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Description
mixed fits linear mixed-effects models. These models are also known as multilevel models or hier-

archical linear models. The overall error distribution of the linear mixed-effects model is assumed to be

Gaussian, and heteroskedasticity and correlations within lowest-level groups also may be modeled.

Quick start
Linear mixed-effects model of y on x with random intercepts by lev2

mixed y x || lev2:

Same as above, but perform restricted maximum-likelihood (REML) estimation instead of the default

maximum likelihood (ML) estimation

mixed y x || lev2:, reml

Same as above, but perform small-sample inference on x using the Kenward–Roger degrees of freedom

(DF) method

mixed y x || lev2:, reml dfmethod(kroger)

Add random coefficients on x
mixed y x || lev2: x

Same as above, but allow correlation between the random slopes and intercepts

mixed y x || lev2: x, covariance(unstructured)

Three-level model with random intercepts by lev2 and lev3 for lev2 nested within lev3
mixed y x || lev3: || lev2:

Crossed-effects model with two-way crossed effects by factors a and b
mixed y x || _all:R.a || b:

Menu
Statistics > Multilevel mixed-effects models > Linear regression
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Syntax
mixed depvar fe equation [ || re equation ] [ || re equation ... ] [ , options ]

where the syntax of fe equation is

[ indepvars ] [ if ] [ in ] [weight ] [ , fe options ]

and the syntax of re equation is one of the following:

for random coefficients and intercepts

levelvar: [ varlist ] [ , re options ]

for random effects among the values of a factor variable in a crossed-effects model

levelvar: R.varname [ , re options ]

levelvar is a variable identifying the group structure for the random effects at that level or is all repre-

senting one group comprising all observations.

fe options Description

Model

noconstant suppress constant term from the fixed-effects equation

constraints(constraints)apply specified linear constraints

re options Description

Model

covariance(vartype) variance–covariance structure of the random effects

noconstant suppress constant term from the random-effects equation

fweight(exp) frequency weights at higher levels

pweight(exp) sampling weights at higher levels

collinear keep collinear variables

https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/memixed.pdf#memixedSyntaxoptions
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.4inrange
https://www.stata.com/manuals/memixed.pdf#memixedSyntaxweight
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptionsOptionsconstraintsdescrip
https://www.stata.com/manuals/memixed.pdf#memixedSyntaxvartype
https://www.stata.com/manuals/u13.pdf#u13Functionsandexpressions
https://www.stata.com/manuals/u13.pdf#u13Functionsandexpressions
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options Description

Model

mle fit model via maximum likelihood; the default

reml fit model via restricted maximum likelihood

dfmethod(df method) specify method for computing DF of a 𝑡 distribution
residuals(restype[ , resopts ]) structure of residual errors

pwscale(scale method) control scaling of sampling weights in two-level models

SE/Robust

vce(vcetype) vcetype may be oim, robust, or cluster clustvar; types other
than oim may not be combined with dfmethod()

Reporting

level(#) set confidence level; default is level(95)
variance show random-effects and residual-error parameter estimates as

variances and covariances; the default

stddeviations show random-effects and residual-error parameter estimates as
standard deviations and correlations

dftable(dftable) specify contents of fixed-effects table; requires dfmethod() at
estimation

noretable suppress random-effects table

nofetable suppress fixed-effects table

estmetric show parameter estimates as stored in e(b)
noheader suppress output header

nogroup suppress table summarizing groups

nostderr do not estimate standard errors of random-effects parameters

nocnsreport do not display constraints

display options control columns and column formats, row spacing, line width,
display of omitted variables and base and empty cells, and
factor-variable labeling

EM options

emiterate(#) number of EM iterations; default is emiterate(20)
emtolerance(#) EM convergence tolerance; default is emtolerance(1e-10)
emonly fit model exclusively using EM

emlog show EM iteration log

emdots show EM iterations as dots

Maximization

maximize options control the maximization process; seldom used

matsqrt parameterize variance components using matrix square roots;
the default

matlog parameterize variance components using matrix logarithms

small replay small-sample inference results

coeflegend display legend instead of statistics

https://www.stata.com/manuals/memixed.pdf#memixedSyntaxdfm
https://www.stata.com/manuals/memixed.pdf#memixedSyntaxrestype
https://www.stata.com/manuals/memixed.pdf#memixedOptionsresopts
https://www.stata.com/manuals/memixed.pdf#memixedSyntaxscm
https://www.stata.com/manuals/r.pdf#rvce_option
https://www.stata.com/manuals/memixed.pdf#memixedSyntaxdftable
https://www.stata.com/manuals/memixed.pdf#memixedOptionsdisplay_options
https://www.stata.com/manuals/memixed.pdf#memixedOptionsmaxopts
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vartype Description

independent one unique variance parameter per random effect, all covariances 0;
the default unless the R. notation is used

exchangeable equal variances for random effects, and one common pairwise
covariance

identity equal variances for random effects, all covariances 0;
the default if the R. notation is used

unstructured all variances and covariances to be distinctly estimated

df method Description

residual residual degrees of freedom, 𝑛 − rank(𝑋)
repeated repeated-measures ANOVA

anova ANOVA

satterthwaite[ , dfopts ] generalized Satterthwaite approximation; REML estimation only

kroger[ , dfopts ] Kenward–Roger; REML estimation only

restype Description

independent i.i.d. Gaussian within-group errors with one common variance;
the default

exchangeable within-group errors with equal variances and one common
covariance

ar [ # ] within-group errors with autoregressive (AR) structure of order #,
AR(#); ar 1 is implied by ar

ma [ # ] within-group errors with moving-average (MA) structure of order #,
MA(#); ma 1 is implied by ma

unstructured within-group errors with distinct variances and covariances

banded [ # ] within-group errors with distinct variances and covariances within
first # off-diagonals; banded implies all matrix bands
(unstructured)

toeplitz [ # ] within-group errors have Toeplitz structure of order #;
toeplitz implies that all matrix off-diagonals be estimated

exponential within-group errors with an exponential function for the pairwise
correlations and one overall error variance

scale method Description

size scale first-level (observation-level) weights to sum to the sample size
of their corresponding second-level cluster

effective scale first-level weights to sum to the effective sample size of their
corresponding second-level cluster

gk set second-level weights to the cluster averages of the products of
the weights at both levels and first-level weights to 1

https://www.stata.com/manuals/memixed.pdf#memixedOptionsdfopts
https://www.stata.com/manuals/memixed.pdf#memixedOptionsdfopts
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dftable Description

default test statistics, 𝑝-values, and confidence intervals; the default
ci DFs and confidence intervals

pvalue DFs, test statistics, and 𝑝-values

indepvars and varlist may contain factor variables; see [U] 11.4.3 Factor variables.

depvar, indepvars, and varlist may contain time-series operators; see [U] 11.4.4 Time-series varlists.

bayes, bootstrap, by, collect, jackknife, mi estimate, rolling, and statsby are allowed; see [U] 11.1.10 Prefix
commands. For more details, see [BAYES] bayes: mixed.

mi estimate is not allowed if dfmethod() is specified.

Weights are not allowed with the bootstrap prefix; see [R] bootstrap.

pweights and fweights are allowed; see [U] 11.1.6 weight. However, no weights are allowed if either option reml or option
dfmethod() is specified.

small and coeflegend do not appear in the dialog box.

See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options

� � �
Model �

noconstant suppresses the constant (intercept) term and may be specified for the fixed-effects equation

and for any of or all the random-effects equations.

covariance(vartype) specifies the structure of the covariance matrix for the random effects and may

be specified for each random-effects equation. vartype is one of the following: independent,
exchangeable, identity, or unstructured.

independent allows for a distinct variance for each random effect within a random-effects equation

and assumes that all covariances are 0.

exchangeable specifies one common variance for all random effects and one common pairwise

covariance.

identity is short for “multiple of the identity”; that is, all variances are equal and all covariances

are 0.

unstructured allows for all variances and covariances to be distinct. If an equation consists of 𝑝
random-effects terms, the unstructured covariance matrix will have 𝑝(𝑝+1)/2 unique parameters.

covariance(independent) is the default, except when the R. notation is used, in which case

covariance(identity) is the default and only covariance(identity) and covariance(exchangeable)
are allowed.

fweight(exp) specifies frequency weights at higher levels in a multilevel model, whereas frequency

weights at the first level (the observation level) are specified in the usual manner, for example,

[fw=fwtvar1]. exp can be any valid Stata variable, and you can specify fweight() at levels two

and higher of a multilevel model. For example, in the two-level model

. mixed fixed_portion [fw = wt1] || school: ..., fweight(wt2) ...

the variable wt1 would hold the first-level (the observation-level) frequency weights, and wt2 would

hold the second-level (the school-level) frequency weights.

https://www.stata.com/manuals/u11.pdf#u11.4.3Factorvariables
https://www.stata.com/manuals/u11.pdf#u11.4.4Time-seriesvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.10Prefixcommands
https://www.stata.com/manuals/u11.pdf#u11.1.10Prefixcommands
https://www.stata.com/manuals/bayesbayesmixed.pdf#bayesbayesmixed
https://www.stata.com/manuals/rbootstrap.pdf#rbootstrap
https://www.stata.com/manuals/u11.pdf#u11.1.6weight
https://www.stata.com/manuals/u20.pdf#u20Estimationandpostestimationcommands
https://www.stata.com/manuals/u13.pdf#u13Functionsandexpressions
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pweight(exp) specifies sampling weights at higher levels in a multilevel model, whereas sampling

weights at the first level (the observation level) are specified in the usual manner, for example,

[pw=pwtvar1]. exp can be any valid Stata variable, and you can specify pweight() at levels two

and higher of a multilevel model. For example, in the two-level model

. mixed fixed_portion [pw = wt1] || school: ..., pweight(wt2) ...

variable wt1 would hold the first-level (the observation-level) sampling weights, and wt2 would hold

the second-level (the school-level) sampling weights.

See Survey data in Remarks and examples below for more information regarding the use of sampling

weights in multilevel models.

mle and reml specify the statistical method for fitting the model.

mle, the default, specifies that the model be fit using ML. Options dfmethod(satterthwaite) and

dfmethod(kroger) are not supported under ML estimation.

reml specifies that the model be fit using REML, also known as residual maximum likelihood.

dfmethod(df method) requests that reported hypothesis tests for the fixed effects (coefficients) use a

small-sample adjustment. By default, inference is based on a large-sample approximation of the sam-

pling distributions of the test statistics by normal and 𝜒2 distributions. Caution should be exercised

when choosing a DF method; see Small-sample inference for fixed effects in Remarks and examples

for details.

When dfmethod(df method) is specified, the sampling distributions of the test statistics are approx-

imated by a 𝑡 distribution, according to the requested method for computing the DF. df method is one

of the following: residual, repeated, anova, satterthwaite, or kroger.

residual uses the residual degrees of freedom, 𝑛 − rank(𝑋), as the DF for all tests of fixed effects.

For a linear model without random effects with independent and identically distributed (i.i.d.)

errors, the distributions of the test statistics for fixed effects are 𝑡 distributions with the residual

DF. For other mixed-effects models, this method typically leads to poor approximations of the

actual sampling distributions of the test statistics.

repeated uses the repeated-measures ANOVAmethod for computing the DF. It is used with balanced

repeated-measures designs with spherical correlation error structures. It partitions the residual

degrees of freedom into the between-subject degrees of freedom and the within-subject degrees of

freedom. repeated is supported only with two-level models. For more complex mixed-effects

models or with unbalanced data, this method typically leads to poor approximations of the actual

sampling distributions of the test statistics.

anova uses the traditionalANOVAmethod for computing the DF. According to this method, the DF for

a test of a fixed effect of a given variable depends on whether that variable is also included in any

of the random-effects equations. For traditionalANOVAmodels with balanced designs, this method

provides exact sampling distributions of the test statistics. For more complexmixed-effects models

or with unbalanced data, this method typically leads to poor approximations of the actual sampling

distributions of the test statistics.

satterthwaite[ , dfopts ] implements a generalization of the Satterthwaite (1946) approximation

of the unknown sampling distributions of test statistics for complex linear mixed-effect models.

This method is supported only with REML estimation.

https://www.stata.com/manuals/u13.pdf#u13Functionsandexpressions
https://www.stata.com/manuals/memixed.pdf#memixedRemarksandexamplesSurveydata
https://www.stata.com/manuals/memixed.pdf#memixedRemarksandexamplesSmall-sampleinferenceforfixedeffects
https://www.stata.com/manuals/memixed.pdf#memixedOptionsdfopts
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kroger[ , dfopts ] implements the Kenward and Roger (1997) method, which is designed to approx-
imate unknown sampling distributions of test statistics for complex linear mixed-effects models.

This method is supported only with REML estimation.

dfopts is either eim or oim.

eim specifies that the expected information matrix be used to compute Satterthwaite or Ken-

ward–Roger degrees of freedom. This is the default.

oim specifies that the observed information matrix be used to compute Satterthwaite or Ken-

ward–Roger degrees of freedom.

Residual, repeated, and ANOVAmethods are suitable only when the sampling distributions of the test

statistics are known to be 𝑡 or 𝐹. This is usually only known for certain classes of linear mixed-effects
models with simple covariance structures and when data are balanced. These methods are available

with both ML and REML estimation.

For unbalanced data or balanced data with complicated covariance structures, the sampling distri-

butions of the test statistics are unknown and can only be approximated. The Satterthwaite and

Kenward–Roger methods provide approximations to the distributions in these cases. According

to Schaalje, McBride, and Fellingham (2002), the Kenward–Roger method should, in general, be

preferred to the Satterthwaite method. However, there are situations in which the two methods are

expected to perform similarly, such as with compound symmetry covariance structures. The Ken-

ward–Roger method is more computationally demanding than the Satterthwaite method. Both meth-

ods are available only with REML estimation. See Small-sample inference for fixed effects in Remarks

and examples for examples and more detailed descriptions of the DF methods.

dfmethod() may not be combined with weighted estimation, the mi estimate prefix, or vce(),
unless it is the default vce(oim).

residuals(restype[ , resopts ]) specifies the structure of the residual errors within the lowest-level

groups (the second level of a multilevel model with the observations comprising the first level)

of the linear mixed model. For example, if you are modeling random effects for classes nested

within schools, then residuals() refers to the residual variance–covariance structure of the ob-

servations within classes, the lowest-level groups. restype is one of the following: independent,
exchangeable, ar [ # ], ma [ # ], unstructured, banded [ # ], toeplitz [ # ], or exponential.

independent, the default, specifies that all residuals be i.i.d. Gaussian with one common variance.
When combined with by(varname), independence is still assumed, but you estimate a distinct

variance for each level of varname. Unlike with the structures described below, varname does not

need to be constant within groups.

exchangeable estimates two parameters, one common within-group variance and one common pair-
wise covariance. When combined with by(varname), these two parameters are distinctly esti-

mated for each level of varname. Because you are modeling a within-group covariance, varname

must be constant within lowest-level groups.

ar [ # ] assumes that within-group errors have an autoregressive (AR) structure of order #; ar 1 is the

default. The t(varname) option is required, where varname is an integer-valued time variable used

to order the observations within groups and to determine the lags between successive observations.

Any nonconsecutive time values will be treated as gaps. For this structure, # + 1 parameters are

estimated (# AR coefficients and one overall error variance). restype ar may be combined with

by(varname), but varname must be constant within groups.

https://www.stata.com/manuals/memixed.pdf#memixedOptionsdfopts
https://www.stata.com/manuals/memixed.pdf#memixedRemarksandexamplesSmall-sampleinferenceforfixedeffects
https://www.stata.com/manuals/memixed.pdf#memixedOptionsresopts
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
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ma [ # ] assumes that within-group errors have a moving-average (MA) structure of order #; ma 1 is the

default. The t(varname) option is required, where varname is an integer-valued time variable used

to order the observations within groups and to determine the lags between successive observations.

Any nonconsecutive time values will be treated as gaps. For this structure, # + 1 parameters are

estimated (# MA coefficients and one overall error variance). restype ma may be combined with

by(varname), but varname must be constant within groups.

unstructured is themost general structure; it estimates distinct variances for eachwithin-group error
and distinct covariances for each within-group error pair. The t(varname) option is required,

where varname is a nonnegative-integer–valued variable that identifies the observations within

each group. The groups may be unbalanced in that not all levels of t() need to be observed within

every group, but you may not have repeated t() values within any particular group. When you

have 𝑝 levels of t(), then 𝑝(𝑝 + 1)/2 parameters are estimated. restype unstructured may be

combined with by(varname), but varname must be constant within groups.

banded [ # ] is a special case of unstructured that restricts estimation to the covariances within the

first # off-diagonals and sets the covariances outside this band to 0. The t(varname) option is

required, where varname is a nonnegative-integer–valued variable that identifies the observations

within each group. # is an integer between 0 and 𝑝 −1, where 𝑝 is the number of levels of t(). By
default, # is 𝑝 − 1; that is, all elements of the covariance matrix are estimated. When # is 0, only

the diagonal elements of the covariance matrix are estimated. restype banded may be combined

with by(varname), but varname must be constant within groups.

toeplitz [ # ] assumes that within-group errors have Toeplitz structure of order #, for which corre-
lations are constant with respect to time lags less than or equal to # and are 0 for lags greater than

#. The t(varname) option is required, where varname is an integer-valued time variable used to

order the observations within groups and to determine the lags between successive observations.

# is an integer between 1 and the maximum observed lag (the default). Any nonconsecutive time

values will be treated as gaps. For this structure, #+1 parameters are estimated (# correlations and

one overall error variance). restype toeplitz may be combined with by(varname), but varname

must be constant within groups.

exponential is a generalization of the AR covariance model that allows for unequally spaced and

noninteger time values. The t(varname) option is required, where varname is real-valued. For

the exponential covariance model, the correlation between two errors is the parameter 𝜌, raised
to a power equal to the absolute value of the difference between the t() values for those errors.

For this structure, two parameters are estimated (the correlation parameter 𝜌 and one overall error

variance). restype exponential may be combined with by(varname), but varname must be

constant within groups.

resopts are by(varname) and t(varname).

by(varname) is for usewithin the residuals() option and specifies that a set of distinct residual-
error parameters be estimated for each level of varname. In other words, you use by() to model
heteroskedasticity.

t(varname) is for use within the residuals() option to specify a time variable for the ar,
ma, toeplitz, and exponential structures, or to identify the observations when restype is

unstructured or banded.

pwscale(scale method) controls how sampling weights (if specified) are scaled in two-level models.

scale method is one of the following: size, effective, or gk.

https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
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size specifies that first-level (observation-level) weights be scaled so that they sum to the sample size

of their corresponding second-level cluster. Second-level sampling weights are left unchanged.

effective specifies that first-level weights be scaled so that they sum to the effective sample size of

their corresponding second-level cluster. Second-level sampling weights are left unchanged.

gk specifies the Graubard and Korn (1996) method. Under this method, second-level weights are set

to the cluster averages of the products of the weights at both levels, and first-level weights are then

set equal to 1.

pwscale() is supported only with two-level models. See Survey data in Remarks and examples

below for more details on using pwscale(). pwscale() may not be combined with the dfmethod()
option.

constraints(constraints); see [R] Estimation options.

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived from

asymptotic theory (oim), that are robust to some kinds of misspecification (robust), and that allow for

intragroup correlation (cluster clustvar); see [R] vce option. If vce(robust) is specified, robust

variances are clustered at the highest level in the multilevel model.

vce(robust) and vce(cluster clustvar) are not supported with REML estimation. Only vce(oim)
is allowed in combination with dfmethod().

� � �
Reporting �

level(#); see [R] Estimation options.

variance, the default, displays the random-effects and residual-error parameter estimates as variances
and covariances.

stddeviations displays the random-effects and residual-error parameter estimates as standard devia-

tions and correlations.

dftable(dftable) specifies the contents of the fixed-effects table for small-sample inference when

dfmethod() is used during estimation. dftable is one of the following: default, ci, or pvalue.

default displays the default standard fixed-effects table that contains test statistics, 𝑝-values, and
confidence intervals.

ci displays the fixed-effects table in which the columns containing statistics and 𝑝-values are replaced
with a column containing coefficient-specific DFs. Confidence intervals are also displayed.

pvalue displays the fixed-effects table that includes a column containing DFs with the standard

columns containing test statistics and 𝑝-values. Confidence intervals are not displayed.
noretable suppresses the random-effects table from the output.

nofetable suppresses the fixed-effects table from the output.

estmetric displays all parameter estimates in one table using the metric in which they are stored in

e(b). The results are stored in the same metric regardless of the parameterization of the variance

components, matsqrt or matlog, used at estimation time. Random-effects parameter estimates are
stored as log standard-deviations and hyperbolic arctangents of correlations, with equation names

that organize them by model level. Residual-variance parameter estimates are stored as log standard-

deviations and, when applicable, as hyperbolic arctangents of correlations. Note that fixed-effects

estimates are always stored and displayed in the same metric.

https://www.stata.com/manuals/memixed.pdf#memixedRemarksandexamplesSurveydata
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
https://www.stata.com/manuals/rvce_option.pdf#rvce_option
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
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noheader suppresses the output header, either at estimation or upon replay.

nogroup suppresses the display of group summary information (number of groups, average group size,

minimum, and maximum) from the output header.

nostderr prevents mixed from calculating standard errors for the estimated random-effects parameters,

although standard errors are still provided for the fixed-effects parameters. Specifying this option will

speed up computation times. nostderr is available only when residuals are modeled as independent

with constant variance.

nocnsreport; see [R] Estimation options.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] Estimation options.

� � �
EM options �

These options control the expectation-maximization (EM) iterations that take place before estimation

switches to a gradient-basedmethod. When residuals are modeled as independent with constant variance,

EM will either converge to the solution or bring parameter estimates close to the solution. For other

residual structures or for weighted estimation, EM is used to obtain starting values.

emiterate(#) specifies the number of EM iterations to perform. The default is emiterate(20).

emtolerance(#) specifies the convergence tolerance for the EM algorithm. The default is

emtolerance(1e-10). EM iterations will be halted once the log (restricted) likelihood changes

by a relative amount less than #. At that point, optimization switches to a gradient-based method,

unless emonly is specified, in which case maximization stops.

emonly specifies that the likelihood be maximized exclusively using EM. The advantage of specify-

ing emonly is that EM iterations are typically much faster than those for gradient-based methods.

The disadvantages are that EM iterations can be slow to converge (if at all) and that EM provides

no facility for estimating standard errors for the random-effects parameters. emonly is available

only with unweighted estimation and when residuals are modeled as independent with constant

variance.

emlog specifies that the EM iteration log be shown. The EM iteration log is, by default, not displayed

unless the emonly option is specified.

emdots specifies that the EM iterations be shown as dots. This option can be convenient because the

EM algorithm may require many iterations to converge.

� � �
Maximization �

maximize options: difficult, technique(algorithm spec), iterate(#), [no]log, trace,
gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), and nonrtolerance; see [R] Maximize. Those that require special mention for

mixed are listed below.

For the technique() option, the default is technique(nr). The bhhh algorithm may not be speci-

fied.

matsqrt (the default), during optimization, parameterizes variance components by using the matrix

square roots of the variance–covariance matrices formed by these components at each model level.

matlog, during optimization, parameterizes variance components by using the matrix logarithms of the
variance–covariance matrices formed by these components at each model level.

https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
https://www.stata.com/manuals/d.pdf#dformat
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
https://www.stata.com/manuals/rmaximize.pdf#rMaximizeSyntaxalgorithm_spec
https://www.stata.com/manuals/rmaximize.pdf#rMaximize
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The matsqrt parameterization ensures that variance–covariance matrices are positive semidefinite,

while matlog ensures matrices that are positive definite. For most problems, the matrix square root is

more stable near the boundary of the parameter space. However, if convergence is problematic, one

option may be to try the alternate matlog parameterization. When convergence is not an issue, both

parameterizations yield equivalent results.

The following options are available with mixed but are not shown in the dialog box:

small replays previously obtained small-sample results. This option is available only upon replay

and requires that the dfmethod() option be used during estimation. small is equivalent to

dftable(default) upon replay.

collinear specifies that mixed not omit collinear variables from the random-effects equation. Usually,

there is no reason to leave collinear variables in place; in fact, doing so usually causes the estimation

to fail because of the matrix singularity caused by the collinearity. However, with certain models

(for example, a random-effects model with a full set of contrasts), the variables may be collinear, yet

the model is fully identified because of restrictions on the random-effects covariance structure. In

such cases, using the collinear option allows the estimation to take place with the random-effects

equation intact.

coeflegend; see [R] Estimation options.

Remarks and examples
Remarks are presented under the following headings:

Introduction
Two-level models
Covariance structures
Likelihood versus restricted likelihood
Three-level models
Blocked-diagonal covariance structures
Heteroskedastic random effects
Heteroskedastic residual errors
Other residual-error structures
Crossed-effects models
Diagnosing convergence problems
Survey data
Small-sample inference for fixed effects

Introduction
Linear mixed models are models containing both fixed effects and random effects. They are a gener-

alization of linear regression allowing for the inclusion of random deviations (effects) other than those

associated with the overall error term. In matrix notation,

y = Xβ + Zu+ ε (1)

where y is the 𝑛×1 vector of responses, X is an 𝑛×𝑝 design/covariate matrix for the fixed effects β, and
Z is the 𝑛 × 𝑞 design/covariate matrix for the random effects u. The 𝑛 × 1 vector of errors ε is assumed
to be multivariate normal with mean 0 and variance matrix 𝜎2

𝜖R.

https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
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The fixed portion of (1), Xβ, is analogous to the linear predictor from a standard OLS regression

model with β being the regression coefficients to be estimated. For the random portion of (1), Zu + ε,
we assume that u has variance–covariance matrix G and that u is orthogonal to ε so that

Var [u
ε
] = [G 0

0 𝜎2
𝜖R

]

The random effects u are not directly estimated (although they may be predicted), but instead are char-

acterized by the elements ofG, known as variance components, that are estimated along with the overall

residual variance 𝜎2
𝜖 and the residual-variance parameters that are contained within R.

The general forms of the design matrices X and Z allow estimation for a broad class of linear models:

blocked designs, split-plot designs, growth curves, multilevel or hierarchical designs, etc. They also

allow a flexible method of modeling within-cluster correlation. Subjects within the same cluster can

be correlated as a result of a shared random intercept, or through a shared random slope on (say) age,

or both. The general specification of G also provides additional flexibility—the random intercept and

random slope could themselves be modeled as independent, or correlated, or independent with equal

variances, and so forth. The general structure of R also allows for residual errors to be heteroskedastic

and correlated, and allows flexibility in exactly how these characteristics can be modeled.

Comprehensive treatments of mixed models are provided by, among others, Searle, Casella, and Mc-

Culloch (1992); McCulloch, Searle, and Neuhaus (2008); Verbeke and Molenberghs (2000); Rauden-

bush and Bryk (2002); and Pinheiro and Bates (2000). In particular, chapter 2 of Searle, Casella, and

McCulloch (1992) provides an excellent history.

The key to fitting mixed models lies in estimating the variance components, and for that there exist

many methods. Most of the early literature in mixed models dealt with estimating variance components

in ANOVA models. For simple models with balanced data, estimating variance components amounts

to solving a system of equations obtained by setting expected mean-squares expressions equal to their

observed counterparts. Much of the work in extending theANOVAmethod to unbalanced data for general

ANOVA designs is due to Henderson (1953).

The ANOVA method, however, has its shortcomings. Among these is a lack of uniqueness in that

alternative, unbiased estimates of variance components could be derived using other quadratic forms

of the data in place of observed mean squares (Searle, Casella, and McCulloch 1992, 38–39). As a

result, ANOVAmethods gave way to more modern methods, such as minimum norm quadratic unbiased

estimation (MINQUE) and minimum variance quadratic unbiased estimation (MIVQUE); see Rao (1973)

for MINQUE and LaMotte (1973) for MIVQUE. Both methods involve finding optimal quadratic forms of

the data that are unbiased for the variance components.

The most popular methods, however, are ML and REML, and these are the two methods that are sup-

ported by mixed. The ML estimates are based on the usual application of likelihood theory, given the

distributional assumptions of the model. The basic idea behind REML (Thompson 1962) is that you can

form a set of linear contrasts of the response that do not depend on the fixed effects β, but instead depend
only on the variance components to be estimated. You then apply MLmethods by using the distribution

of the linear contrasts to form the likelihood.

Returning to (1): in clustered-data situations, it is convenient not to consider all 𝑛 observations at

once but instead to organize the mixed model as a series of 𝑀 independent groups or clusters

y𝑗 = X𝑗β + Z𝑗u𝑗 + ε𝑗 (2)
for 𝑗 = 1, . . . , 𝑀, with cluster 𝑗 consisting of 𝑛𝑗 observations. The response y𝑗 comprises the rows of

y corresponding with the 𝑗th cluster, with X𝑗 and ε𝑗 defined analogously. The random effects u𝑗 can

now be thought of as 𝑀 realizations of a 𝑞 × 1 vector that is normally distributed with mean 0 and 𝑞 × 𝑞

https://www.stata.com/manuals/memixed.pdf#memixedRemarksandexampleseq1
https://www.stata.com/manuals/memixed.pdf#memixedRemarksandexampleseq1
https://www.stata.com/manuals/memixed.pdf#memixedRemarksandexampleseq1
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variance matrix 𝚺. The matrix Z𝑖 is the 𝑛𝑗 × 𝑞 design matrix for the 𝑗th cluster random effects. Relating

this to (1), note that

Z =
⎡
⎢⎢
⎣

Z1 0 · · · 0

0 Z2 · · · 0

⋮ ⋮ ⋱ ⋮
0 0 0 Z𝑀

⎤
⎥⎥
⎦

; u = ⎡⎢
⎣

u1
⋮
u𝑀

⎤⎥
⎦

; G = I𝑀 ⊗ 𝚺; R = I𝑀 ⊗ 𝚲 (3)

The mixed-model formulation (2) is from Laird and Ware (1982) and offers two key advantages.

First, it makes specifications of random-effects terms easier. If the clusters are schools, you can simply

specify a random effect at the school level, as opposed to thinking of what a school-level random effect

would mean when all the data are considered as a whole (if it helps, think Kronecker products). Second,

representing a mixed-model with (2) generalizes easily to more than one set of random effects. For

example, if classes are nested within schools, then (2) can be generalized to allow random effects at both

the school and the class-within-school levels. This we demonstrate later.

In the sections that follow, we assume that residuals are independent with constant variance; that is, in

(3) we treat 𝚲 equal to the identity matrix and limit ourselves to estimating one overall residual variance,

𝜎2
𝜖 . Beginning in Heteroskedastic residual errors, we relax this assumption.

Two-level models
We begin with a simple application of (2) as a two-level model, because a one-level linear model, by

our terminology, is just standard OLS regression.

Example 1: Two-level random intercept model
Consider a longitudinal dataset, used by both Ruppert, Wand, and Carroll (2003) and Diggle

et al. (2002), consisting of weight measurements of 48 pigs on 9 successive weeks. Pigs are identi-

fied by the variable id. Below is a plot of the growth curves for the first 10 pigs.

. use https://www.stata-press.com/data/r19/pig
(Longitudinal analysis of pig weights)
. twoway connected weight week if id<=10, connect(L)
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https://www.stata.com/manuals/memixed.pdf#memixedRemarksandexampleseq1
https://www.stata.com/manuals/memixed.pdf#memixedRemarksandexampleseq2
https://www.stata.com/manuals/memixed.pdf#memixedRemarksandexampleseq2
https://www.stata.com/manuals/memixed.pdf#memixedRemarksandexampleseq2
https://www.stata.com/manuals/memixed.pdf#memixedRemarksandexampleseq3
https://www.stata.com/manuals/memixed.pdf#memixedRemarksandexamplesHeteroskedasticresidualerrors
https://www.stata.com/manuals/memixed.pdf#memixedRemarksandexampleseq2
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It seems clear that each pig experiences a linear trend in growth and that overall weight measurements

vary from pig to pig. Because we are not really interested in these particular 48 pigs per se, we instead

treat them as a random sample from a larger population andmodel the between-pig variability as a random

effect, or in the terminology of (2), as a random-intercept term at the pig level. We thus wish to fit the

model

weight𝑖𝑗 = 𝛽0 + 𝛽1week𝑖𝑗 + 𝑢𝑗 + 𝜖𝑖𝑗 (4)

for 𝑖 = 1, . . . , 9 weeks and 𝑗 = 1, . . . , 48 pigs. The fixed portion of the model, 𝛽0 + 𝛽1week𝑖𝑗, simply

states that we want one overall regression line representing the population average. The random effect 𝑢𝑗
serves to shift this regression line up or down according to each pig. Because the random effects occur

at the pig level (id), we fit the model by typing

. mixed weight week || id:
Performing EM optimization ...
Performing gradient-based optimization:
Iteration 0: Log likelihood = -1014.9268
Iteration 1: Log likelihood = -1014.9268
Computing standard errors ...
Mixed-effects ML regression Number of obs = 432
Group variable: id Number of groups = 48

Obs per group:
min = 9
avg = 9.0
max = 9

Wald chi2(1) = 25337.49
Log likelihood = -1014.9268 Prob > chi2 = 0.0000

weight Coefficient Std. err. z P>|z| [95% conf. interval]

week 6.209896 .0390124 159.18 0.000 6.133433 6.286359
_cons 19.35561 .5974059 32.40 0.000 18.18472 20.52651

Random-effects parameters Estimate Std. err. [95% conf. interval]

id: Identity
var(_cons) 14.81751 3.124225 9.801716 22.40002

var(Residual) 4.383264 .3163348 3.805112 5.04926

LR test vs. linear model: chibar2(01) = 472.65 Prob >= chibar2 = 0.0000

Notes:

1. By typing weight week, we specified the response, weight, and the fixed portion of the model in

the same way that we would if we were using regress or any other estimation command. Our fixed

effects are a coefficient on week and a constant term.

2. When we added || id:, we specified random effects at the level identified by the group variable id,
that is, the pig level (level two). Because we wanted only a random intercept, that is all we had to

type.

3. The estimation log consists of three parts:

a. A set of EM iterations used to refine starting values. By default, the iterations themselves are not

displayed, but you can display them with the emlog option.

https://www.stata.com/manuals/memixed.pdf#memixedRemarksandexampleseq2
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b. A set of gradient-based iterations. By default, these are Newton–Raphson iterations, but other

methods are available by specifying the appropriate maximize options; see [R]Maximize.

c. The message “Computing standard errors”. This is just to inform you that mixed has finished

its iterative maximization and is now reparameterizing from a matrix-based parameterization (see

Methods and formulas) to the natural metric of variance components and their estimated standard

errors.

4. The output title, “Mixed-effects ML regression”, informs us that our model was fit using ML, the

default. For REML estimates, use the reml option.

Because this model is a simple random-intercept model fit by ML, it would be equivalent to using

xtreg with its mle option.

5. The first estimation table reports the fixed effects. We estimate 𝛽0 = 19.36 and 𝛽1 = 6.21.

6. The second estimation table shows the estimated variance components. The first section of the table

is labeled id: Identity, meaning that these are random effects at the id (pig) level and that their

variance–covariance matrix is a multiple of the identity matrix; that is, 𝚺 = 𝜎2
𝑢I. Because we have

only one random effect at this level, mixed knew that Identity is the only possible covariance

structure. In any case, the variance of the level-two errors, 𝜎2
𝑢, is estimated as 14.82 with standard

error 3.12.

7. The row labeled var(Residual) displays the estimated variance of the overall error term; that is,

�̂�2
𝜖 = 4.38. This is the variance of the level-one errors, that is, the residuals.

8. Finally, a likelihood-ratio test comparing the model with one-level ordinary linear regression, model

(4) without 𝑢𝑗, is provided and is highly significant for these data.

We now store our estimates for later use:

. estimates store randint

https://www.stata.com/manuals/rmaximize.pdf#rMaximize
https://www.stata.com/manuals/memixed.pdf#memixedMethodsandformulas
https://www.stata.com/manuals/memixed.pdf#memixedRemarksandexampleseq4
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Example 2: Two-level random slope model
Extending (4) to allow for a random slope on week yields the model

weight𝑖𝑗 = 𝛽0 + 𝛽1week𝑖𝑗 + 𝑢0𝑗 + 𝑢1𝑗week𝑖𝑗 + 𝜖𝑖𝑗 (5)

and we fit this with mixed:

. mixed weight week || id: week
Performing EM optimization ...
Performing gradient-based optimization:
Iteration 0: Log likelihood = -869.03825
Iteration 1: Log likelihood = -869.03825
Computing standard errors ...
Mixed-effects ML regression Number of obs = 432
Group variable: id Number of groups = 48

Obs per group:
min = 9
avg = 9.0
max = 9

Wald chi2(1) = 4689.51
Log likelihood = -869.03825 Prob > chi2 = 0.0000

weight Coefficient Std. err. z P>|z| [95% conf. interval]

week 6.209896 .0906819 68.48 0.000 6.032163 6.387629
_cons 19.35561 .3979159 48.64 0.000 18.57571 20.13551

Random-effects parameters Estimate Std. err. [95% conf. interval]

id: Independent
var(week) .3680668 .0801181 .2402389 .5639103

var(_cons) 6.756364 1.543503 4.317721 10.57235

var(Residual) 1.598811 .1233988 1.374359 1.85992

LR test vs. linear model: chi2(2) = 764.42 Prob > chi2 = 0.0000
Note: LR test is conservative and provided only for reference.
. estimates store randslope

Because we did not specify a covariance structure for the random effects (𝑢0𝑗, 𝑢1𝑗)′, mixed used the

default Independent structure; that is,

𝚺 = Var [𝑢0𝑗
𝑢1𝑗

] = [𝜎2
𝑢0 0
0 𝜎2

𝑢1
] (6)

with �̂�2
𝑢0 = 6.76 and �̂�2

𝑢1 = 0.37. Our point estimates of the fixed effects are essentially identical to

those from model (4), but note that this does not hold generally. Given the 95% confidence interval

for �̂�2
𝑢1, it would seem that the random slope is significant, and we can use lrtest and our two stored

estimation results to verify this fact:

https://www.stata.com/manuals/memixed.pdf#memixedRemarksandexampleseq4
https://www.stata.com/manuals/memixed.pdf#memixedRemarksandexampleseq4
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. lrtest randslope randint
Likelihood-ratio test
Assumption: randint nested within randslope
LR chi2(1) = 291.78

Prob > chi2 = 0.0000
Note: The reported degrees of freedom assumes the null hypothesis is not on

the boundary of the parameter space. If this is not true, then the
reported test is conservative.

The near-zero significance level favors the model that allows for a random pig-specific regression

line over the model that allows only for a pig-specific shift.

Covariance structures
In example 2, we fit a model with the default Independent covariance given in (6). Within any

random-effects level specification, we can override this default by specifying an alternative covariance

structure via the covariance() option.

Example 3: Two-level model with correlated random effects
We generalize (6) to allow 𝑢0𝑗 and 𝑢1𝑗 to be correlated; that is,

𝚺 = Var [𝑢0𝑗
𝑢1𝑗

] = [𝜎2
𝑢0 𝜎01

𝜎01 𝜎2
𝑢1

]

. mixed weight week || id: week, covariance(unstructured)
Performing EM optimization ...
Performing gradient-based optimization:
Iteration 0: Log likelihood = -868.96185
Iteration 1: Log likelihood = -868.96185
Computing standard errors ...
Mixed-effects ML regression Number of obs = 432
Group variable: id Number of groups = 48

Obs per group:
min = 9
avg = 9.0
max = 9

Wald chi2(1) = 4649.17
Log likelihood = -868.96185 Prob > chi2 = 0.0000

weight Coefficient Std. err. z P>|z| [95% conf. interval]

week 6.209896 .0910745 68.18 0.000 6.031393 6.388399
_cons 19.35561 .3996387 48.43 0.000 18.57234 20.13889

https://www.stata.com/manuals/memixed.pdf#memixedRemarksandexamplesex2
https://www.stata.com/manuals/memixed.pdf#memixedRemarksandexampleseq6
https://www.stata.com/manuals/memixed.pdf#memixedRemarksandexampleseq6
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Random-effects parameters Estimate Std. err. [95% conf. interval]

id: Unstructured
var(week) .3715251 .0812958 .2419532 .570486

var(_cons) 6.823363 1.566194 4.351297 10.69986
cov(week,_cons) -.0984378 .2545767 -.5973991 .4005234

var(Residual) 1.596829 .123198 1.372735 1.857505

LR test vs. linear model: chi2(3) = 764.58 Prob > chi2 = 0.0000
Note: LR test is conservative and provided only for reference.

But we do not find the correlation to be at all significant.

. lrtest . randslope
Likelihood-ratio test
Assumption: randslope nested within .
LR chi2(1) = 0.15

Prob > chi2 = 0.6959

Instead, we could have also specified covariance(identity), restricting 𝑢0𝑗 and 𝑢1𝑗 to

not only be independent but also to have common variance, or we could have specified

covariance(exchangeable), which imposes a common variance but allows for a nonzero correla-

tion.

Likelihood versus restricted likelihood
Thus far, all our examples have used ML to estimate variance components. We could have just as

easily asked for REML estimates. Refitting the model in example 2 by REML, we get

. mixed weight week || id: week, reml
Performing EM optimization ...
Performing gradient-based optimization:
Iteration 0: Log restricted-likelihood = -870.51473
Iteration 1: Log restricted-likelihood = -870.51473
Computing standard errors ...
Mixed-effects REML regression Number of obs = 432
Group variable: id Number of groups = 48

Obs per group:
min = 9
avg = 9.0
max = 9

Wald chi2(1) = 4592.10
Log restricted-likelihood = -870.51473 Prob > chi2 = 0.0000

weight Coefficient Std. err. z P>|z| [95% conf. interval]

week 6.209896 .0916387 67.77 0.000 6.030287 6.389504
_cons 19.35561 .4021144 48.13 0.000 18.56748 20.14374

https://www.stata.com/manuals/memixed.pdf#memixedRemarksandexamplesex2
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Random-effects parameters Estimate Std. err. [95% conf. interval]

id: Independent
var(week) .3764405 .0827027 .2447317 .5790317

var(_cons) 6.917604 1.593247 4.404624 10.86432

var(Residual) 1.598784 .1234011 1.374328 1.859898

LR test vs. linear model: chi2(2) = 765.92 Prob > chi2 = 0.0000
Note: LR test is conservative and provided only for reference.

AlthoughML estimators are based on the usual likelihood theory, the idea behind REML is to transform

the response into a set of linear contrasts whose distribution is free of the fixed effects β. The restricted
likelihood is then formed by considering the distribution of the linear contrasts. This not only frees the

maximization problem from β but also incorporates the degrees of freedom used to estimate β into the

estimation of the variance components. This follows because, by necessity, the rank of the linear contrasts

must be less than the number of observations.

As a simple example, consider a constant-only regression where 𝑦𝑖 ∼ 𝑁(𝜇, 𝜎2) for 𝑖 = 1, . . . , 𝑛.
TheML estimate of 𝜎2 can be derived theoretically as the 𝑛-divided sample variance. The REML estimate

can be derived by considering the first 𝑛 − 1 error contrasts, 𝑦𝑖 − 𝑦, whose joint distribution is free of 𝜇.
Applying maximum likelihood to this distribution results in an estimate of 𝜎2, that is, the (𝑛−1)-divided

sample variance, which is unbiased for 𝜎2.

The unbiasedness property of REML extends to all mixed models when the data are balanced, and thus

REML would seem the clear choice in balanced-data problems, although in large samples the difference

between ML and REML is negligible. One disadvantage of REML is that likelihood-ratio (LR) tests based

on REML are inappropriate for comparing models with different fixed-effects specifications. ML is ap-

propriate for such LR tests and has the advantage of being easy to explain and being the method of choice

for other estimators.

Another factor to consider is that ML estimation under mixed is more feature-rich, allowing for

weighted estimation and robust variance–covariance matrices, features not supported under REML. In

the end, which method to use should be based both on your needs and on personal taste.

Examining the REML output, we find that the estimates of the variance components are slightly larger

than the ML estimates. This is typical, because ML estimates, which do not incorporate the degrees of

freedom used to estimate the fixed effects, tend to be biased downward.

Three-level models
The clustered-data representation of the mixedmodel given in (2) can be extended to two nested levels

of clustering, creating a three-level model once the observations are considered. Formally,

y𝑗𝑘 = X𝑗𝑘β + Z
(3)
𝑗𝑘 u

(3)
𝑘 + Z

(2)
𝑗𝑘 u

(2)
𝑗𝑘 + ε𝑗𝑘 (7)

for 𝑖 = 1, . . . , 𝑛𝑗𝑘 first-level observations nested within 𝑗 = 1, . . . , 𝑀𝑘 second-level groups, which are

nested within 𝑘 = 1, . . . , 𝑀 third-level groups. Group 𝑗, 𝑘 consists of 𝑛𝑗𝑘 observations, so y𝑗𝑘, X𝑗𝑘, and

ε𝑗𝑘 each have row dimension 𝑛𝑗𝑘. Z
(3)
𝑗𝑘 is the 𝑛𝑗𝑘 × 𝑞3 design matrix for the third-level random effects

u
(3)
𝑘 , andZ

(2)
𝑗𝑘 is the 𝑛𝑗𝑘 ×𝑞2 design matrix for the second-level random effects u

(2)
𝑗𝑘 . Furthermore, assume

that
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u
(3)
𝑘 ∼ 𝑁(0, 𝚺3); u

(2)
𝑗𝑘 ∼ 𝑁(0, 𝚺2); ε𝑗𝑘 ∼ 𝑁(0, 𝜎2

𝜖 I)

and that u
(3)
𝑘 , u

(2)
𝑗𝑘 , and ε𝑗𝑘 are independent.

Fitting a three-level model requires you to specify two random-effects equations: one for level three

and then one for level two. The variable list for the first equation represents Z
(3)
𝑗𝑘 and for the second

equation represents Z
(2)
𝑗𝑘 ; that is, you specify the levels top to bottom in mixed.

Example 4: Three-level model with random intercepts
Baltagi, Song, and Jung (2001) estimate a Cobb–Douglas production function examining the produc-

tivity of public capital in each state’s private output. Originally provided by Munnell (1990), the data

were recorded over 1970–1986 for 48 states grouped into nine regions.

. use https://www.stata-press.com/data/r19/productivity
(Public capital productivity)
. describe
Contains data from https://www.stata-press.com/data/r19/productivity.dta
Observations: 816 Public capital productivity

Variables: 11 29 Mar 2024 10:57
(_dta has notes)

Variable Storage Display Value
name type format label Variable label

state byte %9.0g States 1-48
region byte %9.0g Regions 1-9
year int %9.0g Years 1970-1986
public float %9.0g Public capital stock
hwy float %9.0g log(highway component of public)
water float %9.0g log(water component of public)
other float %9.0g log(bldg/other component of

public)
private float %9.0g log(private capital stock)
gsp float %9.0g log(gross state product)
emp float %9.0g log(nonagriculture payrolls)
unemp float %9.0g State unemployment rate

Sorted by:

Because the states are nested within regions, we fit a three-level mixed model with random intercepts at

both the region and the state-within-region levels. That is, we use (7) with both Z
(3)
𝑗𝑘 and Z

(2)
𝑗𝑘 set to the

𝑛𝑗𝑘 × 1 column of ones, and 𝚺3 = 𝜎2
3 and 𝚺2 = 𝜎2

2 are both scalars.
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. mixed gsp private emp hwy water other unemp || region: || state:
(output omitted )

Mixed-effects ML regression Number of obs = 816
Grouping information

No. of Observations per group
Group variable groups Minimum Average Maximum

region 9 51 90.7 136
state 48 17 17.0 17

Wald chi2(6) = 18829.06
Log likelihood = 1430.5017 Prob > chi2 = 0.0000

gsp Coefficient Std. err. z P>|z| [95% conf. interval]

private .2671484 .0212591 12.57 0.000 .2254814 .3088154
emp .754072 .0261868 28.80 0.000 .7027468 .8053973
hwy .0709767 .023041 3.08 0.002 .0258172 .1161363

water .0761187 .0139248 5.47 0.000 .0488266 .1034109
other -.0999955 .0169366 -5.90 0.000 -.1331906 -.0668004
unemp -.0058983 .0009031 -6.53 0.000 -.0076684 -.0041282
_cons 2.128823 .1543854 13.79 0.000 1.826233 2.431413

Random-effects parameters Estimate Std. err. [95% conf. interval]

region: Identity
var(_cons) .0014506 .0012995 .0002506 .0083957

state: Identity
var(_cons) .0062757 .0014871 .0039442 .0099855

var(Residual) .0013461 .0000689 .0012176 .0014882

LR test vs. linear model: chi2(2) = 1154.73 Prob > chi2 = 0.0000
Note: LR test is conservative and provided only for reference.

Notes:

1. Our model now has two random-effects equations, separated by ||. The first is a random intercept

(constant only) at the region level (level three), and the second is a random intercept at the state
level (level two). The order in which these are specified (from left to right) is significant—mixed
assumes that state is nested within region.

2. The information on groups is now displayed as a table, with one row for each grouping. You can

suppress this table with the nogroup or the noheader option, which will suppress the rest of the

header, as well.

3. The variance-component estimates are now organized and labeled according to level.

After adjusting for the nested-level error structure, we find that the highway and water components

of public capital had significant positive effects on private output, whereas the other public buildings

component had a negative effect.
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Technical note
In the previous example, the states are coded 1–48 and are nested within nine regions. mixed treated

the states as nested within regions, regardless of whether the codes for each state were unique between

regions. That is, even if codes for states were duplicated between regions, mixed would have enforced

the nesting and produced the same results.

The group information at the top of the mixed output and that produced by the postestimation com-

mand estat group (see [ME] estat group) take the nesting into account. The statistics are thus not

necessarily what you would get if you instead tabulated each group variable individually.

Model (7) extends in a straightforward manner to more than three levels, as does the specification of

such models in mixed.

Blocked-diagonal covariance structures
Covariance matrices of random effects within an equation can be modeled either as a multiple of

the identity matrix, as diagonal (that is, Independent), as exchangeable, or as general symmetric

(Unstructured). These may also be combined to produce more complex block-diagonal covariance

structures, effectively placing constraints on the variance components.

Example 5: Using repeated levels to induce blocked-diagonal covariance structures
Returning to our productivity data, we now add random coefficients on hwy and unemp at the region

level. This only slightly changes the estimates of the fixed effects, so we focus our attention on the

variance components:

. mixed gsp private emp hwy water other unemp || region: hwy unemp || state:,
> nolog nogroup nofetable
Mixed-effects ML regression Number of obs = 816

Wald chi2(6) = 17137.94
Log likelihood = 1447.6787 Prob > chi2 = 0.0000

Random-effects parameters Estimate Std. err. [95% conf. interval]

region: Independent
var(hwy) .0000209 .0001103 6.71e-10 .6507106

var(unemp) .0000238 .0000135 7.84e-06 .0000722
var(_cons) .0030349 .0086684 .0000112 .8191376

state: Identity
var(_cons) .0063658 .0015611 .0039365 .0102943

var(Residual) .0012469 .0000643 .001127 .0013795

LR test vs. linear model: chi2(4) = 1189.08 Prob > chi2 = 0.0000
Note: LR test is conservative and provided only for reference.
. estimates store prodrc

https://www.stata.com/manuals/meestatgroup.pdf#meestatgroup
https://www.stata.com/manuals/memixed.pdf#memixedRemarksandexampleseq7
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This model is the same as that fit in example 4 except that Z
(3)
𝑗𝑘 is now the 𝑛𝑗𝑘 × 3 matrix with columns

determined by the values of hwy, unemp, and an intercept term (one), in that order, and (because we used

the default Independent structure) 𝚺3 is

𝚺3 = ⎛⎜
⎝

hwy unemp cons
𝜎2

𝑎 0 0
0 𝜎2

𝑏 0
0 0 𝜎2

𝑐

⎞⎟
⎠

The random-effects specification at the state level remains unchanged; that is, 𝚺2 is still treated as the

scalar variance of the random intercepts at the state level.

An LR test comparing this model with that from example 4 favors the inclusion of the two random

coefficients, a fact we leave to the interested reader to verify.

The estimated variance components, upon examination, reveal that the variances of the random coef-

ficients on hwy and unemp could be treated as equal. That is,

𝚺3 = ⎛⎜
⎝

hwy unemp cons
𝜎2

𝑎 0 0
0 𝜎2

𝑎 0
0 0 𝜎2

𝑐

⎞⎟
⎠

looks plausible. We can impose this equality constraint by treating 𝚺3 as block diagonal: the first block

is a 2×2 multiple of the identity matrix, that is, 𝜎2
𝑎I2; the second is a scalar, equivalently, a 1×1 multiple

of the identity.

We construct block-diagonal covariances by repeating level specifications:

. mixed gsp private emp hwy water other unemp || region: hwy unemp,
> cov(identity) || region: || state:, nolog nogroup nofetable
Mixed-effects ML regression Number of obs = 816

Wald chi2(6) = 17136.65
Log likelihood = 1447.6784 Prob > chi2 = 0.0000

Random-effects parameters Estimate Std. err. [95% conf. interval]

region: Identity
var(hwy unemp) .0000238 .0000134 7.89e-06 .0000719

region: Identity
var(_cons) .0028191 .0030429 .0003399 .023383

state: Identity
var(_cons) .006358 .0015309 .0039661 .0101925

var(Residual) .0012469 .0000643 .001127 .0013795

LR test vs. linear model: chi2(3) = 1189.08 Prob > chi2 = 0.0000
Note: LR test is conservative and provided only for reference.

We specified two equations for the region level: the first for the random coefficients on hwy and unemp
with covariance set to Identity and the second for the random intercept cons, whose covariance

defaults to Identity because it is of dimension 1. mixed labeled the estimate of 𝜎2
𝑎 as var(hwy unemp)

to designate that it is common to the random coefficients on both hwy and unemp.

https://www.stata.com/manuals/memixed.pdf#memixedRemarksandexamplesex_mixed_CBproduction
https://www.stata.com/manuals/memixed.pdf#memixedRemarksandexamplesex_mixed_CBproduction
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An LR test shows that the constrained model fits equally well.

. lrtest . prodrc
Likelihood-ratio test
Assumption: . nested within prodrc
LR chi2(1) = 0.00

Prob > chi2 = 0.9784
Note: The reported degrees of freedom assumes the null hypothesis is not on

the boundary of the parameter space. If this is not true, then the
reported test is conservative.

Because the null hypothesis for this test is one of equality (𝐻0 ∶ 𝜎2
𝑎 = 𝜎2

𝑏 ), it is not on the boundary of

the parameter space. As such, we can take the reported significance as precise rather than a conservative

estimate.

You can repeat level specifications as often as you like, defining successive blocks of a block-diagonal

covariance matrix. However, repeated-level equations must be listed consecutively; otherwise, mixed
will give an error.

Technical note
In the previous estimation output, there was no constant term included in the first region equation,

even though we did not use the noconstant option. When you specify repeated-level equations, mixed
knows not to put constant terms in each equation because such a model would be unidentified. By

default, it places the constant in the last repeated-level equation, but you can use noconstant creatively

to override this.

Linear mixed-effects models can also be fit using meglm with the default gaussian family. meglm pro-

vides twomore covariance structures throughwhich you can impose constraints on variance components;

see [ME] meglm for details.

Heteroskedastic random effects
Blocked-diagonal covariance structures and repeated-level specifications of random effects can also

be used to model heteroskedasticity among random effects at a given level.

Example 6: Using repeated levels to model heteroskedasticity
Following Rabe-Hesketh and Skrondal (2022, sec. 7.2), we analyze data from Asian children in a

British community who were weighed up to four times, roughly between the ages of 6 weeks and 27

months. The dataset is a random sample of data previously analyzed by Goldstein (1986) and Prosser,

Rasbash, and Goldstein (1991).

https://www.stata.com/manuals/memeglm.pdf#memeglm
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. use https://www.stata-press.com/data/r19/childweight
(Weight data on Asian children)
. describe
Contains data from https://www.stata-press.com/data/r19/childweight.dta
Observations: 198 Weight data on Asian children

Variables: 5 23 May 2024 15:12
(_dta has notes)

Variable Storage Display Value
name type format label Variable label

id int %8.0g Child identifier
age float %8.0g Age in years
weight float %8.0g Weight in Kg
brthwt int %8.0g Birthweight in g
girl byte %9.0g bg Gender

Sorted by: id age
. graph twoway (line weight age, connect(ascending)), by(girl)
> xtitle(Age in years) ytitle(Weight in kg)
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20

0 1 2 3 0 1 2 3

Boy Girl
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ei

gh
t i

n 
kg

Age in years
Graphs by Gender

Ignoring gender effects for the moment, we begin with the following model for the 𝑖th measurement
on the 𝑗th child:

weight𝑖𝑗 = 𝛽0 + 𝛽1age𝑖𝑗 + 𝛽2age2
𝑖𝑗 + 𝑢𝑗0 + 𝑢𝑗1age𝑖𝑗 + 𝜖𝑖𝑗

This models overall mean growth as quadratic in age and allows for two child-specific random effects:

a random intercept 𝑢𝑗0, which represents each child’s vertical shift from the overall mean (𝛽0), and a

random age slope 𝑢𝑗1, which represents each child’s deviation in linear growth rate from the overall

mean linear growth rate (𝛽1). For simplicity, we do not consider child-specific changes in the quadratic

component of growth.
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. mixed weight age c.age#c.age || id: age, nolog
Mixed-effects ML regression Number of obs = 198
Group variable: id Number of groups = 68

Obs per group:
min = 1
avg = 2.9
max = 5

Wald chi2(2) = 1863.46
Log likelihood = -258.51915 Prob > chi2 = 0.0000

weight Coefficient Std. err. z P>|z| [95% conf. interval]

age 7.693701 .2381076 32.31 0.000 7.227019 8.160384

c.age#c.age -1.654542 .0874987 -18.91 0.000 -1.826037 -1.483048

_cons 3.497628 .1416914 24.68 0.000 3.219918 3.775338

Random-effects parameters Estimate Std. err. [95% conf. interval]

id: Independent
var(age) .2987207 .0827569 .1735603 .5141388

var(_cons) .5023857 .141263 .2895294 .8717297

var(Residual) .3092897 .0474887 .2289133 .417888

LR test vs. linear model: chi2(2) = 114.70 Prob > chi2 = 0.0000
Note: LR test is conservative and provided only for reference.

Because there is no reason to believe that the random effects are uncorrelated, it is always a good idea

to first fit a model with the covariance(unstructured) option. We do not include the output for such

a model because for these data the correlation between random effects is not significant; however, we

did check this before reverting to mixed’s default Independent structure.

Next we introduce gender effects into the fixed portion of the model by including a main gender effect

and a gender–age interaction for overall mean growth. We specify ibn.girl and the noconstant option
to omit the constant and estimate separate intercepts for boys and girls. The nofvlabel option requests

that the values of the girl variable instead of value labels be shown in the results.
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. mixed weight ibn.girl i.girl#c.age c.age#c.age, noconstant nofvlabel
> || id: age, nolog
Mixed-effects ML regression Number of obs = 198
Group variable: id Number of groups = 68

Obs per group:
min = 1
avg = 2.9
max = 5

Wald chi2(5) = 6583.73
Log likelihood = -253.182 Prob > chi2 = 0.0000

weight Coefficient Std. err. z P>|z| [95% conf. interval]

girl
0 3.754275 .1726404 21.75 0.000 3.415906 4.092644
1 3.243808 .174255 18.62 0.000 2.902274 3.585341

girl#c.age
0 7.806765 .2524583 30.92 0.000 7.311956 8.301574
1 7.577296 .2531318 29.93 0.000 7.081166 8.073425

c.age#c.age -1.654323 .0871752 -18.98 0.000 -1.825183 -1.483463

Random-effects parameters Estimate Std. err. [95% conf. interval]

id: Independent
var(age) .2772846 .0769233 .1609861 .4775987

var(_cons) .4076892 .12386 .2247635 .7394906

var(Residual) .3131704 .047684 .2323672 .422072

LR test vs. linear model: chi2(2) = 104.39 Prob > chi2 = 0.0000
Note: LR test is conservative and provided only for reference.
. estimates store homoskedastic

The main gender effect is significant at the 5% level, but the gender–age interaction is not:

. test 0.girl#c.age = 1.girl#c.age
( 1) [weight]0bn.girl#c.age - [weight]1.girl#c.age = 0

chi2( 1) = 1.66
Prob > chi2 = 0.1978

On average, boys are heavier than girls, but their average linear growth rates are not significantly differ-

ent.

In the above model, we introduced a gender effect on average growth, but we still assumed that the

variability in child-specific deviations from this average was the same for boys and girls. To check this

assumption, we introduce gender into the random component of the model.
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. mixed weight ibn.girl i.girl#c.age c.age#c.age, noconstant nofvlabel
> || id: ibn.girl i.girl#c.age, noconstant nolog nofetable
Mixed-effects ML regression Number of obs = 198
Group variable: id Number of groups = 68

Obs per group:
min = 1
avg = 2.9
max = 5

Wald chi2(5) = 7319.20
Log likelihood = -248.94752 Prob > chi2 = 0.0000

Random-effects parameters Estimate Std. err. [95% conf. interval]

id: Independent
var(0.girl) .3161091 .1557911 .1203181 .8305061
var(1.girl) .5798676 .1959725 .2989896 1.124609

var(0.girl#age) .4734482 .1574626 .2467028 .9085962
var(1.girl#age) .0664634 .0553274 .0130017 .3397538

var(Residual) .3078826 .046484 .2290188 .4139037

LR test vs. linear model: chi2(4) = 112.86 Prob > chi2 = 0.0000
Note: LR test is conservative and provided only for reference.
. estimates store heteroskedastic

In the above, we suppress displaying the fixed portion of the model (the nofetable option) because

it does not differ much from that of the previous model.

Our previous model had the random-effects specification

|| id: age

which we have replaced with

|| id: ibn.girl i.girl#c.age, noconstant

The former models a random intercept and random slope on age, and does so treating all children as a

random sample from one population. The latter also specifies a random intercept and random slope on

age, but allows for the variability of the random intercepts and slopes to differ between boys and girls.

In other words, it allows for heteroskedasticity in random effects due to gender. We use the noconstant
option so that we can separate the overall random intercept (automatically provided by the former syntax)

into one specific to boys and one specific to girls.

There seems to be a large gender effect in the variability of linear growth rates. We can compare

both models with an LR test, recalling that we stored the previous estimation results under the name

homoskedastic:

. lrtest homoskedastic heteroskedastic
Likelihood-ratio test
Assumption: homoskedastic nested within heteroskedas~c
LR chi2(2) = 8.47

Prob > chi2 = 0.0145
Note: The reported degrees of freedom assumes the null hypothesis is not on

the boundary of the parameter space. If this is not true, then the
reported test is conservative.



mixed — Multilevel mixed-effects linear regression 29

Because the null hypothesis here is one of equality of variances and not that variances are 0, the above

does not test on the boundary; thus we can treat the significance level as precise and not conservative.

Either way, the results favor the new model with heteroskedastic random effects.

Heteroskedastic residual errors
Up to this point, we have assumed that the level-one residual errors—the 𝜖’s in the stated mod-

els—have been i.i.d. Gaussian with variance 𝜎2
𝜖 . This is demonstrated in mixed output in the random-

effects table, where up until now we have estimated a single residual-error variance, labeled as

var(Residual).

To relax the assumptions of homoskedasticity or independence of residual errors, use the

residuals() option.

Example 7: Independent residual variance structure
West, Welch, and Gałecki (2022, chap. 7) analyze data studying the effect of ceramic dental veneer

placement on gingival (gum) health. Data on 55 teeth located in the maxillary arches of 12 patients were

considered.

. use https://www.stata-press.com/data/r19/veneer, clear
(Dental veneer data)
. describe
Contains data from https://www.stata-press.com/data/r19/veneer.dta
Observations: 110 Dental veneer data

Variables: 7 24 May 2024 12:11
(_dta has notes)

Variable Storage Display Value
name type format label Variable label

patient byte %8.0g Patient ID
tooth byte %8.0g Tooth number with patient
gcf byte %8.0g Gingival crevicular fluid (GCF)
age byte %8.0g Patient age
base_gcf byte %8.0g Baseline GCF
cda float %9.0g Average contour difference after

veneer placement
followup byte %9.0g t Follow-up time: 3 or 6 months

Sorted by:

Veneers were placed to match the original contour of the tooth as closely as possible, and researchers

were interested in how contour differences (variable cda) impacted gingival health. Gingival health was
measured as the amount of gingival crevicular fluid (GCF) at each tooth, measured at baseline (variable

base gcf) and at two posttreatment follow-ups at 3 and 6 months. The variable gcf records GCF at

follow-up, and the variable followup records the follow-up time.

Because two measurements were taken for each tooth and there exist multiple teeth per patient, we fit

a three-level model with the following random effects: a random intercept and random slope on follow-

up time at the patient level, and a random intercept at the tooth level. For the 𝑖th measurement of the 𝑗th
tooth from the 𝑘th patient, we have

gcf𝑖𝑗𝑘 = 𝛽0 + 𝛽1followup𝑖𝑗𝑘 + 𝛽2base gcf𝑖𝑗𝑘 + 𝛽3cda𝑖𝑗𝑘 + 𝛽4age𝑖𝑗𝑘+

𝑢0𝑘 + 𝑢1𝑘followup𝑖𝑗𝑘 + 𝑣0𝑗𝑘 + 𝜖𝑖𝑗𝑘
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which we can fit using mixed:

. mixed gcf followup base_gcf cda age || patient: followup, cov(un) || tooth:,
> reml nolog
Mixed-effects REML regression Number of obs = 110

Grouping information

No. of Observations per group
Group variable groups Minimum Average Maximum

patient 12 2 9.2 12
tooth 55 2 2.0 2

Wald chi2(4) = 7.48
Log restricted-likelihood = -420.92761 Prob > chi2 = 0.1128

gcf Coefficient Std. err. z P>|z| [95% conf. interval]

followup .3009815 1.936863 0.16 0.877 -3.4952 4.097163
base_gcf -.0183127 .1433094 -0.13 0.898 -.299194 .2625685

cda -.329303 .5292525 -0.62 0.534 -1.366619 .7080128
age -.5773932 .2139656 -2.70 0.007 -.9967582 -.1580283

_cons 45.73862 12.55497 3.64 0.000 21.13133 70.34591

Random-effects parameters Estimate Std. err. [95% conf. interval]

patient: Unstructured
var(followup) 41.88772 18.79997 17.38009 100.9535

var(_cons) 524.9851 253.0205 204.1287 1350.175
cov(followup,_cons) -140.4229 66.57623 -270.9099 -9.935904

tooth: Identity
var(_cons) 47.45738 16.63034 23.8792 94.3165

var(Residual) 48.86704 10.50523 32.06479 74.47382

LR test vs. linear model: chi2(4) = 91.12 Prob > chi2 = 0.0000
Note: LR test is conservative and provided only for reference.

We used REML estimation for no other reason than variety.

Among the other features of the model fit, we note that the residual variance 𝜎2
𝜖 was estimated as 48.87

and that our model assumed that the residuals were independent with constant variance (homoskedastic).

Because it may be the case that the precision of gcf measurements could change over time, we modify

the above to estimate two distinct error variances: one for the 3-month follow-up and one for the 6-month

follow-up.
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To fit this model, we add the residuals(independent, by(followup)) option, which maintains

independence of residual errors but allows for heteroskedasticity with respect to follow-up time.

. mixed gcf followup base_gcf cda age || patient: followup, cov(un) || tooth:,
> residuals(independent, by(followup)) reml nolog
Mixed-effects REML regression Number of obs = 110

Grouping information

No. of Observations per group
Group variable groups Minimum Average Maximum

patient 12 2 9.2 12
tooth 55 2 2.0 2

Wald chi2(4) = 7.51
Log restricted-likelihood = -420.4576 Prob > chi2 = 0.1113

gcf Coefficient Std. err. z P>|z| [95% conf. interval]

followup .2703944 1.933096 0.14 0.889 -3.518405 4.059193
base_gcf .0062144 .1419121 0.04 0.965 -.2719283 .284357

cda -.2947235 .5245126 -0.56 0.574 -1.322749 .7333023
age -.5743755 .2142249 -2.68 0.007 -.9942487 -.1545024

_cons 45.15089 12.51452 3.61 0.000 20.62288 69.6789

Random-effects parameters Estimate Std. err. [95% conf. interval]

patient: Unstructured
var(followup) 41.75169 18.72989 17.33099 100.583

var(_cons) 515.2018 251.9661 197.5542 1343.595
cov(followup,_cons) -139.0496 66.27806 -268.9522 -9.146944

tooth: Identity
var(_cons) 47.35914 16.48931 23.93514 93.70693

Residual: Independent,
by followup

3 months: var(e) 61.36785 18.38913 34.10946 110.4096
6 months: var(e) 36.42861 14.97501 16.27542 81.53666

LR test vs. linear model: chi2(5) = 92.06 Prob > chi2 = 0.0000
Note: LR test is conservative and provided only for reference.

Comparison of both models via an LR test reveals the difference in residual variances to be not sig-

nificant, something we leave to you to verify as an exercise.

The default residual-variance structure is independent, and when specified without by() is equiv-

alent to the default behavior of mixed: estimating one overall residual standard variance for the entire

model.

Other residual-error structures
Besides the default independent residual-error structure, mixed supports four other structures that

allow for correlation between residual errors within the lowest-level (smallest or level two) groups. For

purposes of notation, in what follows we assume a two-level model, with the obvious extension to higher-

level models.
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The exchangeable structure assumes one overall variance and one common pairwise covariance;

that is,

Var(ε𝑗) = Var
⎡
⎢
⎢
⎣

𝜖𝑗1
𝜖𝑗2
⋮

𝜖𝑗𝑛𝑗

⎤
⎥
⎥
⎦

=
⎡
⎢⎢
⎣

𝜎2
𝜖 𝜎1 · · · 𝜎1

𝜎1 𝜎2
𝜖 · · · 𝜎1

⋮ ⋮ ⋱ ⋮
𝜎1 𝜎1 𝜎1 𝜎2

𝜖

⎤
⎥⎥
⎦

By default, mixed will report estimates of the two parameters as estimates of the common variance 𝜎2
𝜖

and of the covariance 𝜎1. When the by(varname) option is also specified, these two parameters are

estimated for each level varname.

The ar 𝑝 structure assumes that the errors have an AR structure of order 𝑝. That is,

𝜖𝑖𝑗 = 𝜙1𝜖𝑖−1,𝑗 + · · · + 𝜙𝑝𝜖𝑖−𝑝,𝑗 + 𝑢𝑖𝑗

where 𝑢𝑖𝑗 are i.i.d. Gaussian with mean 0 and variance 𝜎2
𝑢. mixed reports estimates of 𝜙1, . . . , 𝜙𝑝 and

the overall error variance 𝜎2
𝜖 , which can be derived from the above expression. The t(varname) option

is required, where varname is a time variable used to order the observations within lowest-level groups

and to determine any gaps between observations. When the by(varname) option is also specified, the set
of 𝑝 + 1 parameters is estimated for each level of varname. If 𝑝 = 1, then the estimate of 𝜙1 is reported

as rho, because in this case it represents the correlation between successive error terms.

The ma 𝑞 structure assumes that the errors are an MA process of order 𝑞. That is,

𝜖𝑖𝑗 = 𝑢𝑖𝑗 + 𝜃1𝑢𝑖−1,𝑗 + · · · + 𝜃𝑞𝑢𝑖−𝑞,𝑗

where 𝑢𝑖𝑗 are i.i.d. Gaussian with mean 0 and variance 𝜎2
𝑢. mixed reports estimates of 𝜃1, . . . , 𝜃𝑞 and

the overall error variance 𝜎2
𝜖 , which can be derived from the above expression. The t(varname) option

is required, where varname is a time variable used to order the observations within lowest-level groups

and to determine any gaps between observations. When the by(varname) option is also specified, the

set of 𝑞 + 1 parameters is estimated for each level of varname.

The unstructured structure is the most general and estimates unique variances and unique pairwise

covariances for all residuals within the lowest-level grouping. Because the data may be unbalanced and

the ordering of the observations is arbitrary, the t(varname) option is required, where varname is an

identification variable that matches error terms in different groups. If varname has 𝑛 distinct levels,

then 𝑛(𝑛 + 1)/2 parameters are estimated. Not all 𝑛 levels need to be observed within each group, but

duplicated levels of varnamewithin a given group are not allowed because they would cause a singularity

in the estimated error-variance matrix for that group. When the by(varname) option is also specified,

the set of 𝑛(𝑛 + 1)/2 parameters is estimated for each level of varname.

The banded 𝑞 structure is a special case of unstructured that confines estimation to within the first

𝑞 off-diagonal elements of the residual variance–covariance matrix and sets the covariances outside this
band to 0. As is the case with unstructured, the t(varname) option is required, where varname is

an identification variable that matches error terms in different groups. However, with banded variance

structures, the ordering of the values in varname is significant because it determines which covariances

are to be estimated and which are to be set to 0. For example, if varname has 𝑛 = 5 distinct values 𝑡 =
1, 2, 3, 4, 5, then a banded variance–covariance structure of order 𝑞 = 2 would estimate the following:

Var(ε𝑗) = Var

⎡
⎢
⎢
⎢
⎣

𝜖1𝑗
𝜖2𝑗
𝜖3𝑗
𝜖4𝑗
𝜖5𝑗

⎤
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎣

𝜎2
1 𝜎12 𝜎13 0 0

𝜎12 𝜎2
2 𝜎23 𝜎24 0

𝜎13 𝜎23 𝜎2
3 𝜎34 𝜎35

0 𝜎24 𝜎34 𝜎2
4 𝜎45

0 0 𝜎35 𝜎45 𝜎2
5

⎤
⎥
⎥
⎥
⎦



mixed — Multilevel mixed-effects linear regression 33

In other words, you would have an unstructured variance matrix that constrains 𝜎14 = 𝜎15 = 𝜎25 = 0.

If varname has 𝑛 distinct levels, then (𝑞 + 1)(2𝑛 − 𝑞)/2 parameters are estimated. Not all 𝑛 levels need

to be observed within each group, but duplicated levels of varname within a given group are not allowed

because they would cause a singularity in the estimated error-variance matrix for that group. When the

by(varname) option is also specified, the set of parameters is estimated for each level of varname. If

𝑞 is left unspecified, then banded is equivalent to unstructured; that is, all variances and covariances
are estimated. When 𝑞 = 0, Var(ε𝑗) is treated as diagonal and can thus be used to model uncorrelated

yet heteroskedastic residual errors.

The toeplitz 𝑞 structure assumes that the residual errors are homoskedastic and that the correlation
between two errors is determined by the time lag between the two. That is, Var(𝜖𝑖𝑗) = 𝜎2

𝜖 and

Corr(𝜖𝑖𝑗, 𝜖𝑖+𝑘,𝑗) = 𝜌𝑘

If the lag 𝑘 is less than or equal to 𝑞, then the pairwise correlation 𝜌𝑘 is estimated; if the lag is greater

than 𝑞, then 𝜌𝑘 is assumed to be 0. If 𝑞 is left unspecified, then 𝜌𝑘 is estimated for each observed lag

𝑘. The t(varname) option is required, where varname is a time variable 𝑡 used to determine the lags

between pairs of residual errors. As such, t() must be integer-valued. 𝑞 + 1 parameters are estimated:

one overall variance 𝜎2
𝜖 and 𝑞 correlations. When the by(varname) option is also specified, the set of

𝑞 + 1 parameters is estimated for each level of varname.

The exponential structure is a generalization of the AR structure that allows for noninteger and

irregularly spaced time lags. That is, Var(𝜖𝑖𝑗) = 𝜎2
𝜖 and

Corr(𝜖𝑖𝑗, 𝜖𝑘𝑗) = 𝜌|𝑖−𝑘|

for 0 ≤ 𝜌 ≤ 1, with 𝑖 and 𝑘 not required to be integers. The t(varname) option is required, where var-

name is a time variable used to determine 𝑖 and 𝑘 for each residual-error pair. t() is real-valued. mixed
reports estimates of 𝜎2

𝜖 and 𝜌. When the by(varname) option is also specified, these two parameters are

estimated for each level of varname.

Example 8: Autoregressive residual variance structure
Pinheiro and Bates (2000, chap. 5) analyze data from a study of the estrus cycles of mares. Originally

analyzed in Pierson and Ginther (1987), the data record the number of ovarian follicles larger than 10mm,

daily over a period ranging from three days before ovulation to three days after the subsequent ovulation.
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. use https://www.stata-press.com/data/r19/ovary
(Ovarian follicles in mares)
. describe
Contains data from https://www.stata-press.com/data/r19/ovary.dta
Observations: 308 Ovarian follicles in mares

Variables: 6 20 May 2024 13:49
(_dta has notes)

Variable Storage Display Value
name type format label Variable label

mare byte %9.0g Mare ID
stime float %9.0g Scaled time
follicles byte %9.0g Number of ovarian follicles > 10

mm in diameter
sin1 float %9.0g sine(2*pi*stime)
cos1 float %9.0g cosine(2*pi*stime)
time byte %9.0g Time order within mare

Sorted by: mare stime

The stime variable is time that has been scaled so that ovulation occurs at scaled times 0 and 1, and the

time variable records the time ordering within mares. Because graphical evidence suggests a periodic

behavior, the analysis includes the sin1 and cos1 variables, which are sine and cosine transformations

of scaled time, respectively.

We consider the following model for the 𝑖th measurement on the 𝑗th mare:

follicles𝑖𝑗 = 𝛽0 + 𝛽1sin1𝑖𝑗 + 𝛽2cos1𝑖𝑗 + 𝑢𝑗 + 𝜖𝑖𝑗

The above model incorporates the cyclical nature of the data as affecting the overall average number

of follicles and includes mare-specific random effects 𝑢𝑗. Because we believe successive measurements

within each mare are probably correlated (even after controlling for the periodicity in the average), we

also model the within-mare errors as being AR of order 2.

. mixed follicles sin1 cos1 || mare:, residuals(ar 2, t(time)) reml nolog
Mixed-effects REML regression Number of obs = 308
Group variable: mare Number of groups = 11

Obs per group:
min = 25
avg = 28.0
max = 31

Wald chi2(2) = 34.72
Log restricted-likelihood = -772.59855 Prob > chi2 = 0.0000

follicles Coefficient Std. err. z P>|z| [95% conf. interval]

sin1 -2.899228 .5110784 -5.67 0.000 -3.900923 -1.897532
cos1 -.8652936 .5432923 -1.59 0.111 -1.930127 .1995397

_cons 12.14455 .9473731 12.82 0.000 10.28773 14.00137
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Random-effects parameters Estimate Std. err. [95% conf. interval]

mare: Identity
var(_cons) 7.09265 4.402051 2.101409 23.93903

Residual: AR(2)
phi1 .5386103 .0624897 .4161328 .6610878
phi2 .1446711 .0632039 .0207938 .2685484

var(e) 14.25103 2.435226 10.19512 19.9205

LR test vs. linear model: chi2(3) = 251.67 Prob > chi2 = 0.0000
Note: LR test is conservative and provided only for reference.

We picked an order of 2 as a guess, but we could have used LR tests of competingARmodels to determine

the optimal order, because models of smaller order are nested within those of larger order.

Example 9: Unstructured residual variance structure
Fitzmaurice, Laird, and Ware (2011, chap. 7) analyzed data on 37 subjects who participated in an

exercise therapy trial.

. use https://www.stata-press.com/data/r19/exercise
(Exercise Therapy Trial)
. describe
Contains data from https://www.stata-press.com/data/r19/exercise.dta
Observations: 259 Exercise Therapy Trial

Variables: 4 24 Jun 2024 18:35
(_dta has notes)

Variable Storage Display Value
name type format label Variable label

id byte %9.0g Person ID
day byte %9.0g Day of measurement
program byte %9.0g 1 = reps increase; 2 = weights

increase
strength byte %9.0g Strength measurement

Sorted by: id day

Subjects (variable id) were placed on either an increased-repetition regimen (program==1) or a program
that kept the repetitions constant but increased weight (program==2). Muscle-strength measurements

(variable strength) were taken at baseline (day==0) and then every two days over the next twelve days.

Following Fitzmaurice, Laird, and Ware (2011, chap. 7), and to demonstrate fitting residual-error

structures to data collected at uneven time points, we confine our analysis to those data collected at

baseline and at days 4, 6, 8, and 12. We fit a full two-way factorial model of strength on program and

day, with an unstructured residual-error covariance matrix over those repeated measurements taken on
the same subject:
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. keep if inlist(day, 0, 4, 6, 8, 12)
(74 observations deleted)
. mixed strength i.program##i.day || id:,
> noconstant residuals(unstructured, t(day)) nolog
Mixed-effects ML regression Number of obs = 173
Group variable: id Number of groups = 37

Obs per group:
min = 3
avg = 4.7
max = 5

Wald chi2(9) = 45.85
Log likelihood = -296.58215 Prob > chi2 = 0.0000

strength Coefficient Std. err. z P>|z| [95% conf. interval]

2.program 1.360119 1.003549 1.36 0.175 -.6068018 3.32704

day
4 1.125 .3322583 3.39 0.001 .4737858 1.776214
6 1.360127 .3766893 3.61 0.000 .6218298 2.098425
8 1.583563 .4905876 3.23 0.001 .6220287 2.545097

12 1.623576 .5372946 3.02 0.003 .5704978 2.676654

program#day
2 4 -.169034 .4423472 -0.38 0.702 -1.036019 .6979505
2 6 .2113012 .4982385 0.42 0.671 -.7652283 1.187831
2 8 -.1299762 .6524813 -0.20 0.842 -1.408816 1.148864
2 12 .3212829 .7306781 0.44 0.660 -1.11082 1.753386

_cons 79.6875 .7560449 105.40 0.000 78.20568 81.16932

Random-effects parameters Estimate Std. err. [95% conf. interval]

id: (empty)

Residual: Unstructured
var(e0) 9.145662 2.126243 5.798588 14.42474
var(e4) 11.87114 2.761206 7.524966 18.72753
var(e6) 10.06571 2.34885 6.371108 15.9028
var(e8) 13.22464 3.113903 8.336004 20.9802

var(e12) 13.16909 3.16733 8.21923 21.0999
cov(e0,e4) 9.625237 2.331961 5.054677 14.1958
cov(e0,e6) 8.489044 2.106368 4.360639 12.61745
cov(e0,e8) 9.280415 2.369542 4.636199 13.92463

cov(e0,e12) 8.898008 2.348231 4.295559 13.50046
cov(e4,e6) 10.49185 2.492516 5.606605 15.37709
cov(e4,e8) 11.89787 2.848734 6.314456 17.48129

cov(e4,e12) 11.28344 2.80501 5.785724 16.78116
cov(e6,e8) 11.0507 2.646972 5.86273 16.23867

cov(e6,e12) 10.5006 2.590262 5.423781 15.57742
cov(e8,e12) 12.4091 3.010776 6.508093 18.31012

LR test vs. linear model: chi2(14) = 314.67 Prob > chi2 = 0.0000
Note: The reported degrees of freedom assumes the null hypothesis is not on

the boundary of the parameter space. If this is not true, then the
reported test is conservative.
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Because we are using the variable id only to group the repeated measurements and not to introduce

random effects at the subject level, we use the noconstant option to omit any subject-level effects. The

unstructured covariance matrix is the most general and contains many parameters. In this example, we

estimate a distinct residual variance for each day and a distinct covariance for each pair of days.

That there is positive covariance between all pairs of measurements is evident, but what is not as

evident is whether the covariances may be more parsimoniously represented. One option would be to

explore whether the correlation diminishes as the time gap between strength measurements increases and

whether it diminishes systematically. Given the irregularity of the time intervals, an exponential structure

would be more appropriate than, say, an AR or MA structure.

. estimates store unstructured

. mixed strength i.program##i.day || id:, noconstant
> residuals(exponential, t(day)) nolog nofetable
Mixed-effects ML regression Number of obs = 173
Group variable: id Number of groups = 37

Obs per group:
min = 3
avg = 4.7
max = 5

Wald chi2(9) = 36.77
Log likelihood = -307.83324 Prob > chi2 = 0.0000

Random-effects parameters Estimate Std. err. [95% conf. interval]

id: (empty)

Residual: Exponential
rho .9786462 .0051238 .9659207 .9866854

var(e) 11.22349 2.338372 7.460764 16.88389

LR test vs. linear model: chi2(1) = 292.17 Prob > chi2 = 0.0000
Note: The reported degrees of freedom assumes the null hypothesis is not on

the boundary of the parameter space. If this is not true, then the
reported test is conservative.

In the above example, we suppressed displaying the main regression parameters because they did

not differ much from those of the previous model. While the unstructured model estimated 15 vari-

ance–covariance parameters, the exponential model claims to get the job done with just 2, a fact that is

not disputed by an LR test comparing the two nested models (at least not at the 0.01 level).

. lrtest unstructured .
Likelihood-ratio test
Assumption: . nested within unstructured
LR chi2(13) = 22.50
Prob > chi2 = 0.0481
Note: The reported degrees of freedom assumes the null hypothesis is not on

the boundary of the parameter space. If this is not true, then the
reported test is conservative.



mixed — Multilevel mixed-effects linear regression 38

Crossed-effects models
Not all mixed models contain nested levels of random effects.

Example 10: Crossed-effects model
Returning to our longitudinal analysis of pig weights, suppose that instead of (5) we wish to fit

weight𝑖𝑗 = 𝛽0 + 𝛽1week𝑖𝑗 + 𝑢𝑖 + 𝑣𝑗 + 𝜖𝑖𝑗 (8)

for the 𝑖 = 1, . . . , 9 weeks and 𝑗 = 1, . . . , 48 pigs and

𝑢𝑖 ∼ 𝑁(0, 𝜎2
𝑢); 𝑣𝑗 ∼ 𝑁(0, 𝜎2

𝑣); 𝜖𝑖𝑗 ∼ 𝑁(0, 𝜎2
𝜖 )

all independently. Both (5) and (8) assume an overall population-average growth curve 𝛽0 + 𝛽1week
and a random pig-specific shift.

The models differ in how week enters into the random part of the model. In (5), we assume that the

effect due to week is linear and pig specific (a random slope); in (8), we assume that the effect due to

week, 𝑢𝑖, is systematic to that week and common to all pigs. The rationale behind (8) could be that,

assuming that the pigs were measured contemporaneously, we might be concerned that week-specific

random factors such as weather and feeding patterns had significant systematic effects on all pigs.

Model (8) is an example of a two-way crossed-effects model, with the pig effects 𝑣𝑗 being crossed

with the week effects 𝑢𝑖. One way to fit such models is to consider all the data as one big cluster, and

treat the 𝑢𝑖 and 𝑣𝑗 as a series of 9 + 48 = 57 random coefficients on indicator variables for week and

pig. In the notation of (2),

u =

⎡
⎢
⎢
⎢
⎢
⎣

𝑢1
⋮

𝑢9
𝑣1
⋮

𝑣48

⎤
⎥
⎥
⎥
⎥
⎦

∼ 𝑁(0,G); G = [𝜎2
𝑢I9 0

0 𝜎2
𝑣I48

]

Because G is block diagonal, it can be represented in mixed as repeated-level equations. All we need is

an identification variable to identify all the observations as one big group and a way to tell mixed to treat

week and pig as crossed-effects factor variables (or equivalently, as two sets of overparameterized indi-

cator variables identifying weeks and pigs, respectively). mixed supports the special group designation

all for the former and the R.varname notation for the latter.

https://www.stata.com/manuals/memixed.pdf#memixedRemarksandexampleseq5
https://www.stata.com/manuals/memixed.pdf#memixedRemarksandexampleseq5
https://www.stata.com/manuals/memixed.pdf#memixedRemarksandexampleseq8
https://www.stata.com/manuals/memixed.pdf#memixedRemarksandexampleseq5
https://www.stata.com/manuals/memixed.pdf#memixedRemarksandexampleseq8
https://www.stata.com/manuals/memixed.pdf#memixedRemarksandexampleseq8
https://www.stata.com/manuals/memixed.pdf#memixedRemarksandexampleseq8
https://www.stata.com/manuals/memixed.pdf#memixedRemarksandexampleseq2
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. use https://www.stata-press.com/data/r19/pig, clear
(Longitudinal analysis of pig weights)
. mixed weight week || _all: R.week || _all: R.id
Performing EM optimization ...
Performing gradient-based optimization:
Iteration 0: Log likelihood = -1013.824
Iteration 1: Log likelihood = -1013.824
Computing standard errors ...
Mixed-effects ML regression Number of obs = 432
Group variable: _all Number of groups = 1

Obs per group:
min = 432
avg = 432.0
max = 432

Wald chi2(1) = 13258.28
Log likelihood = -1013.824 Prob > chi2 = 0.0000

weight Coefficient Std. err. z P>|z| [95% conf. interval]

week 6.209896 .0539313 115.14 0.000 6.104192 6.315599
_cons 19.35561 .6333982 30.56 0.000 18.11418 20.59705

Random-effects parameters Estimate Std. err. [95% conf. interval]

_all: Identity
var(R.week) .0849874 .0868856 .0114588 .6303302

_all: Identity
var(R.id) 14.83623 3.126142 9.816733 22.42231

var(Residual) 4.297328 .3134404 3.724888 4.957741

LR test vs. linear model: chi2(2) = 474.85 Prob > chi2 = 0.0000
Note: LR test is conservative and provided only for reference.
. estimates store crossed

Thus we estimate �̂�2
𝑢 = 0.08 and �̂�2

𝑣 = 14.84. Both (5) and (8) estimate a total of five parameters: two

fixed effects and three variance components. The models, however, are not nested within each other,

which precludes the use of an LR test to compare both models. Refitting model (5) and looking at the

Akaike information criteria values by using estimates stats,

. quietly mixed weight week || id:week

. estimates stats crossed .
Akaike’s information criterion and Bayesian information criterion

Model N ll(null) ll(model) df AIC BIC

crossed 432 . -1013.824 5 2037.648 2057.99
. 432 . -869.0383 5 1748.077 1768.419

Note: BIC uses N = number of observations. See [R] IC note.

https://www.stata.com/manuals/memixed.pdf#memixedRemarksandexampleseq5
https://www.stata.com/manuals/memixed.pdf#memixedRemarksandexampleseq8
https://www.stata.com/manuals/memixed.pdf#memixedRemarksandexampleseq5


mixed — Multilevel mixed-effects linear regression 40

definitely favors model (5). This finding is not surprising given that our rationale behind (8) was some-

what fictitious. In our estimates stats output, the values of ll(null) are missing. mixed does not

fit a constant-only model as part of its usual estimation of the full model, but you can use mixed to fit a

constant-only model directly, if you wish.

The R.varname notation is equivalent to giving a list of overparameterized (none dropped) indicator

variables for use in a random-effects specification. When you specify R.varname, mixed handles the

calculations internally rather than creating the indicators in the data. Because the set of indicators is

overparameterized, R.varname implies noconstant.

Technical note
Although we were able to fit the crossed-effects model (8), it came at the expense of increasing the

column dimension of our random-effects design from 2 in model (5) to 57 in model (8). Computation

time and memory requirements grow (roughly) quadratically with the dimension of the random effects.

As a result, fitting such crossed-effects models is feasible only when the total column dimension is small

to moderate.

Reexamining model (8), we note that if we drop 𝑢𝑖, we end up with a model equivalent to (4), meaning

that we could have fit (4) by typing

. mixed weight week || _all: R.id

instead of

. mixed weight week || id:

as we did when we originally fit the model. The results of both estimations are identical, but the latter

specification, organized at the cluster (pig) level with random-effects dimension 1 (a random intercept)

is much more computationally efficient. Whereas with the first form we are limited in how many pigs

we can analyze, there is no such limitation with the second form.

Furthermore, we fit model (8) by using

. mixed weight week || _all: R.week || _all: R.id

as a direct way to demonstrate the R. notation. However, we can technically treat pigs as nested within

the all group, yielding the equivalent and more efficient (total column dimension 10) way to fit (8):

. mixed weight week || _all: R.week || id:

We leave it to you to verify that both produce identical results. See Rabe-Hesketh and Skrondal (2022)

for additional techniques to make calculations more efficient in more complex models.

Example 11: Three-level model expressed in terms of a two-level model
As another example of how the same model may be fit in different ways by using mixed (and as a

way to demonstrate covariance(exchangeable)), consider the three-level model used in example 4:

y𝑗𝑘 = X𝑗𝑘β + 𝑢(3)
𝑘 + 𝑢(2)

𝑗𝑘 + ε𝑗𝑘

https://www.stata.com/manuals/memixed.pdf#memixedRemarksandexampleseq5
https://www.stata.com/manuals/memixed.pdf#memixedRemarksandexampleseq8
https://www.stata.com/manuals/memixed.pdf#memixedRemarksandexampleseq8
https://www.stata.com/manuals/memixed.pdf#memixedRemarksandexampleseq5
https://www.stata.com/manuals/memixed.pdf#memixedRemarksandexampleseq8
https://www.stata.com/manuals/memixed.pdf#memixedRemarksandexampleseq8
https://www.stata.com/manuals/memixed.pdf#memixedRemarksandexampleseq4
https://www.stata.com/manuals/memixed.pdf#memixedRemarksandexampleseq4
https://www.stata.com/manuals/memixed.pdf#memixedRemarksandexampleseq8
https://www.stata.com/manuals/memixed.pdf#memixedRemarksandexampleseq8
https://www.stata.com/manuals/memixed.pdf#memixedRemarksandexamplesex_mixed_CBproduction
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where y𝑗𝑘 represents the logarithms of gross state products for the 𝑛𝑗𝑘 = 17 observations from state 𝑗
in region 𝑘, X𝑗𝑘 is a set of regressors, 𝑢(3)

𝑘 is a random intercept at the region level, and 𝑢(2)
𝑗𝑘 is a random

intercept at the state (nested within region) level. We assume that 𝑢(3)
𝑘 ∼ 𝑁(0, 𝜎2

3) and 𝑢(2)
𝑗𝑘 ∼ 𝑁(0, 𝜎2

2)
independently. Define

v𝑘 =
⎡
⎢⎢⎢
⎣

𝑢(3)
𝑘 + 𝑢(2)

1𝑘
𝑢(3)

𝑘 + 𝑢(2)
2𝑘

⋮
𝑢(3)

𝑘 + 𝑢(2)
𝑀𝑘,𝑘

⎤
⎥⎥⎥
⎦

where 𝑀𝑘 is the number of states in region 𝑘. Making this substitution, we can stack the observations

for all the states within region 𝑘 to get

y𝑘 = X𝑘β + Z𝑘v𝑘 + ε𝑘

where Z𝑘 is a set of indicators identifying the states within each region; that is,

Z𝑘 = I𝑀𝑘
⊗ J17

for a 𝑘-column vector of 1s J𝑘, and

𝚺 = Var(v𝑘) =
⎡
⎢⎢
⎣

𝜎2
3 + 𝜎2

2 𝜎2
3 · · · 𝜎2

3
𝜎2

3 𝜎2
3 + 𝜎2

2 · · · 𝜎2
3

⋮ ⋮ ⋱ ⋮
𝜎2

3 𝜎2
3 𝜎2

3 𝜎2
3 + 𝜎2

2

⎤
⎥⎥
⎦𝑀𝑘×𝑀𝑘

Because 𝚺 is an exchangeable matrix, we can fit this alternative form of the model by specifying the

exchangeable covariance structure.

. use https://www.stata-press.com/data/r19/productivity
(Public capital productivity)
. mixed gsp private emp hwy water other unemp || region: R.state,
> cov(exchangeable)
(output omitted )

Mixed-effects ML regression Number of obs = 816
Group variable: region Number of groups = 9

Obs per group:
min = 51
avg = 90.7
max = 136

Wald chi2(6) = 18829.06
Log likelihood = 1430.5017 Prob > chi2 = 0.0000

gsp Coefficient Std. err. z P>|z| [95% conf. interval]

private .2671484 .0212591 12.57 0.000 .2254813 .3088154
emp .7540721 .0261868 28.80 0.000 .7027468 .8053973
hwy .0709767 .023041 3.08 0.002 .0258172 .1161363

water .0761187 .0139248 5.47 0.000 .0488266 .1034109
other -.0999955 .0169366 -5.90 0.000 -.1331907 -.0668004
unemp -.0058983 .0009031 -6.53 0.000 -.0076684 -.0041282
_cons 2.128823 .1543855 13.79 0.000 1.826233 2.431413
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Random-effects parameters Estimate Std. err. [95% conf. interval]

region: Exchangeable
var(R.state) .0077263 .0017926 .0049032 .0121749
cov(R.state) .0014506 .0012995 -.0010963 .0039975

var(Residual) .0013461 .0000689 .0012176 .0014882

LR test vs. linear model: chi2(2) = 1154.73 Prob > chi2 = 0.0000
Note: LR test is conservative and provided only for reference.

The estimates of the fixed effects and their standard errors are equivalent to those from example 4, and

remapping the variance components from (𝜎2
3 + 𝜎2

2, 𝜎2
3, 𝜎2

𝜖 ), as displayed here, to (𝜎2
3, 𝜎2

2, 𝜎2
𝜖 ), as dis-

played in example 4, will show that they are equivalent as well.

Of course, given the discussion in the previous technical note, it is more efficient to fit this model as

we did originally, as a three-level model.

Diagnosing convergence problems
Given the flexibility of mixed-effects models, you will find that some models fail to converge when

used with your data; see Diagnosing convergence problems in [ME] me for advice applicable to mixed-

effects models in general.

In unweighted linear mixed-effects models with independent and homoskedastic residuals, one useful

way to diagnose problems of nonconvergence is to rely on the EM algorithm (Dempster, Laird, and

Rubin 1977), normally used by mixed only as a means of refining starting values. The advantages of

EM are that it does not require a Hessian calculation, each successive EM iteration will result in a larger

likelihood, iterations can be calculated quickly, and iterations will quickly bring parameter estimates

into a neighborhood of the solution. The disadvantages of EM are that, once in a neighborhood of the

solution, it can be slow to converge, if at all, and EM provides no facility for estimating standard errors

of the estimated variance components. One useful property of EM is that it is always willing to provide

a solution if you allow it to iterate enough times, if you are satisfied with being in a neighborhood of the

optimum rather than right on the optimum, and if standard errors of variance components are not crucial

to your analysis.

If you encounter a nonconvergent model, try using the emonly option to bypass gradient-based opti-

mization. Use emiterate(#) to specify the maximum number of EM iterations, which you will usually

want to set much higher than the default of 20. If your EM solution shows an estimated variance compo-

nent that is near 0, a ridge is formed by an interval of values near 0, which produces the same likelihood

and looks equally good to the optimizer. In this case, the solution is to drop the offending variance

component from the model.

Survey data
Multilevel modeling of survey data is a little different from standard modeling in that weighted sam-

pling can take place at multiple levels in the model, resulting in multiple sampling weights. Most survey

datasets, regardless of the design, contain one overall inclusion weight for each observation in the data.

This weight reflects the inverse of the probability of ultimate selection, and by “ultimate” we mean that

it factors in all levels of clustered sampling, corrections for noninclusion and oversampling, poststratifi-

cation, etc.

https://www.stata.com/manuals/memixed.pdf#memixedRemarksandexamplesex_mixed_CBproduction
https://www.stata.com/manuals/memixed.pdf#memixedRemarksandexamplesex_mixed_CBproduction
https://www.stata.com/manuals/meme.pdf#memeRemarksandexamplesDiagnosingconvergenceproblems
https://www.stata.com/manuals/meme.pdf#meme
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For simplicity, in what follows assume a simple two-stage sampling design where groups are ran-

domly sampled and then individuals within groups are sampled. Also assume that no additional weight

corrections are performed; that is, sampling weights are simply the inverse of the probability of selection.

The sampling weight for observation 𝑖 in cluster 𝑗 in our two-level sample is then 𝑤𝑖𝑗 = 1/𝜋𝑖𝑗, where

𝜋𝑖𝑗 is the probability that observation 𝑖, 𝑗 is selected. If you were performing a standard analysis such

as OLS regression with regress, you would simply use a variable holding 𝑤𝑖𝑗 as your pweight vari-

able, and the fact that it came from two levels of sampling would not concern you. Perhaps you would

type vce(cluster groupvar) where groupvar identifies the top-level groups to get standard errors that

control for correlation within these groups, but you would still use only a single weight variable.

Now take these same data and fit a two-level model with mixed. As seen in (14) in Methods and

formulas later in this entry, it is not sufficient to use the single sampling weight 𝑤𝑖𝑗, because weights

enter into the log likelihood at both the group level and the individual level. Instead, what is required for

a two-level model under this sampling design is 𝑤𝑗, the inverse of the probability that group 𝑗 is selected
in the first stage, and 𝑤𝑖|𝑗, the inverse of the probability that individual 𝑖 from group 𝑗 is selected at the
second stage conditional on group 𝑗 already being selected. It simply will not do to just use 𝑤𝑖𝑗 without

making any assumptions about 𝑤𝑗.

Given the rules of conditional probability, 𝑤𝑖𝑗 = 𝑤𝑗𝑤𝑖|𝑗. If your dataset has only 𝑤𝑖𝑗, then you will

need to either assume equal probability sampling at the first stage (𝑤𝑗 = 1 for all 𝑗) or find some way to
recover 𝑤𝑗 from other variables in your data; see Rabe-Hesketh and Skrondal (2006) and the references

therein for some suggestions on how to do this, but realize that there is little yet known about how well

these approximations perform in practice.

What you really need to fit your two-level model are data that contain 𝑤𝑗 in addition to either 𝑤𝑖𝑗 or

𝑤𝑖|𝑗. If you have 𝑤𝑖𝑗—that is, the unconditional inclusion weight for observation 𝑖, 𝑗—then you need

to either divide 𝑤𝑖𝑗 by 𝑤𝑗 to obtain 𝑤𝑖|𝑗 or rescale 𝑤𝑖𝑗 so that its dependence on 𝑤𝑗 disappears. If you

already have 𝑤𝑖|𝑗, then rescaling becomes optional (but still an important decision to make).

Weight rescaling is not an exact science, because the scale of the level-one weights is at issue re-

gardless of whether they represent 𝑤𝑖𝑗 or 𝑤𝑖|𝑗: because 𝑤𝑖𝑗 is unique to group 𝑗, the group-to-group
magnitudes of these weights need to be normalized so that they are “consistent” from group to group.

This is in stark contrast to a standard analysis, where the scale of sampling weights does not factor into

estimation, instead only affecting the estimate of the total population size.

mixed offers three methods for standardizing weights in a two-level model, and you can specify which
method youwant via the pwscale() option. If you specify pwscale(size), then the𝑤𝑖|𝑗 (or𝑤𝑖𝑗, it does

not matter) are scaled to sum to the cluster size 𝑛𝑗. Method pwscale(effective) adds in a dependence
on the sum of the squared weights so that level-one weights sum to the “effective” sample size. Just like

pwscale(size), pwscale(effective) also behaves the same whether you have 𝑤𝑖|𝑗 or 𝑤𝑖𝑗, and so it

can be used with either.

Although both pwscale(size) and pwscale(effective) leave 𝑤𝑗 untouched, the pwscale(gk)
method is a little different in that 1) it changes the weights at both levels and 2) it does assume you have

𝑤𝑖|𝑗 for level-one weights and not 𝑤𝑖𝑗 (if you have the latter, then first divide by 𝑤𝑗). Using the method

of Graubard and Korn (1996), it sets the weights at the group level (level two) to the cluster averages

of the products of both level weights (this product being 𝑤𝑖𝑗). It then sets the individual weights to 1

everywhere; see Methods and formulas for the computational details of all three methods.

Determining which method is “best” is a tough call and depends on cluster size (the smaller the clus-

ters, the greater the sensitivity to scale), whether the sampling is informative (that is, the samplingweights

are correlated with the residuals), whether you are interested primarily in regression coefficients or in

variance components, whether you have a simple random-intercept model or a more complex random-

https://www.stata.com/manuals/memixed.pdf#memixedMethodsandformulaseq14
https://www.stata.com/manuals/memixed.pdf#memixedMethodsandformulas
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coefficients model, and other factors; see Rabe-Hesketh and Skrondal (2006), Carle (2009), and Pfeffer-

mann et al. (1998) for some detailed advice. At the very least, you want to compare estimates across all

three scaling methods (four, if you add no scaling) and perform a sensitivity analysis.

If you choose to rescale level-one weights, it does not matter whether you have 𝑤𝑖|𝑗 or 𝑤𝑖𝑗. For

the pwscale(size) and pwscale(effective) methods, you get identical results, and even though

pwscale(gk) assumes 𝑤𝑖|𝑗, you can obtain this as 𝑤𝑖|𝑗 = 𝑤𝑖𝑗/𝑤𝑗 before proceeding.

If you do not specify pwscale(), then no scaling takes place, and thus at a minimum, you need to

make sure you have 𝑤𝑖|𝑗 in your data and not 𝑤𝑖𝑗.

Example 12: Mixed-effect models with survey data
Rabe-Hesketh and Skrondal (2006) analyzed data from the 2000 Programme for International Student

Assessment (PISA) study on reading proficiency among 15-year-oldAmerican students, as performed by

the Organisation for Economic Co-operation and Development (OECD). The original study was a three-

stage cluster sample, where geographic areas were sampled at the first stage, schools at the second, and

students at the third. Our version of the data does not contain the geographic-areas variable, so we treat

this as a two-stage sample where schools are sampled at the first stage and students at the second.

. use https://www.stata-press.com/data/r19/pisa2000
(Programme for International Student Assessment (PISA) 2000 data)
. describe
Contains data from https://www.stata-press.com/data/r19/pisa2000.dta
Observations: 2,069 Programme for International

Student Assessment (PISA) 2000
data

Variables: 11 12 Jun 2024 10:08
(_dta has notes)

Variable Storage Display Value
name type format label Variable label

female byte %8.0g 1 if female
isei byte %8.0g International socioeconomic index
w_fstuwt float %9.0g Student-level weight
wnrschbw float %9.0g School-level weight
high_school byte %8.0g 1 if highest level by either

parent is high school
college byte %8.0g 1 if highest level by either

parent is college
one_for byte %8.0g 1 if one parent foreign born
both_for byte %8.0g 1 if both parents are foreign

born
test_lang byte %8.0g 1 if English (the test language)

is spoken at home
pass_read byte %8.0g 1 if passed reading proficiency

threshold
id_school int %8.0g School ID

Sorted by:

For student 𝑖 in school 𝑗, where the variable id school identifies the schools, the variable w fstuwt
is a student-level overall inclusion weight (𝑤𝑖𝑗, not 𝑤𝑖|𝑗) adjusted for noninclusion and nonparticipation

of students, and the variable wnrschbw is the school-level weight𝑤𝑗 adjusted for oversampling of schools

with more minority students. The weight adjustments do not interfere with the methods prescribed above,

and thus we can treat the weight variables simply as 𝑤𝑖𝑗 and 𝑤𝑗, respectively.
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Rabe-Hesketh and Skrondal (2006) fit a two-level logistic model for passing a reading proficiency

threshold. We fit a two-level linear random-intercept model for socioeconomic index. Because we have

𝑤𝑖𝑗 and not 𝑤𝑖|𝑗, we rescale using pwscale(size) and thus obtain results as if we had 𝑤𝑖|𝑗.

. mixed isei female high_school college one_for both_for test_lang
> [pw=w_fstuwt] || id_school:, pweight(wnrschbw) pwscale(size)
(output omitted )

Mixed-effects regression Number of obs = 2,069
Group variable: id_school Number of groups = 148

Obs per group:
min = 1
avg = 14.0
max = 28

Wald chi2(6) = 187.23
Log pseudolikelihood = -1443093.9 Prob > chi2 = 0.0000

(Std. err. adjusted for 148 clusters in id_school)

Robust
isei Coefficient std. err. z P>|z| [95% conf. interval]

female .59379 .8732886 0.68 0.497 -1.117824 2.305404
high_school 6.410618 1.500337 4.27 0.000 3.470011 9.351224

college 19.39494 2.121145 9.14 0.000 15.23757 23.55231
one_for -.9584613 1.789947 -0.54 0.592 -4.466692 2.54977

both_for -.2021101 2.32633 -0.09 0.931 -4.761633 4.357413
test_lang 2.519539 2.393165 1.05 0.292 -2.170978 7.210056

_cons 28.10788 2.435712 11.54 0.000 23.33397 32.88179

Robust
Random-effects parameters Estimate std. err. [95% conf. interval]

id_school: Identity
var(_cons) 34.69374 8.574865 21.37318 56.31617

var(Residual) 218.7382 11.22111 197.8147 241.8748

Notes:

1. We specified the level-one weights using standard Stata weight syntax, that is, [pw=w fstuwt].

2. We specified the level-two weights via the pweight(wnrschbw) option as part of the random-effects

specification for the id school level. As such, it is treated as a school-level weight. Accordingly,

wnrschbw needs to be constant within schools, and mixed did check for that before estimating.

3. Because our level-one weights are unconditional, we specified pwscale(size) to rescale them.

4. As is the case with other estimation commands in Stata, standard errors in the presence of sampling

weights are robust.

5. Robust standard errors are clustered at the top level of the model, and this will always be true unless

you specify vce(cluster clustvar), where clustvar identifies an even higher level of grouping.

As a form of sensitivity analysis, we compare the above with scaling via pwscale(gk). Because

pwscale(gk) assumes 𝑤𝑖|𝑗, you want to first divide 𝑤𝑖𝑗 by 𝑤𝑗. But you can handle that within the

weight specification itself.
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. mixed isei female high_school college one_for both_for test_lang
> [pw=w_fstuwt/wnrschbw] || id_school:, pweight(wnrschbw) pwscale(gk)
(output omitted )

Mixed-effects regression Number of obs = 2,069
Group variable: id_school Number of groups = 148

Obs per group:
min = 1
avg = 14.0
max = 28

Wald chi2(6) = 291.37
Log pseudolikelihood = -7270505.6 Prob > chi2 = 0.0000

(Std. err. adjusted for 148 clusters in id_school)

Robust
isei Coefficient std. err. z P>|z| [95% conf. interval]

female -.3519458 .7436334 -0.47 0.636 -1.80944 1.105549
high_school 7.074911 1.139777 6.21 0.000 4.84099 9.308833

college 19.27285 1.286029 14.99 0.000 16.75228 21.79342
one_for -.9142879 1.783091 -0.51 0.608 -4.409082 2.580506

both_for 1.214151 1.611885 0.75 0.451 -1.945085 4.373388
test_lang 2.661866 1.556491 1.71 0.087 -.3887996 5.712532

_cons 31.20145 1.907413 16.36 0.000 27.46299 34.93991

Robust
Random-effects parameters Estimate std. err. [95% conf. interval]

id_school: Identity
var(_cons) 31.67522 6.792239 20.80622 48.22209

var(Residual) 226.2429 8.150714 210.8188 242.7955

The results are somewhat similar to before, which is good news from a sensitivity standpoint. Note that

we specified [pw=w fstwtw/wnrschbw] and thus did the conversion from 𝑤𝑖𝑗 to 𝑤𝑖|𝑗 within our call to

mixed.

We close this section with a bit of bad news. Although weight rescaling and the issues that arise have

been well studied for two-level models, as pointed out by Carle (2009), “. . . a best practice for scaling

weights across multiple levels has yet to be advanced.” As such, pwscale() is currently supported

only for two-level models. If you are fitting a higher-level model with survey data, you need to make

sure your sampling weights are conditional on selection at the previous stage and not overall inclusion

weights, because there is currently no rescaling option to fall back on if you do not.

Small-sample inference for fixed effects
Researchers are often interested in making inferences about fixed effects in a linear mixed-effects

model. In the special case where the data are balanced and the mixed-effects model has a simple co-

variance structure, the sampling distributions of the statistics for testing hypotheses about fixed effects

are known to follow an 𝐹 distribution with specific denominator degrees of freedom (DDF) under the

null hypothesis. For example, the test statistics for testing hypotheses about fixed effects in balanced

split-plot designs and balanced repeated-measures designs have exact 𝑡 or 𝐹 distributions. In general,

however, the null sampling distributions of test statistics for fixed effects are not known and can only be

approximated in more complicated mixed-effects models.
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For a large sample, the null sampling distributions of the test statistics can be approximated by a

normal distribution for a one-hypothesis test and a 𝜒2 distribution for a multiple-hypotheses test. This is

the default behavior of mixed. However, these large-sample approximations may not be appropriate in
small samples, and 𝑡 and 𝐹 distributions may provide better approximations.

You can specify the dfmethod() option to request small-sample inference for fixed effects. mixed
with the dfmethod() option uses a 𝑡 distribution for one-hypothesis tests and an 𝐹 distribution for

multiple-hypotheses tests for inference about fixed effects. We use DF to refer to degrees of freedom

of a 𝑡 distribution, and we use DDF to refer to denominator degrees of freedom of an 𝐹 distribution.

Researchers have proposed various approximations that use 𝑡 and 𝐹 distributions but differ in how

respective DF and DDF are computed (for example, Khuri, Mathew, and Sinha [1998]; Brown and Prescott

[2015]; Schluchter and Elashoff [1990]; Elston [1998]; Kackar and Harville [1984]; Giesbrecht and

Burns [1985]; Fai and Cornelius [1996]; and Kenward and Roger [1997, 2009]). mixed provides five

methods with the dfmethod() option for calculating the DF of a 𝑡 distribution: residual, repeated,
anova, satterthwaite, and kroger.

Residual DDF (DF). This method uses the residual degrees of freedom, 𝑛 − 𝑝, as the DDF for all tests

of fixed effects. For a linear model without random effects and with i.i.d errors, the distributions of the

test statistics for testing the fixed effects are exact 𝑡 or 𝐹 distributions with the residual DF.

Repeated DDF (DF). This method partitions the residual degrees of freedom into the between-subject

degrees of freedom and the within-subject degrees of freedom. This partitioning of the degrees of free-

dom arises from balanced repeated-measures ANOVA analysis. If levels of a fixed effect change within a

subject, then the within-subject degrees of freedom is assigned to the fixed effect of interest; otherwise,

the between-subject degrees of freedom is assigned to that fixed effect. Winer, Brown, and Michels

(1991) showed that this method is appropriate only when the data are balanced and the correlation struc-

ture is assumed to be spherical. The repeated DDF method is supported only with two-level models. For

DDF methods accounting for unbalanced repeated measures, see, for example, Schluchter and Elashoff

(1990).

ANOVA DDF (DF). This method mimics the traditional ANOVA method. It determines the DDF for a

fixed effect depending on whether the corresponding covariate is contained in any of the random-effects

equations. If the covariate is contained in a random-effects equation, the DDF for the fixed effect is

computed as the number of levels of the level variable from that equation minus one. If the covariate

is specified in more than one random-effects equation, the DDF for the fixed effect is computed as the

smallest number of levels of the level variables from those equations minus one and is a conservative

estimate of the true DDF. If the covariate is specified only in the fixed-effects equation, the DDF is com-

puted as 𝜈ddf = 𝑛 − rank(X,Z). This method leads to an exact sampling distribution of the test statistics
only when random effects are balanced and the residuals are i.i.d; see, for example, chapter 1.6 in Brown

and Prescott (2015) for details.

Satterthwaite DDF (DF). This method performs a generalization of the Satterthwaite approximation

based on Kackar and Harville (1984), Giesbrecht and Burns (1985), and Fai and Cornelius (1996). Gies-

brecht and Burns (1985) developed a method of computing the DDF for a single-hypothesis test that is

analogous to Satterthwaite’s approximation of the degrees of freedom of a linear combination of ANOVA

mean squares. For a multiple-hypotheses test, Fai and Cornelius (1996) proposed an extension of the

Giesbrecht–Burns single-degree-of-freedom method. This method involves the spectral decomposition

of the contrast matrix of the hypothesis test and repeated application of the single-degree-of-freedom 𝑡
test. See Denominator degrees of freedom in Methods and formulas for more computational details.

https://www.stata.com/manuals/memixed.pdf#memixedMethodsandformulasddf
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Kenward–Roger DDF (DF). This method, developed by Kenward and Roger (1997), was designed to

provide an approximation that improves the performance of hypothesis tests about fixed effects in small

samples for complicated mixed-effects models and reproduces the exact inference available for simpler

mixed-effects models. It provides adjusted test statistics, more appropriate DDFs for the approximate

𝐹 distributions when exact inference is not available, and yields the exact 𝑡 and 𝐹 distributions when

exact inference is available. This method first accounts for the small-sample bias and the variability

of the estimated random effects to obtain an adjusted estimator of the fixed-effects covariance matrix.

Then, it proposes an approximate 𝐹 test based on a scaled Wald test statistic that uses the adjusted vari-

ance–covariance estimator. See Denominator degrees of freedom in Methods and formulas for more

computational details.

Residual, repeated, and ANOVA are known as “exact” methods in the literature. These methods are

suitable only when the sampling distributions of the test statistics are known to be 𝑡 or 𝐹. This is usually
only known for certain classes of linear mixed-effects models with simple covariance structures andwhen

data are balanced. These methods are available with both ML and REML estimation.

Satterthwaite and Kenward–Roger are known as “approximation” methods in the literature. These

methods are for unbalanced data and complicated covariance structures where the sampling distributions

of test statistics are unknown and can only be approximated. Both methods are available only with REML

estimation. For single-hypothesis tests, DDFs calculated with the Kenward–Roger method are the same

as those calculated with the Satterthwaite method, but they differ for multiple-hypotheses tests. Although

DDFs of the two methods are the same for single-hypothesis tests, the inference is not the same because

the Kenward–Roger method uses bias-adjusted standard errors.

Except for the special cases for which the sampling distributions are known, there is no definitive

recommendation for which approximation performs best. Schaalje, McBride, and Fellingham (2002)

compared the Satterthwaite method with the Kenward–Roger method via simulation using different co-

variance structures and various sample sizes. They concluded that the Kenward–Roger method outper-

forms the Satterthwaite method in most situations. They recommend using the Satterthwaite method only

when the covariance structure of the data is compound symmetry and the sample size is moderately large.

The Kenward–Roger method, however, is not guaranteed to work well in all situations. For example, for

more complicated covariance structures and very small-sample sizes, the Kenward–Roger method may

produce inflated type I error rates. In conclusion, you should choose your DDF method carefully. See,

for example, Schaalje, McBride, and Fellingham (2002), Chen andWei (2003), Vallejo et al. (2004), and

West, Welch, and Gałecki (2022) for a comparison of different approximations.

Both types of methods, exact and approximation, are available for single-hypothesis tests. For

multiple-hypotheses tests, exact methods are available only if DDFs associated with fixed effects are

the same for all tested covariates. See Denominator degrees of freedom in Methods and formulas for

details.

Example 13: Small-sample inference with a balanced repeated-measures design
Consider an example fromWiner, Brown, and Michels (1991, table 4.3), also analyzed in example 15

of [R] anova, which reports the reaction time for five subjects who were tested with four drugs. The

reaction timewas recorded in the variable score. Assume that person is random (that is, wewish to infer

to the larger population of possible subjects) and drug is fixed (that is, only four drugs are of interest).

This is an example of a mixed-effects model with a simple covariance structure—a balanced repeated-

measures design. The dataset contains only 20 observations, so we would like to account for the small

sample in our analysis. Because this is a balanced repeated-measures design, we can use the repeated

https://www.stata.com/manuals/memixed.pdf#memixedMethodsandformulasddf
https://www.stata.com/manuals/memixed.pdf#memixedMethodsandformulasDenominatordegreesoffreedom
https://www.stata.com/manuals/ranova.pdf#ranovaRemarksandexamplesex15
https://www.stata.com/manuals/ranova.pdf#ranova
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method to obtain small-sample inference for fixed effects. We specify the dfmethod(repeated) option

with mixed. We also request REML estimates by specifying the reml option to account for the small

number of groups.

. use https://www.stata-press.com/data/r19/t43
(T4.3 -- Winer, Brown, Michels)
. mixed score i.drug || person:, reml dfmethod(repeated)
Performing EM optimization ...
Performing gradient-based optimization:
Iteration 0: Log restricted-likelihood = -49.640099
Iteration 1: Log restricted-likelihood = -49.640099
Computing standard errors ...
Computing degrees of freedom ...
Mixed-effects REML regression Number of obs = 20
Group variable: person Number of groups = 5

Obs per group:
min = 4
avg = 4.0
max = 4

DF method: Repeated DF: min = 4.00
avg = 10.00
max = 12.00

F(3, 12.00) = 24.76
Log restricted-likelihood = -49.640099 Prob > F = 0.0000

score Coefficient Std. err. t P>|t| [95% conf. interval]

drug
2 -.8 1.939072 -0.41 0.687 -5.024874 3.424874
3 -10.8 1.939072 -5.57 0.000 -15.02487 -6.575126
4 5.6 1.939072 2.89 0.014 1.375126 9.824874

_cons 26.4 3.149604 8.38 0.001 17.6553 35.1447

Random-effects parameters Estimate Std. err. [95% conf. interval]

person: Identity
var(_cons) 40.20004 30.10272 9.264606 174.4319

var(Residual) 9.399997 3.837532 4.22305 20.92325

LR test vs. linear model: chibar2(01) = 15.03 Prob >= chibar2 = 0.0001
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In the table for fixed effects, 𝑡 statistics are reported instead of the default 𝑧 statistics. We can compare

our small-sample inference with the corresponding large-sample inference for fixed effects. We do not

need to rerun the estimation command, becausewe can obtain large-sample results upon replay by default.

. mixed
Mixed-effects REML regression Number of obs = 20
Group variable: person Number of groups = 5

Obs per group:
min = 4
avg = 4.0
max = 4

Wald chi2(3) = 74.28
Log restricted-likelihood = -49.640099 Prob > chi2 = 0.0000

score Coefficient Std. err. z P>|z| [95% conf. interval]

drug
2 -.8 1.939072 -0.41 0.680 -4.600511 3.000511
3 -10.8 1.939072 -5.57 0.000 -14.60051 -6.999489
4 5.6 1.939072 2.89 0.004 1.799489 9.400511

_cons 26.4 3.149604 8.38 0.000 20.22689 32.57311

Random-effects parameters Estimate Std. err. [95% conf. interval]

person: Identity
var(_cons) 40.20004 30.10272 9.264606 174.4319

var(Residual) 9.399997 3.837532 4.22305 20.92325

LR test vs. linear model: chibar2(01) = 15.03 Prob >= chibar2 = 0.0001

Comparing the above large-sample inference for fixed effects of drug with the small-sample infer-

ence, we see that the 𝑝-value for the level 4 of drug changes from 0.014 to 0.004.

If we wanted to replay our small-sample estimation results, we would type

. mixed, small
(output omitted )

The specified DF method and summaries of the coefficient-specific DFs are reported in the output

header. We can use the dftable() option to display a fixed-effects table containing coefficient-specific

DFs. dftable(pvalue) reports the fixed-effects table containing DFs, 𝑡 statistics, and 𝑝-values, and
dftable(ci) reports the fixed-effects table containing DFs and confidence intervals.
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. mixed, dftable(pvalue) noretable
Mixed-effects REML regression Number of obs = 20
Group variable: person Number of groups = 5

Obs per group:
min = 4
avg = 4.0
max = 4

DF method: Repeated DF: min = 4.00
avg = 10.00
max = 12.00

F(3, 12.00) = 24.76
Log restricted-likelihood = -49.640099 Prob > F = 0.0000

score Coefficient Std. err. df t P>|t|

drug
2 -.8 1.939072 12.0 -0.41 0.687
3 -10.8 1.939072 12.0 -5.57 0.000
4 5.6 1.939072 12.0 2.89 0.014

_cons 26.4 3.149604 4.0 8.38 0.001

Because levels of drug vary within person, the within-subject degrees of freedom, 12, are assigned
to the coefficients for the levels of drug. The DF for the constant term is always the between-subject

degrees of freedom, 4 in this example, because it is constant within random-effects levels.

The model 𝐹 test is reported in the output header instead of the default 𝜒2 test. The 𝐹 statistic for

testing drug = 0 is 24.76 with DDF = 12, which agrees with the results of anova, repeated():

. anova score person drug, repeated(drug)
Number of obs = 20 R-squared = 0.9244
Root MSE = 3.06594 Adj R-squared = 0.8803

Source Partial SS df MS F Prob>F

Model 1379 7 197 20.96 0.0000

person 680.8 4 170.2 18.11 0.0001
drug 698.2 3 232.73333 24.76 0.0000

Residual 112.8 12 9.4

Total 1491.8 19 78.515789

Between-subjects error term: person
Levels: 5 (4 df)

Lowest b.s.e. variable: person
Repeated variable: drug

Huynh-Feldt epsilon = 1.0789
*Huynh-Feldt epsilon reset to 1.0000
Greenhouse-Geisser epsilon = 0.6049
Box’s conservative epsilon = 0.3333

Prob > F
Source df F Regular H-F G-G Box

drug 3 24.76 0.0000 0.0000 0.0006 0.0076
Residual 12
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Example 14: Small-sample inference with an unbalanced repeated-measures design
Consider West, Welch, and Gałecki’s (2022) dental veneer dataset from example 7, containing two

measurements on each tooth from multiple teeth per patient. Because of small-sample size, we would

like to obtain small-sample inference for fixed effects.

Some patients are missing observations for some teeth:

. use https://www.stata-press.com/data/r19/veneer, clear
(Dental veneer data)
. table patient tooth

Tooth number with patient
6 7 8 9 10 11 Total

Patient ID
1 2 2 2 2 2 2 12
3 2 2 2 2 2 2 12
4 2 2 2 2 2 2 12
5 2 2 2 2 8
6 2 2 2 2 2 2 12
7 2 2 2 2 2 2 12
8 2 2 2 2 2 2 12
9 2 2 4
10 2 2 2 2 2 2 12
12 2 2 2 2 8
13 2 2
14 2 2 4
Total 16 20 20 18 22 14 110

The dataset is unbalanced; therefore, exact 𝐹 tests for fixed effects are unavailable. As such, we will

use the Satterthwaite and the Kenward–Roger approximation methods for calculating DF. Let’s fit the

model using the Kenward–Roger method first by specifying dfmethod(kroger).

. mixed gcf followup base_gcf cda age || patient: followup, cov(un)
> || tooth:, reml nolog dfmethod(kroger)
Mixed-effects REML regression Number of obs = 110

Grouping information

No. of Observations per group
Group variable groups Minimum Average Maximum

patient 12 2 9.2 12
tooth 55 2 2.0 2

DF method: Kenward--Roger DF: min = 10.41
avg = 28.96
max = 50.71

F(4, 27.96) = 1.47
Log restricted-likelihood = -420.92761 Prob > F = 0.2370

gcf Coefficient Std. err. t P>|t| [95% conf. interval]

followup .3009815 1.938641 0.16 0.879 -3.96767 4.569633
base_gcf -.0183127 .1466261 -0.12 0.901 -.3132419 .2766164

cda -.329303 .5533506 -0.60 0.554 -1.440355 .7817493
age -.5773932 .2350491 -2.46 0.033 -1.098324 -.056462

_cons 45.73862 13.21824 3.46 0.002 18.53866 72.93858

https://www.stata.com/manuals/memixed.pdf#memixedRemarksandexamplesex_mixed_veneer
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Random-effects parameters Estimate Std. err. [95% conf. interval]

patient: Unstructured
var(followup) 41.88772 18.79997 17.38009 100.9535

var(_cons) 524.9851 253.0205 204.1287 1350.175
cov(followup,_cons) -140.4229 66.57623 -270.9099 -9.935904

tooth: Identity
var(_cons) 47.45738 16.63034 23.8792 94.3165

var(Residual) 48.86704 10.50523 32.06479 74.47382

LR test vs. linear model: chi2(4) = 91.12 Prob > chi2 = 0.0000
Note: LR test is conservative and provided only for reference.

Compared with the 𝑝-values of the large-sample results from example 7, the 𝑝-values for age and

cons change substantially from 0.007 and 0.000 to 0.033 and 0.002, respectively. Note that for the

Kenward–Roger method, not only the 𝑝-values and confidence intervals differ from those of the large-

sample results but also the standard errors for the fixed effects differ. The standard errors differ because

this method uses a bias-adjusted estimator of the variance–covariance matrix of fixed effects.

Now, let’s fit the model using the Satterthwaite approximation:

. mixed gcf followup base_gcf cda age || patient: followup, cov(un)
> || tooth:, reml nolog dfmethod(satterthwaite)
Mixed-effects REML regression Number of obs = 110

Grouping information

No. of Observations per group
Group variable groups Minimum Average Maximum

patient 12 2 9.2 12
tooth 55 2 2.0 2

DF method: Satterthwaite DF: min = 10.41
avg = 28.96
max = 50.71

F(4, 16.49) = 1.87
Log restricted-likelihood = -420.92761 Prob > F = 0.1638

gcf Coefficient Std. err. t P>|t| [95% conf. interval]

followup .3009815 1.936863 0.16 0.879 -3.963754 4.565717
base_gcf -.0183127 .1433094 -0.13 0.899 -.3065704 .269945

cda -.329303 .5292525 -0.62 0.537 -1.39197 .7333636
age -.5773932 .2139656 -2.70 0.022 -1.051598 -.1031885

_cons 45.73862 12.55497 3.64 0.001 19.90352 71.57372

https://www.stata.com/manuals/memixed.pdf#memixedRemarksandexamplesex_mixed_veneer
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Random-effects parameters Estimate Std. err. [95% conf. interval]

patient: Unstructured
var(followup) 41.88772 18.79997 17.38009 100.9535

var(_cons) 524.9851 253.0205 204.1287 1350.175
cov(followup,_cons) -140.4229 66.57623 -270.9099 -9.935904

tooth: Identity
var(_cons) 47.45738 16.63034 23.8792 94.3165

var(Residual) 48.86704 10.50523 32.06479 74.47382

LR test vs. linear model: chi2(4) = 91.12 Prob > chi2 = 0.0000
Note: LR test is conservative and provided only for reference.

Using the Satterthwaite method, we see that the 𝑝-value for age is 0.022 and for cons is 0.001 and that

these are again substantially different from their large-sample counterparts. On the other hand, unlike

the standard errors for the Kenward–Roger method, those for the Satterthwaite method are the same as

the standard errors from the large-sample results.

Looking at the DF summaries in the output header of the two methods, we notice that they are ex-

actly the same. This is because DFs for fixed effects obtained using the Kenward–Roger and Satterth-

waite methods are the same for single-hypothesis tests. (You can verify this by specifying, for example,

dftable(pvalue) with the above commands or by using estat df; see [ME] estat df.) The DDFs dif-

fer, however, for multiple-hypotheses tests. For example, DDF computed for the overall model test using

dfmethod(satterthwaite) (16.49) is smaller than that computed using dfmethod(kroger) (27.96).

There are no general guidelines to which method should be preferred, but according to Schaalje,

McBride, and Fellingham (2002), the Kenward–Roger method outperforms the Satterthwaite method

when the variance–covariance structure of the random effects is unstructured, which is the case in our

example.

Determining which DDF method is best is a difficult task and may often need simulation. The choice

of the method depends on the specified covariance structure, sample size, and imbalance of the data. No

method applies to all situations; thus you should use caution when choosing among methods.

Stored results
mixed stores the following in e():

Scalars

e(N) number of observations

e(k) number of parameters

e(k f) number of fixed-effects parameters

e(k r) number of random-effects parameters

e(k rs) number of variances

e(k rc) number of covariances

e(k res) number of residual-error parameters

e(N clust) number of clusters

e(nrgroups) number of residual-error by() groups

e(ar p) AR order of residual errors, if specified

e(ma q) MA order of residual errors, if specified

e(res order) order of residual-error structure, if appropriate

e(df m) model degrees of freedom

https://www.stata.com/manuals/meestatdf.pdf#meestatdf
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e(small) 1 if dfmethod() option specified, 0 otherwise

e(F) overall 𝐹 test statistic when dfmethod() is specified

e(ddf m) model DDF

e(df max) maximum DF

e(df avg) average DF

e(df min) minimum DF

e(ll) log (restricted) likelihood

e(chi2) 𝜒2

e(p) 𝑝-value for model test
e(ll c) log likelihood, comparison model

e(chi2 c) 𝜒2, comparison test
e(df c) degrees of freedom, comparison test

e(p c) 𝑝-value for comparison test
e(rank) rank of e(V)
e(ic) number of iterations

e(rc) return code

e(converged) 1 if converged, 0 otherwise

Macros

e(cmd) mixed
e(cmdline) command as typed

e(depvar) name of dependent variable

e(wtype) weight type (first-level weights)

e(wexp) weight expression (first-level weights)

e(fweight𝑘) fweight variable for 𝑘th highest level, if specified
e(pweight𝑘) pweight variable for 𝑘th highest level, if specified
e(ivars) grouping variables

e(title) title in estimation output

e(redim) random-effects dimensions

e(vartypes) variance-structure types

e(revars) random-effects covariates

e(resopt) residuals() specification, as typed

e(rstructure) residual-error structure

e(rstructlab) residual-error structure output label

e(rbyvar) residual-error by() variable, if specified

e(rglabels) residual-error by() groups labels

e(pwscale) sampling-weight scaling method

e(timevar) residual-error t() variable, if specified

e(dfmethod) DF method specified in dfmethod()
e(dftitle) title for DF method

e(chi2type) Wald; type of model 𝜒2 test

e(clustvar) name of cluster variable

e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.

e(method) ML or REML
e(opt) type of optimization

e(optmetric) matsqrt or matlog; random-effects matrix parameterization
e(emonly) emonly, if specified
e(ml method) type of ml method

e(technique) maximization technique

e(datasignature) the checksum

e(datasignaturevars) variables used in calculation of checksum

e(properties) b V
e(estat cmd) program used to implement estat
e(predict) program used to implement predict
e(marginswtype) weight type for margins
e(marginswexp) weight expression for margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved
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Matrices

e(b) coefficient vector

e(Cns) constraints matrix

e(N g) group counts

e(g min) group-size minimums

e(g avg) group-size averages

e(g max) group-size maximums

e(tmap) ID mapping for unstructured residual errors

e(V) variance–covariance matrix of the estimators

e(V modelbased) model-based variance

e(df) parameter-specific DF for fixed effects

e(V df) variance–covariance matrix of the estimators when dfmethod(kroger) is specified

Functions

e(sample) marks estimation sample

In addition to the above, the following is stored in r():

Matrices

r(table) matrix containing the coefficients with their standard errors, test statistics, 𝑝-values, and
confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when any

r-class command is run after the estimation command.

Methods and formulas
Methods and formulas are presented under the following headings:

Estimation using ML and REML
Denominator degrees of freedom

Residual DDF
Repeated DDF
ANOVADDF
Satterthwaite DDF
Kenward–Roger DDF

Fixed-effects constraints

Estimation using ML and REML
As given by (1), in the absence of weights we have the linear mixed model

y = Xβ + Zu+ ε

where y is the 𝑛 × 1 vector of responses, X is an 𝑛 × 𝑝 design/covariate matrix for the fixed effects β,
and Z is the 𝑛 × 𝑞 design/covariate matrix for the random effects u. The 𝑛 × 1 vector of errors ε is for
now assumed to be multivariate normal with mean 0 and variance matrix 𝜎2

𝜖 I𝑛. We also assume that u

has variance–covariance matrix G and that u is orthogonal to ε so that

Var [u
ε
] = [G 0

0 𝜎2
𝜖 I𝑛

]

Considering the combined error term Zu + ε, we see that y is multivariate normal with mean Xβ and

𝑛 × 𝑛 variance–covariance matrix

V = ZGZ′ + 𝜎2
𝜖 I𝑛

https://www.stata.com/manuals/memixed.pdf#memixedRemarksandexampleseq1
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Defining θ as the vector of unique elements of G results in the log likelihood

𝐿(β,θ, 𝜎2
𝜖 ) = −1

2
{𝑛 log(2𝜋) + log |V| + (y− Xβ)′V−1(y− Xβ)} (9)

which is maximized as a function of β, θ, and 𝜎2
𝜖 . As explained in chapter 6 of Searle, Casella, and

McCulloch (1992), considering instead the likelihood of a set of linear contrasts Ky that do not depend

on β results in the restricted log likelihood

𝐿𝑅(β,θ, 𝜎2
𝜖 ) = 𝐿(β,θ, 𝜎2

𝜖 ) − 1
2
log ∣X′V−1X∣ (10)

Given the high dimension of V, however, the log-likelihood and restricted log-likelihood criteria are not

usually computed by brute-force application of the above expressions. Instead, you can simplify the

problem by subdividing the data into independent clusters (and subclusters if possible) and using matrix

decomposition methods on the smaller matrices that result from treating each cluster one at a time.

Consider the two-level model described previously in (2),

y𝑗 = X𝑗β + Z𝑗u𝑗 + ε𝑗

for 𝑗 = 1, . . . , 𝑀 clusters with cluster 𝑗 containing 𝑛𝑗 observations, with Var(u𝑗) = 𝚺, a 𝑞 × 𝑞 matrix.
Efficient methods for computing (9) and (10) are given in chapter 2 of Pinheiro and Bates (2000).

Namely, for the two-level model, define 𝚫 to be the Cholesky factor of 𝜎2
𝜖 𝚺−1, such that 𝜎2

𝜖 𝚺−1 =
𝚫′𝚫. For 𝑗 = 1, . . . , 𝑀, decompose

[Z𝑗
𝚫] = Q𝑗 [R11𝑗

0
]

by using an orthogonal-triangular (QR) decomposition, with Q𝑗 a (𝑛𝑗 + 𝑞)-square matrix and R11𝑗 a

𝑞-square matrix. We then apply Q𝑗 as follows:

[R10𝑗
R00𝑗

] = Q′
𝑗 [X𝑗

0
] ; [c1𝑗

c0𝑗
] = Q′

𝑗 [y𝑗
0

]

Stack the R00𝑗 and c0𝑗 matrices, and perform the additional QR decomposition

⎡⎢
⎣

R001 c01
⋮ ⋮

R00𝑀 c0𝑀

⎤⎥
⎦

= Q0 [R00 c0
0 c1

]

Pinheiro and Bates (2000) show that ML estimates of β, 𝜎2
𝜖 , and 𝚫 (the unique elements of 𝚫, that

is) are obtained by maximizing the profile log likelihood (profiled in 𝚫)

𝐿(𝚫) = 𝑛
2

{ log𝑛 − log(2𝜋) − 1} − 𝑛 log||c1|| +
𝑀

∑
𝑗=1

log ∣ det(𝚫)
det(R11𝑗)

∣ (11)

where || ⋅ || denotes the 2-norm. Following this maximization with

β̂ = R−1
00 c0; �̂�2

𝜖 = 𝑛−1||c1||2 (12)

https://www.stata.com/manuals/memixed.pdf#memixedRemarksandexampleseq2
https://www.stata.com/manuals/memixed.pdf#memixedMethodsandformulaseq9
https://www.stata.com/manuals/memixed.pdf#memixedMethodsandformulaseq10
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REML estimates are obtained by maximizing

𝐿𝑅(𝚫) = 𝑛 − 𝑝
2

{ log(𝑛 − 𝑝) − log(2𝜋) − 1} − (𝑛 − 𝑝) log||c1||

− log |det(R00)| +
𝑀

∑
𝑗=1

log ∣ det(𝚫)
det(R11𝑗)

∣
(13)

followed by

β̂ = R−1
00 c0; �̂�2

𝜖 = (𝑛 − 𝑝)−1||c1||2

For numerical stability, maximization of (11) and (13) is not performed with respect to the unique ele-

ments of 𝚫 but instead with respect to the unique elements of the matrix square root (or matrix logarithm

if the matlog option is specified) of 𝚺/𝜎2
𝜖 ; define 𝛄 to be the vector containing these elements.

Once maximization with respect to𝛄 is completed, (𝛄, 𝜎2
𝜖 ) is reparameterized to {α, log(𝜎𝜖)}, where

α is a vector containing the unique elements of 𝚺, expressed as logarithms of standard deviations for

the diagonal elements and hyperbolic arctangents of the correlations for off-diagonal elements. This last

step is necessary 1) to obtain a joint variance–covariance estimate of the elements of 𝚺 and 𝜎2
𝜖 ; 2) to

obtain a parameterization under which parameter estimates can be interpreted individually, rather than

as elements of a matrix square root (or logarithm); and 3) to parameterize these elements such that their

ranges each encompass the entire real line.

Obtaining a joint variance–covariance matrix for the estimated {α, log(𝜎𝜖)} requires the evaluation

of the log likelihood (or log-restricted likelihood) with only β profiled out. For ML, we have

𝐿∗{α, log(𝜎𝜖)} = 𝐿{𝚫(α, 𝜎2
𝜖 ), 𝜎2

𝜖 }

= −𝑛
2
log(2𝜋𝜎2

𝜖 ) − ||c1||2

2𝜎2
𝜖

+
𝑀

∑
𝑗=1

log ∣ det(𝚫)
det(R11𝑗)

∣

with the analogous expression for REML.

The variance–covariance matrix of β̂ is estimated as

V̂ar(β̂) = �̂�2
𝜖R

−1
00 (R−1

00 )′

but this does not mean that V̂ar(β̂) is identical under both ML and REML because R00 depends on 𝚫.

Because β̂ is asymptotically uncorrelated with {α̂, log(�̂�𝜖)}, the covariance of β̂with the other estimated

parameters is treated as 0.

Parameter estimates are stored in e(b) as {β̂, α̂, log(�̂�𝜖)}, with the corresponding (block-diagonal)
variance–covariance matrix stored in e(V). Parameter estimates can be displayed in this metric by spec-
ifying the estmetric option. However, in mixed output, variance components are most often displayed

either as variances and covariances or as standard deviations and correlations.

EM iterations are derived by considering the u𝑗 in (2) as missing data. Here we describe the procedure

for maximizing the log likelihood via EM; the procedure for maximizing the restricted log likelihood is

similar. The log likelihood for the full data (y,u) is

𝐿𝐹(β, 𝚺, 𝜎2
𝜖 ) =

𝑀
∑
𝑗=1

{ log𝑓1(y𝑗|u𝑗,β, 𝜎2
𝜖 ) + log𝑓2(u𝑗|𝚺)}

https://www.stata.com/manuals/memixed.pdf#memixedMethodsandformulaseq11
https://www.stata.com/manuals/memixed.pdf#memixedMethodsandformulaseq13
https://www.stata.com/manuals/memixed.pdf#memixedRemarksandexampleseq2
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where 𝑓1(⋅) is the density function for multivariate normal with mean X𝑗β + Z𝑗u𝑗 and variance 𝜎2
𝜖 I𝑛𝑗

,

and 𝑓2(⋅) is the density for multivariate normal with mean 0 and 𝑞 × 𝑞 covariance matrix 𝚺. As before,

we can profile β and 𝜎2
𝜖 out of the optimization, yielding the following EM iterative procedure:

1. For the current iterated value of 𝚺(𝑡), fix β̂ = β̂(𝚺(𝑡)) and �̂�2
𝜖 = �̂�2

𝜖 (𝚺(𝑡)) according to (12).
2. Expectation step: Calculate

𝐷(𝚺) ≡ 𝐸 {𝐿𝐹(β̂, 𝚺, �̂�2
𝜖 )|y}

= 𝐶 − 𝑀
2
log det (𝚺) − 1

2

𝑀
∑
𝑗=1

𝐸 (u′
𝑗𝚺

−1u𝑗|y)

where 𝐶 is a constant that does not depend on 𝚺, and the expected value of the quadratic form

u′
𝑗𝚺

−1u𝑗 is taken with respect to the conditional density 𝑓(u𝑗|y, β̂, 𝚺(𝑡), �̂�2
𝜖 ).

3. Maximization step: Maximize 𝐷(𝚺) to produce 𝚺(𝑡+1).

For general, symmetric 𝚺, the maximizer of 𝐷(𝚺) can be derived explicitly, making EM iterations

quite fast.

For general, residual-error structures,

Var(ε𝑗) = 𝜎2
𝜖 𝚲𝑗

where the subscript 𝑗 merely represents that ε𝑗 and 𝚲𝑗 vary in dimension in unbalanced data, the data

are first transformed according to

y∗
𝑗 = �̂�

−1/2
𝑗 y𝑗; X∗

𝑗 = �̂�
−1/2
𝑗 X𝑗; Z∗

𝑗 = �̂�
−1/2
𝑗 Z𝑗;

and the likelihood-evaluation techniques described above are applied to y∗
𝑗, X

∗
𝑗, and Z

∗
𝑗 instead. The

unique elements of 𝚲, ρ, are estimated along with the fixed effects and variance components. Because
𝜎2

𝜖 is always estimated and multiplies the entire 𝚲𝑗 matrix, ρ̂ is parameterized to take this into account.

In the presence of sampling weights, following Rabe-Hesketh and Skrondal (2006), the weighted log

pseudolikelihood for a two-level model is given as

𝐿(β, 𝚺, 𝜎2
𝜖 ) =

𝑀
∑
𝑗=1

𝑤𝑗 log[∫ exp{
𝑛𝑗

∑
𝑖=1

𝑤𝑖|𝑗 log𝑓1(𝑦𝑖𝑗|u𝑗,β, 𝜎2
𝜖 )} 𝑓2(u𝑗|𝚺)𝑑u𝑗] (14)

where 𝑤𝑗 is the inverse of the probability of selection for the 𝑗th cluster, 𝑤𝑖|𝑗 is the inverse of the condi-

tional probability of selection of individual 𝑖 given the selection of cluster 𝑗, and 𝑓1(⋅) and 𝑓2(⋅) are the
multivariate normal densities previously defined.

Weighted estimation is achieved through incorporating 𝑤𝑗 and 𝑤𝑖|𝑗 into the matrix decomposition

methods detailed above to reflect replicated clusters for 𝑤𝑗 and replicated observations within clusters

for 𝑤𝑖|𝑗. Because this estimation is based on replicated clusters and observations, frequency weights are

handled similarly.

Rescaling of sampling weights can take one of three available forms:

Under pwscale(size),

𝑤∗
𝑖|𝑗 = 𝑛𝑗𝑤𝑖|𝑗 {

𝑛𝑗

∑
𝑖=1

𝑤𝑖|𝑗}
−1

https://www.stata.com/manuals/memixed.pdf#memixedMethodsandformulaseq12
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Under pwscale(effective),

𝑤∗
𝑖|𝑗 = 𝑤𝑖|𝑗 {

𝑛𝑗

∑
𝑖=1

𝑤𝑖|𝑗} {
𝑛𝑗

∑
𝑖=1

𝑤2
𝑖|𝑗}

−1

Under both the above, 𝑤𝑗 remains unchanged. For method pwscale(gk), however, both weights are

modified:

𝑤∗
𝑗 = 𝑛−1

𝑗

𝑛𝑗

∑
𝑖=1

𝑤𝑖|𝑗𝑤𝑗 𝑤∗
𝑖|𝑗 = 1

Under ML estimation, robust standard errors are obtained in the usual way (see [P] robust) with

the one distinction being that in multilevel models, robust variances are, at a minimum, clustered at

the highest level. This is because given the form of the log likelihood, scores aggregate at the top-level

clusters. For a two-level model, scores are obtained as the partial derivatives of𝐿𝑗(β, 𝚺, 𝜎2
𝜖 )with respect

to {β,α, log(𝜎𝜖)}, where 𝐿𝑗 is the log likelihood for cluster 𝑗 and 𝐿 = ∑𝑀
𝑗=1 𝐿𝑗. Robust variances are

not supported under REML estimation because the form of the log restricted likelihood does not lend itself

to separation by highest-level clusters.

EM iterations always assume equal weighting and an independent, homoskedastic error structure. As

such, with weighted data or when error structures are more complex, EM is used only to obtain starting

values.

For extensions to models with three or more levels, see Bates and Pinheiro (1998) and Rabe-Hesketh

and Skrondal (2006).

Denominator degrees of freedom
When the dfmethod() option is specified, mixed uses a 𝑡 distribution with 𝜈ddf degrees of freedom to

perform single-hypothesis tests for fixed effects 𝐻0∶ 𝛽𝑖 = 0 for 𝑖 = 1, 2, . . . , 𝑝 or an 𝐹 distribution with

model numerator degrees of freedom and 𝜈ddf𝑚 DDF for a model (joint) test of all coefficients (except the

constant) being equal to zero. Denominator degrees of freedom 𝜈ddf and 𝜈ddf𝑚 are computed according

to the specified DDF method.

Residual DDF

This method uses the residual degrees of freedom as the DDF, 𝜈ddf = 𝑛 − 𝑝, where 𝑛 is the total

number of observations, and 𝑝 is the rank of the design matrix X.

Repeated DDF

This method partitions the residual degrees of freedom into the between-subject degrees of freedom

and the within-subject degrees of freedom. This partitioning of the degrees of freedom arises from bal-

anced repeated-measures ANOVA analysis. If levels of a fixed effect change within a subject, then the

within-subject degrees of freedom is assigned to the fixed effect of interest; otherwise, the between-

subject degrees of freedom is assigned to that fixed effect. See Schluchter and Elashoff (1990) for more

computational details and, specifically, for the expressions of between-subject andwithin-subject degrees

of freedom.

https://www.stata.com/manuals/p_robust.pdf#p_robust
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ANOVA DDF

This method determines the DDF for a fixed effect depending on whether the corresponding covariate

is contained in any of the random-effects equations. If the covariate is contained in a random-effects

equation, the DDF 𝜈ddf for the fixed effect is computed as the number of levels of the level variable from
that equation minus one. If the covariate is specified in more than one random-effects equation, the DDF

𝜈ddf for the fixed effect is computed as the smallest number of levels of the level variables from those

equations minus one and is a conservative estimate of the true DDF. If the covariate is specified only in

the fixed-effects equation, the DDF is computed as 𝜈ddf = 𝑛 − rank(X,Z).
For example, suppose we have the following mixed model,

mixed y A B C || D: A || E: A B

where A, B, and C are fixed effects, and D and E are nested random effects. For the fixed effect A, 𝜈ddf
is the smaller number of levels of variables D and E minus one because A is included in random-effects

equations at both levels D and E. For the fixed effect B, 𝜈ddf is the number of levels of level variable E
minus one because B is included in the random-effects equation at the level E. For the fixed effect C,
𝜈ddf = 𝑛 − rank(X,Z) because C is not included in any of the random-effects equations.

For the three methods above, the DDF for a model test of 𝐻0∶ β = 0 is computed as follows. If all

corresponding single-hypothesis tests 𝐻0∶ 𝛽𝑖 = 0 have the same DDF 𝜈ddf, then model DDF 𝜈ddf𝑚 = 𝜈ddf.
If the single-hypothesis DDF differs, then 𝜈ddf𝑚 is not defined, and the large-sample 𝜒2 test is reported

instead of the 𝐹 test.

To provide formulas for the Satterthwaite and Kenward–Roger methods, consider a general linear-

hypotheses test of fixed effects 𝐻0∶ C′β = b with a 𝑝 × 𝑙 matrix of linear hypotheses C of rank 𝑙.
The variance–covariance matrix of y is Var(y) = V = ZGZ′ + R = V(𝛔) and can be viewed as a

function of variance components 𝛔 (𝑟 × 1). Suppose that the first two partial derivatives of V(𝛔) with
respect to 𝛔 exist.

Let �̂� be the REML estimator of 𝛔. Then, the REML estimator of the fixed effects β is the generalized

least-squares estimator

β̂ = {X′V−1(�̂�)X}−1
X′V−1(�̂�)Y

where V̂ar(β̂) = �̂� = 𝚽(�̂�) = {X′V−1(�̂�)X}−1
is the conventional estimator of the vari-

ance–covariance matrix of the fixed effects β̂, and V(�̂�) is the estimator of the covariance matrix of

y.

Under the null 𝐻0∶ C′β = b, the 𝐹 test statistic is

𝐹 = 1
𝑙
(C′β̂ − b)′(C′�̂�C)−1(C′β̂ − b)

and it has an 𝐹 distribution with 𝑙 numerator and 𝜈ddf𝐶 DDF.

Satterthwaite DDF

This method is derived from the DDF formula of the original approximation attributable to Satterth-

waite (1946):

ddf = 2(C′�̂�C)2

Var(C′�̂�C)
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For a single-hypothesis test of𝐻0∶ c′β = b, where c and b are vectors of known constants, Giesbrecht

and Burns (1985) proposed using

𝜈ddf = 2(c′�̂�c)2

Var(c′�̂�c)
= 2(c′�̂�c)2

d′Wd
(15)

where d is a vector of partial derivatives of c′𝚽(𝛔)c with respect to 𝛔 evaluated at �̂�, and V̂ar(�̂�) = W

is the estimator of the variance–covariance matrix of �̂� computed based on the expected information

matrix IE in (17) or on the observed information matrix if suboption oim of dfmethod() is specified.

For a multiple-hypotheses test (when the rank of C is greater than 1), Fai and Cornelius (1996) pro-

posed an extension of the Giesbrecht–Burns single-degree-of-freedom method. Their method involves

the spectral decompositionC′�̂�C = P′DP, where P = (p1,p2, . . . ,p𝑙) is an orthogonal matrix of eigen-
vectors, and D = diag(𝜆1, 𝜆2, . . . , 𝜆𝑙) is a diagonal matrix of the corresponding eigenvalues. Using this
decomposition, we can write the 𝐹-test statistic as a sum of 𝑙 independent approximate 𝑡 random variates,

𝐹 = 𝑄/𝑙 with

𝑄 =
𝑙

∑
𝑘=1

{p′
𝑘(C′β̂ − b)}2

𝜆𝑘
=

𝑙
∑
𝑘=1

𝑡2
𝑣𝑘

where 𝑣𝑘 is computed using (15). Because 𝑡𝑣𝑘
s are independent and have approximate 𝑡 distributions

with 𝑣𝑘 degrees of freedom,

𝐸(𝑄) =
𝑙

∑
𝑘=1

𝑣𝑘
𝑣𝑘 − 2

𝐼(𝑣𝑘 > 2)

Then, the DDF for a multiple-hypotheses test can be approximately written as

𝜈ddf𝐶 = 2𝐸(𝑄)
𝐸(𝑄) − 𝑙

For more computational details of the Satterthwaite method, see Fai and Cornelius (1996).

Kenward–Roger DDF

This method was developed by Kenward and Roger (1997). It is based on adjusting the conventional

variance–covariance estimator of fixed effects �̂� for small-sample bias and introducing a scaled 𝐹 test

that improves the small-sample performance of the conventional 𝐹 test of fixed effects.

Kenward and Roger (1997) propose the adjusted estimator,

�̂�𝐴 = �̂� + 2�̂� {
𝑟

∑
𝑖=1

𝑟
∑
𝑗=1

𝑊𝑖𝑗(Q𝑖𝑗 − P𝑖�̂�P𝑗 − 1
4
R𝑖𝑗)} �̂� (16)

where P𝑖 = X′{𝜕V−1(𝛔)/𝜕𝜎𝑖}X, Q𝑖𝑗 = X′{𝜕V−1(𝛔)/𝜕𝜎𝑖}V(𝛔){𝜕V−1(𝛔)/𝜕𝜎𝑗}X, and R𝑖𝑗 =
X′V−1(𝛔){𝜕2V(𝛔)/𝜕𝜎𝑖𝜕𝜎𝑗}V−1(𝛔)X evaluated at �̂� and 𝑊𝑖𝑗 is the (𝑖, 𝑗)th element of W, the esti-

mator of the variance–covariance matrix of �̂� computed from the inverse of the expected information

matrix I𝐸, where the element 𝐼 𝑖𝑗
𝐸 of I𝐸 is defined as

2𝐼 𝑖𝑗
𝐸 = tr(𝜕V−1

𝜕𝜎𝑖
V

𝜕V−1

𝜕𝜎𝑗
V) − tr(2𝚽Q𝑖𝑗 − 𝚽P𝑖𝚽P𝑗) (17)

https://www.stata.com/manuals/memixed.pdf#memixedMethodsandformulaseq17
https://www.stata.com/manuals/memixed.pdf#memixedMethodsandformulaseq15


mixed — Multilevel mixed-effects linear regression 63

Alternatively, you can use the observed information matrix as W by specifying suboption oim in

dfmethod().

All terms in (16), except those involvingR𝑖𝑗, are invariant under reparameterization of the covariance

structures. Also, the second derivative requires more computational resources and may not be numeri-

cally stable. For these reasons, the R𝑖𝑗 terms are ignored in the computation of �̂�𝐴 in (16).

For multiple-hypotheses testing, Kenward and Roger (1997) propose the scaled 𝐹-test statistic, which
under the null hypothesis can be written as

𝐹KR = 𝜆
𝑙

(C′β̂ − b)′(C′�̂�𝐴C)−1(C′β̂ − b)

and has an 𝐹 distribution with 𝑙 numerator and 𝜈ddf𝐶 DDF. The scale factor 𝜆 = 𝜈ddf𝐶/(𝑙 − 1 + 𝜈ddf𝐶).
The DDF 𝜈ddf𝐶 and 𝜆 are approximated as

𝜈ddf𝐶 = 4 + 𝑙 + 2
𝑙 × 𝜌 − 1

and 𝜆 =
𝜈ddf𝐶

𝐸∗(𝜈ddf𝐶 − 2)

where 𝜌 = 𝑉 ∗/2(𝐸∗)2 and 𝐸∗ and 𝑉 ∗ are the respective approximate mean and variance of the 𝐹KR

statistic; see Kenward and Roger (1997, 987) for expressions for 𝐸∗ and 𝑉 ∗.

Fixed-effects constraints
Fixed-effects constraints Rβ = r are computed by first generating the T and a matrices via the

eigenvalue decomposition described in [P] makecns. The fixed-effects model matrix is adjusted by

X𝑐 = XT and the dependent variable by y𝑐 = y− Xa′. Computations then proceed with unconstrained

optimization using X𝑐 and y𝑐. On convergence, we solve for the reduced-form fixed effects β̂𝑐 and then

solve for the constrained fixed effects β̂ = Tβ̂𝑐 + a′. (Here, β̂ and β̂𝑐 correspond to b′ and b′
𝑐 in

[P] makecns.)
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