
mestreg — Multilevel mixed-effects parametric survival models

Description Quick start Menu Syntax Options
Remarks and examples Stored results Methods and formulas References Also see

Description
mestreg fits a mixed-effects parametric survival-time model. The conditional distribution of the

response given the random effects is assumed to be an exponential, Weibull, lognormal, loglogistic, or

gamma distribution. mestreg can be used with single- or multiple-record st data.

Quick start
Without weights

Two-levelWeibull survival model with covariates x1 and x2 and random intercepts by lev2 using stset
data

mestreg x1 x2 || lev2:, distribution(weibull)

Mixed-effects model adding random coefficients for x1
mestreg x1 x2 || lev2:x1, distribution(weibull)

Three-level random-intercept model with lev2 nested within lev3
mestreg x1 x2 || lev3: || lev2:, distribution(weibull)

With weights

Two-level Weibull survival model with covariates x1 and x2, random intercepts by lev2, and

observation-level frequency weights wvar1 using stset data

mestreg x1 x2 [fweight=wvar1] || lev2:, distribution(weibull)

Two-level random-intercept model from a two-stage sampling design with PSUs identified by psu using

PSU-level and observation-level sampling weights wvar2 and wvar1
mestreg x1 x2 [pweight=wvar1] || psu:, pweight(wvar2)

Same as above, but svyset the data first

svyset psu, weight(wvar2) || _n, weight(wvar1)
svy: mestreg x1 x2 || psu:, distribution(weibull)

Note: Any supported parametric survival distribution may be specified in place of weibull above.

Menu
Statistics > Multilevel mixed-effects models > Parametric survival regression
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https://www.stata.com/manuals/ststset.pdf#ststset
https://www.stata.com/manuals/ststset.pdf#ststset
https://www.stata.com/manuals/svysvyset.pdf#svysvyset
https://www.stata.com/manuals/memestreg.pdf#memestregSyntaxdistname
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Syntax
mestreg fe equation [ || re equation ] [ || re equation ... ],

distribution(distname) [ options ]

where the syntax of fe equation is

[ indepvars ] [ if ] [ in ] [weight ] [ , fe options ]

and the syntax of re equation is one of the following:

for random coefficients and intercepts

levelvar: [ varlist ] [ , re options ]

for random effects among the values of a factor variable in a crossed-effects model

levelvar: R.varname

levelvar is a variable identifying the group structure for the random effects at that level or is all repre-

senting one group comprising all observations.

fe options Description

Model

noconstant suppress constant term from the fixed-effects equation

offset(varname) include varname in model with coefficient constrained to 1

re options Description

Model

covariance(vartype) variance–covariance structure of the random effects

noconstant suppress constant term from the random-effects equation

fweight(varname) frequency weights at higher levels

iweight(varname) importance weights at higher levels

pweight(varname) sampling weights at higher levels

https://www.stata.com/manuals/memestreg.pdf#memestregSyntaxdistname
https://www.stata.com/manuals/memestreg.pdf#memestregSyntaxoptions
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.4inrange
https://www.stata.com/manuals/memestreg.pdf#memestregSyntaxweight
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/memestreg.pdf#memestregSyntaxvartype
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
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options Description

Model
∗ distribution(distname) specify survival distribution

time use accelerated failure-time metric

constraints(constraints) apply specified linear constraints

SE/Robust

vce(vcetype) vcetype may be oim, opg, robust, or cluster clustvar

Reporting

level(#) set confidence level; default is level(95)
nohr do not report hazard ratios

tratio report time ratios

noshow do not show st setting information

nocnsreport do not display constraints

notable suppress coefficient table

noheader suppress output header

nogroup suppress table summarizing groups

display options control columns and column formats, row spacing, line width,
display of omitted variables and base and empty cells, and
factor-variable labeling

Integration

intmethod(intmethod) integration method

intpoints(#) set the number of integration (quadrature) points for all levels;
default is intpoints(7)

Maximization

maximize options control the maximization process; seldom used

startvalues(svmethod) method for obtaining starting values

startgrid[ (gridspec) ] perform a grid search to improve starting values

noestimate do not fit the model; show starting values instead

dnumerical use numerical derivative techniques

collinear keep collinear variables

coeflegend display legend instead of statistics

∗distribution(distname) is required.

vartype Description

independent one unique variance parameter per random effect and all covariances
0; the default unless the R. notation is used

exchangeable equal variances for random effects and one common pairwise
covariance

identity equal variances for random effects and all covariances 0; the
default if the R. notation is used

unstructured all variances and covariances to be distinctly estimated

fixed(matname) user-selected variances and covariances constrained to specified
values; the remaining variances and covariances unrestricted

pattern(matname) user-selected variances and covariances constrained to be equal;
the remaining variances and covariances unrestricted

https://www.stata.com/manuals/memestreg.pdf#memestregSyntaxdistname
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptionsOptionsconstraintsdescrip
https://www.stata.com/manuals/r.pdf#rvce_option
https://www.stata.com/manuals/memestreg.pdf#memestregOptionsdisplay_options
https://www.stata.com/manuals/memestreg.pdf#memestregSyntaxintmethod
https://www.stata.com/manuals/memestreg.pdf#memestregOptionsmaxopts
https://www.stata.com/manuals/memeglm.pdf#memeglmOptionsstartvalues()
https://www.stata.com/manuals/memeglm.pdf#memeglmOptionsstartgrid()
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distname Description

exponential exponential survival distribution

loglogistic loglogistic survival distribution

llogistic synonym for loglogistic
weibull Weibull survival distribution

lognormal lognormal survival distribution

lnormal synonym for lognormal
gamma gamma survival distribution

intmethod Description

mvaghermite mean–variance adaptive Gauss–Hermite quadrature; the default
unless a crossed random-effects model is fit

mcaghermite mode-curvature adaptive Gauss–Hermite quadrature

ghermite nonadaptive Gauss–Hermite quadrature

laplace Laplacian approximation; the default for crossed random-effects
models

You must stset your data before using mestreg; see [ST] stset.
indepvars and varlist may contain factor variables; see [U] 11.4.3 Factor variables.

bayes, by, collect, and svy are allowed; see [U] 11.1.10 Prefix commands. For more details, see
[BAYES] bayes: mestreg.

vce() and weights are not allowed with the svy prefix; see [SVY] svy.

fweights, iweights, and pweights are allowed; see [U] 11.1.6 weight. Only one type of weight may be specified. Weights
are not supported under the Laplacian approximation or for crossed models.

startvalues(), startgrid, noestimate, dnumerical, collinear, and coeflegend do not appear in the dialog box.

See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options

� � �
Model �

noconstant suppresses the constant (intercept) term and may be specified for the fixed-effects equation

and for any of or all the random-effects equations.

offset(varname) specifies that varname be included in the fixed-effects portion of the model with the

coefficient constrained to be 1.

covariance(vartype) specifies the structure of the covariance matrix for the random effects and may

be specified for each random-effects equation. vartype is one of the following: independent,
exchangeable, identity, unstructured, fixed(matname), or pattern(matname).

covariance(independent) covariance structure allows for a distinct variance for each random

effect within a random-effects equation and assumes that all covariances are 0. The default is

covariance(independent) unless a crossed random-effects model is fit, in which case the de-

fault is covariance(identity).

covariance(exchangeable) structure specifies one common variance for all random effects and

one common pairwise covariance.

covariance(identity) is short for “multiple of the identity”; that is, all variances are equal and all

covariances are 0.

https://www.stata.com/manuals/ststset.pdf#ststset
https://www.stata.com/manuals/u11.pdf#u11.4.3Factorvariables
https://www.stata.com/manuals/u11.pdf#u11.1.10Prefixcommands
https://www.stata.com/manuals/bayesbayesmestreg.pdf#bayesbayesmestreg
https://www.stata.com/manuals/svysvy.pdf#svysvy
https://www.stata.com/manuals/u11.pdf#u11.1.6weight
https://www.stata.com/manuals/u20.pdf#u20Estimationandpostestimationcommands
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
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covariance(unstructured) allows for all variances and covariances to be distinct. If an equation

consists of 𝑝 random-effects terms, the unstructured covariance matrix will have 𝑝(𝑝+1)/2 unique
parameters.

covariance(fixed(matname)) and covariance(pattern(matname)) covariance structures pro-
vide a convenient way to impose constraints on variances and covariances of random effects. Each

specification requires a matname that defines the restrictions placed on variances and covariances.

Only elements in the lower triangle of matname are used, and row and column names of mat-

name are ignored. A missing value in matname means that a given element is unrestricted. In a

fixed(matname) covariance structure, (co)variance (𝑖, 𝑗) is constrained to equal the value spec-
ified in the 𝑖, 𝑗th entry of matname. In a pattern(matname) covariance structure, (co)variances

(𝑖, 𝑗) and (𝑘, 𝑙) are constrained to be equal if matname[𝑖, 𝑗] = matname[𝑘, 𝑙].
fweight(varname) specifies frequency weights at higher levels in a multilevel model, whereas fre-

quency weights at the first level (the observation level) are specified in the usual manner, for exam-

ple, [fw=fwtvar1]. varname can be any valid Stata variable name, and you can specify fweight()
at levels two and higher of a multilevel model. For example, in the two-level model

. mecmd fixed_portion [fw = wt1] || school: ... , fweight(wt2) ...

the variable wt1 would hold the first-level (the observation-level) frequency weights, and wt2 would

hold the second-level (the school-level) frequency weights.

iweight(varname) specifies importance weights at higher levels in a multilevel model, whereas impor-

tance weights at the first level (the observation level) are specified in the usual manner, for example,

[iw=iwtvar1]. varname can be any valid Stata variable name, and you can specify iweight() at

levels two and higher of a multilevel model. For example, in the two-level model

. mecmd fixed_portion [iw = wt1] || school: ... , iweight(wt2) ...

the variable wt1would hold the first-level (the observation-level) importance weights, and wt2would
hold the second-level (the school-level) importance weights.

pweight(varname) specifies sampling weights at higher levels in a multilevel model, whereas sam-

pling weights at the first level (the observation level) are specified in the usual manner, for example,

[pw=pwtvar1]. varname can be any valid Stata variable name, and you can specify pweight() at

levels two and higher of a multilevel model. For example, in the two-level model

. mecmd fixed_portion [pw = wt1] || school: ... , pweight(wt2) ...

variable wt1 would hold the first-level (the observation-level) sampling weights, and wt2 would hold

the second-level (the school-level) sampling weights.

distribution(distname) specifies the survival model to be fit. distname is one of the following:

exponential, loglogistic, llogistic, weibull, lognormal, lnormal, or gamma. This option
is required.

time specifies that the model be fit in the accelerated failure-time metric rather than in the log relative-

hazard metric. This option is valid only for the exponential andWeibull models because these are the

only models that have both a proportional-hazards and an accelerated failure-time parameterization.

Regardless of metric, the likelihood function is the same, and models are equally appropriate in either

metric; it is just a matter of changing interpretation.

time must be specified at estimation.

constraints(constraints); see [R] Estimation options.

https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
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� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived from

asymptotic theory (oim, opg), that are robust to some kinds of misspecification (robust), and that

allow for intragroup correlation (cluster clustvar); see [R] vce option. If vce(robust) is specified,
robust variances are clustered at the highest level in the multilevel model.

� � �
Reporting �

level(#); see [R] Estimation options.

nohr, which may be specified at estimation or upon redisplaying results, specifies that coefficients rather
than exponentiated coefficients be displayed, that is, that coefficients rather than hazard ratios be

displayed. This option affects only how coefficients are displayed, not how they are estimated.

This option is valid only for the exponential and Weibull models because they have a natural

proportional-hazards parameterization. These two models, by default, report hazards ratios (expo-

nentiated coefficients).

tratio specifies that exponentiated coefficients, which are interpreted as time ratios, be displayed.

tratio is appropriate only for the loglogistic, lognormal, and gamma models or for the exponen-

tial and Weibull models when fit in the accelerated failure-time metric.

tratio may be specified at estimation or upon replay.

noshow prevents mestreg from showing the key st variables. This option is rarely used because most

users type stset, show or stset, noshow to set once and for all whether they want to see these

variables mentioned at the top of the output of every st command; see [ST] stset.

nocnsreport; see [R] Estimation options.

notable suppresses the estimation table, either at estimation or upon replay.

noheader suppresses the output header, either at estimation or upon replay.

nogroup suppresses the display of group summary information (number of groups, average group size,

minimum, and maximum) from the output header.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] Estimation options.

https://www.stata.com/manuals/rvce_option.pdf#rvce_option
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
https://www.stata.com/manuals/ststset.pdf#ststset
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
https://www.stata.com/manuals/d.pdf#dformat
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
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� � �
Integration �

intmethod(intmethod) specifies the integration method to be used for the random-effects model.

mvaghermite performs mean–variance adaptive Gauss–Hermite quadrature; mcaghermite per-

forms mode-curvature adaptive Gauss–Hermite quadrature; ghermite performs nonadaptive

Gauss–Hermite quadrature; and laplace performs the Laplacian approximation, equivalent to mode-
curvature adaptive Gaussian quadrature with one integration point.

The default integration method is mvaghermite unless a crossed random-effects model is fit, in which
case the default integration method is laplace. The Laplacian approximation has been known to

produce biased parameter estimates; however, the bias tends to be more prominent in the estimates of

the variance components rather than in the estimates of the fixed effects.

For crossed random-effects models, estimation with more than one quadrature point may be pro-

hibitively intensive even for a small number of levels. For this reason, the integration method defaults

to the Laplacian approximation. You may override this behavior by specifying a different integration

method.

intpoints(#) sets the number of integration points for quadrature. The default is intpoints(7),
which means that seven quadrature points are used for each level of random effects. This option is

not allowed with intmethod(laplace).

The more integration points, the more accurate the approximation to the log likelihood. However,

computation time increases as a function of the number of quadrature points raised to a power equaling

the dimension of the random-effects specification. In crossed random-effects models and in models

with many levels or many random coefficients, this increase can be substantial.

� � �
Maximization �

maximize options: difficult, technique(algorithm spec), iterate(#), [no]log, trace,
gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(init specs); see [R] Maximize. Those that require

special mention for mestreg are listed below.

from() accepts a properly labeled vector of initial values or a list of coefficient names with values.

A list of values is not allowed.

The following options are available with mestreg but are not shown in the dialog box:

startvalues(svmethod), startgrid[ (gridspec) ], noestimate, and dnumerical; see [ME]meglm.

collinear, coeflegend; see [R] Estimation options.

Remarks and examples
For a general introduction to me commands, see [ME] me.

Remarks are presented under the following headings:

Introduction
Two-level models
Three-level models

https://www.stata.com/manuals/rmaximize.pdf#rMaximizeSyntaxalgorithm_spec
https://www.stata.com/manuals/rmaximize.pdf#rMaximize
https://www.stata.com/manuals/memeglm.pdf#memeglmOptionsstartval
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
https://www.stata.com/manuals/meme.pdf#meme
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Introduction
Mixed-effects survival models contain both fixed effects and random effects. In longitudinal data and

panel data, random effects are useful for modeling intracluster correlation; that is, observations in the

same cluster are correlated because they share common cluster-level random effects.

mestreg allows for many levels of random effects. However, for simplicity, we now consider two-

level models, where we have a series of 𝑀 independent clusters and a set of random effects u𝑗 corre-

sponding to those clusters. Two often-used models for adjusting survivor functions for the effects of

covariates are the accelerated failure-time (AFT) model and the multiplicative or proportional hazards

(PH) model.

In the AFTmodel, the natural logarithm of the survival time, log 𝑡, is expressed as a linear function of
the covariates; when we incorporate random-effects, this yields the model

log𝑡𝑗𝑖 = x𝑗𝑖β + z𝑗𝑖u𝑗 + 𝑣𝑗𝑖

for 𝑗 = 1, . . . , 𝑀 clusters, with cluster 𝑗 consisting of 𝑖 = 1, . . . , 𝑛𝑗 observations. The 1× 𝑝 row vector

x𝑗𝑖 contains the covariates for the fixed effects, with regression coefficients (fixed effects) β.

The 1 × 𝑞 vector z𝑗𝑖 contains the covariates corresponding to the random effects and can be used to

represent both random intercepts and random coefficients. For example, in a random-intercept model,

z𝑗𝑖 is simply the scalar 1. The random effects u𝑗 are 𝑀 realizations from a multivariate normal dis-

tribution with mean 0 and 𝑞 × 𝑞 variance matrix 𝚺. The random effects are not directly estimated as

model parameters but are instead summarized according to the unique elements of 𝚺, known as variance

components.

Finally, 𝑣𝑗𝑖 are the observation-level errors with density 𝜑(⋅). The distributional form of the error

term determines the regression model. Five regression models are implemented in mestreg using the

AFT parameterization: exponential, gamma, loglogistic, lognormal, and Weibull. The lognormal regres-

sion model is obtained by letting 𝜑(⋅) be the normal density. Similarly, by letting 𝜑(⋅) be the logistic
density, one obtains the loglogistic regression. Setting 𝜑(⋅) equal to the extreme-value density yields the
exponential and the Weibull regression models.

In the PH models fit by mestreg, the covariates have a multiplicative effect on the hazard function

ℎ(𝑡𝑗𝑖) = ℎ0(𝑡𝑗𝑖) exp(x𝑗𝑖β + z𝑗𝑖u𝑗)

for some baseline hazard function ℎ0(𝑡). For the mestreg command, ℎ0(𝑡) is assumed to be parametric.
The exponential and Weibull models are implemented in mestreg for the PH parameterization. These

two models are implemented using both the AFT and PH parameterizations.

mestreg is suitable only for data that have been stset. By using stset on your data, you define

the variables t0, t, and d, which serve as the trivariate response variable (𝑡0, 𝑡, 𝑑). Each response

corresponds to a period under observation, (𝑡0, 𝑡], resulting in either failure (𝑑 = 1) or right-censoring

(𝑑 = 0) at time 𝑡.
mestreg does not allow delayed entry or gaps. However, mestreg is appropriate for data exhibiting

multiple records per subject and time-varying covariates. mestreg requires subjects to be nested within

clusters.

stsetweights are not used; instead, weights must be specified at estimation. Weights are not allowed

with crossed models or the Laplacian approximation. See Survey estimation in Methods and formulas

for details.

https://www.stata.com/manuals/ststset.pdf#ststset
https://www.stata.com/manuals/memestreg.pdf#memestregMethodsandformulasmestreg_svy
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Two-level models

Example 1: Two-level random-intercept PH model
In example 11 of [ST] streg, we fit a Weibull model with an inverse-Gaussian shared frailty to the

recurrence times for catheter-insertion point infection for 38 kidney dialysis patients. In this example,

the subjects are the catheter insertions, not the patients themselves. This is a function of how the data were

recorded—the onset of risk occurs at the time the catheter is inserted and not, say, at the time of admission

of the patient into the study. Thus we have two subjects (insertions) within each group (patient). Each

catheter insertion results in either infection (infect==1) or right-censoring (infect==0). The stset
results are shown below.

. use https://www.stata-press.com/data/r19/catheter
(Kidney data, McGilchrist and Aisbett, Biometrics, 1991)
. stset
-> stset time, failure(infect)
Survival-time data settings

Failure event: infect!=0 & infect<.
Observed time interval: (0, time]

Exit on or before: failure

76 total observations
0 exclusions

76 observations remaining, representing
58 failures in single-record/single-failure data

7,424 total analysis time at risk and under observation
At risk from t = 0

Earliest observed entry t = 0
Last observed exit t = 562

While it is reasonable to assume independence of patients, we would not want to assume that recur-

rence times within each patient are independent. The model used in [ST] streg allowed us to model the

correlation by assuming that it was the result of a latent patient-level effect, or frailty.

The random-effects approach used by mestreg is more flexible because it allows you to experiment

with several levels of random effects, including random coefficients, or both. You can then choose the

model that best suits your data. Herewe use mestreg to fit a random-effectsWeibull model with normally

distributed random effects. This model can be viewed as a shared frailty model with lognormal frailty.

https://www.stata.com/manuals/ststreg.pdf#ststregRemarksandexamplesex11
https://www.stata.com/manuals/ststreg.pdf#ststreg
https://www.stata.com/manuals/ststreg.pdf#ststreg
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. mestreg age female || patient:, distribution(weibull)
Failure _d: infect

Analysis time _t: time
Fitting fixed-effects model:
Iteration 0: Log likelihood = -1700989.9
Iteration 1: Log likelihood = -440.1998
Iteration 2: Log likelihood = -336.62162
Iteration 3: Log likelihood = -334.64937
Iteration 4: Log likelihood = -334.57959
Iteration 5: Log likelihood = -334.57944
Iteration 6: Log likelihood = -334.57944
Refining starting values:
Grid node 0: Log likelihood = -336.03604
Fitting full model:
Iteration 0: Log likelihood = -336.03604 (not concave)
Iteration 1: Log likelihood = -333.14043
Iteration 2: Log likelihood = -330.40952
Iteration 3: Log likelihood = -329.89242
Iteration 4: Log likelihood = -329.87847
Iteration 5: Log likelihood = -329.87832
Iteration 6: Log likelihood = -329.87832
Mixed-effects Weibull PH regression Number of obs = 76
Group variable: patient Number of groups = 38

Obs per group:
min = 2
avg = 2.0
max = 2

Integration method: mvaghermite Integration pts. = 7
Wald chi2(2) = 10.12

Log likelihood = -329.87832 Prob > chi2 = 0.0063

_t Haz. ratio Std. err. z P>|z| [95% conf. interval]

age 1.007348 .013788 0.53 0.593 .9806828 1.034737
female .1904727 .099992 -3.16 0.002 .0680737 .5329493
_cons .0072901 .0072274 -4.96 0.000 .0010444 .0508881

/ln_p .2243233 .1402795 -.0506195 .4992661

patient
var(_cons) .8308495 .4978425 .256735 2.688808

Note: Estimates are transformed only in the first equation to hazard ratios.
Note: _cons estimates baseline hazard (conditional on zero random effects).
LR test vs. Weibull model: chibar2(01) = 9.40 Prob >= chibar2 = 0.0011

The results are similar to those in [ST] streg. The likelihood-ratio test compares the random-effects

model with a survival model with fixed-effects only. The results support the random-effects model.

By default, when fitting a model with the PH parameterization, mestreg displays exponentiated coef-

ficients, labeled as hazard ratios. These hazard ratios should be interpreted as “conditional hazard ratios”,

that is, conditional on the random effects.

For example, the hazard ratio for age is 1.01. This means that according to the model, for a given

patient, the hazard would increase 1% with each year of age. However, at the population level, marginal

hazards corresponding to different levels of the covariates are not necessarily proportional. Example 5

in [ME] mestreg postestimation illustrates this point with simulated data.

https://www.stata.com/manuals/ststreg.pdf#ststreg
https://www.stata.com/manuals/memestregpostestimation.pdf#memestregpostestimationRemarksandexamplesmestregp_ex5
https://www.stata.com/manuals/memestregpostestimation.pdf#memestregpostestimation
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The exponentiated coefficients of covariates that usually remain constant within a group do not have

a natural interpretation as conditional hazard ratios. However, the magnitude of the exponentiated coef-

ficients always gives an idea of the effect of the covariates. In this example, female is constant within

the group. The estimated hazard ratio for female is 0.19, which indicates that hazard functions for fe-

males tend to be smaller than hazard functions for males. Both conditional and unconditional predictions

can be obtained with predict. Unconditional predictions can be visualized by using stcurve. Uncon-
ditional effects can be tested and visualized by using margins and marginsplot. See example 1 in

[ME] mestreg postestimation for an example using predict, margins, and marginsplot.

Example 2: Two-level random-intercept AFT model
Although the PH parameterization is more popular in the literature because the output is easier to

interpret, the AFT parameterization is useful when we need to make comparisons with other models that

have only an AFT parameterization. For example, we might want to compare the Weibull results from

example 1 with the results from a gamma model.

Let’s redisplay the results of a Weibull PH model from example 1 as coefficients:

. mestreg, nohr
Mixed-effects Weibull PH regression Number of obs = 76
Group variable: patient Number of groups = 38

Obs per group:
min = 2
avg = 2.0
max = 2

Integration method: mvaghermite Integration pts. = 7
Wald chi2(2) = 10.12

Log likelihood = -329.87832 Prob > chi2 = 0.0063

_t Coefficient Std. err. z P>|z| [95% conf. interval]

age .0073207 .0136874 0.53 0.593 -.0195062 .0341476
female -1.658247 .5249676 -3.16 0.002 -2.687164 -.629329
_cons -4.921236 .9914009 -4.96 0.000 -6.864346 -2.978126

/ln_p .2243233 .1402795 -.0506195 .4992661

patient
var(_cons) .8308495 .4978425 .256735 2.688808

LR test vs. Weibull model: chibar2(01) = 9.40 Prob >= chibar2 = 0.0011

https://www.stata.com/manuals/memestregpostestimation.pdf#memestregpostestimationRemarksandexamplesmestregp_ex1
https://www.stata.com/manuals/memestregpostestimation.pdf#memestregpostestimation
https://www.stata.com/manuals/memestreg.pdf#memestregRemarksandexamplesex1_mestreg
https://www.stata.com/manuals/memestreg.pdf#memestregRemarksandexamplesex1_mestreg
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We can refit the Weibull model using the AFT parameterization by specifying option time.

. mestreg age female || patient:, distribution(weibull) time
Failure _d: infect

Analysis time _t: time
Fitting fixed-effects model:
Iteration 0: Log likelihood = -346.46486
Iteration 1: Log likelihood = -343.29515
Iteration 2: Log likelihood = -335.0513
Iteration 3: Log likelihood = -334.58308
Iteration 4: Log likelihood = -334.57944
Iteration 5: Log likelihood = -334.57944
Refining starting values:
Grid node 0: Log likelihood = -335.10428
Fitting full model:
Iteration 0: Log likelihood = -335.10428
Iteration 1: Log likelihood = -332.13546
Iteration 2: Log likelihood = -330.01623
Iteration 3: Log likelihood = -329.88013
Iteration 4: Log likelihood = -329.87832
Iteration 5: Log likelihood = -329.87832
Mixed-effects Weibull AFT regression Number of obs = 76
Group variable: patient Number of groups = 38

Obs per group:
min = 2
avg = 2.0
max = 2

Integration method: mvaghermite Integration pts. = 7
Wald chi2(2) = 13.00

Log likelihood = -329.87832 Prob > chi2 = 0.0015

_t Coefficient Std. err. z P>|z| [95% conf. interval]

age -.0058496 .010872 -0.54 0.591 -.0271585 .0154592
female 1.325034 .3719102 3.56 0.000 .596103 2.053964
_cons 3.932346 .5663757 6.94 0.000 2.82227 5.042422

/ln_p .2243237 .1402794 -.0506189 .4992663

patient
var(_cons) .5304902 .2343675 .2231626 1.261053

LR test vs. Weibull model: chibar2(01) = 9.40 Prob >= chibar2 = 0.0011

The estimates of coefficients and variance components are different between the two models. In

fact, the coefficients have the opposite signs. This is expected because the two models have different

parameterizations. The relationship between the coefficients and variances of the two parameterizations

for the Weibull model is

𝛽PH = −𝑝 × 𝛽AFT

varPH = 𝑝2 × varAFT

where 𝑝 denotes the ancillary parameter. It is estimated in the logarithmic metric and is displayed in the

output as /ln p.
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For example, we could calculate 𝛽PH for female as approximately − exp(0.22) × 1.33 = −1.66.

If we exponentiate this to obtain the hazard ratio that was reported in example 1, we obtain the same

reported result, 0.19.

For a discussion of the differences between the PH and AFT parameterizations, see, for example,

Cleves, Gould, and Marchenko (2016).

Now, we can compare the results from our Weibull specification with the results from a gamma spec-

ification.

. mestreg age female || patient:, distribution(gamma)
Failure _d: infect

Analysis time _t: time
Fitting fixed-effects model:
Iteration 0: Log likelihood = -351.17349
Iteration 1: Log likelihood = -337.04571
Iteration 2: Log likelihood = -335.10167
Iteration 3: Log likelihood = -335.09115
Iteration 4: Log likelihood = -335.09115
Refining starting values:
Grid node 0: Log likelihood = -334.49759
Fitting full model:
Iteration 0: Log likelihood = -334.49759
Iteration 1: Log likelihood = -331.87827
Iteration 2: Log likelihood = -329.64795
Iteration 3: Log likelihood = -329.52682
Iteration 4: Log likelihood = -329.52635
Iteration 5: Log likelihood = -329.52634
Mixed-effects gamma AFT regression Number of obs = 76
Group variable: patient Number of groups = 38

Obs per group:
min = 2
avg = 2.0
max = 2

Integration method: mvaghermite Integration pts. = 7
Wald chi2(2) = 13.23

Log likelihood = -329.52634 Prob > chi2 = 0.0013

_t Coefficient Std. err. z P>|z| [95% conf. interval]

age -.0060276 .0108267 -0.56 0.578 -.0272475 .0151924
female 1.324745 .3685132 3.59 0.000 .6024726 2.047018
_cons 3.873854 .5628993 6.88 0.000 2.770592 4.977117

/logs -.1835075 .1008892 -.3812467 .0142317

patient
var(_cons) .5071823 .2241959 .213254 1.206232

LR test vs. gamma model: chibar2(01) = 11.13 Prob >= chibar2 = 0.0004

The coefficients and the random-effects variance are very similar for the two AFT models.

https://www.stata.com/manuals/memestreg.pdf#memestregRemarksandexamplesex1_mestreg
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We can compare the marginal distributions or hazard functions for the two models by using stcurve;
see example 2 in [ME] mestreg postestimation.

Example 3: Two-level random-slope model
In this example, we use a modified form of the dataset from Rabe-Hesketh and Skrondal (2022,

sec. 15.7), previously published in Danahy et al. (1977) and analyzed by Pickles and Crouchley (1994,

1995) and Rabe-Hesketh, Skrondal, and Pickles (2004).

angina.dta includes data on 21 patients with coronary heart disease who participated in a random-

ized crossover trial comparing a drug to prevent angina (chest pain) with a placebo. The participants are

identified by pid.

Before receiving the drug (or placebo), participants were asked to exercise on exercise bikes to the

onset of angina or, if angina did not occur, to exhaustion. The exercise time, seconds, and the result

of the exercise, angina—angina (angina=1) or exhaustion (angina=0)—were recorded. The drug

(treat=1) or placebo (treat=0) was then taken orally, and the exercise test was repeated one, three,

and five hours (variable occasion) after drug or placebo administration. Because each exercise test can
have a failure (the occurrence of angina), the test is the subject. Each test is identified by tid. Failure is
indicated by the variable angina. In this case, we have eight repeated measures per study participant.

Before fitting the model, we stset our data:

. use https://www.stata-press.com/data/r19/angina
(Angina drug data, Rabe-Hesketh and Skrondal (2021, ch. 15.7))
. stset seconds, failure(angina) id(tid)
Survival-time data settings

ID variable: tid
Failure event: angina!=0 & angina<.

Observed time interval: (seconds[_n-1], seconds]
Exit on or before: failure

168 total observations
0 exclusions

168 observations remaining, representing
168 subjects
155 failures in single-failure-per-subject data

47,267 total analysis time at risk and under observation
At risk from t = 0

Earliest observed entry t = 0
Last observed exit t = 743

To reiterate, we specify seconds as the time variable, angina as the failure variable, and tid as the

variable identifying multiple observations per test.

Rabe-Hesketh and Skrondal (2022) apply several models to this dataset, including a lognormal model

and a Cox model with random effects. We fit a Weibull model with covariates occasion and treat and

interaction between occasion and treat. We include a random effect at the subject level.

https://www.stata.com/manuals/ststcurve.pdf#ststcurve
https://www.stata.com/manuals/memestregpostestimation.pdf#memestregpostestimationRemarksandexamplesmestregp_ex2
https://www.stata.com/manuals/memestregpostestimation.pdf#memestregpostestimation
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. mestreg occasion##treat || pid:, distribution(weibull) nofvlabel
Failure _d: angina

Analysis time _t: seconds
ID variable: tid

note: 1.occasion#1.treat identifies no observations in the sample.
note: 4.occasion#1.treat omitted because of collinearity.
(output omitted )

Mixed-effects Weibull PH regression Number of obs = 168
Group variable: pid Number of groups = 21

Obs per group:
min = 8
avg = 8.0
max = 8

Integration method: mvaghermite Integration pts. = 7
Wald chi2(6) = 78.14

Log likelihood = -885.67135 Prob > chi2 = 0.0000

_t Haz. ratio Std. err. z P>|z| [95% conf. interval]

occasion
2 .719456 .2031744 -1.17 0.244 .4136423 1.251364
3 .902988 .2542476 -0.36 0.717 .5200146 1.568009
4 1.264262 .3516347 0.84 0.399 .7329746 2.180648

1.treat .3825531 .128784 -2.85 0.004 .1977608 .7400195

occasion#
treat
1 1 1 (empty)
2 1 .1576401 .0804767 -3.62 0.000 .0579589 .4287586
3 1 .4512793 .2127706 -1.69 0.091 .1791093 1.137032
4 1 1 (omitted)

_cons 4.90e-13 9.98e-13 -13.91 0.000 9.03e-15 2.66e-11

/ln_p 1.640297 .0689544 1.505149 1.775445

pid
var(_cons) 4.529641 1.544175 2.322124 8.835725

Note: Estimates are transformed only in the first equation to hazard ratios.
Note: _cons estimates baseline hazard (conditional on zero random effects).
LR test vs. Weibull model: chibar2(01) = 177.40 Prob >= chibar2 = 0.0000

Because individuals were exercising without the administration of a placebo or treatment at the first

occasion (occasion==1), the category for interaction between occasion==1 and treat==1 is empty.

The estimated variance at the individual level (that is, the variance between individuals) is equal to

4.53. The likelihood-ratio test shows evidence in favor of the random-effects model versus the fixed-

effects model.

The parameter 𝑝 is exp(1.640297) = 5.16, which is larger than 1. This means that the estimated

hazard (conditional on the covariates and on the random effects) is a monotonically increasing function

if we assume a Weibull distribution.
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The model contains interaction terms for occasion and treat. Interpretation of interaction terms

is usually less straightforward. Briefly, to interpret the exponentiated coefficients as conditional hazard

ratios, we need to examine all the covariates in the interaction. The hazard function for pid = 𝑗, when
we set occasion = 𝑘 and treat = 𝑙, will be

ℎ(𝑡) = ℎ0(𝑡) × exp(𝛽occ𝑘
+ 𝛽treat𝑙

+ 𝛽occ𝑘×treat𝑙
+ cons + 𝑢𝑗)

where 𝛽occ𝑘
, 𝛽treat𝑙

, and 𝛽occ𝑘×treat𝑙
are, respectively, the coefficients for the dummies for occasion = 𝑘

and treat = 𝑙 and the interaction (occasion = 𝑘 × treatment = 𝑙).
For example, when treat = 0, the hazard function is

ℎ(𝑡|treat = 0, occasion = 𝑘, pid = 𝑗) = ℎ0(𝑡) × exp(𝛽occ𝑘
+ cons + 𝑢𝑗)

where 𝛽occ1
is equal to 0 because occasion = 1 is the base category. This means that for a given pid,

ℎ(𝑡|treat = 0, occ = 𝑘, pid = 𝑗)
ℎ(𝑡|treat = 0, occ = 1, pid = 𝑗)

= exp(𝛽occ𝑘
)

Notice that this is only true within pid, because different participants have different 𝑢𝑗s.

The coefficients have already been exponentiated, so we can see clearly that according to this model,

when there is no treatment, the hazard for occasion 2 is smaller than the hazard for occasion 1. The

increasing ratios indicate that the hazard increases with the occasion. Similar calculations could be per-

formed for other interaction terms.

The easiest way to interpret models with interactions is by using margins and marginsplot, which
allow us to compute and then visualize unconditional predictions and marginal effects. See [R]margins

for more information.

Above we assumed a constant treatment effect for all individuals for each occasion. However, we

may instead believe that the treatment effect varies also with individuals. This can be modeled by

adding a random coefficient for the treatment, i.treat, at the individual level; we also include the

covariance(unstructured) option to estimate a covariance term between the random intercept and

the random slope for 1.treat.

https://www.stata.com/manuals/rmargins.pdf#rmargins
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. mestreg occasion##treat || pid: i.treat, distribution(weibull)
> covariance(unstructured) nofvlabel

Failure _d: angina
Analysis time _t: seconds

ID variable: tid
note: 1.occasion#1.treat identifies no observations in the sample.
note: 4.occasion#1.treat omitted because of collinearity.
(output omitted )

Mixed-effects Weibull PH regression Number of obs = 168
Group variable: pid Number of groups = 21

Obs per group:
min = 8
avg = 8.0
max = 8

Integration method: mvaghermite Integration pts. = 7
Wald chi2(6) = 50.18

Log likelihood = -859.50038 Prob > chi2 = 0.0000

_t Haz. ratio Std. err. z P>|z| [95% conf. interval]

occasion
2 .5993591 .1861745 -1.65 0.099 .3260503 1.101766
3 .8643306 .2560242 -0.49 0.623 .483665 1.544597
4 1.333201 .3843218 1.00 0.318 .7577392 2.345694

1.treat .2147751 .1280091 -2.58 0.010 .0667814 .6907365

occasion#
treat
1 1 1 (empty)
2 1 .1594337 .0885644 -3.31 0.001 .0536714 .4736058
3 1 .4632936 .2273925 -1.57 0.117 .1770402 1.212385
4 1 1 (omitted)

_cons 6.21e-17 1.75e-16 -13.20 0.000 2.44e-19 1.58e-14

/ln_p 1.91931 .0736166 1.775024 2.063596

pid
var(1.treat) 4.682507 1.956897 2.064178 10.62208

var(_cons) 6.939041 2.372975 3.549852 13.56403

pid
cov(1.treat,

_cons) 1.73782 1.313054 1.32 0.186 -.8357182 4.311357

Note: Estimates are transformed only in the first equation to hazard ratios.
Note: _cons estimates baseline hazard (conditional on zero random effects).
LR test vs. Weibull model: chi2(3) = 229.74 Prob > chi2 = 0.0000
Note: LR test is conservative and provided only for reference.
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We obtain somewhat different estimates of hazard ratios, but our inferential conclusions remain the same.

We now observe two variances in the output, the variance for the intercept at the individual level and the

variance for the coefficient for treatment at the individual level. The variance for the intercept is smaller

because some of the variability is now explained by varying coefficients for treatment. The covariance

is positive, meaning that the random slope tends to be larger for individuals who have a larger random

intercept. See example 4 in [ME]mestreg postestimation for an application of predict that presents a

graphical analysis of this relationship.

Three-level models

Example 4: Three-level random-slope model
Blossfeld, Golsch, and Rohwer (2007) analyze a dataset based on the German Life History Study

of Mayer and Brückner (1989), collected in the years 1981–1983. (This dataset is also available in

Blossfeld, Rohwer, and Schneider (2019), a second edition of the 2007 reference.) The jobhistory
dataset contains a modified version of Blossfeld, Golsch, and Rohwer’s anonymization of a random

sample of 201 respondents from the original data. Each of the 600 observations in the dataset corresponds

to a job episode. Variable id contains identification of the individual, tstart contains the starting point

of the job (in months from the beginning of the century), tend is the end of the job episode, and failure
indicates whether the date in tend corresponds to the actual end of the employment in a certain job or

whether it is a censored observation.

We first stset the data. As explained in Cleves (1999) and Therneau and Grambsch (2000), when

analyzing multiple-failure data, we can consider two main approaches. One approach is to define the

study time from the first time that an individual starts being at risk. The second approach is to define the

study time from the last failure. We will take the second approach, which means that we treat each job

episode as the subject.

Therefore, the origin is defined as the start of each job episode, and the study time will be the time

from the start of each episode until the jobs end or the episode is censored.

. use https://www.stata-press.com/data/r19/jobhistory
(Job history data, Event History Analysis with Stata, Blossfeld et al. 2007)
. stset tend, origin(tstart) failure(failure)
Survival-time data settings

Failure event: failure!=0 & failure<.
Observed time interval: (origin, tend]

Exit on or before: failure
Time for analysis: (time-origin)

Origin: time tstart

600 total observations
0 exclusions

600 observations remaining, representing
458 failures in single-record/single-failure data

40,782 total analysis time at risk and under observation
At risk from t = 0

Earliest observed entry t = 0
Last observed exit t = 428

https://www.stata.com/manuals/memestregpostestimation.pdf#memestregpostestimationRemarksandexamplesmestregp_ex4
https://www.stata.com/manuals/memestregpostestimation.pdf#memestregpostestimation
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We want to fit a Weibull model using the education level, the number of previous jobs, the prestige

of the current job, and gender as explanatory variables. education records the highest education level

before entering the labor market, njobs contains the number of previous jobs for each individual, and

prestige is an index for the prestige of the current job. The birthyear variable indicates the year of

birth. female is 1 for women, 0 for men. To account for individual heterogeneity, we include a random

effect at the individual level.

. mestreg education njobs prestige i.female || id:, distribution(weibull)
Failure _d: failure

Analysis time _t: (tend-origin)
Origin: time tstart

Fitting fixed-effects model:
Iteration 0: Log likelihood = -5736904.5
Iteration 1: Log likelihood = -2664.7487
Iteration 2: Log likelihood = -2484.7829
Iteration 3: Log likelihood = -2477.4358
Iteration 4: Log likelihood = -2477.3338
Iteration 5: Log likelihood = -2477.3337
Refining starting values:
Grid node 0: Log likelihood = -2491.2191
Fitting full model:
Iteration 0: Log likelihood = -2491.2191 (not concave)
Iteration 1: Log likelihood = -2468.3995
Iteration 2: Log likelihood = -2450.0938
Iteration 3: Log likelihood = -2443.0739
Iteration 4: Log likelihood = -2442.875
Iteration 5: Log likelihood = -2442.8747
Iteration 6: Log likelihood = -2442.8746
Mixed-effects Weibull PH regression Number of obs = 600
Group variable: id Number of groups = 201

Obs per group:
min = 1
avg = 3.0
max = 9

Integration method: mvaghermite Integration pts. = 7
Wald chi2(4) = 87.38

Log likelihood = -2442.8746 Prob > chi2 = 0.0000

_t Haz. ratio Std. err. z P>|z| [95% conf. interval]

education 1.11897 .0463468 2.71 0.007 1.031722 1.213597
njobs .7071195 .0357624 -6.85 0.000 .6403884 .7808043

prestige .9677567 .0069576 -4.56 0.000 .9542157 .98149
1.female 1.75651 .3185526 3.11 0.002 1.231063 2.506228

_cons .0053352 .0029015 -9.62 0.000 .0018376 .0154904

/ln_p .1695545 .0453649 .0806409 .2584681

id
var(_cons) 1.016459 .2149037 .671623 1.538347

Note: Estimates are transformed only in the first equation to hazard ratios.
Note: _cons estimates baseline hazard (conditional on zero random effects).
LR test vs. Weibull model: chibar2(01) = 68.92 Prob >= chibar2 = 0.0000

The estimated variance of the random intercept is equal to 1.02.
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According to this model, an increase in the number of previous jobs is negatively associated with job

mobility; the same is true for an increase in the prestige of the current job. By contrast, an increase in

the years of education is positively associated with job mobility. Also, women seem to be more mobile

than men.

We now store our estimates for later use:

. estimates store randint

The dataset has only two natural levels. However, for illustration purposes, let’s consider the following

situation. Assume that we want to account for unobserved variables associated with the date of birth, such

as life experience, level of familiarity with new technologies, and family situation. We therefore add a

random effect for the year of birth. Now, individuals will be nested within birth years.

. mestreg education njobs prestige i.female || birthyear: || id:,
> distribution(weibull)

Failure _d: failure
Analysis time _t: (tend-origin)

Origin: time tstart
(output omitted )

Mixed-effects Weibull PH regression Number of obs = 600
Grouping information

No. of Observations per group
Group variable groups Minimum Average Maximum

birthyear 12 3 50.0 99
id 201 1 3.0 9

Integration method: mvaghermite Integration pts. = 7
Wald chi2(4) = 83.20

Log likelihood = -2439.9066 Prob > chi2 = 0.0000

_t Haz. ratio Std. err. z P>|z| [95% conf. interval]

education 1.120373 .045203 2.82 0.005 1.035189 1.212566
njobs .7181197 .0372039 -6.39 0.000 .6487813 .7948686

prestige .966567 .0069189 -4.75 0.000 .9531009 .9802234
1.female 1.734236 .3022479 3.16 0.002 1.232419 2.440384

_cons .0059091 .0031758 -9.55 0.000 .0020609 .0169429

/ln_p .1685641 .0454824 .0794203 .257708

birthyear
var(_cons) .0950371 .0741445 .0205976 .4385006

birthyear>id
var(_cons) .8728384 .2020938 .5544339 1.374099

Note: Estimates are transformed only in the first equation to hazard ratios.
Note: _cons estimates baseline hazard (conditional on zero random effects).
LR test vs. Weibull model: chi2(2) = 74.85 Prob > chi2 = 0.0000
Note: LR test is conservative and provided only for reference.

The results for the fixed part of the model are similar to the ones in the previous model.

Now, we have two estimated variances—one estimate for the random intercept at the individual level

and one estimate for the random intercept at the birth-year level.
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The variance component for the individual level is smaller for this model, and it looks as if the first

model might have been trying to explain a variance component at the birth-year level by incorporating

it into the individual-level variance. We can perform a likelihood-ratio test to compare the stored model

randint with the current model:

. lrtest randint .
Likelihood-ratio test
Assumption: randint nested within .
LR chi2(1) = 5.94

Prob > chi2 = 0.0148
Note: The reported degrees of freedom assumes the null hypothesis is not on

the boundary of the parameter space. If this is not true, then the
reported test is conservative.

The test is conservative because we are testing on the boundary of the parameter space; see Distribu-

tion theory for likelihood-ratio test in [ME]me for details. Provided that we are testing only one variance

component, we can adjust the 𝑝-value accordingly by dividing the reported value by two, which results
in an adjusted 𝑝-value equal to 0.0074.

The test is significant at the 0.05 level. It supports the three-level model with the additional variance

component at the birth-year level.

Stored results
mestreg stores the following in e():

Scalars

e(N) number of observations

e(k) number of parameters

e(k eq) number of equations in e(b)
e(k eq model) number of equations in overall model test

e(k dv) number of dependent variables

e(k f) number of fixed-effects parameters

e(k r) number of random-effects parameters

e(k rs) number of variances

e(k rc) number of covariances

e(df m) model degrees of freedom

e(ll) log likelihood

e(chi2) 𝜒2

e(p) 𝑝-value for model test
e(ll c) log likelihood, comparison model

e(chi2 c) 𝜒2, comparison test
e(df c) degrees of freedom, comparison test

e(p c) 𝑝-value for comparison test
e(N clust) number of clusters

e(rank) rank of e(V)
e(ic) number of iterations

e(rc) return code

e(converged) 1 if converged, 0 otherwise

Macros

e(cmd) gsem
e(cmd2) mestreg
e(cmdline) command as typed

e(depvar) name of dependent variable

e(wtype) weight type

https://www.stata.com/manuals/meme.pdf#memeRemarksandexampleslrtest
https://www.stata.com/manuals/meme.pdf#memeRemarksandexampleslrtest
https://www.stata.com/manuals/meme.pdf#meme
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e(wexp) weight expression (first-level weights)

e(fweightk) fweight variable for kth highest level, if specified

e(iweightk) iweight variable for kth highest level, if specified

e(pweightk) pweight variable for kth highest level, if specified

e(covariates) list of covariates

e(ivars) grouping variables

e(model) model name

e(title) title in estimation output

e(distribution) distribution

e(clustvar) name of cluster variable

e(offset) offset

e(intmethod) integration method

e(n quad) number of integration points

e(chi2type) Wald; type of model 𝜒2

e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.

e(frm2) hazard or time
e(opt) type of optimization

e(which) max or min; whether optimizer is to perform maximization or minimization

e(ml method) type of ml method

e(user) name of likelihood-evaluator program

e(technique) maximization technique

e(datasignature) the checksum

e(datasignaturevars) variables used in calculation of checksum

e(properties) b V
e(estat cmd) program used to implement estat
e(predict) program used to implement predict
e(marginsnotok) predictions disallowed by margins
e(marginswtype) weight type for margins
e(marginswexp) weight expression for margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices

e(b) coefficient vector

e(Cns) constraints matrix

e(ilog) iteration log (up to 20 iterations)

e(gradient) gradient vector

e(N g) group counts

e(g min) group-size minimums

e(g avg) group-size averages

e(g max) group-size maximums

e(V) variance–covariance matrix of the estimators

e(V modelbased) model-based variance

Functions

e(sample) marks estimation sample

In addition to the above, the following is stored in r():

Matrices

r(table) matrix containing the coefficients with their standard errors, test statistics, 𝑝-values, and
confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when any

r-class command is run after the estimation command.
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Methods and formulas
Methods and formulas are presented under the following headings:

Survival models
Survey data

Survival models
Survival models have a trivariate response (𝑡0, 𝑡, 𝑑):

𝑡0 is the starting time under observation 𝑡0 ≥ 0;
𝑡 is the ending time under observation 𝑡 ≥ 𝑡0; and

𝑑 is an indicator for failure 𝑑 ∈ {0, 1}.
The survival function for a given family is the complement of the cumulative distribution function,

𝑆(𝑡) = 1 − 𝐹(𝑡). The unconditional density for a failure at time 𝑡 is given by

𝑔(𝑡) = 𝜕𝐹(𝑡)
𝜕𝑡

= −𝜕𝑆(𝑡)
𝜕𝑡

Some distributions contain ancillary parameters that are not denoted here.

The conditional density for a failure at time 𝑡 is

𝑔(𝑡|𝑡 ≥ 𝑡0, 𝑑 = 1) = 𝑔(𝑡)/𝑆(𝑡0)

and the conditional probability of survival without failure up to time 𝑡 is

𝑃(𝑇 ≥ 𝑡|𝑡 ≥ 𝑡0, 𝑑 = 0) = 𝑆(𝑡)/𝑆(𝑡0)

The conditional likelihood is given by

𝐿(𝑡, 𝑡0, 𝑑) = { 𝑔(𝑡)
𝑆(𝑡0)

}
𝑑

{ 𝑆(𝑡)
𝑆(𝑡0)

}
1−𝑑

See Survival distributions in [SEM] Methods and formulas for gsem for the specific density function

corresponding to each distribution.

Given a set of cluster-level random effects u𝑗 for 𝑗 = 1, . . . , 𝑀, the conditional distribution of t𝑗 =
(𝑡𝑗1, . . . , 𝑡𝑗𝑛𝑗

)′ on η𝑗 = X𝑗β + Z𝑗u𝑗 = (x𝑗1β + z𝑗𝑖u𝑗, . . . , x𝑗𝑛𝑗
β + z𝑗𝑛𝑗

u𝑗) for cluster 𝑗 is

𝑓(t𝑗|η𝑗) =
𝑛𝑗

∏
𝑖=1

𝑓(𝑡𝑗𝑖|𝜂𝑗𝑖)

where 𝑓(𝑡𝑗𝑖|𝜂𝑗𝑖) is the contribution to the likelihood from observation 𝑗𝑖; that is,

𝑓(𝑡𝑗𝑖|𝜂𝑗𝑖) = {
𝑔(𝑡𝑗𝑖|x𝑗𝑖β + z𝑗𝑖u𝑗)

𝑆(𝑡0𝑗𝑖|x𝑗𝑖β + z𝑗𝑖u𝑗)
}

𝑑𝑗𝑖

{
𝑆(𝑡𝑗𝑖|x𝑗𝑖β + z𝑗𝑖u𝑗)
𝑆(𝑡0𝑗𝑖|x𝑗𝑖β + z𝑗𝑖u𝑗)

}
1−𝑑𝑗𝑖

(1)

where 𝑔(𝑡|𝜂) and 𝑆(𝑡|𝜂) are, respectively, the density and the survivor function conditional on the linear
prediction 𝜂.

https://www.stata.com/manuals/semmethodsandformulasforgsem.pdf#semMethodsandformulasforgsemRemarksandexamplesSurvivaldistributions
https://www.stata.com/manuals/semmethodsandformulasforgsem.pdf#semMethodsandformulasforgsem
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As mentioned in Introduction under Remarks and examples, mestreg does not allow delayed entry

or gaps. Therefore, the first observation for a given subject will have a value of 𝑡0 = 0, and subsequent

spells for the subject must start at the end of the previous spell. That is, if observations 𝑗𝑖 and 𝑗, 𝑖 + 1

belong to the same subject, then 𝑡0𝑗,𝑖+1 = 𝑡𝑗𝑖.

Because the prior distribution of u𝑗 is multivariate normal with mean 0 and 𝑞 × 𝑞 variance matrix

𝚺, the likelihood contribution for the 𝑗th cluster is obtained by integrating u𝑗 out of the joint density

𝑓(t𝑗,u𝑗),

ℒ𝑗(β, 𝚺) = (2𝜋)−𝑞/2 |𝚺|−1/2 ∫ 𝑓(t𝑗|X𝑗β + Z𝑗u𝑗) exp (−u′
𝑗𝚺

−1u𝑗/2) 𝑑u𝑗 (2)

The integration in (2) has no closed form and thus must be approximated; see Methods and formulas in

[ME] meglm for details.

Survey data
In the presence of sampling weights, following Rabe-Hesketh and Skrondal (2006), the weighted log

pseudolikelihood for a two-level model is given as

ℒ(β, 𝚺) =
𝑀

∑
𝑗=1

𝑤𝑗 log∫
∞

−∞
exp{

𝑛𝑗

∑
𝑖=1

𝑤𝑖|𝑗 log𝑓(𝑡𝑗𝑖|𝜂𝑗𝑖)} 𝜙(v𝑗1) 𝑑v𝑗1

where 𝑤𝑗 is the inverse of the probability of selection for the 𝑗th cluster; 𝑤𝑖|𝑗 is the inverse of the condi-

tional probability of selection of individual 𝑖, given the selection of cluster 𝑗; 𝑓(𝑡𝑗𝑖|𝜂𝑗𝑖) is as in (1); and
𝜂𝑗𝑖, 𝜙(⋅), v𝑗1 are defined as in Methods and formulas in [ME] meglm.

Weighted estimation is achieved through the direct application of 𝑤𝑗 and 𝑤𝑖|𝑗 into the likelihood

calculations as detailed above to reflect replicated clusters for 𝑤𝑗 and replicated observations within

clusters for 𝑤𝑖|𝑗. Because this estimation is based on replicated clusters and observations, frequency

weights are handled similarly.
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