07 0.92] 4.44
Hart & Sutherland, 1977 62 13,536 248 12,619 3 0.24[0.18 0.31] 9.70
Vandiviere et al., 1973 8 2537 10 619 —l—— 0.20[0.08 0.50] 6.03
TPT Madras, 1980 505 87,886 499 87,892 [ | 1.01[0.89 1.14] 10.19
Coetzee & Berjak, 1968 29 7470 45 7,232 ~- 0.63[0.39 1.00] 8.74
Heterogeneity: T = 0.39, I> = 89.93%, H” = 9.93 -2 0.38 [0.22 0.65]

Test of 6, = 6;: Q(6) = 110.21, p = 0.00
Testof 8 =0:z=-3.52, p=0.00

Systematic

Rosenthal et al., 1961 17 1,699 65 1,600 —— 0.25[0.15 0.43] 8.37
Comstock et al., 1974 186 50,448 141 27,197 ] 0.71[0.57 0.89] 9.93
Comstock & Webster, 1969 5 2493 3 2338 — B ————156[0.37 6.53] 3.82
Comstock et al., 1976 27 16,886 29 17,825 i 0.98[0.58 1.66] 8.40
Heterogeneity: T° = 0.40, I° = 86.42%, H* = 7.36 e 0.65[0.32 1.32]

Test of 6, = 6;: Q(3) = 16.59, p = 0.00
Testof6=0:z=-1.18,p=0.24

Overall <o 0.49 [0.34 0.70]
Heterogeneity: 1° = 0.31, I” = 92.22%, H® = 12.86

Test of 6, = 6;: Q(12) = 152.23, p = 0.00

Testof 8=0:z=-3.97, p=0.00

Test of group differences: Q,(2) = 1.86, p = 0.39

1)8 1}4 1}2 i 2 4

Random-effects REML model
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> Example 16: Modifying default text for heterogeneity statistics and statistical tests

Continuing with example 5, we will modify the default text reported in the three lines under
Overall using options ohetstatstext() (for the first line), ohomtesttext() (for the second
line), and osigtesttext () (for the third line). We will be slightly more descriptive about the type
of information reported in each line and report the I? statistic without decimal points.

. use https://www.stata-press.com/data/r18/pupiliqgset, clear

(Effects of teacher expectancy on pupil IQ; set with -meta set-)

. local hstats "Heterogeneity statistics:"

. local htest "Homogeneity test of {&theta}{sub:i} = {&thetal}{sub:j}:"
. local stest "Significance test of {&theta} = 0:"

. meta forest,

> ohetstatstext (" ‘hstats’ {&tau}{sup:2} = 0.02, I{sup:2} = 42%, H{sup:2} = 1.72")
> ohomtesttext (" ‘htest’ Q(18) = 35.83, p = 0.01")

> osigtesttext("‘stest’ z = 1.62, p = 0.11")

Std. mean diff. ~ Weight
Study with 95% ClI (%)

Rosenthal et al., 1974
Conn et al., 1968

Jose & Cody, 1971
Pellegrini & Hicks, 1972
Pellegrini & Hicks, 1972
Evans & Rosenthal, 1969
Fielder et al., 1971
Claiborn, 1969

Kester, 1969

Maxwell, 1970

Carter, 1970

Flowers, 1966
Keshock, 1970

0.03[-0.21, 0.27] 7.74
0.12[-0.17, 0.41] 6.60
-0.14[-0.47, 0.19] 5.71
1.18[ 0.45, 1.91] 1.69
0.26 [-0.46, 0.98] 1.72
-0.06 [-0.26, 0.14] 9.06
-0.02[-0.22, 0.18] 9.06
-0.32[-0.75, 0.11] 3.97
0.27[-0.05, 0.59] 5.84
0.80[ 0.31, 1.29] 3.26
0.54[-0.05, 1.13] 2.42
0.18[-0.26, 0.62] 3.89
-0.02[-0.59, 0.55] 2.61
Henrikson, 1970 0.23[-0.34, 0.80] 2.59
Fine, 1972 —m— -0.18[-0.49, 0.13] 6.05
Grieger, 1970 —— -0.06[-0.39, 0.27] 5.71
——
3

Wﬁ”\\*“

Rosenthal & Jacobson, 1968 0.30[ 0.03, 0.57] 6.99
Fleming & Anttonen, 1971 0.07[-0.11, 0.25] 9.64
Ginsburg, 1970 — -0.07[-0.41, 0.27] 5.43
Overall < 0.08[-0.02, 0.18]
Heterogeneity statistics: 1> = 0.02, I’ = 42%, H* = 1.72

Homogeneity test of 8 = 6;: Q(18) = 35.83, p = 0.01

Significance testof 6 =0:z = 1.62, p=0.11

Random-effects REML model

Next, we will construct a subgroup forest plot based on variable tester (aware versus blind).
See example 2 for a detailed description of the subgroup forest plot.

We will suppress the within-group homogeneity tests (option nogwhomtests) and the tests of
significance for the group-specific overall effect sizes (option nogsigtests). We also use options
noohomtest and noosigtest to suppress the same information for the overall analysis. We will
report only 72 and I? in the overall heterogeneity statistics (option ohetstatstext()) and in
the group-specific heterogeneity statistics (by repeating the ghetstats#text() option for each
subgroup). Finally, we use option gbhomtestitext() to modify the description of the between-
group homogeneity test and label it as Hy : Oaware = Opling and report the T 2 statistic corresponding to
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the Qp test statistic. The I? statistic is computed as follows: 12 = 100 x max {0,1 — (L —1)/Qy},
where L is the number of subgroups (L = 2 in this example).

. local HOtxt "H{sub:0}[{&theta}{sub:aware} = {&theta}{sub:blind}]:"
. local HOstats "Q{sub:b}(1) = 0.81, p = .37, I{sup:2} = 0% "

meta forest, subgroup(tester) nogsigtests noosigtest nogwhomtests noohomtest
ghetstatsitext ("Heterogeneity: {&tau}{sup:2} = 0.03, I{sup:2} = 52%")
ghetstats2text ("Heterogeneity: {&tau}{sup:2} = 0.02, I{sup:2} = 42%")
ohetstatstext ("Heterogeneity: {&tau}{sup:2} = 0.02, I{sup:2} = 42)")
gbhomtestitext (" ‘HOtxt’ ‘HOstats’")

vV V V V..

Std. mean diff. ~ Weight
Study with 95% ClI (%)

Aware

Rosenthal et al., 1974 - 0.03[-0.21, 0.27] 7.74
Conn et al., 1968 —— 0.12[-0.17, 0.41] 6.60
+
. =

Jose & Cody, 1971 -0.14[-0.47, 0.19] 5.71
Pellegrini & Hicks, 1972 —®&—— 1.18[ 045, 1.91] 1.69
Evans & Rosenthal, 1969 -0.06 [ -0.26, 0.14] 9.06

Claiborn, 1969 —— -0.32[-0.75, 0.11] 3.97
Kester, 1969 —— 0.27[-0.05, 0.59] 5.84
Fine, 1972 —.;— -0.18[-0.49, 0.13] 6.05
Rosenthal & Jacobson, 1968 —— 0.30[ 0.03, 0.57] 6.99
Ginsburg, 1970 —— -0.07 [-0.41, 0.27] 5.43
Heterogeneity: ° = 0.03, I* = 52% < 0.05[-0.10, 0.19]

Blind

Pellegrini & Hicks, 1972 0.26 [ -0.46, 0.98] 1.72
Fielder et al., 1971 s B -0.02[-0.22, 0.18] 9.06
Maxwell, 1970 —— 0.80[ 0.31, 1.29] 3.26
Carter, 1970 — 0.54[-0.05, 1.13] 2.42

Flowers, 1966 —a— 0.18[-0.26, 0.62] 3.89
Keshock, 1970 —a— -0.02[-0.59, 0.55] 2.61
Henrikson, 1970 —— 0.23[-0.34, 0.80] 2.59
Grieger, 1970 — -0.06 [-0.39, 0.27] 5.71
Fleming & Anttonen, 1971 |- 0.07[-0.11, 0.25] 9.64
Heterogeneity: T° = 0.02, I” = 42% <o 0.15[-0.02, 0.31]
Overall ¢ 0.08[-0.02, 0.18]
Heterogeneity: T° = 0.02, I” = 42%

0

Ho[Banare = Boing]: Qu(1) = 0.81, p = .37, I = 0%

Random-effects REML model

Finally, we will construct a multiple subgroup-analyses forest plot based on variables week1,
tester, and setting. See example 6 for the interpretation of this type of forest plot. By default,
only information regarding the between-group homogeneity tests is reported for each variable. We
will use option gbhomtest#text () (corresponding to the #th variable in subgroup()) to display
the same default information regarding the between-group homogeneity test, but we now add an
additional line reporting the within-group homogeneity tests for the groups defined by each variable.
This is done by specifying two strings within the gbhomtest#text () option, one for each line. The
within-group homogeneity test information may be obtained from the second table in the output of
meta summarize, subgroup(weekl tester setting).
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. local Qdesc "Test of {&thetal}{sub:i} = {&thetal}{sub:j}:"
. local Qbdesc "Test of group differences: Q{sub:b}(1) ="

meta forest, subgroup(weekl tester setting)

> gbhomtestltext( "‘Qdesc’ Q(7) = 11.2, Q(10) = 6.4, p{sub:1} = .13, p{sub:2} =
> "‘Qbdesc’ 14.77, p = 0.00")
> gbhomtest2text (" ‘Qdesc’ Q(9) = 22.19, Q(8) = 12.96, p{sub:1} = .008, p{sub:2}
> "‘Qbdesc’ .81, p = 0.367")
> gbhomtest3text (" ‘Qdesc’ Q(15) = 26.49, Q(2) = 4.98, p{sub:1} = .033, p{sub:2}
> "‘Qbdesc’ 1.48, p = 0.224")
Std. mean diff.
Study K with 95% CI p-value
weekl
<=1lweek 8 — 0.37[ 0.19, 0.56] 0.000
>1week 11 —— -0.02[-0.10, 0.06] 0.603
Test of 6= 6; Q(7) = 11.2, Q(10) = 6.4, p, = .13, p, = .78
Test of group differences: Q,(1) = 14.77, p = 0.00
tester
Aware 10 — 0.05[-0.10, 0.19] 0.520
Blind 9 —— 0.15[-0.02, 0.31] 0.083
Test of 6 = 6; Q(9) = 22.19, Q(8) = 6 p; =.008, p, = .113
Test of group differences: Qb( ): =0.367
setting
Group 16 —— 0.05[-0.04, 0.13] 0.269
Indiv 3 0.35[-0.14, 0.84] 0.156
Test of 8 = 6; Q(15) = 26.49, Q(2) = 4.98, p]— 033 p.=.083
Test of group differences: Qb(l) =1.48,p=
Overall < 0.08[-0.02, 0.18] 0.105
Heterogeneity: T° = 0.02, I” = 41.84%, H® = 1.72
Test of 6 = 6; Q(18) = 35.83, p = 0.01
-5 0 5 1

Random-effects REML model

Methods and formulas

78"

.113"

.083"

Methods and formulas for the statistics reported by meta forestplot are given in Methods and

formulas of [META] meta summarize.
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meta summarize — Summarize meta-analysis data

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description

meta summarize summarizes meta data. It reports individual effect sizes and the overall effect
size (ES), their confidence intervals (CIs), heterogeneity statistics, and more. meta summarize can
perform random-effects (RE), common-effect (CE), and fixed-effects (FE) meta-analyses. It can also
perform subgroup, cumulative, and sensitivity meta-analyses. For graphical display of meta-analysis
summaries, see [META] meta forestplot.

Quick start

Perform meta-analysis and summarize meta data, which were declared by either meta set or meta
esize

meta summarize

Same as above, but summarize meta-analysis results using the empirical Bayes RE method instead of
the declared method

meta summarize, random(ebayes)

Same as above, but report transformed effect sizes and CIs using the hyperbolic tangent function

meta summarize, random(ebayes) transform(tanh)

Perform subgroup meta-analysis based on the categorical variable x1

meta summarize, subgroup(xl)

Perform subgroup analysis based on the categorical variables x1, x2, and x3

meta summarize, subgroup(xl x2 x3)

Perform cumulative meta-analysis (CMA), where studies are included in the CMA based on the ascending
order of observations in variable x4

meta summarize, cumulative(x4)

Same as above, but stratify the results of the CMA based on groups of the categorical variable x5
meta summarize, cumulative(x4, by(x5))

Perform leave-one-out meta-analysis
meta summarize, leaveoneout

Perform sensitivity meta-analysis by assuming a fixed value of 0.2 for the between-study heterogeneity
parameter 72, assuming that the declared model is RE

meta summarize, tau2(.2)
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Menu

Statistics > Meta-analysis

Syntax

Meta-analysis as declared with meta set or meta esize

meta summarize [lf} [in] [, options reopts]

Random-effects meta-analysis

meta summarize [zf} [in] s random[ (remethod)] [options reopts]

Common-effect meta-analysis

meta summarize [lf} [m] , common[(cefemelh()d)] [()pti()ns]

Fixed-effects meta-analysis

meta summarize [l:f} [in], fixed[(cefemethod)] [options]

options Description

Main
subgroup (varlist) subgroup meta-analysis for each variable in varlist
cumulative (cumulspec) cumulative meta-analysis
leaveoneout leave-one-out meta-analysis

Options
level (#) set confidence level; default is as declared for meta-analysis
citype (citype) specify the type of study CI (for meta-analysis of a single

eform_option

transform(transfspec)
sort(varlist[ s e

tdistribution
proportion

prevalence

nostudies
noheader

[ no } metashow
display_options

Maximization
maximize_options

b

proportion)
report exponentiated results
report transformed results
sort studies according to varlist
report ¢ test instead of z test for the overall effect size
report proportions (for meta-analysis of a single proportion)
synonym for proportion but labels the effect sizes
as Prevalence in the output
suppress output for individual studies
suppress output header
display or suppress meta settings in the output
control column formats

control the maximization process; seldom used

collect is allowed; see [U] 11.1.10 Prefix commands.
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remethod Description
reml restricted maximum likelihood; the default
mle maximum likelihood
ebayes empirical Bayes
dlaird DerSimonian—Laird
sjonkman Sidik—Jonkman
hedges Hedges
hschmidt Hunter—Schmidt
cefemethod Description
mhaenszel Mantel-Haenszel
invvariance inverse variance
ivariance synonym for invvariance
reopts Description
tau2(#) sensitivity meta-analysis using a fixed value of between-study variance 72
i2(#) sensitivity meta-analysis using a fixed value of heterogeneity statistic 12
predinterval[ # } report prediction interval for the overall effect size
se (sead)) adjust standard error of the overall effect size
Options

Options random(), common(), and fixed(), when specified with meta summarize, temporarily
override the global model declared by meta set or meta esize during the computation. Options
random(), common (), and fixed () may not be combined. If these options are omitted, the declared
meta-analysis model is assumed; see Declaring a meta-analysis model in [META] meta data. Also
see Meta-analysis models in [META] Intro.

random and random(remethod) specify that a random-effects model be assumed for meta-analysis;
see Random-effects model in [META]| Intro.

remethod specifies the type of estimator for the between-study variance 72. remethod is one of

reml, mle, ebayes, dlaird, sjonkman, hedges, or hschmidt. random is a synonym for
random(reml). See Options in [META]| meta esize for more information.

common and common (cefemethod) specify that a common-effect model be assumed for meta-analysis;
see Common-etfect (“fixed-effect”) model in [META] Intro. Also see the discussion in [META]| meta
data about common-effect versus fixed-effects models.

common implies common(mhaenszel) for effect sizes lnoratio, lnrratio, and rdiff and
common (invvariance) for all other effect sizes. common (mhaenszel) is supported only with
effect sizes 1lnoratio, lnrratio, and rdiff.

cefemethod is one of mhaenszel or invvariance (synonym ivariance). See Options in
[META] meta esize for more information.
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fixed and fixed (cefemethod) specify that a fixed-effects model be assumed for meta-analysis;
see Fixed-effects model in [META] Intro. Also see the discussion in [META] meta data about
fixed-effects versus common-effect models.

fixed implies fixed(mhaenszel) for effect sizes lnoratio, lnrratio, and rdiff and
fixed(invvariance) for all other effect sizes. fixed(mhaenszel) is supported only with
effect sizes 1noratio, lnrratio, and rdiff.

cefemethod is one of mhaenszel or invvariance (synonym ivariance); see Options in
[META] meta esize for more information.

subgroup (varlist) specifies that a subgroup meta-analysis (subgroup analysis) be performed for each
variable in varlist. Subgroup analysis performs meta-analysis separately for each variable in varlist
and for each group as defined by that variable. The specified meta-analysis model is assumed for
each subgroup. This analysis is useful when the results of all studies are too heterogeneous to
be combined into one estimate but the results are similar within certain groups of studies. The
specified variables can be numeric or string variables. When multiple variables are specified, only
the subgroup results are displayed; that is, the results from individual studies are suppressed for
brevity. This option may not be combined with cumulative() or leaveoneout.

cumulative (ordervar[ , ascending|descending by (byvar) ]) performs a cumulative meta-
analysis (CMA). CMA performs multiple meta-analyses and accumulates the results by adding
one study at a time to each subsequent analysis. It is useful for monitoring the results of the
studies as new studies become available. The studies enter the CMA based on the ordered values of
variable ordervar. ordervar must be a numeric variable. By default, ascending order is assumed
unless the suboption descending is specified; only one of ascending or descending is allowed.
The by (byvar) option specifies that the CMA be stratified by variable byvar. This option may not
be combined with subgroup() or leaveoneout.

leaveoneout performs a leave-one-out meta-analysis. For each study, the corresponding leave-one-
out meta-analysis is a meta-analysis of all the studies except that study. It is useful for assessing
the effect of a single study on the meta-analysis results and for identifying outliers if they exist.
This option may not be combined with subgroup() or cumulative().

reopts are tau2(#), i2(#), predinterval[ #) ], and se(khartung[ , truncated}). These
options are used with random-effects meta-analysis.

tau2 (#) specifies the value of the between-study variance parameter, 72, to use for the random-
effects meta-analysis. This option is useful for exploring the sensitivity of the results to different
levels of between-study heterogeneity. Only one of tau2() or i2() may be specified. This
option is not allowed in combination with subgroup(), cumulative(), or leaveoneout.

i2(#) specifies the value of the heterogeneity statistic 12 (as a percentage) to use for the random-
effects meta-analysis. This option is useful for exploring the sensitivity of the results to different
levels of between-study heterogeneity. Only one of i2() or tau2() may be specified. This
option is not allowed in combination with subgroup(), cumulative(), or leaveoneout.

predinterval and predinterval (#) specify that the 95% or #% prediction interval be reported
for the overall effect size in addition to the confidence interval. # specifies the confidence level
of the prediction interval. The prediction interval provides plausible ranges for the effect size
in a future, new study. This option is not allowed in combination with subgroup() when
specified with more than one variable, cumulative (), or leaveoneout.
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se(seadj) specifies that the adjustment seadj be applied to the standard error of the overall effect
size. Additionally, the test of significance of the overall effect size is based on a Student’s ¢
distribution instead of the normal distribution.

seadj is @artung[ , truncated]. Adjustment khartung specifies that the Knapp—Hartung
adjustment (Hartung and Knapp 2001a, 2001b; Knapp and Hartung 2003), also known as
the Sidik—Jonkman adjustment (Sidik and Jonkman 2002), be applied to the standard error
of the overall effect size. hknapp and sjonkman are synonyms for khartung. truncated
specifies that the truncated Knapp—Hartung adjustment (Knapp and Hartung 2003), also
known as the modified Knapp—Hartung adjustment, be used.

level (#) specifies the confidence level, as a percentage, for confidence intervals. The default is

as declared for the meta-analysis session; see Declaring a confidence level for meta-analysis in
[META] meta data. Also see option level() in [META] meta set.

citype (citype) specifies the type of CI to be reported for meta-analysis of a single proportion.
citype is one of wald (the default), exact, wilson, agresti, or jeffreys. For more details,
see Binomial proportion in [R] ci. This option affects only individual study CIs and not the CI for
the overall effect size. Thus, it may not be combined with options cumulative (), leaveoneout,
and subgroup() with more than one variable.

eform_option is one of eform, eform(string), or, or rr. It reports exponentiated effect sizes and
transforms their respective confidence intervals, whenever applicable. By default, the results are
displayed in the metric declared with meta set or meta esize such as log odds-ratios and log
risk-ratios. eform_option affects how results are displayed, not how they are estimated and stored.

eform(string) labels the exponentiated effect sizes as string; the other options use default labels.
The default label is specific to the chosen effect size. For example, option eform uses 0dds
ratio when used with log odds-ratios declared with meta esize or Risk ratio when used
with the declared log risk-ratios. Option or is a synonym for eform when log odds-ratio is
declared, and option rr is a synonym for eform when log risk-ratio is declared. If option
eslabel (eslab) is specified during declaration, then eform will use the exp (eslab) label or,
if eslab is too long, the exp (ES) label.

transform([label: ] transf_name) reports transformed effect sizes and CIs. transf_name is one of
corr, efficacy, exp, invlogit, tanh, or invftukey[ s invftopts] When label is specified,
the transformed effect sizes are labeled as label instead of using the default label. This option may
not be combined with eform_option.

corr transforms effect sizes (and CIs) specified as Fisher’s z values into correlations and, by
default, labels them as Correlation; that is, transform(corr) is a synonym for trans-
form(Correlation: tanh).

efficacy transforms the effect sizes and ClIs using the 1 — exp () function (or more precisely, the
—expml () function) and labels them as Efficacy. This transformation is used, for example,
when the effect sizes are log risk-ratios so that the transformed effect sizes can be interpreted
as treatment efficacies, 1 — risk ratios.

exp exponentiates effect sizes and CIs and, by default, labels them as exp (ES). This transformation
is used, for example, when the effect sizes are log risk-ratios, log odds-ratios, and log hazard-
ratios so that the transformed effect sizes can be interpreted as risk ratios, odds ratios, and
hazard ratios. If the declared effect sizes are log odds-ratios or log risk-ratios, the default label
is 0dds ratio or Risk ratio, respectively.
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invlogit transforms the effect sizes and CIs using the inverse-logit function, invlogit (), and,
by default, labels them as invlogit (ES). This transformation is used, for example, when the
effect sizes are logit of proportions so that the transformed effect sizes can be interpreted as
proportions.

tanh applies the hyperbolic tangent transformation, tanh(), to the effect sizes and CIs and, by
default, labels them as tanh(ES). This transformation is used, for example, when the effect
sizes are Fisher’s z values so that the transformed effect sizes can be interpreted as correlations.

invftukey[ , invftopts] is relevant to meta-analysis of a single proportion. It applies the inverse
Freeman—Tukey double arcsine transformation to the effect sizes and CIs and, by default, labels
them as Proportion. This transformation is used only when pooling proportions (prevalences)
with the default effect size esize (ftukeyprop). See Inverse Freeman—Tukey transformation
for more details.

invftopts are hmean, gmean, amean, ivariance, and scale().

hmean specifies that the harmonic mean of the within-study sample sizes be used to back-
transform the overall effect size.

gmean specifies that the geometric mean of the within-study sample sizes be used to
back-transform the overall effect size.

amean specifies that the arithmetic mean of the within-study sample sizes be used to
back-transform the overall effect size.

ivariance specifies that the inverse of the variance of the overall effect size be used to
back-transform the overall effect size.

scale(#) scales the study proportions, the overall proportion, and their CIs by #. This option
is relevant when the proportions are very small, in which case it might be preferable to
report them as the number of successes per, say, 1,000 or 10,000 observations. # must
be an integer greater than 1.

sort (varlist[ , ascending | @ending] ) sorts the studies in ascending or descending order based
on values of the variables in varlist. This option is useful if you want to sort the studies in
the output by effect sizes, sort(_meta_es), or by precision, sort(_meta_se). By default,
ascending order is assumed unless the suboption descending is specified; only one of ascending
or descending is allowed. varlist may contain string and numeric variables. This option is not
allowed with cumulative (). When sort () is not specified, the order of the studies in the output
is based on the ascending values of variable _meta_id, which is equivalent to sort (_meta_id).

tdistribution reports a ¢ test instead of a z test for the overall effect size. This option may not
be combined with option subgroup(), cumulative(), leaveoneout, or se().

proportion reports results as proportions for meta-analysis of a single proportion. By default, the re-
sults are displayed in the metric declared with meta esize, such as Freeman—Tukey-transformed pro-
portions or logit-transformed proportions. proportion is a synonym for transform(invftukey,
hmean) when the effect size is esize (ftukeyprop) or transform(invlogit) when the effect
size is esize(logitprop). This option affects how results are displayed, not how they are
estimated or stored.

prevalence is a synonym for proportion but labels the effect sizes as Prevalence instead of
Proportion in the output. This option does not appear in the dialog box.

nostudies (synonym nostudy) suppresses the display of information such as effect sizes and their
CIs for individual studies from the output table.

noheader suppresses the output header.
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metashow and nometashow display or suppress the meta setting information. By default, this
information is displayed at the top of the output. You can also specify nometashow with meta
update to suppress the meta setting output for the entire meta-analysis session.

display_options: cformat (% fimt), pformat (%fmt), and sformat (%fint); see [R] Estimation op-
tions. The defaults are cformat (%9.3f), pformat (%5.3f), and sformat (%8.2f).

wgtformat (% fint) specifies how to format the weight column in the output table. The default is
wgtformat (%5.2f). The maximum format width is 5.

ordformat (%fmt) specifies the format for the values of the order variable, specified in cumula-
tive (ordervar). The default is ordformat (%9.0g). The maximum format width is 9.

Maximization

maximize_options: iterate(#), tolerance(#), nrtolerance (#), nonrtolerance (see [R] Max-
imize), from(#), and showtrace. These options control the iterative estimation of the between-
study variance parameter, 72, with random-effects methods reml, mle, and ebayes. These options
are seldom used.

from(#) specifies the initial value for 72 during estimation. By default, the initial value for 72
is the noniterative Hedges estimator.

showtrace displays the iteration log that contains the estimated parameter 72, its relative difference
with the value from the previous iteration, and the scaled gradient.

Remarks and examples

Remarks are presented under the following headings:

Introduction
Examples of using meta summarize

Introduction

Meta-analysis helps answer research questions based on the results of multiple studies. Does
exercise prolong life? Does lack of sleep increase the risk of cancer? Does daylight saving save
energy? Or does performing the duck-face technique while taking a selfie increase the number of
likes on Facebook? These (except perhaps the last one) and many other research questions have been
investigated by multiple studies. These studies may have reported conflicting results: some may have
shown effects in one direction, some in the opposite, and others may have shown none that are
statistically significant. Meta-analysis uses quantitative methods to explore these conflicting results
and, whenever possible, provide a unified conclusion based on the results of the individual studies.

Meta-analysis combines the results of similar multiple studies into a single result. Studies typically
report some measures of outcomes, or effect sizes, and their precision (standard errors or CIS).
Meta-analysis combines the individual effects sizes to provide various meta-analysis summaries. The
main summaries are the overall effect size and its precision. Other meta-analysis summaries include
the test of significance of the overall effect size, between-study heterogeneity summaries such as the
I? statistic, and the test of homogeneity between studies. The meta summarize command reports
such summaries.
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Estimating the overall effect size, #, and its precision based on the results of multiple studies
is at the heart of meta-analysis. There are various methods for estimating €, which depend on the
research goals and model assumptions about the studies. The estimate of the overall (combined) ES
is computed as the weighted average of the study-specific effect sizes, with larger weights given to
more precise (larger) studies:

K w,f,
> j=1 w0,

K
Zj:l wj

The weights are determined by the chosen meta-analysis model, estimation method, and potentially
the type of effect size; see Methods and formulas for details. (In [META] Intro, we used 6,0, to
denote the population parameter of interest. For simplicity, here and in the rest of the documentation,
we will use 6.)

é\:

As we described in Meta-analysis models in [META] Intro, the choice of a meta-analysis model is

important not only for estimation but also for interpretation of . meta summarize supports random-
effects (random), fixed-effects (fixed), and common-effect (common) meta-analysis models. Each
meta-analysis model provides various estimation methods such as the random-effects REML method,
random(reml), and fixed-effects Mantel-Haenszel method, fixed (mhaenszel). The default model
and method are as declared with meta set or meta esize; see Declaring a meta-analysis model
in [META] meta data. Note that the Mantel-Haenszel method is available only with effect sizes
lnoratio, lnrratio, and rdiff declared by using meta esize; see [META| meta esize.

For random-effects models, you can perform sensitivity meta-analysis to explore the impact of
different levels of heterogeneity on the results. You can use the tau2(#) option to specify different
fixed values for the between-study variance 72. Or you can fix the percentage of variation in the
effect sizes because of heterogeneity by specifying the values for the I statistic in the 12 (#) option.
With random-effects models, you can also compute prediction intervals for 6, predinterval (#),
and use the alternative standard-error estimators, se ().

You can perform subgroup analysis, subgroup(), CMA, cumulative (), or leave-one-out meta-
analysis, leaveoneout; see Subgroup meta-analysis, Cumulative meta-analysis, and Leave-one-out
meta-analysis in [META] Intro. Also see Subgroup meta-analysis, Cumulative meta-analysis, and
Leave-one-out meta-analysis in Methods and formulas below.

You can sort the studies based on variables of interest via option sort(). For example, use
sort(_meta_es) or sort(_meta_weight) to display the results based on the ascending order of
the study effect sizes or study weights, respectively.

You can specify the desired confidence level with level(); report exponentiated results by
specifying eform; report a ¢ test, instead of a z test, for the overall effect size by specifying
tdistribution; and more.

In the next section, we demonstrate various usages of meta summarize.
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Examples of using meta summarize

Recall the pupil 1Q data (Raudenbush and Bryk 1985; Raudenbush 1984) described in Effects of
teacher expectancy on pupil IQ (pupiliq.dta) of [META] meta. Here we will use its declared version
and will focus on the demonstration of various options of meta summarize and explanation of its
output.

. use https://www.stata-press.com/data/r18/pupiligset

(Effects of teacher expectancy on pupil IQ; set with -meta set-)
. keep in 1/10

(9 observations deleted)

. meta query, short
-> meta set stdmdiff se , studylabel(studylbl) eslabel(Std. mean diff.)

Effect-size label: Std. mean diff.
Effect-size type: Generic
Effect size: stdmdiff
Std. err.: se
Model: Random effects
Method: REML

For brevity, we consider only the first 10 studies. We use meta query, short to remind us about
the main settings of the declaration step. Our data were declared by using meta set with variables
stdmdiff and se specifying the effect sizes and their standard errors, respectively. The declared
meta-analysis model is the default random-effects model with the REML estimation method.

Examples are presented under the following headings:

Example 1: Default random-effects meta-analysis

Example 2: DerSimonian—Laird random-effects method
Example 3: Fixed-effects meta-analysis

Example 4: Common-effect meta-analysis

Example 5: Knapp-Hartung standard-error adjustment
Example 6: Prediction interval

Example 7: Sensitivity meta-analysis

Example 8: Other options: CI level, t distribution, sort, eform
Example 9: Subgroup meta-analysis

Example 10: Meta-analysis of correlations and the transform() option
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> Example 1: Default random-effects meta-analysis

We type meta summarize to obtain a standard meta-analysis summary.

. meta summarize

Effect-size label: Std. mean diff.
Effect size: stdmdiff
Std. err.: se
Study label: studylbl

Meta-analysis summary Number of studies = 10

Random-effects model Heterogeneity:
Method: REML tau2 = 0.0754
12 (%) = 74.98
H2 = 4.00

Effect size: Std. mean diff.
Study Effect size [95% conf. interval] ¥ weight
Rosenthal et al., 1974 0.030 -0.215 0.275 12.39
Conn et al., 1968 0.120 -0.168 0.408 11.62
Jose & Cody, 1971 -0.140 -0.467 0.187 10.92
Pellegrini & Hicks, 1972 1.180 0.449 1.911 5.25
Pellegrini & Hicks, 1972 0.260 -0.463 0.983 5.33
Evans & Rosenthal, 1969 -0.060 -0.262 0.142 13.11
Fielder et al., 1971 -0.020 -0.222 0.182 13.11
Claiborn, 1969 -0.320 -0.751 0.111 9.11
Kester, 1969 0.270 -0.051 0.591 11.02
Maxwell, 1970 0.800 0.308 1.292 8.15
theta 0.134 -0.075 0.342

Test of theta = 0: z = 1.26 Prob > |z| = 0.2085
Test of homogeneity: Q = chi2(9) = 26.21 Prob > Q = 0.0019

As with other meta commands, a short information about meta settings is displayed directly following
the meta summarize command. It can be suppressed with the nometashow option; see example 2.

Next, the header reports the information about the meta-analysis model and method, the number
of studies (10), and several heterogeneity statistics. The output table reports the effect sizes and their
95% Ci1s for individual studies and the estimate of the overall, combined ES, labeled as theta, and
its 95% CI. The test of significance of the overall effect size and the homogeneity test are reported
at the bottom of the table.

Because our declared effect-size label, Std. mean diff., was too long to fit as the column header,
meta summarize used the generic column label Effect size but displayed the specified label in
the table legend.

The mean effect size in our example is 0.134 with the 95% CI of [—0.075,0.342]. This estimate
is computed as the weighted average of the study-specific effect sizes, with the weights representing
precision of the studies. The percentages of the total weight for each study are reported in the
% weight column. The more precise the study is, the larger its weight percentage. For example,
studies 6 and 7, with labels Evans & Rosenthal, 1969 and Fielder et al., 1971, have the
largest weight percentage among the studies of about 13% (each). Thus, their effect-size estimates,
—0.06 and —0.02, have the largest weights in the weighted-average estimate.

The 95% CI for the overall estimate and the test of Hy: 8 = 0 with the z-test statistic of 1.26 and
the p-value of 0.2085 suggest that 6 is not statistically significantly different from 0. We should be
careful, however, with our conclusions in the presence of between-study heterogeneity.



172 meta summarize — Summarize meta-analysis data

The heterogeneity statistic [ 2, reported in the header, is about 75%, which means that 75% of
the variability in the effect-size estimates is because of the between-study differences rather than
the sampling variation. According to Higgins et al. (2003), this value of I? corresponds to “large
heterogeneity”. (The authors suggest that I? = 25% should indicate “small heterogeneity”, I = 50%
indicate “medium heterogeneity”, and I? = 75% indicate “large heterogeneity”.) The between-study
variance 72 is estimated to be 0.0754. The homogeneity test of Hp: 61 = 5 = - - - = ¢ reports the
Q test statistic of 26.21 with a p-value of 0.0019.

When there are few studies, which is typical in meta-analysis, the homogeneity test is known
to have low power, which means that it may not detect clinically significant heterogeneity (Hedges
and Pigott 2001). Thus, you should use caution when interpreting nonsignificant results as “no
heterogeneity”. In fact, many experts (for example, Berman and Parker [2002]) recommend using a
10% significance level instead of the classical 5% level to determine statistical significance when
using this test. On the other hand, when there are many studies, this test is known to have excessive
power, which means that it tends to detect heterogeneity that is clinically insignificant (Hardy and
Thompson 1998).

In our example, the p-value of the homogeneity test is 0.0019 < 0.05 < 0.1, so there is definitely
statistical evidence of the between-study heterogeneity. See example 9 for one way to account for
the heterogeneity.

d
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> Example 2: DerSimonian—Laird random-effects method

Continuing with example 1, let’s use the DerSimonian—Laird random-effects method instead of
the default (declared) REML method. Let’s also suppress the meta setting information displayed at the
top of the command output by using the nometashow option.

. meta summarize, random(dlaird) nometashow

Meta-analysis summary Number of studies = 10

Random-effects model Heterogeneity:
Method: DerSimonian-Laird tau2 = 0.0481
12 (6) = 65.66
H2 = 2.91

Effect size: Std. mean diff.
Study Effect size [95% conf. interval] ¥ weight
Rosenthal et al., 1974 0.030 -0.215 0.275 13.00
Conn et al., 1968 0.120 -0.168 0.408 11.88
Jose & Cody, 1971 -0.140 -0.467 0.187 10.90
Pellegrini & Hicks, 1972 1.180 0.449 1.911 4.42
Pellegrini & Hicks, 1972 0.260 -0.463 0.983 4.49
Evans & Rosenthal, 1969 -0.060 -0.262 0.142 14.11
Fielder et al., 1971 -0.020 -0.222 0.182 14.11
Claiborn, 1969 -0.320 -0.751 0.111 8.58
Kester, 1969 0.270 -0.051 0.591 11.04
Maxwell, 1970 0.800 0.308 1.292 7.45
theta 0.117 -0.061 0.296

Test of theta = 0: z = 1.29 Prob > |z| = 0.1967
Test of homogeneity: Q = chi2(9) = 26.21 Prob > Q = 0.0019

The results are now based on the DerSimonian—Laird method, and the header is updated to reflect this.
This method is one of the many random-effects methods for estimating the between-study variance
72, Its estimate is 0.0481. In random-effects models, the weights depend on 72 and thus will differ
across different random-effects methods. The mean effect-size estimate under the DerSimonian—Laird
method is 0.117 with the 95% CI of [—0.061,0.296]. This estimate is similar to the 0.134 estimate we
obtained in example 1. We also arrive at the same inferential conclusion of no statistical significance
of the mean effect size as in the previous example.

To shorten the output, let’s suppress the meta setting information from the output of meta summarize
for all remaining examples. We can use meta update to update our current meta settings.

. quietly meta update, nometashow

We specified the nometashow option with meta update to suppress the display of the meta setting
information in all meta commands; see Modifying default meta settings in [META] meta data.

d
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> Example 3: Fixed-effects meta-analysis

In example 1, we assumed a random-effects meta-analysis model. We can use the fixed option
to specify a fixed-effects meta-analysis model.

. meta summarize, fixed

Meta-analysis summary Number of studies = 10
Fixed-effects model Heterogeneity:
Method: Inverse-variance I2 (%) = 65.66
H2 = 2.91
Effect size: Std. mean diff.

Study Effect size [95% conf. interval] % weight
Rosenthal et al., 1974 0.030 -0.215 0.275 15.13
Conn et al., 1968 0.120 -0.168 0.408 10.94
Jose & Cody, 1971 -0.140 -0.467 0.187 8.48
Pellegrini & Hicks, 1972 1.180 0.449 1.911 1.70
Pellegrini & Hicks, 1972 0.260 -0.463 0.983 1.74
Evans & Rosenthal, 1969 -0.060 -0.262 0.142 22.29
Fielder et al., 1971 -0.020 -0.222 0.182 22.29
Claiborn, 1969 -0.320 -0.751 0.111 4.89
Kester, 1969 0.270 -0.051 0.591 8.79
Maxwell, 1970 0.800 0.308 1.292 3.75

theta 0.051 -0.045 0.146
Test of theta = 0: z = 1.04 Prob > |z| = 0.2974
Test of homogeneity: Q = chi2(9) = 26.21 Prob > Q = 0.0019

As reported in the header, fixed implied the inverse-variance estimation method. The between-
group variance parameter is not estimated with fixed-effects models, so the heterogeneity summary
does not report tau2. Under this model, the mean effect-size estimate is 0.051 with the 95% CI
of [—0.045,0.146]. As we explain in Comparison between the models and interpretation of their
results in [META] Intro, in a fixed-effects model, theta estimates the weighted average of the true
study-specific standardized mean differences. Our interpretation is also limited to these 10 studies that
we observed in our meta-analysis. That is, the weighted average of the standardized mean differences
of these 10 studies is not statistically significantly different from 0.

N
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> Example 4: Common-effect meta-analysis

From example 1 and example 3, we determined that there is substantial between-study variability
in these data. Thus, a common-effect model, which assumes that all study-specific effects are the
same, is not reasonable for these data. But we will demonstrate it for illustration purposes.

. meta summarize, common

Meta-analysis summary Number of studies = 10
Common-effect model
Method: Inverse-variance

Effect size: Std. mean diff.

Study Effect size [95% conf. intervall Y% weight
Rosenthal et al., 1974 0.030 -0.215 0.275 15.13
Conn et al., 1968 0.120 -0.168 0.408 10.94
Jose & Cody, 1971 -0.140 -0.467 0.187 8.48
Pellegrini & Hicks, 1972 1.180 0.449 1.911 1.70
Pellegrini & Hicks, 1972 0.260 -0.463 0.983 1.74
Evans & Rosenthal, 1969 -0.060 -0.262 0.142 22.29
Fielder et al., 1971 -0.020 -0.222 0.182 22.29
Claiborn, 1969 -0.320 -0.751 0.111 4.89
Kester, 1969 0.270 -0.051 0.591 8.79
Maxwell, 1970 0.800 0.308 1.292 3.75

theta 0.051 -0.045 0.146
Test of theta = 0: z = 1.04 Prob > |z| = 0.2974

We use the common option to specify a common-effect model. Because this model implies no
heterogeneity, the corresponding summaries and the homogeneity test are not reported for this model.
As we point out in Comparison between the models and interpretation of their results in [META] Intro,
a common-effect model is computationally the same as a fixed-effects model. So we obtain the exact
same results as in example 3. However, the interpretation of our results is different. Here theta
estimates a single effect, which is common to all studies. Although the two models produce the same
results, to encourage proper interpretation, we provide both options, common and fixed, to distinguish
between these models; see Declaring a meta-analysis model in [META] meta data for details.

N
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> Example 5: Knapp—Hartung standard-error adjustment

Let’s return to our random-effects model from example 1. For random-effects models, meta
summarize provides several additional options, which we explore in the next three examples.

The Knapp—Hartung adjustment (also known as the Sidik—Jonkman adjustment) to the standard
error of the overall effect size (Knapp and Hartung 2003 and Hartung and Knapp 2001a, 2001b)
is sometimes used in practice. We can specify it with the se(khartung) option. We also specify
the nostudies option to suppress the output from individual studies because it is unaffected by the
se (khartung) option.

. meta summarize, se(khartung) nostudies

Meta-analysis summary Number of studies = 10

Random-effects model Heterogeneity:
Method: REML tau2 = 0.0754
SE adjustment: Knapp-Hartung I2 (%) = 74.98
H2 = 4.00

theta: Overall Std. mean diff.

Estimate Std. err. t P>|t| [95% conf. intervall
theta .1335309 .1215065 1.10 0.300 -.1413358 .4083976
Test of homogeneity: Q = chi2(9) = 26.21 Prob > Q = 0.0019

Without the individual studies, the output table is slightly different. The test of significance is now
reported in the output table instead of at the bottom of the output table.

The estimate theta is the same as in example 1, 0.134, but it is reported with more digits in this
table. The confidence intervals and the test of significance are different. In addition to making an
adjustment to the standard error, Knapp and Hartung also use a Student’s ¢ distribution as a sampling
distribution instead of the normal distribution. Thus, the ¢ statistic is reported in the output table
instead of the z statistic. Regardless, we still conclude that our overall effect size is not statistically
significant.

Another standard error adjustment, also used in practice, is the so-called truncated or modified
Knapp—Hartung adjustment; see Methods and formulas for details. This adjustment can be specified
with the se (khartung, truncated) option.

. meta summarize, se(khartung, truncated)
(output omitted )
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> Example 6: Prediction interval

Recall from Random-effects model in [META] Intro that a random-effects model implies that the
observed studies in a meta-analysis represent a sample from a larger population of similar studies.
What if we want to estimate the plausible ranges for the overall effect size in a new, future study?
We cannot use the confidence interval for the overall effect size because it does not incorporate the
uncertainty in estimating the between-study variance, which is important if we want to predict an
effect in a new study. We can compute the prediction interval.

. meta summarize, predinterval(90) nostudies

Meta-analysis summary Number of studies = 10

Random-effects model Heterogeneity:
Method: REML tau2 = 0.0754
12 (%) = 74.98
H2 = 4.00

theta: Overall Std. mean diff.

Estimate Std. err. z P>|z| [95% conf. intervall
theta .1335309 .1061617 1.26  0.208  -.0745422 .3416041

90% prediction interval for theta: [-0.414, 0.681]
Test of homogeneity: Q = chi2(9) = 26.21 Prob > Q = 0.0019

We specified predinterval(90) to compute the 90% prediction interval for the mean effect size;
use predinterval to compute the 95% interval. Following example 5, we also used nostudies to
suppress individual studies.

The 90% prediction interval, reported at the bottom of the table, is [—0.414, 0.681]. The prediction
interval will be wider than the confidence interval because it additionally accounts for the uncertainty
in the between-study variability.

N

> Example 7: Sensitivity meta-analysis

For random-effects models, we can perform sensitivity analysis to explore various levels of
heterogeneity between studies. Let’s see how our results change for different values of the between-
study variance 72 and the heterogeneity statistic I°.

Let’s compute the results assuming that 72 equals 0.25.

. meta summarize, tau2(0.25) nostudies

Sensitivity meta-analysis summary Number of studies = 10

Random-effects model Heterogeneity:
Method: User-specified tau2 tau2 = 0.2500
12 (h) = 90.86
H2 = 10.94

theta: Overall Std. mean diff.

Estimate Std. err. z P>|z| [95% conf. intervall
theta .173588 .171407 1.01  0.311 -.1623636 .5095395
Test of homogeneity: Q = chi2(9) = 26.21 Prob > Q = 0.0019

Our estimate of the mean effect size is 0.174 with the 95% CI of [—0.162,0.51] compared with 0.134
with the 95% cI of [—0.075,0.342] from example 1.
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The specified value of 72 corresponds to an I2 of about 91%. Let’s now compute the results
assuming 12 of 10%.

. meta summarize, i2(10) nostudies

Sensitivity meta-analysis summary Number of studies = 10

Random-effects model Heterogeneity:
Method: User-specified I2 tau2 = 0.0028
12 (%) = 10.00
H2 = 1.11

theta: Overall Std. mean diff.

Estimate Std. err. z P>|z| [95% conf. intervall
theta .0589369 .0527232 1.12 0.264  -.0443987 .1622724
Test of homogeneity: Q = chi2(9) = 26.21 Prob > Q = 0.0019

The estimate of the mean effect size is 0.059 with the 95% CI of [—0.044,0.162]. The corresponding
72 value is 0.0028.

In both cases above, the mean effect size is not statistically significant.

> Example 8: Other options: Cl level, t distribution, sort, eform

meta summarize provides other options such as level() to temporarily change the declared
confidence level and tdistribution to use a Student’s ¢ distribution as the sampling distribution
instead of the default normal distribution.

. meta summarize, level(90) tdistribution

Meta-analysis summary Number of studies = 10

Random-effects model Heterogeneity:
Method: REML tau2 = 0.0754
12 (%) = 74.98
H2 = 4.00

Effect size: Std. mean diff.
Study Effect size [90% conf. intervall Y weight
Rosenthal et al., 1974 0.030 -0.176 0.236 12.39
Conn et al., 1968 0.120 -0.122 0.362 11.62
Jose & Cody, 1971 -0.140 -0.415 0.135 10.92
Pellegrini & Hicks, 1972 1.180 0.566 1.794 5.25
Pellegrini & Hicks, 1972 0.260 -0.347 0.867 5.33
Evans & Rosenthal, 1969 -0.060 -0.229 0.109 13.11
Fielder et al., 1971 -0.020 -0.189 0.149 13.11
Claiborn, 1969 -0.320 -0.682 0.042 9.11
Kester, 1969 0.270 0.000 0.540 11.02
Maxwell, 1970 0.800 0.387 1.213 8.15
theta 0.134 -0.061 0.328

Test of theta = 0: t(9) = 1.26 Prob > [t| = 0.2401
Test of homogeneity: Q = chi2(9) = 26.21 Prob > Q = 0.0019

Notice that all CIs, including those for the individual studies, now correspond to the 90% confidence
level, compared with example 1. Also, the significance test now uses the Student’s ¢ distribution with
9 degrees of freedom, but the conclusion remains the same—the mean effect size is not statistically
significant.
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You may also find meta summarize’s option eform useful when dealing with the effect sizes in
the log-transformed metric such as log odds-ratios or log risk-ratios. By default, meta summarize
reports results in the declared metric, which should be chosen such that the sampling distributions of
the effect sizes are well approximated by normal distributions. It may be more convenient, however,
to display the final results in the original metric. When you specify the eform option, it reports the
exponentiated results and the corresponding CIs. Note that the significance tests and other summary
measures are still computed based on the nonexponentiated results.

It does not make sense to exponentiate standardized mean differences in our example, but we will
do this just to demonstrate the option.

We will also use the sort() option to sort our results based on the descending order of study
weights, with larger, more precise studies appearing first.

. meta summarize, eform sort(_meta_weight, descending)

Meta-analysis summary Number of studies = 10

Random-effects model Heterogeneity:
Method: REML tau2 = 0.0754
2 (h) = 74.98
H2 = 4.00

exp(ES): exp(Std. mean diff.)
Study exp (ES) [95% conf. interval] % weight
Evans & Rosenthal, 1969 0.942 0.770 1.152 13.11
Fielder et al., 1971 0.980 0.801 1.199 13.11
Rosenthal et al., 1974 1.030 0.807 1.317 12.39
Conn et al., 1968 1.127 0.845 1.504 11.62
Kester, 1969 1.310 0.950 1.807 11.02
Jose & Cody, 1971 0.869 0.627 1.206 10.92
Claiborn, 1969 0.726 0.472 1.118 9.11
Maxwell, 1970 2.226 1.361 3.640 8.15
Pellegrini & Hicks, 1972 1.297 0.629 2.673 5.33
Pellegrini & Hicks, 1972 3.254 1.567 6.760 5.25
exp(theta) 1.143 0.928 1.407
Sorted by: _meta_weight

Test of theta = 0: z = 1.26 Prob > |z| = 0.2085
Test of homogeneity: Q = chi2(9) = 26.21 Prob > Q = 0.0019

meta summarize, eform reports exponentiated effect sizes and their corresponding CIs. It labels the
effect-size column as exp (ES), but you can change this label to string by specifying eform(string).

Note that the eform option worked in our example because meta set declared our precomputed
effect sizes as generic. They could have been log odds-ratios, in which case eform would make perfect
sense. However, if you use meta esize to compute the standardized mean differences (for example,
Hedges’s g) and try to use eform with meta summarize, you will receive an error message because
meta summarize knows that exponentiation is not appropriate with effect sizes that correspond
to continuous data. With effect sizes 1lnoratio (or lnorpeto) and lnrratio computed by meta
esize, you can also use the respective options or and rr, which are synonyms for eform in those
cases. These options (and eform) will label your results as 0dds ratio (Peto’s OR) and Risk
ratio.

d
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> Example 9: Subgroup meta-analysis

In example 1 and example 3, we identified the presence of substantial heterogeneity between
the observed studies. Sometimes, the heterogeneity can be explained by some study-level covariates,
also known as moderators. With categorical moderators, we can perform subgroup analysis, which
performs meta-analysis separately for each category of each moderator.

We have binary variable week1, which records whether teachers had prior contact with students
for more than 1 week or for 1 week or less. Let’s use this variable as the moderator in our subgroup
analysis. We specify the variable week1 in the subgroup() option.

. meta summarize, subgroup(weekl)

Subgroup meta-analysis summary Number of studies = 10
Random-effects model

Method: REML

Group: weekl

Effect size: Std. mean diff.

Study Effect size [95% conf. intervall Y% weight
Group: <= 1 week
Pellegrini & Hicks, 1972 1.180 0.449 1.911 5.25
Pellegrini & Hicks, 1972 0.260 -0.463 0.983 5.33
Kester, 1969 0.270 -0.051 0.591 11.02
Maxwell, 1970 0.800 0.308 1.292 8.15
theta 0.581 0.174 0.989
Group: > 1 week
Rosenthal et al., 1974 0.030 -0.215 0.275 12.39
Conn et al., 1968 0.120 -0.168 0.408 11.62
Jose & Cody, 1971 -0.140 -0.467 0.187 10.92
Evans & Rosenthal, 1969 -0.060 -0.262 0.142 13.11
Fielder et al., 1971 -0.020 -0.222 0.182 13.11
Claiborn, 1969 -0.320 -0.751 0.111 9.11
theta -0.033 -0.137 0.071
Overall
theta 0.134 -0.075 0.342
Heterogeneity summary
Group df Q P>Q tau2 % I2 H2
<= 1 week 3 7.14 0.068 0.095 57.03 2.33
> 1 week 5 3.53 0.618 0.000 0.00 1.00
Overall 9 26.21 0.002 0.075 74.98 4.00
Test of group differences: Q_b = chi2(1) = 8.18 Prob > Q_b = 0.004

We now have two output tables. Our main table now reports results from individual studies separately
for each group, in addition to the group-specific overall effect size. The overall effect size computed
using all studies is reported at the bottom under Overall.

The second table reports the group-specific and overall heterogeneity summaries. The test of group
differences is reported at the bottom of this table.

The estimated theta for the group with contact <= 1 week is 0.581 with the 95% CI of [0.174, 0.989).
The mean effect size in this group is statistically significant at the 5% level. The estimated theta
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for the group with contact > 1 week is —0.033 with the 95% CI of [—0.137,0.071]. The mean effect
size in this group is not statistically significant at the 5% level.

If we look at the heterogeneity summaries, the <= 1 week group still has some unexplained
between-study heterogeneity with an estimated I2 of 57% and a p-value of the homogeneity test of
0.068 < 0.1. There does not appear to be any between-study heterogeneity in the > 1 week group:
I? is essentially 0%, and the homogeneity test p-value is 0.618.

We should interpret our results with caution because each subgroup analysis used a few studies,
with the <= 1 week group having only 4 studies.

We can specify multiple variables in the subgroup() option. Let’s also include variable tester
in our subgroup analysis.

. meta summarize, subgroup(weekl tester)

Subgroup meta-analysis summary Number of studies = 10
Random-effects model

Method: REML

Group: weekl tester

No. of
Group | studies Std. mean diff. [95% conf. interval] p-value
weekl
<= 1 week 4 0.581 0.174 0.989 0.005
> 1 week 6 -0.033 -0.137 0.071 0.535
tester
Aware 7 0.059 -0.129 0.247 0.535
Blind 3 0.316 -0.206 0.837 0.235
Overall
theta 10 0.134 -0.075 0.342 0.208
Heterogeneity summary
Group df Q P>Q tau2 % I2 H2
weekl
<= 1 week 3 7.14 0.068 0.095 57.03 2.33
> 1 week 5 3.53 0.618 0.000 0.00 1.00
tester
Aware 6 16.35 0.012 0.035 59.07 2.44
Blind 2 9.31  0.009 0.154 75.14 4.02
Overall 9 26.21  0.002 0.075 74.98 4.00
Tests of group differences
df Q_b P > Qb
weekl 1 8.18 0.004
tester 1 0.82 0.365

With more than one variable in subgroup(), meta summarize reports three output tables. To
conserve space, the main table does not report individual studies but reports the number of studies in
each group. It also reports the p-values of the corresponding significance tests of the overall effect
sizes in each group.
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The heterogeneity table reports the group summaries for each variable, in addition to the overall
summaries. The new table reports the results of tests of subgroup differences for each variable.

The studies appear to be homogeneous across the levels of the tester variable.

> Example 10: Meta-analysis of correlations and the transform() option

Molloy, O’Carroll, and Ferguson (2013) conducted a meta-analysis to examine to what degree
conscientiousness is related to medication adherence. Medication adherence is the extent to which
typically chronically ill patients follow medical recommendations as prescribed. Conscientiousness is
defined as “socially prescribed impulse control that facilitates task- and goal-directed behavior, such
as thinking before acting, delaying gratification, following norms and rules, and planning, organizing
and prioritizing tasks” (John and Srivastava 1999, 121).

The dataset contains the variables studylbl, rho, and n to indicate the authors and year of
publication of the studies, the correlation coefficient between conscientiousness and medication
adherence, and the study sample size, respectively.

. use https://www.stata-press.com/data/r18/adherence
(Conscientiousness and medication adherence)

. describe n rho studylbl

Variable Storage Display Value

name type format label Variable label
n int %9.0g Sample size of the study
rho double %9.0g * Correlation coefficient
studylbl str26  %26s Study label

The correlation coefficient rho is measured on the natural scale (—1 < r < 1), so the first step is
to transform rho using the Fisher’z transformation as follows:

. 1 1+rho) 1
fisherz = 5 log <l—rho> = atanh(rho) ~ N (0, — 3)

If the underlying data are bivariate normal, the variance of £isherz equals 1/(n—3) and depends only
on the within-study sample size and not on the correlation parameter itself. Fisher’s z transformation
is available in Stata using the atanh() function. Below, we also generate the se variable to contain
the values of the (asymptotic) standard errors of the Fisher’s z values in each study and use meta
set to declare our meta data.
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. generate double fisherz = atanh(rho)
. generate double se = sqrt(1/(n-3))
. meta set fisherz se, studylabel(studylbl) nometashow
Meta-analysis setting information
Study information
No. of studies: 16
Study label: studylbl
Study size: N/A
Effect size
Type: <generic>
Label: Effect size
Variable: fisherz
Precision
Std. err.: se
CI: [_meta_cil, _meta_ciul
CI level: 95%
Model and method
Model: Random effects
Method: REML

The meta-analysis summary may be obtained as follows:

. meta summarize

Meta-analysis summary Number of studies = 16
Random-effects model Heterogeneity:

Method: REML tau2 = 0.0081

I2 () = 61.73

H2 = 2.61

Study Effect size [95% conf. interval] Y weight

Axelsson et al. (2009) 0.189 -0.001 0.380 5.68

Axelsson et al. (2011) 0.163 0.092 0.235 10.54

Bruce et al. (2010) 0.354 0.082 0.626 3.64

Christensen et al. (1999) 0.332 0.139 0.524 5.62

Christensen & Smith (1995) 0.277 0.041 0.513 4.41

Cohen et al. (2004) 0.000 -0.249 0.249 4.11

Dobbels et al. (2005) 0.177 0.027 0.327 7.14

Ediger et al. (2007) 0.050 -0.059 0.159 8.89

Insel et al. (2006) 0.266 0.002 0.530 3.79

Jerant et al. (2011) 0.010 -0.061 0.081 10.58

Moran et al. (1997) -0.090 -0.359 0.179 3.69

0’Cleirigh et al. (2007) 0.388 0.179 0.597 5.11

Penedo et al. (2003) 0.000 -0.184 0.184 5.87

Quine et al. (2012) 0.151 0.066 0.236 9.98

Stilley et al. (2004) 0.245 0.087 0.402 6.84

Wiebe & Christensen (1997) 0.040 -0.209 0.289 4.11

theta 0.150 0.088 0.212
Test of theta = 0: z = 4.75 Prob > |z| = 0.0000
Test of homogeneity: Q = chi2(15) = 38.16 Prob > Q = 0.0009

The overall Fisher’s z value (transformed correlation coefficient) across the 16 studies is estimated
to be 0.150 using the REML RE meta-analysis model.

The interpretation of the results, however, is easier in the natural correlation-coefficient metric,
which we can compute using the inverse transformation:

exp(2 x fisherz) — 1

= tanh(fisherz)
exp(2 x fisherz) + 1

rho =
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Thus, you may obtain the value of the correlation coefficient and its CI by typing
. display tanh(r(theta))
.14880413

. display "[" tanh(r(ci_lb)) ", " tanh(r(ci_ub)) "I"
[.08783366, .20866384]

More conveniently, you can use the transform(corr) option to report correlations. This option
applies the hyperbolic tangent (tanh ()) transformation to the Fisher’s z values and labels the resulting
effect sizes as Correlation. Notice that specifying transform(corr) is equivalent to specifying
transform(Correlation: tanh).

. meta summarize, transform(corr)

Meta-analysis summary Number of studies = 16
Random-effects model Heterogeneity:

Method: REML tau2 = 0.0081

2 () = 61.73

H2 = 2.61

Study Correlation [95% conf. interval] Y weight

Axelsson et al. (2009) 0.187 -0.001 0.362 5.68

Axelsson et al. (2011) 0.162 0.091 0.231 10.54

Bruce et al. (2010) 0.340 0.082 0.555 3.64

Christensen et al. (1999) 0.320 0.139 0.481 5.62

Christensen & Smith (1995) 0.270 0.041 0.472 4.41

Cohen et al. (2004) 0.000 -0.244 0.244 4.11

Dobbels et al. (2005) 0.175 0.027 0.316 7.14

Ediger et al. (2007) 0.050 -0.059 0.158 8.89

Insel et al. (2006) 0.260 0.002 0.486 3.79

Jerant et al. (2011) 0.010 -0.061 0.081 10.58

Moran et al. (1997) -0.090 -0.345 0.177 3.69

0’Cleirigh et al. (2007) 0.370 0.178 0.535 5.11

Penedo et al. (2003) 0.000 -0.182 0.182 5.87

Quine et al. (2012) 0.150 0.066 0.232 9.98

Stilley et al. (2004) 0.240 0.087 0.382 6.84

Wiebe & Christensen (1997) 0.040 -0.206 0.281 4.11

tanh(theta) 0.149 0.088 0.209
Test of theta = 0: z = 4.75 Prob > |z| = 0.0000
Test of homogeneity: Q = chi2(15) = 38.16 Prob > Q = 0.0009

The overall correlation value is 0.149 with a CI of [0.088,0.209].
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> Example 11: Meta-analysis of a single proportion

Continuing from the meta esize ndeaths pensize setting in example 4 of [META] meta data,
we produce a meta-analysis summary and compute the overall proportion as follows:

. meta summarize, proportion

Effect-size label: Freeman-Tukey’s p
Effect size: _meta_es

Std. err.: _meta_se

Meta-analysis summary Number of studies = 4

Random-effects model Heterogeneity:
Method: REML tau2 = 0.0000
2 (B = 0.00
H2 = 1.00
Study Proportion [95% conf. interval] ¥ weight
Study 1 0.273 0.044 0.579 20.18
Study 2 0.353 0.140 0.598 30.70
Study 3 0.476 0.264 0.693 37.72
Study 4 0.167 0.145 0.586 11.40

invftukey (theta) 0.360 0.230 0.499

Test of theta = 0: z = 7.67 Prob > |z| = 0.0000
Test of homogeneity: Q = chi2(3) = 2.18 Prob > Q = 0.5368

The overall proportion is estimated to be 0.360 with a CI of [0.230, 0.499].

The proportion option was used to report proportions instead of the Freeman—Tukey-transformed
proportions. This option is equivalent to transform(invftukey, hmean), where hmean specifies
that the harmonic mean of the study-specific sample sizes be used as ng to back-transform the overall
effect size [see (4) in Inverse Freeman—Tukey transformation for details]. Instead of the harmonic mean,
Barendregt et al. (2013) suggested to use the inverse of the variance of the overall Freeman—Tukey-
transformed proportion as an estimate of ny. This may be requested via transform(invftukey,
ivariance).

. meta summarize, transform(invftukey, ivariance)

Effect-size label: Freeman-Tukey’s p
Effect size: _meta_es

Std. err.: _meta_se

Meta-analysis summary Number of studies = 4

Random-effects model Heterogeneity:
Method: REML tau2 = 0.0000
12 (%) = 0.00
H2 = 1.00
Study Proportion [95% conf. interval] 7 weight
Study 1 0.273 0.044 0.579 20.18
Study 2 0.353 0.140 0.598 30.70
Study 3 0.476 0.264 0.693 37.72
Study 4 0.167 0.145 0.586 11.40

invftukey(theta) 0.369 0.247 0.499

Note: Method ivariance is used to compute overall proportion.
Test of theta = 0: z = 8.89 Prob > |z| = 0.0000
Test of homogeneity: Q = chi2(3) = 2.18 Prob > Q = 0.5368
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Finally, the CIs for the Freeman—Tukey-transformed proportions are the standard normal-based
Wald intervals. These are stored in system variables _meta_cil and _meta_ciu. The CIs dis-
played in the table above are the corresponding back-transformed (using transform(invftukey))
confidence intervals in the proportion metric, and these are stored in _meta_cil_transf and
_meta_ciu_transf.

When you report proportions either via the proportion or transform() option, you can use the
citype () option to display other types of CIs for the study proportions. Below, we display Wilson
CIs for the study proportions.

. meta summarize, transform(invftukey, ivariance) citype(wilson)

Effect-size label: Freeman-Tukey’s p
Effect size: _meta_es

Std. err.: _meta_se

Meta-analysis summary Number of studies = 4

Random-effects model Heterogeneity:
Method: REML tau2 = 0.0000
12 (%) = 0.00
H2 = 1.00

Wilson
Study Proportion [95% conf. interval] ¥ weight
Study 1 0.273 0.097 0.566 20.18
Study 2 0.353 0.173 0.587 30.70
Study 3 0.476 0.283 0.676 37.72
Study 4 0.167 0.030 0.564 11.40
invftukey (theta) 0.369 0.247 0.499

Note: Method ivariance is used to compute overall proportion.

Note: Wilson CIs are reported only for individual studies.

Test of theta = 0: z = 8.89 Prob > |z| = 0.0000
Test of homogeneity: Q = chi2(3) = 2.18 Prob > Q = 0.5368

The citype() option applies to the CIs of individual studies only and not to the CI of the overall
proportion.

d

> Example 12: Cumulative meta-analysis

CMA (Lau et al. 1992; Sterne 2016) performs multiple meta-analyses by accumulating studies one
at a time. The studies are first ordered with respect to a variable of interest, the ordering variable.
Meta-analysis summaries are then computed for the first study, for the first two studies, for the first
three studies, and so on. The last meta-analysis will correspond to the standard meta-analysis using
all studies.

CMA is useful, for instance, for identifying the point in time of the potential change in the direction
or significance of the effect size when the ordering variable is time. You can use the cumulative ()
option to perform CMA.
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For demonstration purposes, let’s continue with the dataset in example 1 and use year as our
ordering variable.

. meta summarize, cumulative(year)

Cumulative meta-analysis summary Number of studies = 10
Random-effects model

Method: REML

Order variable: year

theta: Overall Std. mean diff.

Study theta [95% conf. interval] p-value year

Conn et al., 1968 0.120 -0.168 0.408 0.414 1968
Evans & Rosent~1969 -0.001 -0.166 0.165 0.995 1969
Claiborn, 1969 -0.042 -0.201 0.117 0.605 1969
Kester, 1969 0.022 -0.177 0.221 0.830 1969
Maxwell, 1970 0.140 -0.178 0.459 0.389 1970

Jose & Cody, 1971 0.089 -0.177 0.355 0.510 1971
Fielder et al., 1~1 0.064 -0.141 0.270 0.539 1971
Pellegrini & H~1972 0.161 -0.117 0.438 0.257 1972
Pellegrini & H~1972 0.161 -0.090 0.413 0.208 1972
Rosenthal et.., 1~4 0.134 -0.075 0.342 0.208 1974

The output table reports the overall effect size and its CIs for each cumulative analysis. The p-value
column contains the p-values of the significance tests of the overall effect sizes from these analyses.
The last column displays the values of the ordering variable.

In our example, no particular trend is apparent.

We can perform stratified CMA by specifying a categorical variable in cumulative ()’s option by ().
To demonstrate, we also specify cumulative()’s option descending to list results in descending
order of year.

. meta summarize, cumulative(year, by(weekl) descending)

Stratified cumulative meta-analysis summary Number of studies = 10
Random-effects model

Method: REML

Order variable: year (descending)

Stratum: weekl

theta: Overall Std. mean diff.

Study theta [95% conf. interval] p-value year

Group: <= 1 week
Pellegrini & H~1972 0.260 -0.463 0.983 0.481 1972
Pellegrini & H~1972 0.718 -0.183 1.620 0.118 1972
Maxwell, 1970 0.755 0.320 1.190 0.001 1970
Kester, 1969 0.581 0.174 0.989 0.005 1969

Group: > 1 week
Rosenthal et.., 1~4 0.030 -0.215 0.275 0.810 1974
Fielder et al., 1~1 0.000 -0.156 0.156 0.998 1971
Jose & Cody, 1971 -0.026 -0.166 0.115 0.720 1971
Claiborn, 1969 -0.054 -0.188 0.080 0.429 1969
Evans & Rosent~1969 -0.056 -0.167 0.056 0.326 1969
Conn et al., 1968 -0.033 -0.137 0.071 0.535 1968

CMA is performed separately for each group of week1.
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Also see Cumulative meta-analysis in [META] meta.

> Example 13: Leave-one-out meta-analysis

For each study in the meta-analysis, the corresponding leave-one-out meta-analysis will omit that
study and perform a meta-analysis on the remaining set of studies (k — 1 studies). It is useful for
exploring the influence of a single study on the overall effect size estimate.

Continuing with example 1, we will use option leaveoneout to perform a leave-one-out meta-
analysis and sort our results according to variable se so that larger studies appear first.

. meta summarize, leaveoneout sort(se)

Leave-one-out meta-analysis summary Number of studies = 10
Random-effects model
Method: REML

theta: Overall Std. mean diff.

Omitted study theta [95% conf. interval] p-value

Evans & Rosenthal, 1969 0.172 -0.073 0.418 0.169
Fielder et al., 1971 0.168 -0.081 0.418 0.186
Rosenthal et al., 1974 0.161 -0.090 0.413 0.208
Conn et al., 1968 0.149 -0.102 0.400 0.244
Kester, 1969 0.127 -0.115 0.368 0.304

Jose & Cody, 1971 0.174 -0.060 0.408 0.146
Claiborn, 1969 0.175 -0.036 0.386 0.105

Maxwell, 1970 0.021 -0.076 0.119 0.665

Pellegrini & Hicks, 1972 0.132 -0.095 0.358 0.254
Pellegrini & Hicks, 1972 0.057 -0.090 0.204 0.446
theta 0.134 -0.075 0.342 0.208

Sorted by: se

The output table reports the overall effect size and its CIs for each leave-one-out analysis. In this
example, the first row reports the overall effect size estimate based on all the studies excluding the
Evans & Rosenthal, 1969 study (10 — 1 = 9 studies). The p-value column contains the p-values
of the significance tests of the overall effect sizes from these analyses. The last row displays the
results based on all 10 studies. It seems that the Maxwell, 1970 study has a relatively large influence
because the 95% CI from the meta-analysis excluding that study, [—0.076,0.119], does not contain
the overall effect size estimate based on all studies, 0.134.

4
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Stored results

meta summarize stores the following in r():

Scalars
r(N) number of observations
r(theta) overall effect size
r(se) standard error of overall effect size
r(ci_1b) lower CI bound for overall effect size
r(ci_ub) upper CI bound for overall effect size
r(tau2) between-study variance
r(I2) I? heterogeneity statistic (not for CE model)
r(H2) H? heterogeneity statistic (not for CE model)
r(z) z statistic for test of significance of overall effect size (when se() not specified)
r(t) t statistic for test of significance of overall effect size (when se() specified)
r(df) degrees of freedom for ¢ distribution
r(p) p-value for test of significance of overall effect size
r(Q) Cochran’s Q heterogeneity test statistic (not for CE model)
r(df_Q) degrees of freedom for heterogeneity test
r(p-Q) p-value for heterogeneity test
r(Q-b) Cochran’s Q statistic for test of group differences (for subgroup() with one variable)
r(df_Q-b) degrees of freedom for test of group differences
r(p_Q_b) p-value for test of group differences
r(seadj) standard error adjustment
r(level) confidence level for Cls
r(pi_1b) lower bound of prediction interval
r(pi_ub) upper bound of prediction interval
r(pilevel) confidence level for prediction interval
r(converged) 1 if converged, O otherwise (with iterative random-effects methods)
Macros
r(model) meta-analysis model
r (method) meta-analysis estimation method
r(citype) type of CI used in option citype() for meta-analysis of a single proportion
r (subgroupvars) names of subgroup-analysis variables
r(ordervar) name of order variable used in option cumulative ()
r (byvar) name of variable used in suboption by () within option cumulative ()
r(direction) ascending or descending
r(seadjtype) type of standard error adjustment
Matrices
r(esgroup) ESs and CIs from subgroup analysis
r (hetgroup) heterogeneity summary from subgroup analysis
r(diffgroup) results for tests of group differences from subgroup analysis
r(cumul) results from cumulative meta-analysis
r(leaveoneout) results from leave-one-out meta-analysis
r(pi_info) prediction intervals from subgroup analysis

meta summarize also creates a system variable, _meta_weight, which contains study
weights. When the transform() option is specified, meta summarize creates system variables
_meta_es_transf, _meta_cil_transf, and _meta_ciu_transf, which contain the transformed
effect sizes and lower and upper bounds of the corresponding transformed CIs.

Also see Stored results in [META] meta set and Stored results in [META] meta esize for other
system variables.
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Methods and formulas

Methods and formulas are presented under the following headings:

Fixed-effects and common-effect methods for combining study estimates
Inverse-variance method
Mantel-Haenszel method for two-group comparison of binary outcomes
Peto’s method for odds ratios
Random-effects methods for combining study estimates
Iterative methods
Noniterative methods
Knapp-Hartung standard-error adjustment
Prediction intervals
Confidence intervals and significance test
Heterogeneity measures
Inverse Freeman—Tukey transformation
Homogeneity test
Subgroup meta-analysis
Fixed-effects model
Random-effects model
Cumulative meta-analysis
Leave-one-out meta-analysis

The formulas and methods below are based on Veroniki et al. (2016), Viechtbauer et al. (2015),

Borenstein et al. (2009), Schwarzer, Carpenter, and Riicker (2015), Kontopantelis and Reeves (2016),
Fisher (2016), and Bradburn, Deeks, and Altman (2016).

Fixed-effects and common-effect methods for combining study estimates

Consider the data from K independent studies. Let é; be the estimate of the population effect size
6; reported by the jth study and 8?- be the corresponding estimate of the within-study variance, which

is equal to the squared standard error of @ :9; is one of Hedges’s g;, Cohen’s d;, In (6l\ij), In (ﬁj),
and so on, as defined in Methods and formulas of [META] meta esize, or a generic (precomputed)
effect size as declared by [META] meta set.

Consider a fixed-effects model (Hedges and Vevea 1998; Rice, Higgins, and Lumley 2018) from
Meta-analysis models in [META] Intro,

~

aj:9j+€j GJNN(O,E?)

where 8§’s are treated as known values that do not require estimation. Under the assumption that
0, = 0, = --- = 0k = 6, the above fixed-effects model simplifies to a common-effect model

(Hedges 1982; Rosenthal and Rubin 1982):

~

Gj:9+ej GJNN(07ZT\j2)

The estimation methods we describe below are the same for the two models, but the interpretation
of the estimates is different; see Comparison between the models and interpretation of their results
in [META] Intro. The two models estimate different population parameters. A common-effect model
estimates the common effect 0., = 6, whereas a fixed-effects model estimates a weighted average

of the study-specific effects 6;’s,

K
i Wb,
- K

Zj:l W;

where W;’s represent true, unknown weights, which are defined in Rice, Higgins, and Lumley (2018,
eq. 3). For simplicity, in what follows, we will use 6 to mean 0.

Opop = Ave(ej)
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Inverse-variance method

Under the inverse-variance method, the MLE of 6 is

K 7/~ K ~
Zj:l 93’/0]2' _ Zj:l w;b;

K ~o K
Zj:l 1/%‘ Zj:l Wy

Orv =

where the weight w; = 1/ 57 is used to estimate the true weight W;. The inverse-variance method
takes its name from the weights being the reciprocal of the effect-size variances.

The variance estimate of Opy
—~ [~ 1
Var (91\/) = —
w,

K
where w. = w;.

Mantel-Haenszel method for two-group comparison of binary outcomes

For meta-analysis that compares two binary outcomes, the Mantel-Haenszel method can be used
to combine odds ratios (OR), risk ratios (RR), and risk differences (RD) instead of the inverse-variance
method. The classical Mantel-Haenszel method (Mantel and Haenszel 1959) is used for OR, and its
extension by Greenland and Robins (1985) is used for RR and RD. The Mantel-Haenszel method may
be preferable with sparse data (Emerson 1994). This is the default pooling method in meta esize
for the effect sizes mentioned above with fixed-effects and common-effect models.

Consider the following 2 x 2 table for the jth study.

group event no event size
treatment a; b; ni; = a;j + b
control Cj dj Ngj = Cj + dj

The sample size for the jth study is denoted by n; = nq; + na;.

For the overall risk difference, the formula is

K MH N
~ Zj:l w§ ) X 0j

O = K (MH)

where 1/9; is RD from the jth study.

Unlike the inverse-variance method, with log odds-ratios and log risk-ratios, the Mantel-Haenszel
method combines the individual effect sizes in the original metric and then takes the log to obtain
the final overall log odds-ratio or log risk-ratio estimate,

MH ~
O = In { EﬂKzl wj(‘ ' % exp(Gj)}

ZK M)

J=1"7

where ,0\] is In(OR) or In (RR) from the jth study.
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The MH weights are defined as follows. In the formula for the overall risk difference, the weight
assigned to each study is
w(MH) _ Mgnej
J n;

For the overall log risk-ratio, the jth weight is given by

M) _ 7156
J ;
5

And for the overall log odds-ratio, the jth weight is given by

o) _ bjey
w; = =
1
An estimator of the variance of the overall risk difference Oy = ﬁ]\)MH (Greenland and

Robins 1985) is

K
Ej:l (ajbjngj + dej’l’b?j) /nljngjn?

2
K
(ijl "u"zj/nj)

\/72;1’ (@MH) =

An estimator of the variance of the overall log risk-ratio é\MH = ln(ﬁﬁMH) (Greenland and Robins 1985)
is

K
> Ananeg (aj + ¢5) — ajeing} /n’

(Zf:l ajmj/”j) X (Zf:l Cjnlj/nj)

\//;r { ln(ﬁMH)} =

And an estimator of the variance of the overall log odds-ratio §MH = ln((/)ﬁMH) (Robins, Breslow,
and Greenland 1986a; Robins, Greenland, and Breslow 1986b) is

Yoo, PR, N Y (PSS + QiR Y, QS
2 K K 2
) (Zf(:l Rj) 22;‘:1 R; Zj:l S; 2 (ZK Sj)

j=1
where
s+ ds; b; ; id; bic;
szia‘]_k J7 szi‘]_'—CJ’ Rj:a]], aIlde:7]CJ
T 1 nj T

Greenland and Robins (1985) and Robins, Breslow, and Greenland (1986a) demonstrate consistency
of all the above variance estimators in the two cases they call a sparse-data limiting model, in which
the number of 2 X 2 tables (studies) increases but the cell sizes remain fixed, and a large-strata limiting
model, in which the number of studies remains fixed but individual cell sizes increase.

Peto’s method for odds ratios

An alternative to the Mantel-Haenszel method for combining odds ratios is the Peto’s method
(Peto et al. 1977; Yusuf et al. 1985). It is based on the inverse-variance method but uses an alternate
way to compute the odds ratios (and consequently the log odds-ratio).
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Let In (6}\{;)Qw> be Peto’s log odds-ratio for the jth study as defined in Odds ratio in [META] meta
esize. Then, Peto’s overall log odds-ratio is defined following the inverse-variance method as follows,

K —~Peto
~ _petoy  2uj=1WjIn (ORj )
9pet0 = In (OR ) = 74

Zj:l wj

where w; = 1/67 = Var(a;) and Var(a;) is as defined in Methods and formulas of [META] meta
esize of [META] meta esize.

The variance estimate is

— _ 1
Var { In (ORPet‘)) } =—F
Zj:l Wy

Random-effects methods for combining study estimates

Suppose that the observed study-specific effect sizes represent a random sample from a population
of effect sizes that is normally distributed with mean 6 and variance 72.

Consider a random-effects model (Hedges 1983; DerSimonian and Laird 1986) from Meta-analysis
models in [META] Intro, R
Qj =9j+€j =9+u]’—|—€j

where ¢; and u; are assumed to be independent with €¢; ~ N (O7 332-) and uj ~ N (0, 72).

The overall effect I/ (é\]) = 0 is estimated as the weighted average,

K 47
0 — Zj:l w30, 1
T S (1)
Zj:l wj

where w; =1/ (8]2 + 72). The variance of 0 is estimated by

Vi (77) =
where w* = Zle wy.

Different estimators of the between-study variance, 72, lead to different estimators of #. meta
summarize supports seven estimation methods of 72. Three methods are iterative: the maximum
likelihood (ML) estimator (Hardy and Thompson 1996); the restricted maximum-likelihood (REML)
estimator (Raudenbush 2009); and the empirical Bayes (EB) estimator (Morris 1983; Berkey et al. 1995),
also known as the Paule—Mandel estimator (Paule and Mandel 1982). Four methods are noniterative
(have a closed-form expression): DerSimonian—Laird (DL) estimator (DerSimonian and Laird 1986);
Hedges estimator (HE) (Hedges 1983; Hedges and Olkin 1985), also known as the Cochran estimator
or variance-component estimator, Hunter—Schmidt (HS) estimator (Schmidt and Hunter 2015); and
Sidik—Jonkman (SJ) estimator (Sidik and Jonkman 2005).

The formulas for and properties of these estimators have been discussed at length in Veroniki et al.
(2016). Expressions for these estimators are given in the more general context of meta-regression in
Methods and formulas of [META] meta regress. Below, we provide the simplified expressions when
no covariates (moderators) are included in the regression model. The simplified expressions were
obtained by replacing the X matrix with K X 1 column vector of Is.
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Iterative methods

The ML method (Hardy and Thompson 1996; Thompson and Sharp 1999) computes the MLE of
72 by maximizing the following log-likelihood function,

~ ~\ 2
K 1 1 ( J )
lnLML (T2) = —— ln 27T 5 ln U + T — 5 E /0'\27—"—7'2
j=1 j=1 J

with respect to 72, where 0* is defined in (1) and is based on the current value of 72,

The ML method is asymptotically efficient but may produce biased results in small samples. The
REML method estimates 72 by accounting for the uncertainty in the estimation of #, which leads to
nearly an unbiased estimate of 72.

The REML log-likelihood function is

In(27)
2

K
lnLREML <T2) lnLML — = ln Z 0' _|- 7- _|_
Jj=1

The EB estimator and a description of the iterative process for each estimator in this section is
presented in the Methods and formulas of [META] meta regress.

Noniterative methods

The methods in this section do not make any assumptions about the distribution of the random
effects. They also do not require any iteration.

The most popular noniterative estimation method is the DL method. This is a method of moment
estimator for 72, and it is defined as follows,

5_\2 _ Q — (K — 1)
DL = &K K K
Zj:l w5 — Zj:l w32/ Zj:l W
N2
where ) = Z L w; (Gj - 91\/) and w; = 1/57.

Because 75, is negative when () < K — 1, it is truncated at 0 in practice, and thus max (0, ?]%L)
is used to estimate the between-study variance:

N2

Yol w (9j - Hw) —(K-1)
K 12§ K

Zj:l wj — Zj:l w]2/ Zj:l Wi

72; = max < 0,

The HE estimator is another method of moment estimator defined as follows,
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The HS estimator is given by
TEg = max {0, QKK}
j=1Wj
For the SJ estimator, consider an initial estimate of 72, given by
~2 ZjK:l (@ B 5)2

7' =
0 K
Then, the estimator is defined as

~ 2
TSy = K—1

where w}’ =73/ (67 +73) and 037 =8 w]SJé\J/Zjl(Zl wy?.

j=1

Knapp-Hartung standard-error adjustment

195

Hartung and Knapp (2001a) and Sidik and Jonkman (2002) proposed an adjustment to the variance
of 6* to account for the uncertainty in estimating 72, which is used in the expression for weights.

They proposed to multiply \/@Tr(é\*) = 1/w* by the following quadratic form,

K

1 * (7 I 2
v = =1 i (0= 7)
j=1

or by max (1, gkg).

The variance estimator for 8* can then be defined as

ar (é\*) | gku x 1/w* with option se (khartung)
HK ~ | max(1,gkn) X 1/w*  with option se(khartung, truncated)

Hartung (1999) established that the statistic

0* —0
S (7

has a Student’s t distribution with K — 1 degrees of freedom.
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Correspondingly, the (1 — a)) x 100% CI for 6 using the Knapp—Hartung standard error is

0" £tr_1,1-a/2 Varpx (9*)

where T _11_o/2 denotes the 1 — « /2 quantile of the Student’s ¢ distribution with K — 1 degrees
of freedom.

The test statistic for the significance test of an overall effect, Hy: 0 = 0, is

-~

9*
o (7
and has the Student’s ¢ distribution with K — 1 degrees of freedom.

Also see Sidik and Jonkman (2002, 2003) and Cornell et al. (2014) for more discussion about the
Knapp—Hartung adjustment.

Prediction intervals

In a random-effects model, you can compute a prediction interval (Higgins, Thompson, and
Spiegelhalter 2009) that estimates plausible ranges for 6 in a future study. Compared with the CI, a
prediction interval incorporates the uncertainty in estimating 72 in the computation.

A (1 — a) x 100% prediction interval is defined as

0" +tx 91 o2y Var (5*) + 72

where t5_1,1_o/2 denotes the 1 — «/2 quantile of the Student’s ¢ distribution with K — 2 degrees
of freedom. This prediction interval may be specified with the predinterval () option.

Confidence intervals and significance test

Let 0 be any of the estimators considered in the previous sections such as é\w or 0. The
(1 — ) x 100% confidence interval for 6 is

é\ﬂ: Zl—a/2 \/751‘ (é\)

where 21_q/5 is the (1 — a/2)th quantile of the standard normal distribution.

We reject the hypothesis of no treatment effect Hy: 6 = 0 at level «, if
)
ar i)

If the tdistribution option is specified, the 21 _, /o critical value is replaced with the tx 1 1_q /2
critical value in the above formulas.

> Zl—a/2
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Heterogeneity measures

The homogeneity test can be used to test whether the study-specific effects are the same; see
Homogeneity test. But with a small number of studies, this test may have low power (Hedges
and Pigott 2001). Also, it does not provide an estimate of the magnitude of the between-study
heterogeneity. Some authors (for example, Higgins and Thompson [2002] and Higgins et al. [2003])
suggest examining the heterogeneity statistics rather than relying solely on the homogeneity test.

Higgins and Thompson (2002) proposed two heterogeneity measures: 12 and H2. We define them
separately for random-effects and fixed-effects models.

For a random-effects model, the two heterogeneity measures are defined as follows:

~2
and I )
T+ s
H? = —a (3)
where
9 K—-1

K K o K
Zj:l wj — Zj:l wj/ Zj:l wj
is the within-study variance and 72 is an estimator of the between-study variance. The values of 2

and H? will vary depending on which estimator of 72 is specified in the random() option.

For a fixed-effects model, the expressions for 12 and H? are given by

I? = {Q(gl)} x 100%

and

H? — &
K-1
where @ is defined in Homogeneity test.
The formulas above for 12 and H? are equivalent to the corresponding formulas (2) and (3), when
the DL method is used to estimate 72. I? is negative when Q < (K — 1) and is thus reset to zero
in that case.

Inverse Freeman—Tukey transformation
For each study, let ppr be the Freeman—Tukey-transformed proportion as defined in Freeman—
Tukey-transformed proportion in Methods and formulas in [META] meta esize.

The inverse Freeman-Tukey transformation, which back-transforms pgT to a proportion (option
transform(invftukey)), is given by (Miller 1978)

2

e~ 1
SN PppT — sin;)\FT
n

p=0.54¢1—sgn(cosprr)|1— <sin;5FT +
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where sgn is the sign operator. The expression depends on the study sample size n, which is available
for each study but not for the overall (pooled) effect size. To back-transform the overall effect size 6,
where 6 is obtained by pooling the study-specific ppr’s, to obtain the overall proportion, Miller (1978)
suggested to use ng, the harmonic mean (default) of the study-specific sample sizes, in place of n
in the above formula. Other estimators for ng include the geometric mean, arithmetic mean, or the
inverse of the variance of the overall effect size.

Because 0 < e < n, each study’s ppr must be between asin{,/1/(n+ 1)} and
asin{y/n/(n+ 1)} + 7/2 [see (1) in [META] meta esize]. Thus, the above back-transformation
is valid only if asin{\/1(ng + 1)} < 0 < asin{\/ng/(ng + 1)} + (7/2). Therefore, in practice,

the overall proportion, oy, is computed as follows:

. o> . 1
0 if 9<a51n( ng-‘rl)
R 1 if 9>asin< n:il)+%

Pov =

ne

PN 2
PR . sinf——<
0.5¢1—sgn (cos 9) 1- (sin@ + "") otherwise
(4)

Because § can be bounded away from O whenever 6> asin{y/1/(ng + 1)}, the test statistic for
Hy: 6 = 0 is adjusted as follows:
—~ ) T
‘9 — asin ( n9+1)’

G ()

Homogeneity test

Consider a test of Hy: §; = 03 = --- = 0 = 0, known as the homogeneity test, that evaluates
whether the effect sizes are the same across the studies. It uses the following test statistic,

K 2 X (ZK—I wj‘/g\j)2
Q= w; (6,-8) =Y w;f? - —gK
j=1

=1 j=1Wj

where w; =1/ 52, and HA] and 0 depend on the type of the effect size chosen.

Under the null hypothesis of homogeneity, () follows a x? distribution with K — 1 degrees of
freedom.

Hedges and Pigott (2001) showed that the test has low power when the number of studies (K)
is small, which is typical in meta-analysis. This means that the null hypothesis of homogeneity is
not rejected as often as it should be. Thus, for the homogeneity test, the meta-analysis literature (for
example, Petitti [2001]; Berman and Parker [2002]; Sutton and Higgins [2008]) suggests using the
significance level o« = 0.1 instead of the conventional o = 0.05.

The homogeneity test checks for the potential presence of heterogeneity but does not estimate the
magnitude of the heterogeneity. Thus, many authors (for example, Higgins and Thompson [2002];
Higgins et al. [2003]) suggest exploring the heterogeneity statistics rather than solely relying on the
test. See Heterogeneity measures.
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Subgroup meta-analysis

When the subgroup (varname) option is specified, we assume that the K studies are partitioned
into L subgroups defined by varname. Estimates of the overall effect size and their corresponding
standard errors are calculated for each of the L subgroups.

Let é\jl be the effect-size estimate from study j within subgroup [ and 6\]2-1 be the corresponding
variance, where [ = 1,2,..., L and j = 1,2,..., K].

Below, we describe the formulas separately for fixed-effects and random-effects models. The
formulas for the common-effect model are the same as for the fixed-effects model. When you
specify a common-effect model with subgroup analysis, this model is assumed within each subgroup
l=1,2,...,L, but not for the entire sample of studies.

Fixed-effects model

In what follows, we assume the inverse-variance method, but the same principles apply to the
Mantel-Haenszel method.

In subgroup analysis, a fixed-effects model may be formulated as
Oj0= 0 +eji, e~ N(0,55)
For the [th group, 4/9\1\/71 is a weighted average of the effect sizes @-l with weights w;; = 1 /3]2-1:

Kl N
Zj:l w;i0;1

Orv, = i
Zj:1 Wit

The variance estimate of Oy ; is
—~ [~ 1
Var (91\/7[) = —
w,;
_ K
where w; = ijl wji.

Other meta-analytic quantities such as l2 and (Q; may also be computed for the /th subgroup just
as we described in the previous sections.
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The Cochran’s @ statistic can be extended to test for differences between the L subgroups:

L SEwibg )
_ 0 1=1%. ,
Qy = E wy | O, — ===
-1 Dl W

The subscript b in )}, stands for “between” to emphasize that )}, tests for “between-group” differences.

Under the null hypothesis of homogeneity between the subgroups (0.1 =02 =--- =60 = 0),
the statistic Qp has a x? distribution with L — 1 degrees of freedom.

Random-effects model

Consider a random-effects model with L subgroups and separate between-study variances 7'12:

~

0jl = 91 + ujl + 6]'1 Ejl ~ N (0,8]21) ’U,jl ~ N (0,’7’12)

The formulas for the random-effects model are the same as for the above fixed-effects model,
except we replace the weights with the random-effects weights.

The estimate, 6}, and its variance in the Ith group are

K
o Ej:ll w5051
L= K *
Zj:l Wy
—~ [~ 1
Var (95*) = —

where w;l = 1/(3?_[ + 3-}2) and w = Ef:ll w;l.

The Cochran’s statistic for testing differences between the L subgroups is defined as

Under the null hypothesis of homogeneity between the subgroups (0.1 =02 =--- =0 =0), @}
has a x? distribution with L — 1 degrees of freedom.

Also see Borenstein et al. (2009, chap. 19) and Schwarzer, Carpenter, and Riicker (2015).

Cumulative meta-analysis

To perform CMA, we first sort the studies in ascending order according to the values of the
variable specified in the cumulative() option. If suboption descending is specified within the
cumulative () option, the order is reversed. Mathematically, this corresponds to sorting the pairs

((/9;-, Ejz) in the specified order. Let ((/9\5, 3?’5> denote the sorted pairs.
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CMA estimates K overall effect sizes 9§’s as follows,

05 = wia (03.6)
9 = wia (6.65,03)

~

c __ ns Ns Ns ns
eijA( 1,92,93,...,9j)

05 = MaA (9;,95,95, N 9K)

where MA (Afﬁ;ﬁg, e ,5;) denotes a meta-analysis applied to the sorted studies 1 through j.

Note that the meta-analysis also depends on the values 8?"5 but we omitted them from MA() for
notational convenience.

If suboption by (byvar) is specified within the cumulative() option, the above procedure is
repeated for each subgroup defined by variable byvar.

Leave-one-out meta-analysis
Leave-one-out meta-analysis estimates / overall effect sizes é\_ ;s as follows,

01 =wa (5,05, 0k

~

0_o = MA (51,53, e ,é\K)
é\*j = MA (§1’§27"'7§j*175j+1""7§K)

5—}( = MA (51, 52, 53, cee 5}(—1)
where MA (51, 52, ey @,1, a?jﬂ, ey §K) denotes a meta-analysis applied to all the studies except

the jth study. Note that the meta-analysis also depends on the values 8]2-, but we omitted them from
MA() for notational convenience.



202 meta summarize — Summarize meta-analysis data

References

Barendregt, J. J., S. A. Doi, Y. Y. Lee, R. E. Norman, and T. Vos. 2013. Meta-analysis of prevalence. Journal of
Epidemiology and Community Health 67: 974-978. https://doi.org/10.1136/jech-2013-203104.

Berkey, C. S., D. C. Hoaglin, F. Mosteller, and G. A. Colditz. 1995. A random-effects regression model for
meta-analysis. Statistics in Medicine 14: 395—411. https://doi.org/10.1002/sim.4780140406.

Berman, N. G., and R. A. Parker. 2002. Meta-analysis: Neither quick nor easy. BMC Medical Research Methodology
2: 10. https://doi.org/10.1186/1471-2288-2-10.

Borenstein, M., L. V. Hedges, J. P. T. Higgins, and H. R. Rothstein. 2009. Introduction to Meta-Analysis. Chichester,
UK: Wiley.
Bradburn, M. J., J. J. Deeks, and D. G. Altman. 2016. metan—A command for meta-analysis in Stata. In Meta-Analysis

in Stata: An Updated Collection from the Stata Journal, ed. T. M. Palmer and J. A. C. Sterne, 2nd ed., 4-28.
College Station, TX: Stata Press.

Cornell, J. E., C. D. Mulrow, A. R. Localio, C. B. Stack, A. R. Meibohm, E. Guallar, and S. N. Goodman. 2014.
Random-effects meta-analysis of inconsistent effects: A time for change. Annals of Internal Medicine 160: 267-270.
https://doi.org/10.7326/M13-2886.

DerSimonian, R., and N. M. Laird. 1986. Meta-analysis in clinical trials. Controlled Clinical Trials 7: 177-188.
https://doi.org/10.1016/0197-2456(86)90046-2.

Emerson, J. D. 1994. Combining estimates of the odds ratio: The state of the art. Statistical Methods in Medical
Research 3: 157-178. http://doi.org/10.1177/096228029400300204.

Fisher, D. J. 2016. Two-stage individual participant data meta-analysis and generalized forest plots. In Meta-Analysis
in Stata: An Updated Collection from the Stata Journal, ed. T. M. Palmer and J. A. C. Sterne, 2nd ed., 280-307.
College Station, TX: Stata Press.

Greenland, S., and J. M. Robins. 1985. Estimation of a common effect parameter from sparse follow-up data.
Biometrics 41: 55-68. https://doi.org/10.2307/2530643.

Hardy, R. J., and S. G. Thompson. 1996. A likelihood approach to meta-analysis with random effects. Statistics in
Medicine 15: 619-629. https://doi.org/l().10()2/(SICI)l()97—()258(1996()330)15:6(619::AID—SIM188)3.().CO;2—A.

——. 1998. Detecting and describing heterogeneity in meta-analysis. Statistics in Medicine 17: 841-856. https:
//doi.org/10.1002/(sici)1097-0258(19980430)17:8 <841 ::aid-sim781 > 3.0.co;2-d.

Hartung, J. 1999. An alternative method for meta-analysis. Biometrical Journal 41: 901-916.
https://doi.org/10.1002/(SICI)1521-4036(199912)41:8 <901 ::AID-BIMJ901 >3.0.CO;2-W.

Hartung, J., and G. Knapp. 2001a. On tests of the overall treatment effect in meta-analysis with normally distributed
responses. Statistics in Medicine 20: 1771-1782. https://doi.org/10.1002/sim.791.

—— 2001b. A refined method for the meta-analysis of controlled clinical trials with binary outcome. Statistics in
Medicine 20: 3875-3889. https://doi.org/10.1002/sim.1009.

Hedges, L. V. 1982. Estimation of effect size from a series of independent experiments. Psychological Bulletin 92:
490-499. http://doi.org/10.1037/0033-2909.92.2.490.

——. 1983. A random effects model for effect sizes. Psychological Bulletin 93: 388-395. http://doi.org/10.1037/0033-
2909.93.2.388.

Hedges, L. V., and 1. Olkin. 1985. Statistical Methods for Meta-Analysis. Orlando, FL: Academic Press.

Hedges, L. V., and T. D. Pigott. 2001. The power of statistical tests in meta-analysis. Psychological Methods 6:
203-217. https://doi.org/10.1037/1082-989X.6.3.203.

Hedges, L. V., and J. L. Vevea. 1998. Fixed- and random-effects models in meta-analysis. Psychological Methods 3:
486-504. http://doi.org/10.1037/1082-989X.3.4.486.

Higgins, J. P. T., and S. G. Thompson. 2002. Quantifying heterogeneity in a meta-analysis. Statistics in Medicine
21: 1539-1558. https://doi.org/10.1002/sim.1186.

Higgins, J. P. T., S. G. Thompson, J. J. Deeks, and D. G. Altman. 2003. Measuring inconsistency in meta-analyses.
BMJ 327: 557-560. http://doi.org/10.1136/bmj.327.7414.557.

Higgins, J. P. T., S. G. Thompson, and D. J. Spiegelhalter. 2009. A re-evaluation of random-effects meta-analysis.
Journal of the Royal Statistical Society, Series A 172: 137-159. https://doi.org/10.1111/j.1467-985X.2008.00552.x.


https://doi.org/10.1136/jech-2013-203104
https://doi.org/10.1002/sim.4780140406
https://doi.org/10.1186/1471-2288-2-10
http://www.stata.com/bookstore/ima.html
http://www.stata-press.com/books/meta-analysis-in-stata
http://www.stata-press.com/books/meta-analysis-in-stata
https://doi.org/10.7326/M13-2886
https://doi.org/10.1016/0197-2456(86)90046-2
http://doi.org/10.1177/096228029400300204
http://www.stata-press.com/books/meta-analysis-in-stata
http://www.stata-press.com/books/meta-analysis-in-stata
https://doi.org/10.2307/2530643
https://doi.org/10.1002/(SICI)1097-0258(19960330)15:6<619::AID-SIM188>3.0.CO;2-A
https://doi.org/10.1002/(sici)1097-0258(19980430)17:8<841::aid-sim781>3.0.co;2-d
https://doi.org/10.1002/(sici)1097-0258(19980430)17:8<841::aid-sim781>3.0.co;2-d
https://doi.org/10.1002/(SICI)1521-4036(199912)41:8<901::AID-BIMJ901>3.0.CO;2-W
https://doi.org/10.1002/sim.791
https://doi.org/10.1002/sim.1009
http://doi.org/10.1037/0033-2909.92.2.490
http://doi.org/10.1037/0033-2909.93.2.388
http://doi.org/10.1037/0033-2909.93.2.388
https://doi.org/10.1037/1082-989X.6.3.203
http://doi.org/10.1037/1082-989X.3.4.486
https://doi.org/10.1002/sim.1186
http://doi.org/10.1136/bmj.327.7414.557
https://doi.org/10.1111/j.1467-985X.2008.00552.x

meta summarize — Summarize meta-analysis data 203

John, O. P, and S. Srivastava. 1999. The big five trait taxonomy: History, measurement, and theoretical perspectives.
In Handbook of Personality: Theory and Research, ed. L. A. Pervin and O. P. John, 2nd ed., 102-138. New York:
Guilford.

Knapp, G., and J. Hartung. 2003. Improved tests for a random effects meta-regression with a single covariate. Statistics
in Medicine 22: 2693-2710. https://doi.org/10.1002/sim.1482.

Kontopantelis, E., and D. Reeves. 2016. metaan: Random-effects meta-analysis. In Meta-Analysis in Stata: An Updated
Collection from the Stata Journal, ed. T. M. Palmer and J. A. C. Sterne, 2nd ed., 55-67. College Station, TX:
Stata Press.

Lau, J., E. M. Antman, J. Jimenez-Silva, B. Kupelnick, F. Mosteller, and T. C. Chalmers. 1992. Cumulative
meta-analysis of therapeutic trials for myocardial infarction. New England Journal of Medicine 327: 248-254.
https://doi.org/10.1056/NEJM199207233270406.

Mantel, N., and W. Haenszel. 1959. Statistical aspects of the analysis of data from retrospective studies of disease.
Journal of the National Cancer Institute 22: 719-748. Reprinted in Evolution of Epidemiologic Ideas: Annotated
Readings on Concepts and Methods, ed. S. Greenland, pp. 112-141. Newton Lower Falls, MA: Epidemiology
Resources.

Miller, J. J. 1978. The inverse of the Freeman—Tukey double arcsine transformation. American Statistician 32: 138.
https://doi.org/10.1080/00031305.1978.10479283.

Molloy, G. J., R. E. O’Carroll, and E. Ferguson. 2013. Conscientiousness and medication adherence: A meta-analysis.
Annals of Behavioral Medicine 47: 92-101. https://doi.org/10.1007/s12160-013-9524-4.

Morris, C. N. 1983. Parametric empirical Bayes inference: Theory and applications. Journal of the American Statistical
Association 78: 47-55. https://doi.org/10.2307/2287098.

Paule, R. C., and J. Mandel. 1982. Consensus values and weighting factors. Journal of Research of the National
Bureau of Standards 87: 377-385. http://doi.org/10.6028/jres.087.022.

Petitti, D. B. 2001. Approaches to heterogeneity in meta-analysis. Statistics in Medicine 20: 3625-3633.
https://doi.org/10.1002/sim.1091.

Peto, R., M. C. Pike, P. Armitage, N. E. Breslow, D. R. Cox, S. V. Howard, N. Mantel, K. McPherson, J. Peto,
and P. G. Smith. 1977. Design and analysis of randomized clinical trials requiring prolonged observation of each
patient. II. Analysis and examples. British Journal of Cancer 35: 1-39. https://doi.org/10.1038/bjc.1977.1.

Raudenbush, S. W. 1984. Magnitude of teacher expectancy effects on pupil IQ as a function of the credibility of
expectancy induction: A synthesis of findings from 18 experiments. Journal of Educational Psychology 76: 85-97.
http://doi.org/10.1037/0022-0663.76.1.85.

—— 2009. Analyzing effect sizes: Random-effects models. In The Handbook of Research Synthesis and Meta-Analysis,
ed. H. Cooper, L. V. Hedges, and J. C. Valentine, 2nd ed., 295-316. New York: Russell Sage Foundation.

Raudenbush, S. W., and A. S. Bryk. 1985. Empirical Bayes meta-analysis. Journal of Educational Statistics 10: 75-98.
https://doi.org/10.2307/1164836.

Rice, K., J. P. T. Higgins, and T. S. Lumley. 2018. A re-evaluation of fixed effect(s) meta-analysis. Journal of the
Royal Statistical Society, Series A 181: 205-227. https://doi.org/10.1111/rssa.12275.

Robins, J. M., N. E. Breslow, and S. Greenland. 1986a. Estimators of the Mantel-Haenszel variance consistent in
both sparse data and large-strata limiting models. Biometrics 42: 311-323. https://doi.org/10.2307/2531052.

Robins, J. M., S. Greenland, and N. E. Breslow. 1986b. A general estimator for the variance of the Mantel-Haenszel
odds ratio. American Journal of Epidemiology 124: 719-723. https://doi.org/10.1093/oxfordjournals.aje.al14447.

Rosenthal, R., and D. B. Rubin. 1982. Comparing effect sizes of independent studies. Psychological Bulletin 92:
500-504. http://doi.org/10.1037/0033-2909.92.2.500.

Schmidt, F. L., and J. E. Hunter. 2015. Methods of Meta-Analysis: Correcting Error and Bias in Research Findings.
3rd ed. Thousand Oaks, CA: Sage.

Schwarzer, G., J. R. Carpenter, and G. Riicker. 2015. Meta-Analysis with R. New York: Springer.

Sidik, K., and J. N. Jonkman. 2002. A simple confidence interval for meta-analysis. Statistics in Medicine 21:
3153-3159. https://doi.org/10.1002/sim.1262.

——. 2003. On constructing confidence intervals for a standardized mean difference in meta-analysis. Communications
in Statistics—Simulation and Computation 32: 1191-1203. https://doi.org/10.1081/SAC-120023885.

——. 2005. A note on variance estimation in random effects meta-regression. Journal of Biopharmaceutical Statistics
15: 823-838. https://doi.org/10.1081/BIP-200067915.


https://doi.org/10.1002/sim.1482
http://www.stata-press.com/books/meta-analysis-in-stata
http://www.stata-press.com/books/meta-analysis-in-stata
https://doi.org/10.1056/NEJM199207233270406
https://doi.org/10.1080/00031305.1978.10479283
https://doi.org/10.1007/s12160-013-9524-4
https://doi.org/10.2307/2287098
http://doi.org/10.6028/jres.087.022
https://doi.org/10.1002/sim.1091
https://doi.org/10.1038/bjc.1977.1
http://doi.org/10.1037/0022-0663.76.1.85
https://doi.org/10.2307/1164836
https://doi.org/10.1111/rssa.12275
https://doi.org/10.2307/2531052
https://doi.org/10.1093/oxfordjournals.aje.a114447
http://doi.org/10.1037/0033-2909.92.2.500
https://doi.org/10.1002/sim.1262
https://doi.org/10.1081/SAC-120023885
https://doi.org/10.1081/BIP-200067915

204 meta summarize — Summarize meta-analysis data

Sterne, J. A. C. 2016. Cumulative meta-analysis. In Meta-Analysis in Stata: An Updated Collection from the Stata
Journal, ed. T. M. Palmer and J. A. C. Sterne, 2nd ed., 68-77. College Station, TX: Stata Press.

Sutton, A. J., and J. P. T. Higgins. 2008. Recent developments in meta-analysis. Statistics in Medicine 27: 625-650.
https://doi.org/10.1002/sim.2934.

Thompson, S. G., and S. J. Sharp. 1999. Explaining heterogeneity in meta-analysis: A comparison of methods. Statistics
in Medicine 18: 2693-2708. https://doi‘org/l0.1002/(sici)1097—0258(19991030)18:20<2693::aid—sim235>3.0.co;2—v.

Veroniki, A. A., D. Jackson, W. Viechtbauer, R. Bender, J. Bowden, G. Knapp, O. Kuss, J. P. T. Higgins, D. Langan,
and G. Salanti. 2016. Methods to estimate the between-study variance and its uncertainty in meta-analysis. Research
Synthesis Methods 7: 55-79. https://doi.org/10.1002/jrsm.1164.

Viechtbauer, W., J. A. Loépez-Lopez, J. Sanchez-Meca, and F. Marin-Martinez. 2015. A comparison of pro-
cedures to test for moderators in mixed-effects meta-regression models. Psychological Methods 20: 360-374.
https://doi.org/10.1037/met0000023.

Yusuf, S., R. Peto, J. Lewis, R. Collins, and P. Sleight. 1985. Beta blockade during and after myocardial infarction: An
overview of the randomized trials. Progress in Cardiovascular Diseases 27: 335-371. https://doi.org/10.1016/S0033-
0620(85)80003-7.

Also see

[META] meta data — Declare meta-analysis data
[META] meta forestplot — Forest plots

[META] meta galbraithplot — Galbraith plots
[META] meta regress — Meta-analysis regression
[META] meta — Introduction to meta

[META] Glossary

[META] Intro — Introduction to meta-analysis


http://www.stata-press.com/books/meta-analysis-in-stata
http://www.stata-press.com/books/meta-analysis-in-stata
https://doi.org/10.1002/sim.2934
https://doi.org/10.1002/(sici)1097-0258(19991030)18:20<2693::aid-sim235>3.0.co;2-v
https://doi.org/10.1002/jrsm.1164
https://doi.org/10.1037/met0000023
https://doi.org/10.1016/S0033-0620(85)80003-7
https://doi.org/10.1016/S0033-0620(85)80003-7

Title

meta galbraithplot — Galbraith plots

Description Quick start Menu Syntax
Options Remarks and examples Stored results References
Also see

Description

meta galbraithplot produces Galbraith plots for a meta-analysis. These plots are useful for
assessing heterogeneity of the studies and for detecting potential outliers. They may also be an
alternative to forest plots for summarizing meta-analysis results when there are many studies.

Quick start

Produce a Galbraith plot after data are declared by using either meta set or meta esize
meta galbraithplot

Same as above, but request that the slope of the regression line, the standardized effect-sizes, and
the study precisions be computed using a random-effects REML method instead of the default
common-effect inverse-variance method

meta galbraithplot, random(reml)

Same as above, but suppress the CI bands
meta galbraithplot, random(reml) noci

Modify the default styles of the reference and regression lines
meta galbraithplot, rlopts(lcolor(red)) lineopts(lpattern(dash))

Menu

Statistics > Meta-analysis
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Syntax
meta galbraithplot [[f] [m] [, options]
options Description
Main
random[ (remethod) } random-effects meta-analysis
common common-effect meta-analysis; implies inverse-variance method; the default
fixed fixed-effects meta-analysis; implies inverse-variance method
[@ }regline display or suppress the regression line
[no } ci display or suppress the confidence intervals
level (#) set confidence level; default is as declared for meta-analysis
[no}metashow display or suppress meta settings in the output
graph_options affect rendition of overall Galbraith plot
[no}lowercase lowercase (default) or display as is the first word of the effect-size label

used in the y-axis title

collect is allowed; see [U] 11.1.10 Prefix commands.

lowercase and nolowercase do not appear in the dialog box.

remethod Description
reml restricted maximum likelihood; the default
mle maximum likelihood
ebayes empirical Bayes
dlaird DerSimonian—Laird
sjonkman Sidik—Jonkman
hedges Hedges
hschmidt Hunter—Schmidt
graph_options Description
RL options

rlopts(line_options)  affect rendition of the plotted reference line indicating no effect

Fitted line
lineopts (line_options) affect rendition of the plotted regression line

Cl plot

ciopts (ciopts) affect rendition of the plotted CI band
Add plots

addplot (plot) add other plots to the Galbraith plot

Y axis, X axis, Titles, Legend, Overall
twoway_options any options other than by () documented in [G-3] twoway_options
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Options
Main

random(), common, and fixed specify a meta-analysis model to use when estimating the slope of
the regression line in the Galbraith plot. These options also affect the standard error computation
used in the standardization of the effect sizes. For historical reasons, the default is common based
on the inverse-variance method, regardless of the global model declared by meta set or meta
esize. Specify one of these options with meta galbraithplot to override this default.

random and random (remethod) specify that a random-effects model be assumed for the construction
of the Galbraith plot; see Random-effects model in [META] Intro.

remethod specifies the type of estimator for the between-study variance 72. remethod is one

of reml, mle, ebayes, dlaird, sjonkman, hedges, or hschmidt. random is a synonym
for random(reml). See Options in [META] meta esize for more information.

common specifies that a common-effect model be assumed for the construction of the Galbraith plot;
see Common-effect (“fixed-effect”’) model in [META] Intro. It uses the inverse-variance estimation
method; see Meta-analysis estimation methods in [META] Intro. Also see the discussion in
[META] meta data about common-effect versus fixed-effects models.

fixed specifies that a fixed-effects model be assumed for the construction of the Galbraith plot;
see Fixed-effects model in [META] Intro. It uses the inverse-variance estimation method; see
Meta-analysis estimation methods in [META] Intro. Also see the discussion in [META] meta
data about fixed-effects versus common-effect models. Galbraith plots for the common-effect
and fixed-effects models are identical.

regline and noregline display or suppress the rendition of the regression line. The default,
regline, is to display the regression line. Option noregline implies option noci.

ci and noci display or suppress confidence intervals. The default, ci, is to display them.

level (#) specifies the confidence level, as a percentage, for confidence intervals. The default is
as declared for the meta-analysis session; see Declaring a confidence level for meta-analysis in
[META] meta data. Also see option level() in [META] meta set.

metashow and nometashow display or suppress the meta setting information. By default, this
information is displayed at the top of the output. You can also specify nometashow with meta
update to suppress the meta setting output for the entire meta-analysis session.

RL options

rlopts (line_options) affects the rendition of the plotted reference (diagonal) line that indicates no
effect of the intervention or treatment; see [G-3] line_options.

Fitted line

lineopts (line_options) affects the rendition of the plotted regression line; see [G-3] line_options.

Cl plot

ciopts(ciopts) affects the rendition of the CI band in the Galbraith plot. ciopts are any options
as defined in [G-2] graph twoway rline and option recast(rline) as described in [G-3] ad-
vanced_options.
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Add plots

addplot (plot) allows adding more graph twoway plots to the graph; see [G-3] addplot_option.

Y axis, X axis, Titles, Legend, Overall |

twoway_options are any of the options documented in [G-3] twoway_options, excluding by (). These
include options for titling the graph (see [G-3] title_options) and for saving the graph to disk (see
[G-3] saving _option).

The following options are available with meta galbraithplot but are not shown in the dialog box:

lowercase and nolowercase lowercase or leave as is the first word of the effect-size label shown
on the y-axis title. The y-axis title is “Standardized eslabel”, where eslabel is the effect-size label
defined by meta set or meta esize using the eslabel() option. By default, the command
lowercases the first word of eslabel to follow Stata’s sentence capitalization style. If the first
word is a proper name or if you want to use the title capitalization style, you can specify option
nolowercase to display eslabel as is.

Remarks and examples

The Galbraith plot (Galbraith 1988) is a scatterplot of the standardized effect size (z score) on the
Y axis against precision (inverse standard error) on the x axis for each study. It is mainly used to
assess heterogeneity of the studies and detect potential outliers. It may also be an alternative to forest
plots for summarizing meta-analysis results, especially when there are many studies (Anzures-Cabrera
and Higgins 2010). The overall effect size is depicted as the slope of the regression line through the
origin.

Heterogeneity (and potential outliers) may be investigated by looking at the variation of the studies
around the regression line. To aid with that, the Galbraith plot additionally draws a 100(1 — )%
confidence region represented by two lines drawn at the +2;_, /o intercept values parallel to the
regression line. In the absence of heterogeneity, 100(1 — /)% of the studies should fall within that
region. The plot also contains a reference line at y = 0, which indicates “no effect”.

meta galbraithplot produces Galbraith plots. The plotted standardized effect size is determined
automatically based on the declared effect size. Unlike other meta commands, for historical reasons,
meta galbraithplot assumes a common-effect model with the inverse-variance method for the
construction of the Galbraith plot.

Under the common-effect and fixed-effects models, the study prec1510ns x; = 1/0;, and the

standardized effect sizes, y; = 0, /0, are used to estimate the slope, 91\/, of the regression line
through the origin

If random() is specified, the expressions for x; and y; become x; = 1/, /832‘ +72 and y; =
@\]/ EJQ- + 72, and the slope of the regression line is now equal to the overall effect size from the
random-effects model, §*.

Two 100(1 — oz)% CI lines y= Oz + Z1—ay/2, Which are parallel to the regression line, are added

to the plot, where 9 is one of 01\/ or 0 depending on the chosen model.
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By default, the global CI level specified in meta set or meta esize is used to compute 21_ /2
but a different level may be selected via the level() option. The regression line (and consequently
its CI bands) may be suppressed via the noregline option.

If you wish to only suppress the CI bands, then you may specify the noci option. You can also
control the look of the plotted reference line, the regression line, and the CI bands by specifying the
rlopts(), lineopts(), and ciopts() options, respectively.

> Example 1: Basic Galbraith plot

Consider the declared version of the BCG dataset, bcgset.dta, which we used in, for instance,
example 1 of [META] meta regress. Let’s produce the Galbraith plot for these data.

. use https://www.stata-press.com/data/r18/bcgset
(Efficacy of BCG vaccine against tuberculosis; set with -meta esize-)
. meta galbraithplot
Effect-size label: Log risk-ratio
Effect size: _meta_es
Std. err.: _meta_se
Model: Common effect
Method: Inverse-variance

Galbraith plot

95% ClI
e Studies
—— Regression line
No effect

Standardized log risk-ratio (6/se;)

-104 T T T 1
0 5 10 15 20

Precision (1/se))
se;: estimated o;

The blue circles form a scatterplot of the study-specific standardized log risk-ratios against study
precisions. Studies that are close to the y axis have low precision. Precision of studies increases as
you move toward the right on the x axis.

The reference black line (y = 0) represents the “no-effect” line. That is, the log risks (or risks) in
the treatment and control groups for the trials on the line are either the same or very similar. There
are two trials that are on the line in our example: one is a large trial, and the other one is a small
trial. The log risks for these trials are similar in the two groups, and the corresponding log risk-ratios
are close to zero.

If a circle is above the reference line, the risk in the treatment group is higher than the risk in
the control group for that study. Conversely, if a circle is below the line, the risk in the treatment
group is lower than the risk in the control group. In our example, one trial is above the reference line,
suggesting that the risk in the treatment group is higher, but this is an imprecise trial. The remaining
trials are below the line, suggesting that the risk is lower in the treatment group.

The red line is the regression line through the origin. The slope of this line equals the estimate
of the overall effect size, which is the overall log risk-ratio in our example. Also, the slope of an
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imaginary line from the origin to an individual circle is equal to the effect size (log risk-ratio) estimate
corresponding to that circle. This is because the slope is given by y;/z; = (6;/7;)/(1/5;) = 6;.
Thus, studies that fall above the regression line have effect-size estimates larger than the overall effect
size, and those falling below the line have estimates that are smaller than the overall effect size.

In the absence of substantial heterogeneity, we expect around 95% of the studies to lie within the
95% CI region (shaded area). In our example, there are 6 trials out of 13 that are outside of the CI
region. We should suspect the presence of heterogeneity in these data. In fact, we did establish in
example 1 of [META] meta regress that there is at least one moderator, the distance from the equator,
that explains some of the variation in the trial effect sizes.

4

2> Example 2: Custom legend

Continuing with example 1, let’s demonstrate how we can customize the look of the legend
produced by default. We use meta update to suppress the meta setting information displayed by
meta galbraithplot.

. quietly meta update, nometashow

. meta galbraithplot, legend(symxsize(*0.4) position(12) ring(0)
> region(lcolor(black)))

Galbraith plot

95% ClI
e Studies
— Regression line
— No effect

Standardized log risk-ratio (6/se;)

-104 T T T J
0 5 10 15 20

Precision (1/se))
se;: estimated o;

We customized the legend with a few suboptions specified in legend () (see [G-3] legend_options).
We used symxsize(*0.4) to set the width of the key symbols to 40% of their default width. We
used position(12) to position the label at 12 o’clock and ring(0) to place the legend inside the
plot region. We used region(lcolor(black)) to add a black border around the legend region.

d
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> Example 3: Labeling trials

Continuing with example 1, we established that there is heterogeneity among the studies given
the wide spread of the plotted circles around the regression line. We also know from example 1 of
[META] meta regress that there is at least one moderator, the distance from the equator, that explains
some of the variation in the trial effect sizes. We would like to highlight this fact on the Galbraith plot
by creating two study groups corresponding to low (latitude_c < 0) and high (latitude_c > 0)
absolute (mean-centered) latitudes and assigning a different color marker for each group on the plot.
We will use the addplot () option.

. generate double precision = 1/_meta_se
. generate double zscore = _meta_es*precision
. local opts legend(order(l 3 4 5 "Low latitude" 6 "High latitude"))

meta galbraithplot, msymbol(none)
> addplot(scatter zscore precision if latitude_c < 0, ‘opts’ ||
> scatter zscore precision if latitude_c >= 0, ‘opts’)

Galbraith plot

o

95% CI
—— Regression line
No effect
e Low latitude
*  High latitude

&
1

Standardized log risk-ratio (6/se;)

-10+ :
0 5 10 15 20
Precision (1/se))
se;: estimated o;

First, we generated two new variables, precision and zscore, that contain the precisions, 1/7;,

and z scores, 6;/0;, of the studies. Then, we constructed a Galbraith plot without study markers
(without the blue circles) using the msymbol (none) option. Finally, we used addplot () to overlay
two scatterplots corresponding to low and high latitudes. The order () suboption within legend ()
displays informative legend keys for the added scatterplots in the legend box at the bottom of the
plot (see [G-3] legend_options).

All circles in the “high latitude” group (colder climate) fall below the regression line. Thus,
the reported risk ratios in colder climates are below the overall risk-ratio estimate, confirming our
findings in example 9 of [META] meta that the vaccine is more efficient in colder areas. In the “low
latitude” group, only one study (study 7: Vandiviere et al., 1973) had a risk ratio below the
overall risk-ratio estimate. Note that this study was also identified as an outlier in the bubble plot of

example 4 of [META] estat bubbleplot.
d



212 meta galbraithplot — Galbraith plots

Stored results
meta galbraithplot stores the following in r():

Scalars
r(theta) estimated overall effect size
r(tau2) estimated between-study variance (when random() is specified)
Macros
r(model) meta-analysis model
r (method) meta-analysis estimation method
References

Anzures-Cabrera, J., and J. P. T. Higgins. 2010. Graphical displays for meta-analysis: An overview with suggestions
for practice. Research Synthesis Methods 1: 66-80. https://doi.org/10.1002/jrsm.6.

Galbraith, R. F. 1988. A note on graphical representation of estimated odds ratios from several clinical trials. Statistics
in Medicine 7: 889-894. https://doi.org/10.1002/sim.4780070807.

Also see
[META] meta data — Declare meta-analysis data
[META] meta forestplot — Forest plots
[META] meta labbeplot — L’ Abbé plots
[META] meta regress — Meta-analysis regression
[META] meta — Introduction to meta
[META] Glossary

[META] Intro — Introduction to meta-analysis


https://doi.org/10.1002/jrsm.6
https://doi.org/10.1002/sim.4780070807

Title

meta labbeplot — L’ Abbé plots

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description

meta labbeplot produces L’ Abbé plots for a meta-analysis that compares the binary outcomes
of two groups. These plots are useful for assessing heterogeneity and comparing study-specific event
rates in the two groups.

Quick start

Construct a I’ Abbé plot based on the effect size for two-sample binary data computed by meta esize
meta labbeplot

Same as above, but request that the overall effect size be computed using a random-effects REML
method instead of the default common-effect inverse-variance method

meta labbeplot, random(reml)

Same as above, but specify that study-marker sizes be proportional to weights from a random-effects
model instead of the default common-effect model

meta labbeplot, random(reml) reweighted

Modify the default looks of the reference line and the overall effect-size line
meta labbeplot, rlopts(lcolor(red)) esopts(lpattern(solid))

Menu

Statistics > Meta-analysis
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Syntax
meta labbeplot [lf} [ln} [, options}
options Description
Main
random[ (remethod) } random-effects meta-analysis
common[ (cefemethod) ] common-effect meta-analysis
f ixed[ (cefemethod) ] fixed-effects meta-analysis
reweighted make bubble size depend on random-effects weights
[no}metashow display or suppress meta settings in the output
graph_options affect rendition of overall L’ Abbé plot

collect is allowed; see [U] 11.1.10 Prefix commands.

remethod Description

reml restricted maximum likelihood; the default

mle maximum likelihood

ebayes empirical Bayes

dlaird DerSimonian—Laird

sjonkman Sidik—Jonkman

hedges Hedges

hschmidt Hunter—Schmidt

cefemethod Description

mhaenszel Mantel-Haenszel

invvariance inverse variance

ivariance synonym for invvariance

graph_options Description
RL options

rlopts (line_options) affect rendition of the plotted reference line indicating no effect
ES options

esopts (line_options) affect rendition of the plotted estimated effect-size line
Add plots

addplot (plot) add other plots to the contour plot

Y axis, X axis, Titles, Legend, Overall
twoway_options any options other than by () documented in [G-3] twoway _options
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Options
Main

Options random(), common (), and fixed() specify a meta-analysis model to use when estimating
the overall effect size. For historical reasons, the default is common(invvariance), regardless of
the global model declared by meta esize. Specify one of these options with meta labbeplot to
override this default. Options random(), common (), and fixed() may not be combined. Also see
Meta-analysis models in [META] Intro.

random and random(remethod) specify that a random-effects model be assumed for meta-analysis;
see Random-effects model in [META]| Intro.

remethod specifies the type of estimator for the between-study variance 72. remethod is one of

reml, mle, ebayes, dlaird, sjonkman, hedges, or hschmidt. random is a synonym for
random(reml). See Options in [META] meta esize for more information.

common and common (cefemethod) specify that a common-effect model be assumed for meta-analysis;
see Common-effect (“fixed-effect”) model in [META]| Intro. Also see the discussion in [META| meta
data about common-effect versus fixed-effects models.

common implies common (mhaenszel).

cefemethod is one of mhaenszel or invvariance (synonym ivariance). See Options in
[META] meta esize for more information.

fixed and fixed(cefemethod) specify that a fixed-effects model be assumed for meta-analysis;
see Fixed-effects model in [META] Intro. Also see the discussion in [META] meta data about
fixed-effects versus common-effect models.

fixed implies fixed (mhaenszel).

cefemethod is one of mhaenszel or invvariance (synonym ivariance); see Options in
[META] meta esize for more information.

reweighted is used with random-effects meta-analysis. It specifies that the sizes of the bubbles be
proportional to the weights from the random-effects meta-analysis, w} = 1 / (3? +72). By default,
the sizes are proportional to the precision of each study, w; =1/ 0’?.

metashow and nometashow display or suppress the meta setting information. By default, this
information is displayed at the top of the output. You can also specify nometashow with meta
update to suppress the meta setting output for the entire meta-analysis session.

RL options

rlopts (line_options) affects the rendition of the plotted reference (diagonal) line that indicates no
effect of the intervention or treatment; see [G-3] line_options.

ES options

esopts (line_options) affects the rendition of the dashed line that plots the estimated overall effect
size; see [G-3] line_options.
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Add plots

addplot (plot) allows adding more graph twoway plots to the graph; see [G-3] addplot_option.

Y axis, X axis, Titles, Legend, Overall |

twoway—_options are any of the options documented in [G-3] twoway _options, excluding by (). These
include options for titling the graph (see [G-3] title_options) and for saving the graph to disk (see
[G-3] saving _option).

Remarks and examples

The L’ Abbé plot (L’Abbé, Detsky, and O’Rourke 1987) is a scatterplot of the summary outcome
measure such as log odds in the control group on the x axis and of that in the treatment group
on the y axis. This plot is used with two-sample binary data declared by meta esize. The plotted
summary outcome measure depends on the chosen effect size. It is log odds when the effect size is log
odds-ratio, log risk when the effect size is log risk-ratio, and risk when the effect size is risk difference.
The summary outcome measures are plotted as circles with their sizes (areas) proportional to study
precisions. The plot also contains a reference (diagonal) line, which indicates identical outcomes in
the two groups and thus represents no effect, and the estimated overall effect-size line.

The L Abbé plot explores between-study heterogeneity by comparing group-level summary outcome
measures across studies. It can also be used to determine which type of effect size is more homogeneous
across studies. Compared with other meta-analysis graphs, one important advantage of the L’ Abbé
plot is that it displays the data on individual studies for each of the two groups. Thus, in addition
to identifying outlying studies, it can also identify the outlying groups within studies. Also see
Anzures-Cabrera and Higgins (2010) for more detail.

meta labbeplot produces L’ Abbé plots. The plotted summary outcome measure is determined
automatically based on the declared effect size. Unlike other meta commands, for historical reasons,
meta labbeplot assumes a common-effect model with the inverse-variance method when computing
the overall effect size to be plotted. You can use random(), common(), or fixed() to specify a
different meta-analysis model or method. By default, meta labbeplot uses the precision weights,
1/ 3]2, but, with a random-effects model, you can instead choose to use the random-effects weights,

1/ (8]2- +72). You can also control the look of the plotted reference and effect-size lines by specifying
the rlopts() and esopts() options.
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> Example 1: Basic LAbbé plot

Consider the declared version of the BCG dataset, bcgset.dta, which we used in, for instance,
example 1 of [META] meta regress. Let’s produce the L’ Abbé plot for these data.

. use https://www.stata-press.com/data/r18/bcgset
(Efficacy of BCG vaccine against tuberculosis; set with -meta esize-)

. meta labbeplot

Effect-size label: Log risk-ratio
Effect size: _meta_es
Std. err.: _meta_se
Summary data: npost nnegt nposc nnegc
Model: Common effect
Method: Inverse-variance

L'Abbé plot
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Log risk (control group)
Weights: Inverse-variance

From the displayed meta settings, the declared effect size is a log risk-ratio. Thus, meta labbeplot
plots the log risks on the scatterplot. The treatment-group log risk is on the y axis, and the control-group
log risk is on the x axis. The sizes of the plotted markers (circles) are proportional to the precision
of the trials. Large circles represent more precise, larger trials, whereas small circles represent less
precise, smaller trials.

The solid reference line (y = x) represents the “no-effect” line. That is, the log risks (or risks) in
the two groups for the trials on the line are either the same or very similar. There are two trials that
are on the line in our example: one is a large trial, the other one is a small trial. The log risks for
these trials are very similar in the two groups, and the corresponding log risk-ratios are close to zero.

If a circle is above the reference line, the risk in the treatment group is higher than the risk in
the control group for that study. Conversely, if a circle is below the line, the risk in the treatment
group is lower than the risk in the control group. In our example, one trial is above the reference line,
suggesting that the risk in the treatment group is higher, but this is a very small trial. The remaining
trials are below the line, suggesting that the risk is lower in the treatment group. However, the trials
demonstrating large differences between the groups are also smaller (less precise) trials.

The dashed line is the overall effect-size line. The intercept of this line equals the estimate of
the overall effect size, which is the overall log risk-ratio in our example. The actual estimate of the
overall effect size is not important in the L’ Abbé plot. What is important is whether the circles follow
the effect-size line or deviate from it. When the circles deviate from the effect-size line greatly, this
may be a sign of study heterogeneity. In our example, there are at least five trials that are far away
from the effect-size line. We should suspect the presence of heterogeneity in these data. In fact, we
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did establish in example 1 of [META] meta regress that there is at least one moderator, the distance
from the equator, that explains some of the variation in the trial effect sizes.

N

> Example 2: Custom legend

Continuing with example 1, let’s demonstrate how we can customize the look of the legend
produced by default.

. meta labbeplot, legend(symxsize(*0.6) position(10) ring(0)
> region(lcolor(black)))

Effect-size label: Log risk-ratio
Effect size: _meta_es
Std. err.: _meta_se
Summary data: npost nnegt nposc nnegc
Model: Common effect
Method: Inverse-variance

L'Abbé plot
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Log risk (control group)
Weights: Inverse-variance

We customized the legend with a few suboptions specified in 1legend (). We used symxsize (*0.6)
to set the width of the key symbols to 60% of their default width. We used position(10) to
position the label at 10 o’clock and ring(0) to place the legend inside the plot region. We used

region(lcolor(black)) to add a black border around the legend region.
d
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> Example 3: Labeling trials

Continuing with example 1, let’s say it would be nice to mark the circles with the trial labels. We
use the addplot () option and follow similar steps to those described in example 3 of [META] estat
bubbleplot, except here we generate new variables for the added scatterplot.

. generate double lnriskt = ln(npost/(npost + nnegt))
. generate double lnriskc = ln(nposc/(nposc + nnegc))
. local opts msymbol(none) mlabel(trial) mlabpos(6) mlabcolor(stblue)
. meta labbeplot, addplot(scatter lnriskt lnriskc, ‘opts’ legend(order(1l 2 3)))
Effect-size label: Log risk-ratio
Effect size: _meta_es
Std. err.: _meta_se
Summary data: npost nnegt nposc nnegc
Model: Common effect
Method: Inverse-variance

L'Abbé plot

Studies
—— No effect
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Log risk (treatment group)
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Log risk (control group)
Weights: Inverse-variance

First, we generated two new variables, lnriskt and lnriskc, that contain the log risks in the
treatment and control groups. Then, we used addplot () to overlay the same scatterplot as produced
by meta labbeplot but without the markers and with marker labels. We specified other options
to improve the look of the graph; see example 3 of [META] estat bubbleplot for details. Also see

example 4 of [META] estat bubbleplot for how to further improve the positioning of the labels.
d
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Stored results

meta labbeplot stores the following in r():

Scalars
r(theta) estimated overall effect size
r(xmin) minimum value in the control group (z axis)
r(xmax) maximum value in the control group
r(ymin) minimum value in the treatment group (y axis)
r(ymax) maximum value in the treatment group
Macros
r(model) meta-analysis model
r (method) meta-analysis estimation method

Methods and formulas

Let aj, bj, c;, and d; define cell counts of a 2 x 2 table for study j; see Effect sizes for two-group
comparison of binary outcomes in [META] meta esize. Let y; and x; be the summary measures such
as log odds for study 7 in the treatment and control groups. The L’ Abbé plot produces a scatterplot
of (y;,x;) with the sizes of markers (areas of circles) proportional to the weights w; = 1/7 or, if

reweighted is specified with a random-effects model, w; = 1/(5% +72).

When the effect size is risk difference, y; and x; are the risks given by
R
aj +b;

G

and Z'] = m
J J

Yy; =

When the effect size is log risk-ratio, y; and x; are the log risks given by

a; ci
= log | —L— and =z, = log | —L—
v g<aj+bj) ’ g<0j+dj>

When the effect size is log odds-ratio, y; and x; are the log odds given by

y; = log <aj> and z,; = log (Cj>
J bj J dj

The plotted reference line is the diagonal line. Studies that have the same values of the summary
outcome measures in the two groups will have y; = x; and thus will fall on the reference line.

The effect-size (dashed) line is a 45-degree line with an intercept equal to the estimated overall
effect size. By default, the overall effect-size is estimated assuming a common-effect model with the
inverse-variance method, but this can be changed by specifying one of random(), common(), or
fixed().
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Also see
[META] meta data — Declare meta-analysis data
[META] meta esize — Compute effect sizes and declare meta-analysis data
[META] meta forestplot — Forest plots
[META] meta galbraithplot — Galbraith plots
[META] meta regress — Meta-analysis regression
[META] meta — Introduction to meta
[META] Glossary

[META] Intro — Introduction to meta-analysis
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Description

meta regress performs meta-analysis regression, or meta-regression, which is a linear regression
of the study effect sizes on study-level covariates (moderators). Meta-regression investigates whether
between-study heterogeneity can be explained by one or more moderators. You can think of meta-
regression as a standard meta-analysis that incorporates moderators into the model. meta regress
performs both random-effects and fixed-effects meta-regression.

Quick start
Perform meta-regression of the effect size, _meta_es, on covariate (moderator) x1
meta regress x1
Same as above, but assume a DerSimonian—Laird random-effects method instead of the method

declared by either meta set or meta esize
meta regress x1, random(dlaird)

Add a factor variable a, and request a Knapp—Hartung adjustment to the standard errors of coefficients
meta regress x1 i.a, random(dlaird) se(khartung)

Perform a sensitivity analysis by assuming a fixed value of 0.2 for the between-study variance 72

meta regress x1 i.a, tau2(0.2)

Menu

Statistics > Meta-analysis

222
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Syntax

Meta-regression using meta-analysis model as declared with meta set or meta esize

meta regress moderators [lf] [zn] [, reopts opzions]

Random-effects meta-regression

meta regress moderators [{f'] [m] , random[ (remethod)] [reopts options]

Fixed-effects meta-regression

meta regress moderators [lf] [in], fixed [multiplicative options}

Constant-only meta-regression

meta regress _cons [lf] [m] [, m()del()pts]

reopts Description
tau2(#) sensitivity meta-analysis using a fixed value of between-study variance 72
i2(#) sensitivity meta-analysis using a fixed value of heterogeneity statistic 12
se (sead)) adjust standard errors of the coefficients
options Description
Model
noconstant suppress constant term
tdistribution report ¢ tests instead of z tests for the coefficients
Reporting
level (#) set confidence level; default is as declared for meta-analysis
noheader suppress output header

[ no } metashow
display_options

Maximization
maximize_options

coeflegend

display or suppress meta settings in the output

control columns and column formats, row spacing, line width,
display of omitted variables and base and empty cells, and
factor-variable labeling

control the maximization process; seldom used

display legend instead of statistics

moderators may contain factor variables; see [U] 11.4.3 Factor variables.

collect is allowed; see [U] 11.1.10 Prefix commands.

coeflegend does not appear in the dialog box.

See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.
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remethod Description

reml restricted maximum likelihood; the default
mle maximum likelihood

ebayes empirical Bayes

dlaird DerSimonian—Laird

sjonkman Sidik—Jonkman

hedges Hedges

hschmidt Hunter—Schmidt

modelopts is any option except noconstant.

Options

Model

noconstant; see [R] Estimation options. This option is not allowed with constant-only meta-
regression.

Options random() and fixed, when specified with meta regress, temporarily override the global
model declared by meta set or meta esize during the computation. Options random(), common,
and fixed may not be combined. If these options are omitted, the declared meta-analysis model is
assumed; see Declaring a meta-analysis model in [META] meta data. Also see Meta-analysis models
in [META] Intro.

random and random (remethod) specify that a random-effects model be assumed for meta-regression;
see Random-effects model in [META] Intro.

remethod specifies the type of estimator for the between-study variance 72. remethod is one of

reml, mle, ebayes, dlaird, sjonkman, hedges, or hschmidt. random is a synonym for
random(reml). See Options in [META] meta esize for more information.

fixed specifies that a fixed-effects model be assumed for meta-regression; see Fixed-effects model
in [META] Intro. It uses the inverse-variance estimation method; see Meta-analysis estimation
methods in [META]| Intro.

reopts are tau2(#), i2(#), and se(khartung[ s truncated}). These options are used with
random-effects meta-regression.

tau2(#) specifies the value of the between-study variance parameter, 72, to use for the random-
effects meta-regression. This option is useful for exploring the sensitivity of the results to
different levels of between-study heterogeneity. Only one of tau2() or i2() may be specified.

12(#) specifies the value of the residual heterogeneity statistic 12, (as a percentage) to use for
the random-effects meta-regression. This option is useful for exploring the sensitivity of the
results to different levels of between-study heterogeneity. Only one of i2() or tau2() may
be specified.



meta regress — Meta-analysis regression 225

se(sead)) specifies that the adjustment seadj be applied to the standard errors of the coefficients.
Additionally, the tests of significance of the coefficients are based on a Student’s ¢ distribution
instead of the normal distribution.

seadj is @artung[ , truncated]. Adjustment khartung specifies that the Knapp—Hartung
adjustment (Hartung and Knapp 2001a, 2001b; Knapp and Hartung 2003), also known as the
Sidik—Jonkman adjustment (Sidik and Jonkman 2002), be applied to the standard errors of
the coefficients. hknapp and sjonkman are synonyms for khartung. truncated specifies
that the truncated Knapp—Hartung adjustment (Knapp and Hartung 2003), also known as the
modified Knapp—Hartung adjustment, be used.

multiplicative performs a fixed-effects meta-regression that accounts for residual heterogeneity by
including a multiplicative variance parameter ¢. ¢ is referred to as an “(over)dispersion parameter”.
See Introduction for details.

tdistribution reports ¢ tests instead of z tests for the coefficients. This option is useful, for
instance, when meta regress is used to conduct a regression-based test for funnel-plot asymmetry.
Traditionally, the test statistic from this test is compared with critical values from a Student’s
t distribution instead of the default normal distribution. This option may not be combined with
option se().

Reporting

level(#) specifies the confidence level, as a percentage, for confidence intervals. The default is
as declared for the meta-analysis session; see Declaring a confidence level for meta-analysis in
[META] meta data. Also see option level() in [META] meta set.

noheader suppresses the output header, either at estimation or upon replay.

metashow and nometashow display or suppress the meta setting information. By default, this
information is displayed at the top of the output. You can also specify nometashow with meta
update to suppress the meta setting output for the entire meta-analysis session.

display_options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat (% fint), pformat (% fint),
sformat (% fmt), and nolstretch; see [R] Estimation options.

Maximization

maximize_options: iterate (#), tolerance(#), nrtolerance (#), nonrtolerance (see [R] Max-
imize), from(#), and showtrace. These options control the iterative estimation of the between-
study variance parameter, 72, with random-effects methods reml, mle, and ebayes. These options
are seldom used.

from(#) specifies the initial value for 72 during estimation. By default, the initial value for 72
is the noniterative Hedges estimator.

showtrace displays the iteration log that contains the estimated parameter 72, its relative difference
with the value from the previous iteration, and the scaled gradient.
The following option is available with meta regress but is not shown in the dialog box:

coeflegend; see [R] Estimation options.
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Remarks and examples

Remarks are presented under the following headings:

Introduction
Examples of using meta regress

Introduction

Meta-regression is a regression performed in the context of meta-analysis. It is used to study
the relationship between study effect sizes and covariates. Meta-regression is analogous to standard
regression used when individual data are available, but in meta-regression, the observations are the
studies, the outcome of interest is the effect size, and the covariates are recorded at the study level. The
study-level covariates in meta-regression are known as moderators. Several examples of moderators
include study location, study test environment, drug administration method. For a general overview
and discussions about meta-regression, see Berlin and Antman (1992), Berkey et al. (1995), and
Thompson and Higgins (2002).

The goal of meta-regression is to explore and explain the between-study heterogeneity as a
function of moderators. Two types of regression models, fixed-effects (FE) and random-effects (RE),
are available. An FE meta-regression assumes that all heterogeneity between study effect sizes can be
accounted for by the included moderators. An RE meta-regression accounts for potential additional
variability unexplained by the included moderators, also known as residual heterogeneity. Because
a common-effect meta-analysis model implies no study heterogeneity, it is not applicable to meta-
regression, except in a less interesting case of a constant-only model, which is equivalent to the
standard common-effect meta-analysis; see [META] meta summarize.

meta regress fits meta-regression. Use the random() option to fit an RE meta-regression and
the fixed option to fit an FE meta-regression. Also see Default meta-analysis model and method in
[META] meta data to learn about the default regression model used by meta regress.

For the jth study, let 6; denote the effect size, o2 its variance, and x; be a 1 X p vector of
moderators with the corresponding unknown p X 1 coefficient vector 3.

An FE meta-regression (Greenland 1987) is given by

2~

é\j = X3 + ¢;, weighted by w; = —, where ¢; ~ N (0,3?)

Q

Residual heterogeneity may be incorporated into an FE meta-regression via a multiplicative factor, ¢,
applied to each of the variances &\JQ-. This leads to a multiplicative meta-regression or FE meta-regression
with multiplicative dispersion parameter (Thompson and Sharp 1999)

~ ) 1 ~
0; =x;8+ ef, weighted by w; = =3 where e? ~ N (0,0‘?¢))
J

This regression model may be specified by the combination of fixed and multiplicative options.

Another method of incorporating residual heterogeneity is to include an additive between-study
variance component, 72, that leads to an RE meta-regression (Berkey et al. 1995), also known as a
mixed model in the meta-analysis literature:

~

0; = x;B8+ €; = x;8+ u; + ¢;, weighted by w} = where €; ~ N (0,57 + 77)

o7+ 7%

As we mentioned earlier, an RE meta-regression assumes that the moderators explain only part of the
heterogeneity, and a random-effects term u; ~ N (0, 72) is used to account for the remainder.
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Harbord and Higgins (2016) point out that some authors (Thompson and Sharp 1999; Higgins
and Thompson 2004) argue that an FE meta-regression should not be used because, in practice, the
included moderators rarely capture all the between-study heterogeneity and that the failure of the FE
regression to capture the extra between-study heterogeneity can lead to excessive type I errors. Also,
the results from an FE meta-regression, including its multiplicative version, may not be generalized
to populations from which the observed studies are a sample (Konstantopoulos and Hedges 2009). If
you do not specify a meta-analysis model with meta set or meta esize during declaration, an RE
meta-regression will be assumed by meta regress.

Meta-regression can also be considered an extension of subgroup analysis (see meta summarize,
subgroup() in [META] meta summarize) to include continuous moderators in addition to the
categorical ones. In particular, an FE meta-regression with the subgroup variable specified as a factor
variable (see [U] 11.4.3 Factor variables) is equivalent to the FE subgroup analysis on that variable.

It is recommended that you have at least 10 studies per moderator to perform meta-regression
(Borenstein et al. 2009, chap. 20). Otherwise, you may not be able to estimate the effects of moderators
reliably. For more recommendations regarding meta-regression, see Schmidt and Hunter (2015, chap. 9),
Deeks, Macaskill, and Irwig (2005), Harbord and Higgins (2016), Sharp (2016), and Thompson and
Higgins (2002).

Examples of using meta regress

Consider a dataset from Colditz et al. (1994) of clinical trials that explore the efficacy of a Bacillus
Calmette-Guérin (BCG) vaccine in the prevention of tuberculosis (TB). This dataset was introduced in
Efficacy of BCG vaccine against tuberculosis (bcg.dta) of [META] meta. In this section, we use its
declared version and focus on the demonstration of various options of meta regress and explanation
of its output.

. use https://wuw.stata-press.com/data/r18/bcgset
(Efficacy of BCG vaccine against tuberculosis; set with -meta esize-)
. meta query, short
-> meta esize npost - nnegc, esize(lnrratio) studylabel(studylbl)
Effect-size label: Log risk-ratio
Effect-size type: lnrratio
Effect size: _meta_es
Std. err.: _meta_se
Model: Random effects
Method: REML

meta query, short reminds us about the main settings of the declaration step. Our data were
declared by using meta esize with variables npost, nnegt, nposc, and nnegc representing the
summary data from 2 X 2 tables, which record the numbers of positive and negative TB cases in the
treatment and control groups. The computed effect sizes are log risk-ratios; their values and standard
errors are stored in the respective system variables _meta_es and _meta_se. The studylbl variable
supplies the study labels to be used in the output. The declared meta-analysis model is the default
random-effects model with the REML estimation method.

Examples are presented under the following headings:

Example 1: Random-effects meta-regression

Example 2: Sidik—Jonkman random-effects method

Example 3: Truncated Knapp—Hartung standard-error adjustment
Example 4: Sensitivity meta-analysis

Example 5: Fixed-effects meta-regression

Example 6: Multiplicative meta-regression

Example 7: Constant-only model
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> Example 1: Random-effects meta-regression

In example 9 of [META] meta, following Berkey et al. (1995), we fit a meta-regression with a
centered absolute latitude, latitude_c, as the moderator to address heterogeneity. Let’s refit this
model here and focus on the specification and output from meta regress.

. meta regress latitude_c

Effect-size label: Log risk-ratio
Effect size: _meta_es

Std. err.: _meta_se

Random-effects meta-regression Number of obs = 13

Method: REML Residual heterogeneity:
tau2 = .07635
12 (h) = 68.39
H2 = 3.16
R-squared (%) = 75.63
Wald chi2(1) = 16.36
Prob > chi2 = 0.0001
_meta_es Coefficient Std. err. z P>|z| [95% conf. intervall
latitude_c -.0291017 .0071953 -4.04 0.000 -.0432043 -.0149991
_cons -.7223204 .1076535 -6.71  0.000 -.9333174 -.5113234

Test of residual homogeneity: Q_res = chi2(11) = 30.73 Prob > Q_res = 0.0012

Unlike with many Stata regression commands, we do not specify the dependent variable with meta
regress. The command includes it automatically from the declared meta settings. meta regress
provides a short summary of the settings, which you can suppress with the nometashow option.
System variable _meta_es contains the effect sizes and is thus used as the dependent variable.
System variable _meta_se contains effect-size standard errors; it is used to construct the weights for
the regression.

The header includes the information about the meta-analysis model and reports various summaries
such as heterogeneity statistics and the model test. For example, the results are based on 13 studies.
The reported 12 statistic is 68%, which still suggests moderate heterogeneity, using the categorization
of Higgins et al. (2003), even after including latitude_c as the moderator. In other words, 68%
of the variability in the residuals is still attributed to the between-study variation, whereas only
32% is attributed to the within-study variation. The adjusted R? statistic can be used to assess the
proportion of between-study variance explained by the covariates; see (6) in Methods and formulas
for its definition used in the meta-analysis literature. Here roughly 76% of the between-study variance
is explained by the covariate latitude_c.

The output header also displays a model test that all coefficients other than the intercept are equal
to zero based on the x? distribution with p — 1 degrees of freedom. In our example, the x? test
statistic is 16.36 with a p-value of 0.0001. We have only one moderator, so the results of the model
test in our example are equivalent to the z test (x? value equals squared z value) of the coefficient
of latitude_c reported in the output table.

The regression coefficient for latitude_c is —0.029, which means that every one degree of latitude
corresponds to a decrease of 0.0291 units in log risk-ratio. The intercept, Sy, is —0.722, which means
that the overall risk ratio at the mean latitude (latitude_c = 0 corresponds to latitude ~ 33.46)
is exp(—0.722) = 0.46. Both of these coefficients are statistically significantly different from zero
based on the reported z tests.
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Finally, a test of residual homogeneity is reported at the bottom of the output. The test statistic
Qres is 30.73 with a p-value of 0.0012, which suggests the presence of heterogeneity among the
residuals.

4

Q Technical note

Heterogeneity statistics /2, and HZ2_, reported under Residual heterogeneity: in the header,
are extensions of the corresponding statistics /2 and H? from standard meta-analysis to meta-
regression (Higgins and Thompson 2002). They measure the remaining between-study heterogeneity
among the residuals after adjusting for the variability due to moderators. Similarly, the test of residual
homogeneity based on the ()5 statistic is the extension of the standard meta-analysis homogeneity
test based on the Cochran’s () statistic to meta-regression. See Residual heterogeneity measures and
Residual homogeneity test in Methods and formulas.

a

> Example 2: Sidik—Jonkman random-effects method

Continuing with example 1, let’s demonstrate the use of a different RE method, for instance, the
Sidik—Jonkman method, instead of the default REML method.

. meta regress latitude_c, random(sjonkman)

Effect-size label: Log risk-ratio
Effect size: _meta_es

Std. err.: _meta_se

Random-effects meta-regression Number of obs = 13

Method: Sidik—-Jonkman Residual heterogeneity:
tau2 = .2318
12 (%) = 86.79
H2 = 7.57
R-squared (%) = 32.90
Wald chi2(1) = 6.50
Prob > chi2 = 0.0108
_meta_es | Coefficient Std. err. z P>|z| [95% conf. intervall
latitude_c -.0280714 .0110142 -2.55 0.011 -.0496589  -.0064838
_cons -.7410395 .1602117 -4.63 0.000 -1.055049  -.4270304

Test of residual homogeneity: Q_res = chi2(11) = 30.73 Prob > Q_res = 0.0012

The estimate of the regression coefficient for latitude_c is —0.028 and is similar to the REML
estimate of —0.029, but the standard errors are quite different: 0.011 versus 0.007. Recall that REML
assumes that the error distribution is normal, whereas the Sidik—Jonkman estimator does not. Thus,
its standard error estimates are likely to be larger than those from REML. The estimates of the
between-study variance, 72, are also very different: 0.23 compared with the REML estimate of 0.08.

4
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> Example 3: Truncated Knapp—Hartung standard-error adjustment

Continuing with example 1, let’s use an alternative standard-error computation sometimes used in
practice—the truncated Knapp—Hartung method.

. meta regress latitude_c, se(khartung, truncated)

Effect-size label: Log risk-ratio
Effect size: _meta_es

Std. err.: _meta_se

Random-effects meta-regression Number of obs = 13

Method: REML Residual heterogeneity:
SE adjustment: Truncated Knapp-Hartung tau2 = .07635
12 (6) = 68.39
H2 = 3.16
R-squared (%) = 75.63
Model F(1,11) = 12.59
Prob > F = 0.0046
_meta_es | Coefficient Std. err. t P>t [95% conf. interval]
latitude_c -.0291017 .0082014 -3.55  0.005 -.0471529  -.0110505
_cons -.7223204 .1227061 -5.89 0.000 -.9923946  -.4522462

Test of residual homogeneity: Q_res = chi2(11) = 30.73 Prob > Q_res = 0.0012

The reported standard errors are larger than those from example 1. This is expected because the Knapp—
Hartung adjustment incorporates the uncertainty in estimating 72 in the standard error computation.
Also, the inferences for the tests of coefficients and the model test are now based on the Student’s ¢
and F’ distributions, respectively, instead of the default normal and X2 distributions.

4

»> Example 4: Sensitivity meta-analysis

We can perform sensitivity analysis to explore the impact of the various levels of heterogeneity
on the regression results. Continuing with example 1, let’s fit a meta-regression assuming that the

residual heterogeneity statistic 12, equals 90%.
. meta regress latitude_c, 12(90)

Effect-size label: Log risk-ratio
Effect size: _meta_es

Std. err.: _meta_se

Random-effects meta-regression Number of obs = 13

Method: User-specified I2 Residual heterogeneity:
tau2 = .3176
12 (W = 90.00
H2 = 10.00
Wald chi2(1) = 4.89
Prob > chi2 = 0.0269
_meta_es | Coefficient Std. err. z P>|z| [95% conf. intervall
latitude_c -.0277589 .0125474 -2.21  0.027 -.0523514  -.0031664
_cons -.7443082 .1812664 -4.11  0.000 -1.099584  -.3890326

Test of residual homogeneity: Q_res = chi2(11) = 30.73 Prob > Q_res = 0.0012

The estimate of the coefficient for latitude_c is now —0.028 with a standard error estimate of
0.01.
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Let’s now fit a meta-regression assuming the between-study variance of 0.01.

. meta regress latitude_c, tau2(0.01)

Effect-size label: Log risk-ratio
Effect size: _meta_es

Std. err.: _meta_se

Random-effects meta-regression Number of obs = 13

Method: User-specified tau2 Residual heterogeneity:
tau2 = .01
12 () = 22.08
H2 = 1.28
Wald chi2(1) = 57.62
Prob > chi2 = 0.0000
_meta_es | Coefficient Std. err. z P>|z| [95% conf. intervall
latitude_c -.0295601 .0038942 -7.59 0.000 -.0371926  -.0219277
_cons -.6767043 .0617892 -10.95  0.000 -.7978089  -.5555998

Test of residual homogeneity: Q_res = chi2(11) = 30.73

Prob > Q_res = 0.0012

The specified value of 72 corresponds to the I2_ value of 22.08%. The coefficient estimate is now

res

—0.03 with a standard error of 0.004.

In both sensitivity analyses, latitude_c remained a statistically significant moderator for the log

risk-ratios.

> Example 5: Fixed-effects meta-regression

4

Instead of an RE meta-regression as in example 1, we can use the fixed option to fit an FE
meta-regression. The use of an FE meta-regression is usually discouraged in the meta-analysis literature
because it assumes that all between-study heterogeneity is accounted for by the specified moderators
(Harbord and Higgins 2016; Thompson and Sharp 1999; Higgins and Thompson 2004). This is often
an unrealistic assumption in meta-analysis. We fit this model in our example for the purpose of

demonstration.

. meta regress latitude_c, fixed

Effect-size label: Log risk-ratio
Effect size: _meta_es

Std. err.: _meta_se
Fixed-effects meta-regression Number of obs = 13
Method: Inverse-variance Wald chi2(1) = 121.50
Prob > chi2 = 0.0000
_meta_es Coefficient Std. err. z P>|z]| [95% conf. intervall
latitude_c -.0292369 .0026524 -11.02 0.000 -.0344356 -.0240383
_cons -.6347482 .0445446 -14.25 0.000 -.7220541 -.5474423

Because the FE regression assumes no additional residual heterogeneity, the residual heterogeneity

statistics and the residual homogeneity test are not reported with meta regress, fixed.

The coefficient estimates are similar to those from example 1, but standard errors from the FE
regression are smaller. This is because the FE regression does not account for the residual heterogeneity

that is not explained by the included moderators.
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Considering the presence of residual heterogeneity in these data, we should go back to our RE
analysis or explore the multiplicative meta-regression, which we demonstrate in example 6.

N

> Example 6: Multiplicative meta-regression

An FE meta-regression in example 5 does not account for residual heterogeneity. An extension
of this regression model that does, known as a multiplicative meta-regression (see Introduction and
Methods and formulas), has been considered in the meta-analysis literature. An RE meta-regression is
the preferred analysis these days, but we provide the multiplicative meta-regression for completeness.

Continuing with example 5, we add the multiplicative option to fit an FE meta-regression with
a multiplicative dispersion parameter ¢.

. meta regress latitude_c, fixed multiplicative

Effect-size label: Log risk-ratio
Effect size: _meta_es

Std. err.: _meta_se
Fixed-effects meta-regression Number of obs = 13
Error: Multiplicative Dispersion phi = 2.79
Method: Inverse-variance Wald chi2(1) = 43.49
Prob > chi2 = 0.0000
_meta_es | Coefficient Std. err. z P>|z| [95% conf. intervall
latitude_c -.0292369 .0044335 -6.59  0.000 -.0379265 -.0205474
_cons -.6347482 .0744564 -8.563 0.000 -.7806801  -.4888163

Test of residual homogeneity: Q_res = chi2(11) = 30.73 Prob > Q_res = 0.0012

The estimate of the dispersion parameter, reported in the header as Dispersion phi, is 2.79. It is
greater than 1, which suggests the presence of residual heterogeneity in these data. The coefficient
estimates are the same as those in example 5, but the standard errors are about two times larger.

N

> Example 7: Constant-only model

The primary use of meta regress is to fit meta-regression models containing moderators. You
can also fit a constant-only model (without moderators), although this is less common in the context
of meta-regression.

To fit a constant-only model with many regression estimation commands, you simply omit the
covariates in the command specification. This would not work with meta regress because, without
the dependent-variable specification, we would have to type

. meta regress
which means replaying previous estimation results consistently across Stata. The above will either

issue an error that previous estimation results are not found or redisplay the results from the previous
meta regress specification.
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Instead, to fit a constant-only model with meta regress, you specify the designator _cons
following the command name.

. meta regress _cons

Effect-size label: Log risk-ratio
Effect size: _meta_es

Std. err.: _meta_se
Random-effects meta-regression Number of obs = 13
Method: REML Residual heterogeneity:
tau2 = .3132
12 (W = 92.22
H2 = 12.86
Wald chi2(0)
Prob > chi2 =
_meta_es | Coefficient Std. err. z P>|z| [95% conf. intervall
_cons -.7145323 .1797815 -3.97 0.000 -1.066898 -.362167

Test of residual homogeneity: Q_res = chi2(12) = 152.23 Prob > Q_res = 0.0000

Note that the estimated value of 72 is now 0.313, whereas in example 1 it was 0.076. That is,
the inclusion of covariate latitude_c in example 1 reduced 72 from 0.313 to 0.076 for a relative
reduction of (0.313 — 0.076)/0.313 ~ 76%.

The reason a constant-only meta-regression is not as common is because it produces the same
results as a standard meta-analysis.

. meta summarize, nostudies

Effect-size label: Log risk-ratio
Effect size: _meta_es

Std. err.: _meta_se
Study label: studylbl
Meta-analysis summary Number of studies = 13
Random-effects model Heterogeneity:
Method: REML tau2 = 0.3132
2 (%) = 92.22
H2 = 12.86
theta: Overall Log risk-ratio
Estimate Std. err. z P>|z| [95% conf. intervall
theta -.7145323 .1797815 -3.97 0.000 -1.066898 -.362167
Test of homogeneity: Q = chi2(12) = 152.23 Prob > Q = 0.0000

See [META] meta summarize for details.
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Stored results

meta regress stores the following in e ():

Scalars

e(N) number of observations (studies)

e(df_m) model degrees of freedom

e(df_r) residual degrees of freedom

e(chi2) model x? Wald test statistic

e(F) model F statistic

e(p) p-value for model test

e(phi) dispersion parameter

e(tau2) between-study variance

e(I2_res) I%_ heterogeneity statistic

e(H2_res) HZ,, heterogeneity statistic

e(R2) R? heterogeneity measure

e(Q_res) Cochran’s Q residual homogeneity test statistic

e(df_Q_res) degrees of freedom for residual homogeneity test

e(p—Q—res) p-value for residual homogeneity test

e(seadj) standard error adjustment

e(converged) 1 if converged, O otherwise (with iterative random-effects methods)
Macros

e(cmd) meta regress

e(cmdline) command as typed

e(depvar) name of dependent variable, _meta_es

e(indepvars) names of independent variables (moderators)

e(title) title in estimation output

e(model) meta-analysis model

e (method) meta-analysis estimation method

e(seadjtype) type of standard error adjustment

e(properties) bV

e(estat_cmd) program used to implement estat

e(predict) program used to implement predict

e(marginsok) predictions allowed by margins

e(marginsnotok) predictions disallowed by margins

e(marginsdefault) default predict () specification for margins

e(asbalanced) factor variables fvset as asbalanced

e(asobserved) factor variables fvset as asobserved
Matrices

e(b) coefficient vector

e(V) variance—covariance matrix of the estimators
Functions

e(sample) marks estimation sample

In addition to the above, the following is stored in r():

Matrices
r(table) matrix containing the coefficients with their standard errors, test statistics, p-values,
and confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when
any r-class command is run after the estimation command.

meta regress also creates a system variable, _meta_regweight, that contains meta-regression
weights.
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Methods and formulas

Methods and formulas are presented under the following headings:
Fixed-effects meta-regression
Random-effects meta-regression
Iterative methods for computing 72

Noniterative methods for computing 72
Knapp-Hartung standard-error adjustment
Residual homogeneity test
Residual heterogeneity measures

Fixed-effects meta-regression

For an overview of estimation methods used by meta-regression, see Berkey et al. (1995), Sidik
and Jonkman (2005), and Viechtbauer et al. (2015).

Consider an FE meta-analysis, where §; ~ N (6;, 832»), 0; is the true effect size for study j, 0; is

the estimated effect size, and EJQ- is the variance of Gj. In an FE meta-regression (Greenland 1987),
the study-specific mean, 6, is expressed as

05 = Bo + Brz1 + -+ Bp12p—1,; = X;8

where x; = (1,215, ...,2p—1,;) is a 1 X p vector of categorical and continuous moderators (covariates)
and 3 is a p X 1 vector of regression coefficients to be estimated.
Defining K x p matrix X = (x],X5,...,X%) and 0 = (61,02, ...,0k)". Let w; = 1/3? be the

weight associated with study j in an FE meta-analysis. The vector of estimated regression coefficients
is

B=(X'WX) 'X'Wo
where W = diag(wq, wa, ..., wk).

The above FE regression does not account for residual heterogeneity. This can lead to coefficient
standard errors that are too small. Thompson and Sharp (1999) incorporated residual heterogeneity
into the model by including a multiplicative variance parameter:

0; ~ N (x;8,¢0%)
[ [ )’

For a multiplicative FE meta-regression, W in the above is replaced with W¢ = diag(wf, Wy, .. Wp
where the weights are defined as wf =1/ (¢8]2). ¢ is estimated as the mean squared error from the
weighted linear regression with weights proportional to 1/ 3?.

Next, we present another method of incorporating residual heterogeneity by including an additive
between-study variance parameter.
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Random-effects meta-regression
An RE meta-regression (Berkey et al. 1995) model may be expressed as

~

Hj:xjﬁ+uj+ej UjNN(07T2) EJNN(O,E'?)

All algorithms for RE meta-regression first estimate the between-study variance, 72. The regression
coefficients are then estimated via weighted least squares,

B = (X'W'X) ' X'W*9
where W* = diag(w}, w3, ..., wj) and w}i = 1/(G% +72).

All the estimators of 72 can be expressed in terms of the matrix
P=A-AX(X'AX)"'X'A (1)

where A is a p X p diagonal weight matrix whose elements depend on the type of estimator (Viechtbauer
et al. 2015).

The formulas in the following sections are based on Viechtbauer et al. (2015).

Iterative methods for computing 72

The three estimators described below do not have a closed-form solution, and an iterative algorithm
is needed to obtain an estimate of 72. The Fisher scoring algorithm, described below, is used to
estimate 72.

All three estimators start with an initial estimate of 72 based on the Hedges estimator, ?3 = ?I%E,
but you can specify your own initial estimate in the from() option. The estimate is then updated at
each iteration via the formula,

~2 _ 2
Thew = Tcurrent + 5

where ¢ is a function of 72

rent and its functional form depends on the estimation method.

7’:2 ~2

The iteration terminates when reldif (T, oy, Teurrent) 1S l€ss than tolerance() and the scaled

gradient, computed based on the log-likelihood functions provided below, is less than nrtolerance();
see [R] Maximize.

The MLE of 72 is the value that maximizes the log-likelihood function (Hardy and Thompson 1996)
1 PPN
In Ly, (7‘2) =3 {Kln(?ﬂ') + In ‘721 + W_1| + HIPB}
The MLE formula for ¢ is

A 0 PPO — tr(W*)
MEE = T (W W)

The MLE estimator of 72 does not incorporate the uncertainty about the unknown regression
coefficients 3 and thus can be negatively biased.
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The REML estimate of 72 is the value that maximizes the restricted log-likelihood function,

K

1 1
In LREML (7'2) = In LML (TZ) — 5 In Z mx;x]‘ +
J

gln

5 In(27)

=1
and the REML formula for ¢ is L
0 PPO — tr(P)

OREML = w(PP)

The empirical Bayes estimator for 72 was introduced by Morris (1983) and was first used in the
meta-analytic context by Berkey et al. (1995). This estimator is also known as the Paule—Mandel
estimator (Paule and Mandel 1982). The empirical Bayes formula for J is

K/(K —p)0 PO — K
tr(W*)

0B =
For the three above estimators, A = W™ in the definition of the P matrix from (1).

Noniterative methods for computing 72

This section describes noniterative methods, which have closed-form expressions.

The method of moments estimator of 72 (DuMouchel and Harris [1983, eq. 3.12]; also see
Raudenbush [2009, eq. 16.43]), which can be viewed as an extension of the DerSimonian—Laird
estimator from the RE meta-analysis to meta-regression, is

o 9P — (K —p)
DL = tr(—P)

Qres — (K - p) _ Qres — (K - p) (2)
(W) — tr {WX (X'WX)™! X/W} S w; (1 - hy)

where P is defined in (1) with A = W, h; is the jth diagonal element of the “hat” matrix
X(X'WX)"IX'W, and Qs is defined in (3).

For a constant-only model, when p = 1, (2) reduces to the DerSimonian—Laird estimator from
Noniterative methods in [META| meta summarize.

Hedges (1983) used OLS to provide a method of moments estimator of 72 for the RE meta-
analysis. In the context of meta-regression, the extension of the Hedges’s (HE) estimator introduced
by Raudenbush (2009, eq. 16.41) is

o OPO—u(PW
THE = K —p

~ ~ 2 .
Z;‘il (9] - leﬁols) - ZJK:I 0-]2' (1 - h(;ls)
K—p
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where P is defined in (1) with A = I, B,,, = (X’X)~1X#, and h;j-ls is the jth diagonal element
of the OLS hat matrix X (X'X)~1X".

Sidik and Jonkman (20035) proposed the following estimator. Consider an initial estimate of 72,

~2 _ ZfKZl (gj _5)2

To =

K =
gz Zj:l 9J
K K

Then, the estimator is defined as

2
SR K 5 P
., 0Ps 2= w§? (93' - Xjﬁskl)

T = =
SJ Kﬁp Kﬁp

where w}? = 73 /(6% 4+ 73) is a diagonal element of A from (1), Bgy = (X'WSTX)~1X'WS7g,

J
and W7 is a K x K diagonal matrix with elements w]S]

The Sidik—Jonkman estimator is not truncated because, theoretically, it should always produce a
nonnegative estimate. However, Viechtbauer et al. (2015) point out that, technically, a negative value
can be produced in practice in an unlikely case of all Oj’s being identical.

Viechtbauer et al. (2015) provide the following extension for the estimator of 72, which was

originally introduced by Schmidt and Hunter (2015) in the context of RE meta-analysis, to meta-
regression

~ o~
s 0P — K _ Qres — K
HS (W) tr(W)
where P is defined in (1) with A = W.

Knapp-Hartung standard-error adjustment

By default, the inference about the regression coefficients and their confidence intervals from meta-
regression is based on a normal distribution. The test of the significance of all regression coefficients
is based on a x? distribution with p — 1 degrees of freedom.

Knapp and Hartung (2003) proposed an adjustment to the standard errors of the estimated regression
coefficients to account for the uncertainty in the estimation of 72. They showed that the corresponding
tests of individual regression coefficients and their confidence intervals are based on the Student’s ¢
distribution with K — p degrees of freedom and that the overall test of significance is based on an
F distribution with p — 1 numerator and K — p denominator.

The Knapp—Hartung adjustment first calculates the quadratic form,

PO
K—p

gKH =

where P is defined in (1) with A = W*. It then multiplies the regular expressions of the variances
of regression coefficients by gxpg or, in the case of the truncated Knapp—Hartung adjustment, by
max(1, gxn).
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Residual homogeneity test

Consider a test of residual homogeneity, which mathematically translates to Hy: 72 = 0 for
the random-effects meta-regression and to Hy: ¢ = 1 for the fixed-effects meta-regression with
multiplicative dispersion parameter ¢. This test is based on the residual weighted sum of squares,

QI‘GS ’

2

. 7 N2 s (0 %8

;= w; | 0; —x; ) = - 3

Q= uy (3,-x8) = 3 (45 ®
Jj=1 Jj=1

which is a generalization of the heterogeneity test statistic, ) (see Homogeneity test in [META] meta

summarize), to the context of meta-regression.

Under the null hypothesis of residual homogeneity, Qs follows a x? distribution with K — p
degrees of freedom (Seber and Lee 2003, sec. 2.4).

Residual heterogeneity measures

The 12, statistic represents the percentage of residual between-study variation relative to the total
variability. For an RE meta-regression, it is defined by Higgins and Thompson (2002) as

22
s T
where 52 = (K — p)/tr(P) and A = W is used to define P. In the meta-regression context, the
H? statistic is defined as

72 482
HrQes = T (5)

Adjusted R? (Harbord and Higgins 2016; Borenstein et al. 2009) measures the proportion of the
between-study variance that is explained by the moderators. It is defined as

~2  ~2
R? = % x 100% (6)

where ?62 is the between-study variance estimated from a constant-only model.
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Also see
[META] meta regress postestimation — Postestimation tools for meta regress
[META] meta data — Declare meta-analysis data
[META] meta forestplot — Forest plots
[META] meta galbraithplot — Galbraith plots
[META] meta labbeplot — L’Abbé plots
[META] meta summarize — Summarize meta-analysis data
[META] meta — Introduction to meta
[META] Glossary
[META] Intro — Introduction to meta-analysis

[U] 20 Estimation and postestimation commands



Title

meta regress postestimation — Postestimation tools for meta regress

Postestimation commands predict margins
Remarks and examples Methods and formulas References
Also see

Postestimation commands

The following postestimation command is of special interest after meta regress:

Command Description

estat bubbleplot bubble plots

The following standard postestimation commands are also available:

Command Description

contrast contrasts and ANOVA-style joint tests of estimates

estat summarize  summary statistics for the estimation sample

estat vce variance—covariance matrix of the estimators (VCE)

estimates cataloging estimation results

etable table of estimation results

lincom point estimates, standard errors, testing, and inference for linear combinations
of coefficients

margins marginal means, predictive margins, marginal effects, and average marginal
effects

marginsplot graph the results from margins (profile plots, interaction plots, etc.)

nlcom point estimates, standard errors, testing, and inference for nonlinear combina-
tions of coefficients

predict predictions and their SEs, leverage statistics, etc.

predictnl point estimates, standard errors, testing, and inference for generalized predic-
tions

pwcompare pairwise comparisons of estimates

test Wald tests of simple and composite linear hypotheses

testnl Wald tests of nonlinear hypotheses
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predict

Description for predict

predict creates a new variable containing predictions such as linear predictions, residuals, leverage,
and standard errors. After random-effects meta-regression, you can also obtain estimates of random
effects and their standard errors.

Menu for predict

Statistics > Postestimation

Syntax for predict

Syntax for obtaining predictions other than best linear unbiased predictions (BLUPs) of random effects
predict [type] newvar [lf] [m] [ , statistic fixedonly se(sespec) ]

Syntax for obtaining BLUPs of random effects and their standard errors after random-effects meta-

regression

predict [type] newvar [l_'f] [in], reffects [se(newvar) reses(resesspec)}

statistic Description
Main
xb linear prediction; the default
stdp standard error of the linear prediction
fitted fitted values, fixed-portion linear prediction plus predicted random effects
residuals residuals, response minus fitted values
leverage | hat leverage (diagonal elements of hat matrix)
Unstarred statistics are available both in and out of sample; type predict ... if e(sample) ... if wanted only

for the estimation sample.

Options for predict
Main

xb, the default, calculates the linear prediction x;3. For the random-effects meta-regression, this
corresponds to the fixed portion of the linear predictor based on the estimated regression coefficients.
That is, this is equivalent to fixing all random effects in the model to their theoretical mean value
of 0.

stdp calculates the standard error of the linear prediction.

fitted calculates the fitted values. With fixed-effects meta-regression or with random-effects meta-
regression when option fixedonly is also specified, this option is equivalent to xb. For random-
effects meta-regression without fixedonly, it calculates XjB + u;, which is equal to the fixed
portion of the linear prediction plus predicted random effects.
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residuals calculates the residuals, which are equal to the responses minus the fitted values. With
fixed-effects meta-regression or with random-effects meta-regression when option fixedonly is

also specified, it calculates §; — x;3. The former are known as marginal residuals in the context
of the random-effects model. For random-effects meta-regression without fixedonly, this option

calculates 6; — (xj,@ + u;), which are known as conditional residuals.
leverage or hat calculates the diagonal elements of the projection (“hat”) matrix.

fixedonly specifies that all random effects be set to zero, which is equivalent to using only the
fixed portion of the model, when computing results for random-effects models. This option may
be specified only with statistics fitted, residuals, or leverage.

reffects calculates best linear unbiased predictions (BLUPs) of the random effects.

se (newvar[ , marginal ] ) calculates the standard errors of the corresponding predicted values. This
option may be specified only with statistics reffects, fitted, and residuals. When specified
with reffects, se(newvar) is a synonym to reses(newvar, diagnostic).

Suboption marginal is allowed only with random-effects meta-regression and requires option
fixedonly. It computes marginal standard errors, when you type

. predict ..., statistic se(newvar, marginal) fixedonly

instead of the standard errors conditional on zero random effects, which are computed when you
type

. predict ..., statistic se(newvar) fixedonly

marginal is not allowed in combination with reffects.

reses (resesspec) calculates the standard errors of the random effects; see option reffects. This
option may not be combined with option se (). The syntax for resesspec is

newvar[ , comparative | diagnostic]

comparative, the default, computes comparative random-effects standard errors. For linear models,
these correspond to posterior standard deviations of random effects and to standard errors of
marginal prediction errors %; — u;. These standard errors are used for inference about the
random effects.

diagnostic computes diagnostic random-effects standard errors. These correspond to marginal
standard errors of BLUPs, SE(%;). These standard errors are used for model diagnostics.
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margins

Description for margins

margins estimates margins of response for linear predictions.

Menu for margins

Statistics > Postestimation

Syntax for margins

margins [marginlist} [, options]

margins [marginlist} , predict (statistic ...) [options]
statistic Description
xb linear prediction; the default
fitted fitted values; implies fixedonly
stdp not allowed with margins
residuals not allowed with margins
leverage | hat not allowed with margins
reffects not allowed with margins

Statistics not allowed with margins are functions of stochastic quantities other than e (b).

For the full syntax, see [R] margins.
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Remarks and examples

We demonstrate some of the postestimation features, including estat bubbleplot, margins,
and predict after meta regress.

~> Example 1: Bubble plot

Consider the declared BCG dataset of clinical trials that studied the efficacy of a Bacillus Calmette-
Guérin (BCG) vaccine in the prevention of tuberculosis (TB) (Colditz et al. 1994). In example 1 of
[META] meta regress, we used meta regress to fit a simple meta-regression to these data with the
continuous moderator latitude_c to explore heterogeneity.

. use https://www.stata-press.com/data/r18/bcgset
(Efficacy of BCG vaccine against tuberculosis; set with -meta esize-)
. meta regress latitude_c

Effect-size label: Log risk-ratio
Effect size: _meta_es

Std. err.: _meta_se

Random-effects meta-regression Number of obs = 13

Method: REML Residual heterogeneity:
tau2 = .07635
12 (h) = 68.39
H2 = 3.16
R-squared (%) = 75.63
Wald chi2(1) = 16.36
Prob > chi2 = 0.0001
_meta_es | Coefficient Std. err. z P>|z]| [95% conf. interval]
latitude_c -.0291017 .0071953 -4.04 0.000 -.0432043  -.0149991
_cons -.7223204 .1076535 -6.71 0.000 -.9333174 -.5113234

Test of residual homogeneity: Q_res = chi2(11) = 30.73 Prob > Q_res = 0.0012

Whenever there is one continuous moderator in a meta-regression, a so-called bubble plot is
commonly used to explore the relationship between the effect size and that moderator. Let’s use
estat bubbleplot to produce the bubble plot after the fitted meta-regression.

. estat bubbleplot

Bubble plot

95% ClI
Studies
— Linear prediction

Log risk-ratio

-20 -10 0 10 20
Mean-centered latitude
Weights: Inverse-variance
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A bubble plot is a scatterplot of the observed effect sizes against the moderator overlaid with the
predicted regression and confidence-intervals lines. Each study is represented by a circle (bubble)
with the size (area) proportional to the study precision, 1/ 5]2». The larger the size of the bubble, the
more precise the study. The coordinates of the center of each circle show the observed value of the
effect size on the y axis and that of the moderator (latitude_c in our example) on the x axis. The
solid line shows the predicted values (predicted log risk-ratios in our example). The predicted 95%
confidence intervals are also plotted.

From the plot, the log risk-ratio for the BCG vaccine declines as the distance from the equator
increases. There appear to be a couple of outlying studies (see points in the bottom left and middle
top sections of the plot), but their bubbles are very small, which suggests that their log risk-ratios
estimates had small weights, relative to other studies, in the meta-regression. Outlying studies with
large bubbles may be a source of concern because of the large differences in their effect sizes compared
with those from the other studies and because of the large impact they have on the regression results.

N

> Example 2: Marginal effects

Continuing with example 1, we found that the log risk-ratio for the BCG decreases as the distance
from the equator increases. For example, from the bubble plot, a trial conducted relatively close to
the equator, say, in Thailand (with a latitude of 15 or a centered latitude of —18.5), would have a
predicted log risk-ratio of about —0.2. A trial conducted in, say, Nepal (with a latitude of 28 or a
centered latitude of —5.5), would have a predicted log risk-ratio of about —0.7. And a trial conducted
in, say, Ukraine (with a latitude of 50 or a centered latitude of 16.5), would have a predicted log
risk-ratio of about —1.

Instead of relying on the graph, we can obtain more precise estimates of the predicted log risk-ratios
at different latitude values by using the margins command as follows:

. margins, at(latitude_c = (-18.5 -5.5 16.5))

Adjusted predictions Number of obs = 13
Expression: Fitted values; fixed portion (xb), predict(fitted fixedonly)
1._at: latitude_c = -18.5

2._at: latitude_c = -5.5
3._at: latitude_c = 16.5

Delta-method
Margin std. err. z P>|z| [95% conf. intervall
_at
1 -.1839386 .1586092 -1.16 0.246 -.4948069 .1269297
2 -.562261 .1091839 -5.15 0.000 -.7762574 -.3482645
3 -1.202499 .1714274 -7.01 0.000 -1.53849 -.8665072

The list of numbers specified in the at () option are the values of the latitudes centered around the
latitude mean (= 33.5).

Note that results produced by margins are on the log scale and need to be exponentiated to make
interpretations on the natural (risk) scale. For instance, from the output, the risk ratio for regions with
latitude_c = 16.5 is exp(—1.202499) = 0.3, which means that the vaccine is expected to reduce
the risk of TB by 70% for regions with that latitude.

d
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> Example 3: Predicted random effects
In example 1, we noticed a couple of outlying studies. Let’s explore this further by looking at

predicted random effects from our random-effects meta-regression.

We first use predict with options reffects and se() to predict the random-effects and estimate
their diagnostic standard errors.

. predict double u, reffects se(se_u)

Then, we generate a new variable, ustandard, as the ratio of the predicted random effects to
their diagnostic standard errors and use the gnorm command (see [R] Diagnostic plots) to construct
the normal quantile plot.

. generate double ustandard = u/se_u
. label variable ustandard "Standardized predicted random effects"

. gnorm ustandard, mlabel(trial)

24

Standardized predicted random effects

o7

-2 -1 0 1 2
Inverse normal

The plot suggests that trial 7, labeled “Vandiviere et al., 1973” in our data, is an outlier. From the
data, the log risk-ratio estimate for this trial is —1.62 with the corresponding risk-ratio estimate of
about 0.2. This means that, in that trial, the vaccine reduced the risk of TB by roughly 80% even
though this trial was conducted relatively close to the equator (in Haiti, with latitude=19). In
fact, this trial reported the largest risk reduction (smallest log-risk-ratio value) in the meta-analysis.
Compare this with trial 11 (“Comstock et al., 1974”), which was conducted in Puerto Rico and has a
similar latitude (latitude=18) but whose estimated risk reduction was much more moderate, about
29% (with the risk-ratio estimate of exp(—0.34) = 0.71). More investigation is needed to explain
the extreme value reported by trial 7. Thus, in this example, you may consider reporting the results
of meta-analyses with and without this trial.

4

Methods and formulas
Methods and formulas are presented under the following headings:
Random-effects meta-regression

Fixed-effects meta-regression

The following formulas are used by predict. The notation is based on Methods and formulas of
[META] meta regress.
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Random-effects meta-regression

The fixed-portion of the linear prediction (option xb) is Xja The estimated standard error of the
fixed-portion of the linear prediction (option stdp) for study j is

SE (XjB) = \/xj (X'W*X)™! X

The BLUP of the jth random effect (option reffects) is
= ( — X ﬂ)

5_\2

72 407

where

Aj =

is the empirical Bayes shrinkage factor for the jth study. When the reses () option is also specified,
the estimated comparative standard error of u; is

~

SE(ﬁj—uj):\/ /\2{0 +72 —x; (X'W*X)~ x;}

When suboption diagnostic of reses() is specified or when the se () option is specified, the
estimated diagnostic standard error of u; is

SE (@) = A\j\ /63 + 72 — x; (X'W*X) ' %/

See Goldstein (2011), Skrondal and Rabe-Hesketh (2009), and Rabe-Hesketh and Skrondal (2022)
for more details.

The fitted value (option fitted) is

0j = Xj,/@\+ ﬂj

When the se () option is also specified, the estimated standard error of (Z is

S (0;) = /2 (32 +72) + (1-X) %, (XYWX) '
The residual (option residuals) is

eJ:é\j_gj

When option se () is also specified, the estimated standard error of e; is

STE(ej):\/(1+>\§) (a +72 - x; (X'W*X) ™ x;.)
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The leverage (option hat) are the diagonal elements of the hat matrix X (X’ W*X)f1 X'W*:

1 _
= g% (X'W*X) ' X

J 5—\24'_0-?

When the fixedonly option is specified, the formulas for the fitted values and residuals (including
their standard errors) and leverage are adjusted by replacing the value of @; with 0, in which case,
T2=0, Aj =0, and W* is replaced with W = diag (1/5%, ce, 1/8%). In this case, the standard
errors are computed conditionally on zero random effects.

If se()’s option marginal is specified, then marginal standard errors are computed. This is
equivalent to computing SAE(aj) and SE (e;) with A\; = 0 but keeping 72 and W* unchanged.

Fixed-effects meta-regression

The linear prediction (option xb) is x]ﬁ. The estimated standard error of the linear prediction
(option stdp) for study j is

SE (x‘jﬁ) = \/Xj (X'WX) ™ X

The fitted value (option fitted) is the same as the linear prediction:

The residual (option residuals) is

ej=0;—0;

When option se() is also specified, the estimated standard error of e; is

SE (e;) = \/(ag —x; (X'WX) ™! x;)

The leverage (option hat) are the diagonal elements of the hat matrix X (X’ WX)_1 X'W:

1 _
hj = =5%; (X'WX) 'x/

J
For the multiplicative fixed-effects meta-regression, in the above formulas, replace W with W¢
and ?7\]2- with (;53]2-, where ¢ is defined in Fixed-effects meta-regression in [META] meta regress.
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Title

estat bubbleplot — Bubble plots after meta regress

Description Quick start Menu Syntax
Options Remarks and examples Methods and formulas References
Also see

Description

estat bubbleplot produces bubble plots after simple meta-regression with one continuous
moderator performed by using meta regress. The bubble plot is a scatterplot of effect sizes against
a moderator of interest overlaid with the predicted regression line and confidence-interval bands. In
a bubble plot, the marker sizes, “bubbles”, are proportional to study weights.

Quick start

Fit a random-effects meta-regression with a continuous moderator, x

meta regress x, random

Construct a bubble plot for x
estat bubbleplot

Same as above, but specify that the size of the marker representing studies be proportional to the
random-effects weights instead of the default fixed-effects weights

estat bubbleplot, reweighted

Construct a bubble plot with a 90% confidence interval
estat bubbleplot, level(90)

Menu

Statistics > Meta-analysis

252
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Syntax
estat bubbleplot [z_'f] [ln] [ , options]
options Description
Main
reweighted make bubble size depend on random-effects weights
[@ } regline display or suppress the regression line
[no } ci display or suppress the confidence intervals
level (#) set confidence level; default is as declared for meta-analysis
n(#) evaluate CI lines at # points; default is n(100)
Fitted line
lineopts (line_options) affect rendition of the plotted regression line
Cl plot
ciopts (ciopts) affect rendition of the plotted CI band
Add plots
addplot (plot) add other plots to the bubble plot
Y axis, X axis, Titles, Legend, Overall
twoway_options any options other than by () documented in [G-3] twoway_options
Options
Main

reweighted is used with random-effects meta-regression. It specifies that the sizes of the bubbles
be proportional to the weights from the random-effects meta-regression, w; = 1/ (Ejz +72). By

. . . . o /\2
default, the sizes are proportional to the precision of each study, w; = 1/ a5

regline and noregline display or suppress the rendition of the regression line. The default,
regline, is to display the regression line. Option noregline implies option noci.

ci and noci display or suppress confidence intervals. The default, ci, is to display them.

level (#) specifies the confidence level, as a percentage, for confidence intervals. The default is
as declared for the meta-analysis session; see Declaring a confidence level for meta-analysis in
[META] meta data. Also see option level() in [META] meta set.

n(#) specifies the number of points at which to evaluate the CIs. The default is n(100).

Fitted line

lineopts (line_options) affects the rendition of the plotted regression line; see [G-3] line_options.

(Gt

ciopts (ciopts) affects the rendition of the CI band in the bubble plot. ciopts are any options as defined
in [G-2] graph twoway rline and option recast (rarea) as described in [G-3] advanced_options.
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Add plots

addplot (plot) allows adding more graph twoway plots to the graph; see [G-3] addplot_option.

Y axis, X axis, Titles, Legend, Overall |

twoway_options are any of the options documented in [G-3] twoway_options, excluding by (). These
include options for titling the graph (see [G-3] title_options) and for saving the graph to disk (see
[G-3] saving _option).

Remarks and examples

Remarks are presented under the following headings:

Introduction
Examples of using estat bubbleplot

Introduction

A bubble plot (Berkey et al. 1995; Thompson and Sharp 1999; Thompson and Higgins 2002) is
used after simple meta-regression with a continuous moderator to describe the relation between the
effect size and the corresponding moderator. It is used as a tool to assess how well the regression
model fits the data and to potentially identify influential and outlying studies. The bubble plot is a
scatterplot with the study-specific effect sizes plotted on the y axis and the moderator of interest from
the meta-regression plotted on the x axis. The sizes of the markers or “bubbles” are proportional to
the precision of each study. The more precise (larger) the study, the larger the size of the bubble.
The predicted regression line and confidence bands are overlaid with the scatterplot.

estat bubbleplot produces bubble plots after simple meta-regression with a continuous moderator
performed by using meta regress. Traditionally, the weights used to determine the sizes of the
bubbles are the inverses of the effect-size variances, 1/ 8]2. After a random-effects meta-regression,

. . . . . ~2 ~2
you can specify the reweighted option to instead use the random-effects weights, 1/ (O'j + 7).

The predicted regression line and the 95% confidence intervals are plotted by default. You can
specify the 1evel () option to obtain other confidence intervals. You can control the look of the lines
by specifying the options 1lineopts() and ciopts(). You can also suppress the lines by specifying
the options noregline and noci.

Examples of using estat bubbleplot

In the examples that follow, we demonstrate how to create and customize bubble plots after a
meta-regression. Consider the BCG dataset from Examples of using meta regress in [META] meta
regress.

. use https://www.stata-press.com/data/r18/bcgset
(Efficacy of BCG vaccine against tuberculosis; set with -meta esize-)

. meta query, short
-> meta esize npost - nnegc, esize(lnrratio) studylabel(studylbl)

Effect-size label: Log risk-ratio
Effect-size type: lnrratio
Effect size: _meta_es
Std. err.: _meta_se
Model: Random effects
Method: REML
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To create these plots, we first fit the random-effects meta-regression shown in example 1 of
[META] meta regress, but our focus here is not on the interpretation of these plots but on the variety
of bubble plots that can be created.

. meta regress latitude_c

Effect-size label: Log risk-ratio
Effect size: _meta_es

Std. err.: _meta_se

Random-effects meta-regression Number of obs = 13

Method: REML Residual heterogeneity:
tau2 = .07635
12 (%) = 68.39
H2 = 3.16
R-squared (%) = 75.63
Wald chi2(1) = 16.36
Prob > chi2 = 0.0001
_meta_es | Coefficient Std. err. z P>|z| [95% conf. intervall]
latitude_c -.0291017 .0071953 -4.04 0.000 -.0432043 -.0149991
_cons -.7223204 .1076535 -6.71  0.000 -.9333174 -.5113234

Test of residual homogeneity: Q_res = chi2(11) = 30.73 Prob > Q_res = 0.0012

> Example 1: A basic bubble plot

To construct a bubble plot after performing a simple meta-regression, we simply type

. estat bubbleplot

Bubble plot

95% CI
Studies
—— Linear prediction

Log risk-ratio

1.5 o

-20 -10 0 10 20
Mean-centered latitude
Weights: Inverse-variance

The graph shows the log risk-ratios plotted against the mean-centered latitudes of the studies’ locations.
By default, the regression line and corresponding confidence intervals are plotted. We could suppress
these and plot just the bubbles with options noregline and noci, respectively. The regression line
provides a good fit of the data because most studies are relatively close to it. The log risk-ratios for
the BCG vaccine decline with increasing latitude. For more interpretation of the above bubble plot,
refer to example 1 of [META] meta regress postestimation.

N
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> Example 2: Reweighting the bubbles

By default, the bubble sizes are proportional to trial precisions, 1/52. With the reweighted option,
we can make the bubble sizes proportional to the weights from the random-effects meta-regression,
1/ (8?- + 72). For example, continuing with example 1, we can reweight the bubbles as follows:

. estat bubbleplot, reweighted

Bubble plot
5 B
0o J
o
o)
2 5 )
g - 95% Cl
@ (0] Studies
[ ° —— Linear prediction
-
®
1.5 o
o °
-24
T T T T T
-20 -10 0 10 20

Mean-centered latitude
Weights: Random-effects

With random-effects weights, the sizes of the bubbles are more uniform across the studies as compared
with precision (fixed-effects) weights used in example 1. This will always be true except when 72 = 0,
in which case the bubble sizes will be identical with both types of weights.

N
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> Example 3: Using addplot() to add labels for the trials

Below, we discuss how you can add labels to the trials, which are represented by the hollow
circles on a bubble plot. Typically, we use mlabel (varname) to add marker labels. For example, if
we wish to label the trials according to their trial ID, trial, we type

. estat bubbleplot, mlabel(trial)

Bubble plot

.51 .12

95% ClI
Studies
— Linear prediction

Log risk-ratio

-20 -10 0 10 20
Mean-centered latitude
Weights: Inverse-variance

Specifying the mlabel () option causes all the markers to have the same size. One way to get around
this is by using the addplot () option.

We can use addplot () to overlay an exact copy of the properly weighted bubble plot but without
plotting the markers and symbols, that is, using the msymbol (none) option. We can then add labels
to these nonplotted symbols to obtain the desired plot. Here is our minimal addplot () specification:

addplot(scatter _meta_es latitude_c, msymbol(none) mlabel(trial))

The full specification is

. local opts msymbol(none) mlabel(trial) mlabcolor(stblue) legend(order(1l 2 3))
. estat bubbleplot, addplot(scatter _meta_es latitude_c, ‘opts’ mlabpos(2))

Bubble plot

95% ClI
Studies
—— Linear prediction

Log risk-ratio

Mean-centered latitude
Weights: Inverse-variance

We used additional options to fine-tune the bubble plot. The mlabcolor (stblue) option controls
the color of the study labels. The legend(order (1 2 3)) option prevents the display of a legend
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key for the added scatterplot in the legend box at the bottom of the plot. Finally, the mlabpos(2)
option specifies that marker labels be drawn at the 2 o’clock position.

N

> Example 4: Adjusting label positions

Continuing with example 3, let’s customize the labels further. For example, marker labels 3 and 10
(and 6 and 1) are not easily distinguishable. You may provide individual marker label positions for
each study by using the mlabvpos (varname) option. varname must be created to hold the individual
positions (an integer number between O to 12) of each marker.

Let’s generate our position variable.

. generate byte pos = 2
. quietly replace pos = 9 in 10/13
. quietly replace pos = 6 if inlist(trial,1,2,5)

We generated a new variable pos to hold the individual positions of each marker label. We chose to
draw labels at 9 o’clock for trials 10 to 13, at 6 o’clock for trials 1, 2, and 5, and at 2 o’clock for
the other trials.

We now use a similar specification of addplot () from example 3, but here we add mlabvpos (pos)
and mlabgap (*2) to double the gap size between the marker labels and the markers so that the trial
labels do not touch the hollow circles; see trials 6 and 8.

. estat bubbleplot, addplot(scatter _meta_es latitude_c, mlabvpos(pos)
> mlabgap(*2) ‘opts’)

Bubble plot

12 -

95% ClI
Studies
— Linear prediction

Log risk-ratio

Mean-centered latitude
Weights: Inverse-variance
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We can modify other aspects of the graph such as the legend. Let’s place the legend inside the
plot region. We also specify if inlist(trial,7,12,13) with estat bubbleplot to display trial
labels only for specific trials (for example, outliers, trials with large weights, and so on).

. local legopts legend(ring(0) position(2) size(small) symxsize(*0.3)
> region(lcolor(black)))

. estat bubbleplot, addplot(scatter _meta_es latitude_c
> if inlist(trial,7,12,13), mlabvpos(pos) mlabgap(*2) ‘opts’) ‘legopts’

Bubble plot

.54
12 - 95% Cl
> Studies

— Linear prediction
oD 3 P

Log risk-ratio

-20 -10 0 10 20
Mean-centered latitude
Weights: Inverse-variance

Within the legend () option (see [G-3] legend_options), ring(0) and position(2) specify that the
legend be placed inside the plot region at the 2 o’clock position. size(small) specifies that a small
font be used for the legend key text, and symxsize (*x0.3) sets the width of the key symbols to 30%

of their default width. region(lcolor(black)) adds a black border around the legend region.
d

Methods and formulas

estat bubbleplot produces a scatterplot with the effect sizes, 6;, stored in the system variable
_meta_es on the y axis and a moderator from the meta-regression on the x axis. By default, the

bubble size is proportional to w; = 1/ 3?. For a random-effects meta-regression, if you specify the

reweighted option, the weights w? = 1/(7 + 7°) will be used.

For a simple meta-regression with moderator x1, the plotted predicted line is 5y + Bi1z1 = x; 8.
The CIs are computed as

x;8+ 21— q)2SE (Xj//é)

where the computation of SAE(XJ-B) is described in [META] meta regress postestimation. The n()
option specifies how many evaluation points are used to construct the CI plots. By default, 100 points
are used. When the se() or tdistribution option is specified with meta regress, the confidence
intervals use the tx_51_/2 critical value.
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Title

meta funnelplot — Funnel plots

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description

meta funnelplot produces funnel plots, which are used to explore the presence of small-study
effects often associated with publication bias. A funnel plot is a scatterplot of study-specific effect
sizes on the x axis against the measures of study precision such as standard errors and inverse standard
errors on the y axis. In the absence of small-study effects, the plot should look symmetrical. meta
funnelplot can also draw contour-enhanced funnel plots, which are useful for investigating whether
the plot asymmetry can be attributed to publication bias.

Quick start

Construct a funnel plot for meta data, which was declared by either meta set or meta esize
meta funnelplot

Specify 1%, 5%, and 10% significance contours to produce a contour-enhanced funnel plot
meta funnelplot, contours(l 5 10)

Same as above, but base the significance contours on a one-sided lower-tailed z test, and request
separate plots for each group of variable groupvar
meta funnelplot, contours(l 5 10, lower) by(groupvar)

Specify the inverse standard error as the precision metric on the y axis

meta funnelplot, metric(invse)

Menu

Statistics > Meta-analysis

261
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Syntax

Construct a funnel plot

meta funnelplot [lf] [in] [, level (#) options]

Construct a contour-enhanced funnel plot

meta funnelplot [z_’f] [in], contours (contourspec) [options]

options

Description

Model
random[ (remethod) }
common[ (cefemethod) ]
fixed[ (cefemethod) ]

Options
by (varlist, ...)
metric (metric)

n(#)

[ no } metashow
graph_options

random-effects meta-analysis
common-effect meta-analysis
fixed-effects meta-analysis

construct a separate plot for each group formed by varlist

specify y-axis metric; default is metric(se)

evaluate CI lines or significance contours at # points;
default is n(300)

display or suppress meta settings in the output

affect rendition of overall funnel plot

collect is allowed; see [U] 11.1.10 Prefix commands.

remethod Description

reml restricted maximum likelihood; the default
mle maximum likelihood
ebayes empirical Bayes

dlaird DerSimonian—Laird
sjonkman Sidik—Jonkman

hedges Hedges

hschmidt Hunter—Schmidt
cefemethod Description

mhaenszel Mantel-Haenszel
invvariance inverse variance
ivariance synonym for invvariance
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graph_options Description
ES line

esopts (line_options) affect rendition of estimated effect-size line
Cl plot
* ciopts (ciopts) affect rendition of the confidence intervals
Add plots

addplot (plot) add other plots to the funnel plot

Y axis, X axis, Titles, Legend, Overall
twoway—_options any options documented in [G-3] twoway_options

*ciopts(ciopts) is not available for a contour-enhanced funnel plot.

Options
Main

contours (contourspec) specifies that a contour-enhanced funnel plot be plotted instead of the default
standard funnel plot; see Contour-enhanced funnel plots. This option may not be combined with
options ciopts() and level().

contourspec is numlist[ , lower upper lines graph_options] numlist specifies the levels of
significance (as percentages) and may contain no more than 8 integer values between 1 and 50.

lower and upper specify that the significance contours be based on one-sided lower- or
upper-tailed z tests of individual effect sizes. In other words, the studies in the shaded area
of a specific contour ¢ are considered not statistically significant based on one-sided lower-
or upper-tailed z tests with & = ¢/100. By default, the contours correspond to the two-sided
z tests.

lines specifies that only the contours lines be plotted. That is, no shaded regions will be
displayed.

graph_options are any of the options documented in [G-3] area_options except recast () or,
if option lines is specified, any of the options documented in [G-3] line_options.

_ (Wogel

Options random(), common(), and fixed() specify a meta-analysis model to use when estimating
the overall effect size. For historical reasons, the default is common(invvariance), regardless of
the global model declared by meta set or meta esize. Specify one of these options with meta
funnelplot to override this default. Options random(), common(), and fixed() may not be
combined. Also see Meta-analysis models in [META] Intro.

random and random(remethod) specify that a random-effects model be assumed for meta-analysis;
see Random-effects model in [META]| Intro.

remethod specifies the type of estimator for the between-study variance 72. remethod is one of

reml, mle, ebayes, dlaird, sjonkman, hedges, or hschmidt. random is a synonym for
random(reml). See Options in [META]| meta esize for more information.

common and common (cefemethod) specify that a common-effect model be assumed for meta-analysis;
see Common-etfect (“fixed-effect”) model in [META]| Intro. Also see the discussion in [META| meta
data about common-effect versus fixed-effects models.
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common implies common (mhaenszel) for effect sizes lnoratio, lnrratio, and rdiff and
common (invvariance) for all other effect sizes. common(mhaenszel) is supported only with
effect sizes 1noratio, lnrratio, and rdiff.

cefemethod is one of mhaenszel or invvariance (synonym ivariance). See Options in
[META] meta esize for more information.

fixed and fixed(cefemethod) specify that a fixed-effects model be assumed for meta-analysis;
see Fixed-effects model in [META] Intro. Also see the discussion in [META] meta data about
fixed-effects versus common-effect models.

fixed implies fixed(mhaenszel) for effect sizes lnoratio, lnrratio, and rdiff and
fixed(invvariance) for all other effect sizes. fixed (mhaenszel) is supported only with
effect sizes 1noratio, lnrratio, and rdiff.

cefemethod is one of mhaenszel or invvariance (synonym ivariance); see Options in
[META] meta esize for more information.

by(varlist[ , byopts]) specifies that a separate plot for each group defined by varlist be produced.
byopts are any of the options documented in [G-3] by_option. by () is useful to explore publication
bias in the presence of between-study heterogeneity induced by a set of categorical variables.
These variables must then be specified in the by () option.

metric (metric) specifies the precision metric on the ¥y axis. metric is one of se, invse, var,
invvar, n, or invn. When metric is one of n or invn, no CIs or significance contours are plotted.
The default is metric(se).

se specifies that the standard error, Gj, be used as the precision metric.
invse specifies that the inverse of the standard error, 1 / Gj, be used as the precision metric.

var specifies that the variance, 3]2-, be used as the precision metric.

invvar specifies that the inverse of the variance, 1/ 812», be used as the precision metric.
n specifies that the sample size, n;, be used as the precision metric.
invn specifies that the inverse of the sample size, 1/n;, be used as the precision metric.

level (#) specifies the confidence level, as a percentage, for confidence intervals. The default is
as declared for the meta-analysis session; see Declaring a confidence level for meta-analysis in
[META] meta data. Also see option level () in [META] meta set. This option may not be combined
with option contours().

n(#) specifies the number of points at which to evaluate the CIs or, if option contours () is specified,
significance contours. The default is n(300).

metashow and nometashow display or suppress the meta setting information. By default, this
information is displayed at the top of the output. You can also specify nometashow with meta
update to suppress the meta setting output for the entire meta-analysis session.

esopts (line_options) affects the rendition of the line that plots the estimated overall effect size; see
[G-3] line_options.
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(Gt

ciopts(ciopts) affects the rendition of the (pseudo) CI lines in a funnel plot. ciopts are any
of the options documented in [G-3] line_options and option recast(rarea) as described in
[G-3] advanced_options. This option may not be combined with option contours().

Add plots

addplot (plor) allows adding more graph twoway plots to the graph; see [G-3] addplot_option.

Y axis, X axis, Titles, Legend, Overall |

twoway—_options are any of the options documented in [G-3] twoway _options. These include options for
titling the graph (see [G-3] title_options) and for saving the graph to disk (see [G-3] saving _option).

Remarks and examples

Remarks are presented under the following headings:

Introduction
Funnel plots
Contour-enhanced funnel plots
Using meta funnelplot
Examples of using meta funnelplot

Introduction

A funnel plot is used to visually explore “small-study effects”. The term small-study effects (Sterne,
Gavaghan, and Egger 2000) is used in meta-analysis to describe the cases when the results of smaller
studies differ systematically from the results of larger studies. For instance, smaller studies often
report larger effect sizes than the larger studies. One of the reasons for the presence of small-study
effects is publication bias, also referred to as reporting bias.

For more formal testing of small-study effects, see [META] meta bias. To assess the impact of
publication bias on the results, see [META] meta trimfill.

Also see Publication bias of [META] Intro for information about publication bias.

Funnel plots

The funnel plot (Light and Pillemer 1984) is a scatterplot of the study-specific effect sizes against
measures of study precision. This plot is commonly used to explore publication bias. In the absence
of publication bias, the shape of the scatterplot should resemble a symmetric (inverted) funnel.

In a funnel plot, the effect sizes, Hj’s, from individual studies are plotted on the x axis, and
measures of study precision such as standard errors, Ej’s, or sample sizes, n;’s, are plotted on the
y axis (Sterne and Harbord 2016). The line corresponding to the estimated overall effect size is also
plotted on a funnel plot. In addition to standard errors and sample sizes, other choices for metrics
on the y axis include inverse standard errors, 1/ Ej’s; variances, 8]2’5; inverse variances, 1/ 832-’3; and
inverse sample sizes, 1/ n;’s. Sterne and Egger (2001) studied various metrics and found that the

standard error metric performed well in many cases.
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In the absence of publication bias (and between-study heterogeneity), the studies should be distributed
symmetrically about the overall effect size because the sampling error is random. Also, the effect-size
estimates from the smaller studies will be more variable than those from the larger studies. Thus, the
scatter will be wider at the base of the plot creating, in the absence of bias, a symmetrical funnel shape
or, more precisely, a symmetrical inverted funnel shape. When the statistically nonsignificant results
of smaller studies are not published (and thus not included in the meta-analysis), an asymmetrical
shape of the funnel plot may be observed. In this case, the estimate of the overall effect size will
overestimate the true effect size. See Sterne, Becker, and Egger (2005) for details. Also see Examples
of using meta funnelplot for examples of funnel plots.

Sutton (2009) states that when the y-axis metric is one of standard error, variance, or their inverses,
a (I —a) x 100% CI can be formed around the overall estimate. This CI can provide more formal
interpretation of the plot. But the author suggests that caution be used when interpreting these CIs
because they are formed around the estimate of the overall effect size that may be affected by
publication bias. This is one of the reasons why the funnel-plot CIs are often referred to as pseudo
CIs.

In general, there may be many reasons for an asymmetric funnel plot such as the choice of the
plotted effect size (Sterne et al. 2011), the presence of a moderator correlated with the study effect
and study size (Peters et al. 2008), or simply chance. One of the more common reasons, however, is
the presence of substantial between-study heterogeneity (Sterne, Gavaghan, and Egger 2000).

The between-study heterogeneity, if present, must be addressed before the exploration of publication
bias. For instance, if there are study-level covariates that explain the differences between the studies,
their influence can distort a funnel plot if they are not accounted for in the main meta-analysis (Sut-
ton 2009). Suppose that during our subgroup meta-analysis (see option subgroup () in [META] meta
summarize), we identified a categorical variable that explains most of the heterogeneity between
the studies. The exploration of the publication bias should then be performed separately for each
group. That is, a separate funnel plot should be constructed for each subgroup. In the case of a
continuous variable, some authors suggest constructing a funnel plot based on the residuals, 6; — ij,
on the x axis against their standard errors on the y axis, where the residuals are obtained from a
meta-regression that uses this continuous variable as the moderator; see [META] meta regress and
[META] meta regress postestimation.

Contour-enhanced funnel plots

Peters et al. (2008) (also see Palmer et al. [2016]) suggest that contour lines of statistical significance
(or significance contours) be added to the funnel plot. These “contour-enhanced” funnel plots are
useful for determining whether the funnel-plot asymmetry is potentially caused by publication bias
or is perhaps due to other reasons. The contour lines that correspond to certain significance levels
(e = 0.01, 0.05, 0.1, etc.) of tests of zero effect sizes are overlaid on the funnel plot. Publication
bias is suspect if there are studies, especially smaller studies, that are missing in the nonsignificant
regions. Otherwise, other reasons may explain the presence of the funnel-plot asymmetry.

Using meta funnelplot

meta funnelplot produces funnel plots. By default, it plots effect sizes against the standard
errors, but you can specify a different metric in the metric() option. For historical reasons, the
default meta-analysis model is the common-effect model with the inverse-variance estimation method.
You can specify one of random(), common(), or fixed() to use a different model or method.

By default, the CIs are displayed, which correspond to the confidence level as declared by meta
set or meta esize. You can specify a different level in the level () option. You can also specify
the ciopts() option to modify the default look of the CI lines.
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Instead of the CIs, you can request a contour-enhanced funnel plot by specifying the desired levels
of significance (as a percentage) in the contours() option. The default significance contours are
based on two-sided significance tests of individual effect sizes. You can use lower or upper within
contours () to specify that the significance contours be based on the corresponding one-sided tests.
You can also specify lines within contours() to recast the contours to be displayed as lines instead
of shaded area plots.

You can use the by (varlist) option to produce separate funnel plots for each group defined
by varlist. This option is useful after a subgroup analysis (see option subgroup() in [META] meta
summarize). If a subgroup analysis identified a categorical variable that explains some of the between-
study variability, that variable must be specified in the by () option when using meta funnelplot
to explore publication bias.

You can also change the default look of the effect-size line by specifying the esopts() option.

In the next section, we describe some of the uses of meta funnelplot.

Examples of using meta funnelplot

Recall the NSAIDS data of 37 trials on the effectiveness and safety of topical nonsteroidal anti-
inflammatory drugs for acute pain described in Effectiveness of nonsteroidal anti-inflammatory drugs
(nsaids.dta) of [META] meta. In this section, we use its declared version and focus on the demonstration
of various options of meta funnelplot and explanation of its output.

. use https://www.stata-press.com/data/r18/nsaidsset
(Effectiveness of nonsteroidal anti-inflammatory drugs; set with -meta esize-)

. meta query, short
-> meta esize nstreat nftreat nscontrol nfcontrol

Effect-size label: Log odds-ratio
Effect-size type: lnoratio
Effect size: _meta_es
Std. err.: _meta_se
Model: Random effects
Method: REML

meta query, short reminds us about the main settings of the declaration step. Our data were
declared by using meta esize with variables nstreat, nftreat, nscontrol, and nfcontrol
representing the summary data from 2 X 2 tables, which record the numbers of successes and failures
in the treatment and control arms. The computed effect sizes are log odds-ratios; their values and
standard errors are stored in the respective system variables _meta_es and _meta_se. The declared
meta-analysis model is the default random-effects model with the REML estimation method.
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> Example 1: Funnel plot

To produce a funnel plot for the declared NSAIDS data, we simply type

. meta funnelplot

Effect-size label: Log odds-ratio
Effect size: _meta_es
Std. err.: _meta_se
Model: Common effect
Method: Inverse-variance

Funnel plot
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Log odds-ratio

The scatterplot of log odds-ratios against their standard errors is produced. The estimated effect-size
line and the corresponding pseudo 95% Cls are also plotted. The funnel plot is clearly asymmetric
with smaller, less precise studies—studies with larger standard errors—reporting larger effect sizes
than the more precise studies. This may suggest the presence of publication bias. The plotted pseudo
CI lines are not genuine CI limits, but they provide some insight into the spread of the observed effect
sizes about the estimate of the overall effect size. In the absence of publication bias and heterogeneity,
we would expect the majority of studies to be randomly scattered within the CI region resembling an
inverted funnel shape.

Notice that although the declared meta-analysis model was the random-effects model with the
REML estimation method, the default model used by meta funnelplot was the common-effect model
with the inverse-variance method, as is indicated in the brief output of meta settings reported by the
command. This is the model traditionally used with funnel plots in the literature. The reported model
and method are used to compute the estimate of the overall effect size, the overall log odds-ratio in
our example, which is depicted by the reference (red) effect-size line.

N
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> Example 2: Random-effects REML model

In example 1, we pointed out that, for historical reasons, meta funnelplot uses the common-effect
model with the inverse-variance method by default instead of the declared ones.

If desired, we can obtain the results assuming the declared random-effects model with the REML
estimation method by specifying the random option.

. meta funnelplot, random

Effect-size label:

Log odds-ratio

Effect size: _meta_es
Std. err.: _meta_se
Model: Random effects
Method: REML
Funnel plot
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From the output of meta settings, a random-effects model with the REML method is now used to
estimate the overall log odds-ratio. Our conclusion about the existence of potential publication bias
remains the same.

For brevity, let’s suppress the meta setting information from the output of meta funnelplot for
the rest of the analysis. We can do this by specifying the nometashow option with meta update
(see [META] meta update).

. quietly meta update, nometashow
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> Example 3: Inverse-standard-error metric

Continuing with example 1, we can use a different precision metric on the y axis. Using different
metrics may reveal different characteristics of the observed studies. For example, for the standard
error metric, more weight is given to the smaller studies, which are more susceptible to publication
bias. For the inverse-standard-error metric, more weight is given to the larger studies.

Below, we specify the inverse-standard-error metric by using the metric(invse) option.

. meta funnelplot, metric(invse)

Funnel plot
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Because our y-axis metric is now 1/0;, the shape of the plotted CI lines is a hyperbola. The
interpretation, however, is similar. We still want to see the majority of studies be concentrated within
the regions defined by this hyperbola.

In this metric, the focus is on larger studies with the smaller studies compressed at the bottom.
We can see that the asymmetry does not appear to be present for larger studies with, say, 1/5; > 2.
But the asymmetry is present for the smaller studies.

4
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> Example 4: The ylabel() option

Continuing with example 3, we can improve the look of the plot by restricting the y-axis values
to the observed range. We can do this by specifying the ylabel(1 2 3) option:

. meta funnelplot, metric(invse) ylabel(1l 2 3)

Funnel plot
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> Example 5: Contour-enhanced funnel plot

In example 12 of [META] meta, we considered contour-enhanced funnel plots for the NSAIDS data
to help us identify whether the asymmetry observed in example 1 is because of publication bias or
perhaps some other reasons. Let’s obtain the 1%, 5%, and 10% contour-enhanced funnel plots by
specifying the contours(1 5 10) option:

. meta funnelplot, contours(l 5 10)

Contour-enhanced funnel plot

1% <p<5%
I 5% <p<10%
B o> 10%
e Studies
Estimated 6,

Standard error
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Log odds-ratio

The plotted contour regions define the regions of statistical significance (or nonsignificance) of the
individual effect sizes 6;. That is, if you consider the significance test of Hy: 8; = 0 for a study
J, the contour regions represent the critical regions of such tests for all studies at the specified
significance level such as 1%, 5%, and 10% levels in our example. Thus, if a study falls outside a



272 meta funnelplot — Funnel plots

certain region, we have statistical evidence to reject the null hypothesis of no effect at the significance
level corresponding to that region.

In our example, for studies in the white region, the null hypothesis of no effect can be rejected
at the 1% significance level. That is, the significance tests for these studies would have p-values less
than 0.01 or 1%. For studies in the light-gray region, the p-values would be between 1% and 5%.
For studies in the darker-gray region, the p-values would be between 5% and 10%. And for studies
in the darkest-gray region, the p-values would be larger than 10%.

The plot clearly shows that almost all smaller studies report a statistically significant result,
favoring the treatment, either at the 1% or 5% level. On the other hand, some of the larger (more
precise) studies (in the darkest-gray region) report nonsignificant results. The hypothetical missing
studies—the studies that would make the scatterplot look symmetric with respect to the solid red
vertical line—appear to fall in the darkest-gray region corresponding to a p-value of more than 10%.
Because we are “missing” small studies in a region of statistical nonsignificance, this suggests that
the observed asymmetry in the funnel plot is likely because of publication bias.

Also see example 14 of [META] meta.

> Example 6: The addplot() option

Continuing with example 5, let’s use the addplot () option to add the pseudo 95% CIs around
the effect-size line to our contour-enhanced plot. These CIs are computed as follows: Oy £ 1.96 X v,

where y represents a standard error of Ay, varying within the range of observed standard errors.
Here 1.96 corresponds to the 2 975 critical value.

We first obtain the estimated value of the overall effect size, which is available in the r (theta)
scalar from the previous run of meta funnelplot. We store it in the theta scalar.
. display r(theta)
1.0604829
. scalar theta = r(theta)

The estimate of the overall effect size may also be obtained from meta summarize (see [META] meta
summarize):

. meta summarize, common(invvariance) nostudies

Meta-analysis summary Number of studies = 37
Common-effect model
Method: Inverse-variance

theta: Overall Log odds-ratio

Estimate Std. err. z P>zl [95% conf. intervall]

theta 1.060483 .0758709 13.98  0.000 .9117788 1.209187

. display r(theta)
1.0604829
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The CI lines can be constructed by using twoway’s function command (see [G-2] graph twoway
function):

. twoway function theta-1.96*x, horizontal range(0 1.6) ||
> function theta+1.96%x, horizontal range(0 1.6)

In the above, x plays the role of ¥ in the earlier expression for CIs. We used the horizontal option
to interchange the roles of y and x in the function because 6; appears on the x axis and standard
errors on the ¥y axis in the funnel plot. We also specified the range () option so that the range of the
plotted function matches the observed range for the standard errors.

We use the above specification in the addplot() option with meta funnelplot. Because
addplot () implies a twoway plot, we can omit twoway within addplot (). We also specify several
other options to improve the look of the graph, which we describe later.

. local opts horizontal range(0 1.6) lpattern(dash) lcolor("red")
> legend(order(l1 2 3 4 5 6) label(6 "95} pseudo CI"))

. meta funnel, contours(l1 5 10)
> addplot(function theta-1.96*x, ‘opts’ || function theta+1.96xx, ‘opts’)

Contour-enhanced funnel plot

1% < p < 5%
I 5% <p<10%
B p>10%
e  Studies
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We changed the color and pattern of the CI lines by using options lpattern() and lcolor().
We used legend()’s suboption order () to display only the first six keys for the legend to avoid
duplicate keys for the two CI plots. We also provided a more descriptive label for the CI legend key.
Also, to be more precise, we could have replaced 1.96 in the above with invnormal (.975), which
computes the corresponding quantile of the standard normal distribution.

4

> Example 7: Upper one-sided significance contours

Continuing with example 5, let’s produce a contour-enhanced funnel plot based on one-sided
significance tests instead of the default two-sided tests. We can specify lower or upper within
contours () to produce a funnel plot with contours based on lower or upper one-sided tests. Below,
we specify the upper suboption:



274

meta funnelplot — Funnel plots

. meta funnelplot, contours(l 5 10, upper)

Contour-enhanced funnel plot
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The interpretation of a one-sided contour-enhanced funnel plot is similar to that of a two-sided one.
Studies that fall in the upper-tailed region (the white region to the right) are statistically significant
at the 1% level based on a one-sided upper-tailed test. The white space on the left is uninformative,
and we can suppress it by disallowing the x axis to extend to —2. This may be done by specifying
xlabel (0(2)6) (see [G-3] axis_label _options).

. meta funnelplot, contours(l 5 10, upper) xlabel(0(2)6)

Contour-enhanced funnel plot
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If we want to suppress all the extra white space around the plot, we can specify plotre-
gion(margin(zero)) (see [G-3] region_options).

. meta funnelplot, contours(l 5 10, upper) xlabel(0(2)6)
> plotregion(margin(zero))

Contour-enhanced funnel plot

1% < p < 5%
I 5% < p<10%
B p>10%
° e Studies
Estimated 6,y

Standard error

Log odds-ratio

> Example 8: Group-specific funnel plots: option by()

In example 9 of [META] meta summarize, we performed subgroup analysis for the pupil IQ data
to account for the between-study heterogeneity induced by the binary covariate week1, which records
whether teachers had prior contact with students for more than 1 week or for 1 week or less. See
Effects of teacher expectancy on pupil IQ (pupilig.dta) of [META] meta for details about the data.

Let’s check for publication bias in these data, accounting for the between-study heterogeneity. We
can do this by looking at a funnel plot separately for each category of weekl. We will use meta
funnel’s option by () to produce such plots.
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We use a previously declared version of the dataset.

. use https://www.stata-press.com/data/r18/pupiligset, clear
(Effects of teacher expectancy on pupil IQ; set with -meta set-)

. meta funnelplot, by(weekl)

Effect-size label: Std. mean diff.
Effect size: stdmdiff
Std. err.: se
Model: Common effect
Method: Inverse-variance

Funnel plot
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Graphs by Prior teacher-student contact > 1 week

The above graph shows funnel plots of the subgroups for prior contact of one week or less and more
than one week, respectively. These funnels are centered on different effect-size values, but there is
little evidence of asymmetry in either plot. We should be careful with our interpretation, however,
because we have only a few studies in each plot.

d

Stored results

meta funnelplot stores the following in r():

Scalars
r(theta) estimated overall effect size
r(xmin) minimum abscissa of scatter points
r(xmax) maximum abscissa of scatter points
r(ymin) minimum ordinate of scatter points
r (ymax) maximum ordinate of scatter points
Macros
r(model) meta-analysis model
r(method) meta-analysis estimation method
r(metric) metric for the y axis

r(contours) significance levels of contours
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Methods and formulas

meta funnel produces a scatterplot of individual effect sizes, 9j’s, on the x axis and measures

of study precision on the y axis. The supported measures of precision are the standard errors, 0;’s
(default); inverse standard errors, l/aj’s; variances, 3]2’3; inverse variances, 1/8]2’5; sample sizes,
n;’s; and inverse sample sizes, l/nj’s.

The effect-size reference (solid red) line is plotted at the estimate of the overall effect size. By
default, the overall effect size is estimated assuming a common-effect model with the inverse-variance
method, but this can be changed by specifying one of random(), common(), or fixed().

The pseudo (1 —a) x 100% CI lines, plotted by default, are constructed as o+ Z1—ay2f(y), where
0 is the estimate of the overall effect size, 21_q/2 is the (1 — a/2)th quantile of the standard normal

distribution, and f(y) plays the role of the varying standard error of 0 as a function of the y-axis
values and depends on the chosen metric. When standard errors, Ej’s, are plotted on the y axis,

fly)=y
2,

and the CI curves form straight lines. When variances, o5’s, are plotted on the ¥y axis,

fw)=vy

and the CI curves form a parabola. When inverse standard deviations, 1/ Ej’s, or inverse variances,
1/52, are plotted on the y axis

and the CI curves form a hyperbola.

When the contours () option is specified, the contour region corresponding to a significance level
« (specified as a percentage in contours ()) for a two-sided test is defined as the set of points (z,y),

(ERERR

where f(y) depends on the chosen metric and is defined as before. For upper one-sided tests, the
contour region is defined as

{4z o)

and for lower one-sided tests, it is defined as

{2 <)

The n(#) option specifies how many evaluation points are used to construct the CI lines or, when
the contours () option is specified, the significance contours. By default, 300 points are used for y
for CI lines and for each of x and y for contours.
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meta bias — Tests for small-study effects in meta-analysis

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description

meta bias performs tests for the presence of small-study effects in a meta-analysis, also known
as tests for funnel-plot asymmetry and publication-bias tests. Three regression-based tests and a
nonparametric rank correlation test are available. For regression-based tests, you can include moderators
to account for potential between-study heterogeneity.

Quick start
Test for small-study effects by using the Egger regression-based test

meta bias, egger
Same as above, but include a moderator x1 to account for between-study heterogeneity induced by
x1
meta bias x1, egger

Same as above, but assume a random-effects model with the empirical Bayes method for estimating
72 in the regression-based test

meta bias x1, egger random(ebayes)

With log risk-ratios, test for small-study effects by using the Harbord regression-based test with
moderators x1 and x2 to account for between-study heterogeneity

meta bias x1 i.x2, harbord

With log odds-ratios, test for small-study effects by using the Peters regression-based test and assuming
a common-effect model

meta bias, peters common

Menu

Statistics > Meta-analysis
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Syntax
Regression-based tests for small-study effects
Test using meta-analysis model as declared with meta set or meta esize

meta bias [moderators] [zf] [in], regtest [modelopts]

Random-effects meta-analysis model
meta bias [moderamrs] [lf] [zn] , regtest random[ (remethod)}

[ se(sead)) options }

Common-effect meta-analysis model

meta bias [if‘] [in], regtest common [options]

Fixed-effects meta-analysis model

meta bias [moderamrs] [1_’}"] [in], regtest fixed [multiplicative options]

Traditional test

meta bias [lf] [in], regtest traditional [()pti(ms]

Nonparametric rank correlation test for small-study effects

meta bias [zf] [m] , begg [ [no]metashow detail]

regtest Description
egger Egger’s test
harbord Harbord’s test
peters Peters’s test

modelopts is any option relevant for the declared model.

remethod Description

reml restricted maximum likelihood; the default
mle maximum likelihood

ebayes empirical Bayes

dlaird DerSimonian—Laird

sjonkman Sidik—Jonkman

hedges Hedges

hschmidt Hunter—Schmidt
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options Description
Main
tdistribution report ¢ test instead of z test
[no}metashow display or suppress meta settings in the output
detail display intermediate estimation results
Maximization
maximize_options control the maximization process of the between-study variance

moderators may contain factor variables; see [U] 11.4.3 Factor variables.

collect is allowed; see [U] 11.1.10 Prefix commands.

Options

Main

One of egger, harbord, peters, or begg (or their synonyms) must be specified. In addition to
the traditional versions of the regression-based tests, their random-effects versions and extensions to
allow for moderators are also available.

egger (synonym esphillips) specifies that the regression-based test of Egger et al. (1997a) be
performed. This test is known as the Egger test in the literature. This is the test of the slope in
a weighted regression of the effect size, _meta_es, on its standard error, _meta_se, optionally
adjusted for moderators. This test tends to have an inflated type I error rate for two-sample binary
data.

harbord (synonym hesterne) specifies that the regression-based test of Harbord, Egger, and
Sterne (2006) be performed. This test is known as the Harbord test. This is the test of the slope in
a weighted regression of Z;/V; on 1/ \/17 , optionally adjusting for moderators, where Z; is the
score of the likelihood function and V/; is the score variance. This test is used for two-sample binary
data with effect sizes log odds-ratio and log risk-ratio. It was designed to reduce the correlation
between the effect-size estimates and their corresponding standard errors, which is inherent to the
Egger test with two-sample binary data.

peters (synonym petersetal) specifies that the regression-based test of Peters et al. (2006) be
performed. This test is known as the Peters test in the literature. This is the test of the slope in
a weighted regression of the effect size, _meta_es, on the inverse sample size, 1/n;, optionally
adjusted for moderators. The Peters test is used with two-sample binary data for log odds-ratios.
Because it regresses effect sizes on inverse sample sizes, they are independent by construction.

begg (synonym bmazumdar) specifies that the nonparametric rank correlation test of Begg and
Mazumdar (1994) be performed. This is not a regression-based test, so only options metashow,
nometashow, and detail are allowed with it. This test is known as the Begg test in the literature.
This test is no longer recommended in the literature and provided for completeness.

Options random(), common, and fixed, when specified with meta bias for regression-based tests,
temporarily override the global model declared by meta set or meta esize during the computation.
Options random(), common, and fixed may not be combined. If these options are omitted, the
declared meta-analysis model is assumed; see Declaring a meta-analysis model in [META] meta data.
Also see Meta-analysis models in [META] Intro.

random and random (remethod) specify that a random-effects model be assumed for regression-based
test; see Random-effects model in [META] Intro.
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remethod specifies the type of estimator for the between-study variance 72. remethod is one of

reml, mle, ebayes, dlaird, sjonkman, hedges, or hschmidt. random is a synonym for
random(reml). See Options in [META]| meta esize for more information.

common specifies that a common-effect model be assumed for regression-based test; see Common-
effect (“fixed-effect”) model in [META] Intro. It uses the inverse-variance estimation method;
see Meta-analysis estimation methods in [META] Intro. Also see the discussion in [META] meta
data about common-effect versus fixed-effects models. common is not allowed in the presence of
moderators.

fixed specifies that a fixed-effects model be assumed for regression-based test; see Fixed-effects
model in [META] Intro. It uses the inverse-variance estimation method; see Meta-analysis estimation
methods in [META] Intro. Also see the discussion in [META]| meta data about fixed-effects versus
common-effect models.

se(sead)) specifies that the adjustment seadj be applied to the standard errors of the coefficients.
Additionally, the tests of significance of the coefficients are based on a Student’s ¢ distribution
instead of the normal distribution. se () is allowed only with random-effects models.

seadj is @artung[ , truncated]. Adjustment khartung specifies that the Knapp—Hartung
adjustment (Hartung and Knapp 2001a, 2001b; Knapp and Hartung 2003), also known as the
Sidik—Jonkman adjustment (Sidik and Jonkman 2002), be applied to the standard errors of the
coefficients. hknapp and sjonkman are synonyms for khartung. truncated specifies that the
truncated Knapp—Hartung adjustment (Knapp and Hartung 2003), also known as the modified
Knapp—Hartung adjustment, be used.

traditional specifies that the traditional version of the selected regression-based test be performed.
This option is equivalent to specifying options fixed, multiplicative, and tdistribution.
It may not be specified with moderators.

multiplicative performs a fixed-effects regression-based test that accounts for residual heterogeneity
by including a multiplicative variance parameter ¢. ¢ is referred to as an “(over)dispersion
parameter”. See Introduction in [META] meta regress for details.

tdistribution reports a ¢ test instead of a z test. This option may not be combined with option

se().

metashow and nometashow display or suppress the meta setting information. By default, this
information is displayed at the top of the output. You can also specify nometashow with meta
update to suppress the meta setting output for the entire meta-analysis session.

detail specifies that intermediate estimation results be displayed. For regression-based tests, the
results from the regression estimation will be displayed. For the nonparametric test, the results
from ktau ([R] spearman) will be displayed.

Maximization

maximize_options: iterate (#), tolerance(#), nrtolerance (#), nonrtolerance (see [R] Max-
imize), from(#), and showtrace. These options control the iterative estimation of the between-
study variance parameter, 72, with random-effects methods reml, mle, and ebayes. These options
are seldom used.

from(#) specifies the initial value for 72 during estimation. By default, the initial value for 72
is the noniterative Hedges estimator.

showtrace displays the iteration log that contains the estimated parameter 72, its relative difference
with the value from the previous iteration, and the scaled gradient.
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Remarks and examples

Remarks are presented under the following headings:

Introduction
Using meta bias
Examples of using meta bias

Introduction

As we discussed in Introduction of [META] meta funnelplot, there is a tendency for smaller studies to
report different, often larger, effect sizes than the larger studies. There are various reasons that explain
this tendency, but the two more common ones are between-study heterogeneity and publication bias.
We covered the between-study heterogeneity in [META] meta summarize and [META] meta regress.
Here we focus on publication bias.

Publication bias often arises when the decision of whether to publish a study depends on the
statistical significance of the results of the study. Typically, nonsignificant results from small studies
have a tendency of not getting published. See Publication bias of [META] Intro for details.

The funnel plot ([META] meta funnelplot) is commonly used to investigate publication bias or,
more generally, small-study effects in meta-analysis. The presence of asymmetry in the funnel plot
may indicate the presence of publication bias. Graphical evaluation of funnel plots is useful for data
exploration but may be subjective when detecting the asymmetry. Thus, a more formal evaluation of
funnel-plot asymmetry is desired. Statistical tests were developed for detecting the asymmetry in a
funnel plot; they are often called tests for funnel-plot asymmetry. They are also sometimes referred
to as tests of publication bias, but this terminology may be misleading because the presence of a
funnel-plot asymmetry is not always due to publication bias (for example, Sterne et al. [2011]). Thus,
we prefer a more generic term—tests for small-study effects—suggested by Sterne, Gavaghan, and
Egger (2000).

There are two types of tests for small-study effects: regression-based tests and a nonparametric
rank-based test. The main idea behind these tests is to determine whether there is a statistically
significant association between the effect sizes and their measures of precision such as effect-size
standard errors.

The Egger regression-based test (Egger et al. 1997b) performs a weighted linear regression of the
effect sizes, Hj’s, on their standard errors, 3j’s, weighted by the precision, 1 / 3j’s. The test for the
zero slope in that regression provides a formal test for small-study effects. In some cases, such as
in the presence of a large true effect or with two-sample binary data, the Egger test tends to have
an inflated type I error (for example, Harbord, Harris, and Sterne [2016]). Two alternative tests, the
Harbord test and the Peters test, were proposed to alleviate the type I error problem in those cases.

The Harbord regression-based test (Harbord, Egger, and Sterne 2006) corresponds to the zero-slope
test in a weighted regression of Z; /V;’s on 1/,/V}’s, where Z; is the score of the likelihood function
and Vj is the score variance. The Peters regression-based test (Peters et al. 2006) corresponds to the

zero-slope test in a weighted regression of the effect sizes, 6;’s, on the respective inverse sample
sizes, 1/n;’s. With two-sample binary data, these tests tend to perform better than the Egger test in
terms of the type I error while maintaining similar power.

The rank correlation Begg test (Begg and Mazumdar 1994) tests whether Kendall’s rank correlation
between the effect sizes and their variances equals zero. The regression-based tests tend to perform
better in terms of type I error than the rank correlation test. This test is provided mainly for
completeness.

See Harbord, Harris, and Sterne (2016) and Steichen (2016) for more details about these tests.
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As we discussed in [META] meta funnelplot, the presence of between-study heterogeneity may
affect the symmetry of a funnel plot. Thus, any statistical method based on the funnel plot will
also be affected (Sutton 2009). To account for the between-study heterogeneity, the regression-based
tests can be extended to incorporate moderators that may help explain the heterogeneity (Sterne and
Egger 2005).

The traditional version of the regression-based tests used a multiplicative fixed-effects meta-
regression to account for residual heterogeneity (see Introduction of [META] meta regress). In addition
to adjusting for moderators, a random-effects meta-regression is considered a better alternative to
account for residual heterogeneity.

Ioannidis and Trikalinos (2007) provide the following recommendations for when it is appropriate
to use small-study tests: a) the number of studies should be greater than 10; b) there should be at
least one study with a statistically significant result; c) there should be no significant heterogeneity
(I? < 50%); and d) the ratio of the maximum to minimum variances across studies should be larger
than 4; that is, max ({3]2- szl) / min ({5]2- 1K:1) > 4. If a) is violated, the tests may have low power.
If ¢) is violated, the asymmetry of the funnel plot may be induced by between-study heterogeneity
rather than publication bias. If d) is violated, the funnel plot will look more like a horizontal line
than an inverted funnel, and the funnel-asymmetry tests will have an inflated type I error. Also see
Sterne et al. (2011) for details.

The results of the tests of small-study effects should be interpreted with caution. In the presence
of small-study effects, apart from publication bias, other reasons should also be explored to explain
the presence of small-study effects. If small-study effects are not detected by a test, their existence
should not be ruled out because the tests tend to have low power.

Also see [META] meta trimfill for assessing the impact of publication bias on the results.

Using meta bias

meta bias performs tests for small-study effects. These tests are also known as the tests for
funnel-plot asymmetry and tests for publication bias. You can choose from three regression-based
tests: the Egger test (option egger), the Harbord test for two-sample binary data with effect sizes
log odds-ratio and log risk-ratio (option harbord), and the Peters test for log odds-ratios (option
peters). You can also perform the Begg nonparametric rank correlation test (option begg), but this
test is no longer recommended in the meta-analysis literature.

Next, we describe the features that are relevant only to the regression-based tests. These tests are
based on meta-regression of effect sizes and their measures of precision.

The default meta-analysis model (and method) are as declared by meta set or meta esize; see
Declaring a meta-analysis model in [META] meta data. You can change the defaults by specifying
one of options random(), common(), or fixed().

Because the regression-based tests use meta-regression, many of the options of meta regress (see
[META] meta regress) apply to meta bias as well. For example, you can specify that a multiplicative
meta-regression be used by the test with option multiplicative. And you can specify to use the
t test instead of a z test for inference with option tdistribution.

The regression-based tests support the traditional option, which specifies that the tests be
performed as originally published. This option is a shortcut for fixed, multiplicative, and
tdistribution.

To account for between-study heterogeneity when checking for publication bias, you can specify
moderators with the regression-based tests.
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Examples of using meta bias

Recall the pupil 1Q data (Raudenbush and Bryk 1985; Raudenbush 1984) described in Effects of
teacher expectancy on pupil IQ (pupiliq.dta) of [META] meta. Here we will use its declared version
and will focus on the demonstration of various options of meta bias and explanation of its output.

. use https://www.stata-press.com/data/r18/pupiligset
(Effects of teacher expectancy on pupil IQ; set with -meta set-)

. meta query, short
-> meta set stdmdiff se , studylabel(studylbl) eslabel(Std. mean diff.)

Effect-size label: Std. mean diff.
Effect-size type: Generic
Effect size: stdmdiff
Std. err.: se
Model: Random effects
Method: REML

From the meta summary, our data were declared by using meta set with variables stdmdiff and se
specifying the effect sizes and their standard errors, respectively. The declared meta-analysis model
is the default random-effects model with the REML estimation method.

Examples are presented under the following headings:

Example 1: Small-study effects due to a confounding moderator
Example 2: Traditional tests and detailed output
Example 3: Harbord’s test for small-study effects

> Example 1: Small-study effects due to a confounding moderator

Our main focus is on investigating the potential presence of small-study effects by using a
regression-based test. Because we are working with continuous data, we will use the Egger test.

. meta bias, egger
Effect-size label: Std. mean diff.
Effect size: stdmdiff
Std. err.: se
Regression-based Egger test for small-study effects
Random-effects model
Method: REML

HO: betal = 0; no small-study effects

betal = 1.83

SE of betal = 0.724
z = 2.53

Prob > |z| = 0.0115

From the output header, the regression-based test uses the declared random-effects model with REML
estimation to account for residual heterogeneity. The estimated slope, (1, is 1.83 with a standard
error of 0.724, giving a test statistic of z = 2.53 and a p-value of 0.0115. This means that there is
some evidence of small-study effects.

In example 9 of [META] meta summarize, we used subgroup-analysis on binary variable weekl,
which records whether teachers had prior contact with students for more than 1 week or for 1 week
or less, to account for between-study heterogeneity. It explained most of the heterogeneity present
among the effect sizes, with generally higher effect sizes in the low contact group.

Moderators that can explain a substantial amount of the heterogeneity should be included in the
regression-based test as a covariate. By properly accounting for heterogeneity through the inclusion
of weekl, we can test for small-study effects due to reasons other than heterogeneity. We include
factor variable week1 as a moderator as follows:
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. meta bias i.weekl, egger
Effect-size label: Std. mean diff.
Effect size: stdmdiff
Std. err.: se
Regression-based Egger test for small-study effects
Random-effects model
Method: REML
Moderators: weekl

HO: betal = 0; no small-study effects

betal = 0.30

SE of betal = 0.729
z = 0.41

Prob > |z| = 0.6839

Now that we have accounted for heterogeneity through moderator week1, the Egger test statistic
is 0.41 with a p-value of 0.6839. Therefore, we have strong evidence to say that the presence of
small-study effects was the result of heterogeneity induced by teacher-student prior contact time.

d

> Example 2: Traditional tests and detailed output

For illustration, we perform the traditional version of the Egger regression-based test by specifying
the traditional option. We also use the detail option to report the meta-regression results used
to construct the Egger test.

. meta bias, egger traditional detail

Effect-size label: Std. mean diff.
Effect size: stdmdiff
Std. err.: se

Fixed-effects meta-regression Number of obs = 19
Error: Multiplicative Dispersion phi = 1.69
Method: Inverse-variance Model F(1,17) = 4.17
Prob > F = 0.0571

_meta_es Coefficient Std. err. t P>|t] [95% conf. intervall
_meta_se 1.627717 .7975212 2.04 0.057 -.0549052 3.31034
_cons -.1797108 .126835 -1.42 0.175 -.4473093 .0878876

Test of residual homogeneity: Q_res = chi2(17) = 28.77 Prob > Q_res = 0.0367

Regression-based Egger test for small-study effects
Fixed-effects model
Method: Inverse-variance

HO: betal = 0; no small-study effects

betal = 1.63

SE of betal = 0.798
t = 2.04

Prob > [t]| = 0.0571

The traditional version also suggests the presence of small-study effects, but its p-value, 0.0571, is
larger than that from example 1.
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The results of the above command is identical to the following:

. meta regress _meta_se, fixed multiplicative tdistribution

Effect-size label: Std. mean diff.
Effect size: stdmdiff
Std. err.: se

Fixed-effects meta-regression Number of obs = 19
Error: Multiplicative Dispersion phi = 1.69
Method: Inverse-variance Model F(1,17) = 4.17
Prob > F = 0.0571

_meta_es | Coefficient Std. err. t P>|t| [95% conf. intervall
_meta_se 1.627717 .7975212 2.04 0.057 -.0549052 3.31034
_cons -.1797108 .126835 -1.42 0.175 -.4473093 .0878876

Test of residual homogeneity: Q_res = chi2(17) = 28.77 Prob > Q_res = 0.0367

The header and coefficient table from meta bias’s detailed output is identical to that produced by
meta regress (see [META] meta regress).

N

> Example 3: Harbord’s test for small-study effects

In example 1 of [META] meta funnelplot, we explored the presence of publication bias in the NSAIDS
data, which was described in Effectiveness of nonsteroidal anti-inflammatory drugs (nsaids.dta) of
[META] meta. The contour-enhanced funnel plot from example 5 of [META] meta funnelplot revealed
that the funnel-plot asymmetry was caused by the absence of small studies in the region where the tests
of the log odds-ratios equal to zero were not statistically significant. This may suggest the presence
of publication bias. We can explore this more formally by performing a test for small-study effects.

We use the declared version of the NSAIDS dataset.

. use https://www.stata-press.com/data/r18/nsaidsset, clear
(Effectiveness of nonsteroidal anti-inflammatory drugs; set with -meta esize-)

. meta query, short
-> meta esize nstreat nftreat nscontrol nfcontrol

Effect-size label: Log odds-ratio
Effect-size type: lnoratio
Effect size: _meta_es
Std. err.: _meta_se
Model: Random effects
Method: REML
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The declared effect size is log odds-ratio, so we will use the Harbord regression-based test to
investigate whether the small-study effects (or funnel-plot asymmetry) is present in these data.

. meta bias, harbord

Effect-size label: Log odds-ratio
Effect size: _meta_es
Std. err.: _meta_se

Regression-based Harbord test for small-study effects
Random-effects model
Method: REML

HO: betal = 0; no small-study effects

betal = 3.03

SE of betal = 0.741
z = 4.09

Prob > |z| = 0.0000

The p-value is less than 0.0001, so we reject the null hypothesis of no small-study effects. It is
difficult to be certain whether the small-study affects are driven by publication bias because of the
presence of substantial heterogeneity in these data (see [META] meta summarize). Note that the
regression-based test assumed an (REML) random-effects model, which accounts for heterogeneity
present among the studies. If we had access to study-level covariates for these data that could explain
some of the between-study variability, we could have specified them with meta bias.

N

Stored results

For regression-based tests, meta bias stores the following in r():

Scalars
r(betal) estimate of the main slope coefficient
r(se) standard error for the slope estimate
r(z) z statistic
r(t) t statistic
r(p) two-sided p-value
Macros
r(testtype) type of test: egger, harbord, or peters
r (model) meta-analysis model
r (method) meta-analysis estimation method
r(moderators) moderators used in regression-based tests
Matrices
r(table) regression results

For Begg’s test, meta bias stores the following in r():

Scalars
r(score) Kendall’s score estimate
r(se_score) standard error of Kendall’s score
r(z) z test statistic
r(p) two-sided p-value

Macros

r(testtype) begg
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Methods and formulas

Methods and formulas are presented under the following headings:

Regression-based tests
Egger’s linear regression test
Harbord’s test for log odds-ratios or log risk-ratios
Peters’s test for log odds-ratios

Begg’s rank correlation test

Let K be the number of studies for a given meta-analysis. For the jth study, §J denotes the
estimated effect size, and 52 denotes the effect-size (within-study) variance. The tests are applicable
to any type of effect size as long as it is asymptotically normally distributed.

For two-sample binary data, also consider the following 2 x 2 table for the jth study.

group event no event size
treatment a; b; ni; = a; + b
control cj d; Noj = ¢j + d;

The total sample size for the