menbreg — Multilevel mixed-effects negative binomial regression

Description

`menbreg` fits mixed-effects negative binomial models to count data. The conditional distribution of the response given random effects is assumed to follow a Poisson-like process, except that the variation is greater than that of a true Poisson process.

Quick start

Mixed-effects negative binomial regression of y on x with random intercepts by v1

```
menbreg y x || v1:
```

Add evar measuring exposure

```
menbreg y x, exposure(evar) || v1:
```

As above, but report incidence-rate ratios instead of coefficients

```
menbreg y x, exposure(evar) || v1:, irr
```

Add random coefficients for x

```
menbreg y x, exposure(evar) || v1: x, irr
```

Three-level random-intercept model of y on x with v1 nested within v2

```
menbreg y x || v2: || v1:
```

Menu

Statistics > Multilevel mixed-effects models > Negative binomial regression
Syntax

``` stata
menbreg depvar fe_equation [ || re_equation] [ || re_equation ...] [ , options]
```

where the syntax of `fe_equation` is

``` stata
[ indepvars] [ if ] [ in] [ weight] [ , fe_options]
```

and the syntax of `re_equation` is one of the following:

for random coefficients and intercepts

``` stata
levelvar: [ varlist ] [ , re_options]
```

for random effects among the values of a factor variable

``` stata
levelvar: R.varname
```

`levelvar` is a variable identifying the group structure for the random effects at that level or is `all` representing one group comprising all observations.

fe_options

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>noconstant</code></td>
</tr>
<tr>
<td>suppress the constant term from the fixed-effects equation</td>
</tr>
<tr>
<td><code>exposure(varname_e)</code></td>
</tr>
<tr>
<td>include ln(varname_e) in model with coefficient constrained to 1</td>
</tr>
<tr>
<td><code>offset(varname_o)</code></td>
</tr>
<tr>
<td>include varname_o in model with coefficient constrained to 1</td>
</tr>
</tbody>
</table>

re_options

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>covariance(vartype)</code></td>
</tr>
<tr>
<td>variance–covariance structure of the random effects</td>
</tr>
<tr>
<td><code>noconstant</code></td>
</tr>
<tr>
<td>suppress constant term from the random-effects equation</td>
</tr>
<tr>
<td><code>fweight(varname)</code></td>
</tr>
<tr>
<td>frequency weights at higher levels</td>
</tr>
<tr>
<td><code>iweight(varname)</code></td>
</tr>
<tr>
<td>importance weights at higher levels</td>
</tr>
<tr>
<td><code>pweight(varname)</code></td>
</tr>
<tr>
<td>sampling weights at higher levels</td>
</tr>
</tbody>
</table>
options

<table>
<thead>
<tr>
<th>Description</th>
<th>Model</th>
<th>SE/Robust</th>
<th>Reporting</th>
<th>Integration</th>
<th>Maximization</th>
<th>vartype</th>
</tr>
</thead>
<tbody>
<tr>
<td>dispersion parameterization of the conditional overdispersion; dispersion may be mean (default) or constant</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>one unique variance parameter per random effect, all covariances 0; the default unless the R. notation is used</td>
</tr>
<tr>
<td>constraints apply specified linear constraints</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>equal variances for random effects, and one common pairwise covariance</td>
</tr>
<tr>
<td>vcetype may be oim, robust, or cluster clustvar</td>
<td></td>
<td></td>
<td>set confidence level; default is level(95)</td>
<td>set the number of integration (quadrature) points for all levels; default is intpoints(7)</td>
<td></td>
<td>all variances and covariances to be distinctly estimated</td>
</tr>
<tr>
<td>irr report fixed-effects coefficients as incidence-rate ratios</td>
<td></td>
<td></td>
<td>control columns and column formats, row spacing, line width, display of omitted variables and base and empty cells, and factor-variable labeling</td>
<td></td>
<td></td>
<td>user-selected variances and covariances constrained to be equal; the remaining variances and covariances unrestricted</td>
</tr>
<tr>
<td>nocnsreport do not display constraints</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>user-selected variances and covariances constrained to specified values; the remaining variances and covariances unrestricted</td>
</tr>
<tr>
<td>notable suppress coefficient table</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>nogroup suppress table summarizing groups</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>display_options control columns and column formats, row spacing, line width, display of omitted variables and base and empty cells, and factor-variable labeling</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>intmethod integration method</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>intpoints set the number of integration (quadrature) points for all levels; default is intpoints(7)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>maximize_options control the maximization process; seldom used</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>startvalues method for obtaining starting values</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>startgrid perform a grid search to improve starting values</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>noestimate do not fit the model; show starting values instead</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dnumerical use numerical derivative techniques</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>collinear keep collinear variables</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>coeflegend display legend instead of statistics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>vartype</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>independent</td>
<td>one unique variance parameter per random effect, all covariances 0; the default unless the R. notation is used</td>
</tr>
<tr>
<td>exchangeable</td>
<td>equal variances for random effects, and one common pairwise covariance</td>
</tr>
<tr>
<td>identity</td>
<td>equal variances for random effects, all covariances 0; the default if the R. notation is used</td>
</tr>
<tr>
<td>unstructured</td>
<td>all variances and covariances to be distinctly estimated</td>
</tr>
<tr>
<td>fixed(matname)</td>
<td>user-selected variances and covariances constrained to specified values; the remaining variances and covariances unrestricted</td>
</tr>
<tr>
<td>pattern(matname)</td>
<td>user-selected variances and covariances constrained to be equal; the remaining variances and covariances unrestricted</td>
</tr>
</tbody>
</table>
intmethod

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>mvaghermite</td>
<td>mean–variance adaptive Gauss–Hermite quadrature; the default unless a crossed random-effects model is fit</td>
</tr>
<tr>
<td>mcaghermite</td>
<td>mode-curvature adaptive Gauss–Hermite quadrature</td>
</tr>
<tr>
<td>ghermite</td>
<td>nonadaptive Gauss–Hermite quadrature</td>
</tr>
<tr>
<td>laplace</td>
<td>Laplacian approximation; the default for crossed random-effects models</td>
</tr>
</tbody>
</table>

Options

- **noconstant** suppresses the constant (intercept) term and may be specified for the fixed-effects equation and for any of or all the random-effects equations.
- **exposure(varname)_e** specifies a variable that reflects the amount of exposure over which the depvar events were observed for each observation; \(\ln(\text{varname}_e)\) is included in the fixed-effects portion of the model with the coefficient constrained to be 1.
- **offset(varname)_o** specifies that varname_o be included in the fixed-effects portion of the model with the coefficient constrained to be 1.
- **covariance(vartype)** specifies the structure of the covariance matrix for the random effects and may be specified for each random-effects equation. vartype is one of the following: independent, exchangeable, identity, unstructured, fixed(matname), or pattern(matname).
- **covariance(independent)** covariance structure allows for a distinct variance for each random effect within a random-effects equation and assumes that all covariances are 0. The default is covariance(independent) unless a crossed random-effects model is fit, in which case the default is covariance(identity).
- **covariance(exchangeable)** structure specifies one common variance for all random effects and one common pairwise covariance.
- **covariance(identity)** is short for “multiple of the identity”; that is, all variances are equal and all covariances are 0.
- **covariance(unstructured)** allows for all variances and covariances to be distinct. If an equation consists of \(p\) random-effects terms, the unstructured covariance matrix will have \(p(p + 1)/2\) unique parameters.
- **covariance(fixed(matname))** and **covariance(pattern(matname))** covariance structures provide a convenient way to impose constraints on variances and covariances of random effects. Each specification requires a matname that defines the restrictions placed on variances and
covariances. Only elements in the lower triangle of `matname` are used, and row and column names of `matname` are ignored. A missing value in `matname` means that a given element is unrestricted.

In a `fixed(matname)` covariance structure, (co)variance \((i, j)\) is constrained to equal the value specified in the \(i, j\)th entry of `matname`. In a `pattern(matname)` covariance structure, (co)variances \((i, j)\) and \((k, l)\) are constrained to be equal if `matname[i, j] = matname[k, l]`.

`fweight(varname)` specifies frequency weights at higher levels in a multilevel model, whereas frequency weights at the first level (the observation level) are specified in the usual manner, for example, `[fw=fwtvar1]`. `varname` can be any valid Stata variable name, and you can specify `fweight()` at levels two and higher of a multilevel model. For example, in the two-level model

```
  . mecmd fixed_portion [fw = wt1] || school: ... , fweight(wt2) ... 
```

the variable `wt1` would hold the first-level (the observation-level) frequency weights, and `wt2` would hold the second-level (the school-level) frequency weights.

`iweight(varname)` specifies importance weights at higher levels in a multilevel model, whereas importance weights at the first level (the observation level) are specified in the usual manner, for example, `[iw=iwtvar1]`. `varname` can be any valid Stata variable name, and you can specify `iweight()` at levels two and higher of a multilevel model. For example, in the two-level model

```
  . mecmd fixed_portion [iw = wt1] || school: ... , iweight(wt2) ... 
```

the variable `wt1` would hold the first-level (the observation-level) importance weights, and `wt2` would hold the second-level (the school-level) importance weights.

`pweight(varname)` specifies sampling weights at higher levels in a multilevel model, whereas sampling weights at the first level (the observation level) are specified in the usual manner, for example, `[pw=pwtvar1]`. `varname` can be any valid Stata variable name, and you can specify `pweight()` at levels two and higher of a multilevel model. For example, in the two-level model

```
  . mecmd fixed_portion [pw = wt1] || school: ... , pweight(wt2) ... 
```

variable `wt1` would hold the first-level (the observation-level) sampling weights, and `wt2` would hold the second-level (the school-level) sampling weights.

`dispersion(mean | constant)` specifies the parameterization of the conditional overdispersion given random effects. `dispersion(mean)`, the default, yields a model where the conditional overdispersion is a function of the conditional mean given random effects. For example, in a two-level model, the conditional overdispersion is equal to \(1 + \alpha E(y_{ij}|u_j)\). `dispersion(constant)` yields a model where the conditional overdispersion is constant and is equal to \(1 + \delta\). \(\alpha\) and \(\delta\) are the respective conditional overdispersion parameters.

`constraints(constraints);` see [R] Estimation options.

`vce(vcetype)` specifies the type of standard error reported, which includes types that are derived from asymptotic theory (`oim`), that are robust to some kinds of misspecification (`robust`), and that allow for intragroup correlation (`cluster clustvar`); see [R] vce_option. If `vce(robust)` is specified, robust variances are clustered at the highest level in the multilevel model.
Reporting

level(#) ; see [R] Estimation options.

irr reports estimated fixed-effects coefficients transformed to incidence-rate ratios, that is, \(\exp(\beta) \) rather than \(\beta \). Standard errors and confidence intervals are similarly transformed. This option affects how results are displayed, not how they are estimated or stored. irr may be specified either at estimation or upon replay.

nocnsreport ; see [R] Estimation options.

notable suppresses the estimation table, either at estimation or upon replay.

noheader suppresses the output header, either at estimation or upon replay.

nogroup suppresses the display of group summary information (number of groups, average group size, minimum, and maximum) from the output header.

display_options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels, allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(\%fmt), pformat(\%fmt), sformat(\%fmt), and nolstretch; see [R] Estimation options.

Integration

intmethod(intmethod) specifies the integration method to be used for the random-effects model. mvaghermite performs mean–variance adaptive Gauss–Hermite quadrature; mcaghermite performs mode-curvature adaptive Gauss–Hermite quadrature; ghermite performs nonadaptive Gauss–Hermite quadrature; and laplace performs the Laplacian approximation, equivalent to mode-curvature adaptive Gaussian quadrature with one integration point.

The default integration method is mvaghermite unless a crossed random-effects model is fit, in which case the default integration method is laplace. The Laplacian approximation has been known to produce biased parameter estimates; however, the bias tends to be more prominent in the estimates of the variance components rather than in the estimates of the fixed effects.

For crossed random-effects models, estimation with more than one quadrature point may be prohibitively intensive even for a small number of levels. For this reason, the integration method defaults to the Laplacian approximation. You may override this behavior by specifying a different integration method.

intpoints(#) sets the number of integration points for quadrature. The default is intpoints(7), which means that seven quadrature points are used for each level of random effects. This option is not allowed with intmethod(laplace).

The more integration points, the more accurate the approximation to the log likelihood. However, computation time increases as a function of the number of quadrature points raised to a power equaling the dimension of the random-effects specification. In crossed random-effects models and in models with many levels or many random coefficients, this increase can be substantial.

Maximization

maximize_options: difficult, technique(algorithm_spec), iterate(#), [no]log, trace, gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#), nrtolerance(#), nonrtol, and from(init_specs); see [R] Maximize. Those that require special mention for menbreg are listed below.

from() accepts a properly labeled vector of initial values or a list of coefficient names with values. A list of values is not allowed.
The following options are available with `menbreg` but are not shown in the dialog box: `startvalues(svmethod)`, `startgrid[gridspec]`, `noestimate`, and `dnumerical`; see [ME] `meglm`.

collinear, `coeflegend`; see [R] Estimation options.

Remarks and examples

Mixed-effects negative binomial regression is negative binomial regression containing both fixed effects and random effects. In longitudinal data and panel data, random effects are useful for modeling intracluster correlation; that is, observations in the same cluster are correlated because they share common cluster-level random effects.

`menbreg` allows for many levels of random effects. However, for simplicity, consider a two-level model, where for a series of M independent clusters, and conditional on the latent variable ζ_{ij} and a set of random effects u_j,

$$y_{ij} \mid \zeta_{ij} \sim \text{Poisson}(\zeta_{ij})$$

and

$$\zeta_{ij} \mid u_j \sim \text{Gamma}(r_{ij},p_{ij})$$

and

$$u_j \sim N(0, \Sigma)$$

where y_{ij} is the count response of the ith observation, $i = 1, \ldots, n_j$, from the jth cluster, $j = 1, \ldots, M$, and r_{ij} and p_{ij} have two different parameterizations, (2) and (3) below. The random effects u_j are M realizations from a multivariate normal distribution with mean 0 and $q \times q$ variance matrix Σ. The random effects are not directly estimated as model parameters but are instead summarized according to the unique elements of Σ, known as variance components.

The probability that a random response y_{ij} takes the value y is then given by

$$\Pr(y_{ij} = y \mid u_j) = \frac{\Gamma(y + r_{ij})}{\Gamma(y + 1)\Gamma(r_{ij})} p_{ij}^{r_{ij}} (1 - p_{ij})^y$$

(1)

where for convenience we suppress the dependence of the observable data y_{ij} on r_{ij} and p_{ij}.

Model (1) is an extension of the standard negative binomial model (see [R] `nbreg`) to incorporate normally distributed random effects at different hierarchical levels. (The negative binomial model itself can be viewed as a random-effects model, a Poisson model with a gamma-distributed random effect.) The standard negative binomial model is used to model overdispersed count data for which the variance is greater than that of a Poisson model. In a Poisson model, the variance is equal to the mean, and thus overdispersion is defined as the extra variability compared with the mean. According to this definition, the negative binomial model presents two different parameterizations of the overdispersion: the mean parameterization, where the overdispersion is a function of the mean, $1 + \alpha E(Y \mid x), \alpha > 0$; and the constant parameterization, where the overdispersion is a constant function, $1 + \delta, \delta \geq 0$. We refer to α and δ as conditional overdispersion parameters.

Let $\mu_{ij} = E(y_{ij} \mid x, u_j) = \exp(x_{ij} \beta + z_{ij} u_j)$, where x_{ij} is the $1 \times p$ row vector of the fixed-effects covariates, analogous to the covariates you would find in a standard negative binomial regression model, with regression coefficients (fixed effects) β; z_{ij} is the $1 \times q$ vector of the random-effects
covariates and can be used to represent both random intercepts and random coefficients. For example, in a random-intercept model, z_{ij} is simply the scalar 1. One special case places $z_{ij} = x_{ij}$, so that all covariate effects are essentially random and distributed as multivariate normal with mean β and variance Σ.

Similarly to the standard negative binomial model, we can consider two parameterizations of what we call the conditional overdispersion, the overdispersion conditional on random effects, in a random-effects negative binomial model. For the mean-overdispersion (or, more technically, mean-conditional-overdispersion) parameterization,

$$r_{ij} = 1/\alpha \text{ and } p_{ij} = \frac{1}{1 + \alpha \mu_{ij}} \quad (2)$$

and the conditional overdispersion is equal to $1 + \alpha \mu_{ij}$. For the constant-overdispersion (or, more technically, constant-conditional-overdispersion) parameterization,

$$r_{ij} = \mu_{ij}/\delta \text{ and } p_{ij} = \frac{1}{1 + \delta} \quad (3)$$

and the conditional overdispersion is equal to $1 + \delta$. In what follows, for brevity, we will use the term overdispersion parameter to mean conditional overdispersion parameter, unless stated otherwise.

In the context of random-effects negative binomial models, it is important to decide which model is used as a reference model for the definition of the overdispersion. For example, if we consider a corresponding random-effects Poisson model as a comparison model, the parameters α and δ can still be viewed as unconditional overdispersion parameters, as we show below, although the notion of a constant overdispersion is no longer applicable.

If we retain the definition of the overdispersion as the excess variation with respect to a Poisson process for which the variance is equal to the mean, we need to carefully distinguish between the marginal (unconditional) mean with random effects integrated out and the conditional mean given random effects.

In what follows, for simplicity, we omit the dependence of the formulas on x. Contingent on random effects, the (conditional) dispersion $\text{Var}(y_{ij} | u_j) = (1 + \alpha \mu_{ij}) \mu_{ij}$ for the mean parameterization and $\text{Var}(y_{ij} | u_j) = (1 + \delta) \mu_{ij}$ for the constant parameterization; the usual interpretation of the parameters holds (conditionally).

If we consider the marginal mean or, specifically, the marginal dispersion for, for example, a two-level random-intercept model, then

$$\text{Var}(y_{ij}) = \left[1 + \{\exp(\sigma^2)(1 + \alpha) - 1\}E(y_{ij})\right] E(y_{ij})$$

for the mean parameterization and

$$\text{Var}(y_{ij}) = \left[1 + \delta + \{\exp(\sigma^2) - 1\}E(y_{ij})\right] E(y_{ij})$$

for the constant parameterization, where σ^2 is the variance component corresponding to the random intercept.

A few things of interest compared with the standard negative binomial model. First, the random-effects negative binomial model is not strictly an overdispersed model. The combination of values of α and σ^2 can lead to an underdispersed model, a model with smaller variability than the Poisson variability. Underdispersed models are not as common in practice, so we will concentrate on the overdispersion in this entry. Second, α (or δ) no longer solely determine the overdispersion and thus cannot be viewed as unconditional overdispersion parameters. Overdispersion is now a function of both α (or δ) and σ^2. Third, the notion of a constant overdispersion is not applicable.
Two special cases are worth mentioning. When \(\sigma^2 = 0 \), the dispersion reduces to that of a standard negative binomial model. When \(\alpha = 0 \) (or \(\delta = 0 \)), the dispersion reduces to that of a two-level random-intercept Poisson model, which itself is, in general, an overdispersed model; see Rabe-Hesketh and Skrondal (2012, chap. 13.7) for more details. As such, \(\alpha \) and \(\delta \) retain the typical interpretation as dispersion parameters relative to a random-intercept Poisson model.

Below we present two short examples of mixed-effects negative binomial regression; refer to [ME] me and [ME] meglm for more examples including crossed-effects models.

Example 1: Two-level random-intercept model

Rabe-Hesketh and Skrondal (2012, chap. 13.7) analyze the data from Winkelmann (2004) on the impact of the 1997 health reform in Germany on the number of doctor visits. The intent of policymakers was to reduce government expenditures on healthcare. We use a subsample of the data restricted to 1,158 women who were employed full time the year before or after the reform.

```
use https://www.stata-press.com/data/r16/drvisits
describe
Contains data from https://www.stata-press.com/data/r16/drvisits.dta
obs: 2,227
vars: 8 23 Jan 2018 18:39

<table>
<thead>
<tr>
<th>variable</th>
<th>storage</th>
<th>display</th>
<th>value</th>
<th>variable label</th>
</tr>
</thead>
<tbody>
<tr>
<td>id</td>
<td>float</td>
<td>%9.0g</td>
<td></td>
<td>person id</td>
</tr>
<tr>
<td>numvisit</td>
<td>float</td>
<td>%9.0g</td>
<td></td>
<td>number of doctor visits in the last 3 months before interview</td>
</tr>
<tr>
<td>age</td>
<td>float</td>
<td>%9.0g</td>
<td></td>
<td>age in years</td>
</tr>
<tr>
<td>educ</td>
<td>float</td>
<td>%9.0g</td>
<td></td>
<td>education in years</td>
</tr>
<tr>
<td>married</td>
<td>float</td>
<td>%9.0g</td>
<td></td>
<td>=1 if married, 0 otherwise</td>
</tr>
<tr>
<td>badh</td>
<td>float</td>
<td>%9.0g</td>
<td></td>
<td>self-reported health status, =1 if bad</td>
</tr>
<tr>
<td>loginc</td>
<td>float</td>
<td>%9.0g</td>
<td></td>
<td>log of household income</td>
</tr>
<tr>
<td>reform</td>
<td>float</td>
<td>%9.0g</td>
<td></td>
<td>=0 if interview before reform, =1 if interview after reform</td>
</tr>
</tbody>
</table>
```

Sorted by:

The dependent variable, numvisit, is a count of doctor visits. The covariate of interest is a dummy variable, reform, which indicates whether a doctor visit took place before or after the reform. Other covariates include a self-reported health status, age, education, marital status, and a log of household income.
We first fit a two-level random-intercept Poisson model. We specify the random intercept at the id level, that is, an individual-person level.

```
. mepoisson numvisit reform age educ married badh loginc || id:, irr
```

Fitting fixed-effects model:

Iteration 0: log likelihood = -9326.8542
Iteration 1: log likelihood = -5989.7308
Iteration 2: log likelihood = -5942.7581
Iteration 3: log likelihood = -5942.7243
Iteration 4: log likelihood = -5942.7243

Refining starting values:

Grid node 0: log likelihood = -4761.1257

Fitting full model:

Iteration 0: log likelihood = -4761.1257
Iteration 1: log likelihood = -4683.2239
Iteration 2: log likelihood = -4646.9329
Iteration 3: log likelihood = -4645.736
Iteration 4: log likelihood = -4645.7371
Iteration 5: log likelihood = -4645.7371

Mixed-effects Poisson regression

Number of obs = 2,227
Group variable: id
Number of groups = 1,518
Obs per group: min = 1
avg = 1.5
max = 2
Integration method: mvaghermite
Integration pts. = 7
Log likelihood = -4645.7371

Wald chi2(6) = 249.37
Prob > chi2 = 0.0000

| numvisit | IRR | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|-----------|--------|-----------|-------|------|----------------------|
| reform | .9517026 | .0309352 | -1.52 | 0.128 | .8929617 1.014308 |
| age | 1.005821 | .002817 | 2.07 | 0.038 | 1.000315 1.011357 |
| educ | 1.008788 | .0127394 | 0.69 | 0.488 | .9841258 1.034068 |
| married | 1.082078 | .0596331 | 1.43 | 0.152 | .9712905 1.205503 |
| badh | 2.471857 | .151841 | 14.73 | 0.000 | 2.191471 2.788116 |
| loginc | 1.094144 | .0743018 | 1.32 | 0.185 | .9577909 1.249909 |
| _cons | .5216748 | .2668604 | -1.27 | 0.203 | .191413 1.421766 |

id

| var(_cons) | .8177932 | .0503902 | .724761 | .9227673 |

Note: Estimates are transformed only in the first equation.
Note: _cons estimates baseline incidence rate (conditional on zero random effects).
LR test vs. Poisson model: chi2(01) = 2593.97 Prob >= chi2 = 0.0000
```

Because we specified the irr option, the parameters are reported as incidence-rate ratios. The healthcare reform seems to reduce the expected number of visits by 5% but without statistical significance.

Because we have only one random effect at the id level, the table shows only one variance component. The estimate of $\sigma^2_u$ is 0.82 with standard error 0.05. The reported likelihood-ratio test shows that there is enough variability between women to favor a mixed-effects Poisson regression over a standard Poisson regression; see Distribution theory for likelihood-ratio test in [ME] me for a discussion of likelihood-ratio testing of variance components.
It is possible that after conditioning on the person-level random effect, the counts of doctor visits are overdispersed. For example, medical problems occurring during the time period leading to the survey can result in extra doctor visits. We thus reexamine the data with `menbreg`.

\[
\text{. menbreg numvisit reform age educ married badh loginc || id:, irr}
\]

Fitting fixed-effects model:

\[
\begin{align*}
\text{Iteration 0: } & \quad \text{log likelihood } = -4610.7165 \\
\text{Iteration 1: } & \quad \text{log likelihood } = -4563.4682 \\
\text{Iteration 2: } & \quad \text{log likelihood } = -4562.3241 \\
\text{Iteration 3: } & \quad \text{log likelihood } = -4562.3238
\end{align*}
\]

Refining starting values:

\[
\text{Grid node 0: } \quad \text{log likelihood } = -4643.5216
\]

Fitting full model:

\[
\begin{align*}
\text{Iteration 0: } & \quad \text{log likelihood } = -4643.5216 \quad \text{(not concave)} \\
\text{Iteration 1: } & \quad \text{log likelihood } = -4555.961 \\
\text{Iteration 2: } & \quad \text{log likelihood } = -4518.7353 \\
\text{Iteration 3: } & \quad \text{log likelihood } = -4513.1951 \\
\text{Iteration 4: } & \quad \text{log likelihood } = -4513.1853 \\
\text{Iteration 5: } & \quad \text{log likelihood } = -4513.1853
\end{align*}
\]

Mixed-effects nbinomial regression

Number of obs = 2,227

Overdispersion: mean

Group variable: id

Number of groups = 1,518

Obs per group:

\[
\begin{align*}
\text{min } & \quad 1 \\
\text{avg } & \quad 1.5 \\
\text{max } & \quad 2
\end{align*}
\]

Integration method: mvaghermite

Integration pts. = 7

Log likelihood = -4513.1853

Wald chi2(6) = 237.35

Prob > chi2 = 0.0000

| numvisit | IRR   | Std. Err. | z     | P>|z|  | [95% Conf. Interval] |
|----------|-------|-----------|-------|------|----------------------|
| reform   | .9008536 | .042022 | -2.24 | 0.025 | .8221449 .9870975 |
| age      | 1.003593 | .0028206 | 1.28  | 0.202 | .9980799 1.009137 |
| educ     | 1.007026 | .012827 | 0.55  | 0.583 | .9821969 1.032483 |
| married  | 1.089597 | .064213 | 1.46  | 0.145 | .970738 .1223008 |
| badh     | 3.043562 | .2366182 | 14.32 | 0.000 | 2.613404 3.544523 |
| loginc   | 1.136342 | .0867148 | 1.67  | 0.094 | .9784833 1.319668 |
| _cons    | .5017199 | .285146 | -1.21 | 0.225 | .1646994 1.528377 |

/lnalpha

\[-.7962692 .1190614 -1.029625 -.5629132\]

id

\[.4740088 .0582404 .3725642 .6030754\]

Note: Estimates are transformed only in the first equation.

Note: _cons estimates baseline incidence rate (conditional on zero random effects).

LR test vs. nbinomial model: chibar2(01) = 98.28    Prob >= chibar2 = 0.0000

The estimated effect of the healthcare reform now corresponds to the reduction in the number of doctor visits by 10%—twice as much compared with the Poisson model—and this effect is significant at the 5% level.

The estimate of the variance component $\sigma_u^2$ drops down to 0.47 compared with `mepoisson`, which is not surprising given that now we have an additional parameter that controls the variability of the data.
Because the conditional overdispersion $\alpha$ is assumed to be greater than 0, it is parameterized on the log scale, and its log estimate is reported as $\ln(\hat{\alpha})$ in the output. In our model, $\hat{\alpha} = \exp(-0.80) = 0.45$. We can also compute the unconditional overdispersion in this model by using $\exp(0.47) \times (1 + 0.45) - 1 = 1.32$.

The reported likelihood-ratio test shows that there is enough variability between women to favor a mixed-effects negative binomial regression over negative binomial regression without random effects.

We can also perform a likelihood-ratio test comparing the mixed-effects negative binomial model to the mixed-effects Poisson model. Because we are comparing two different estimators, we need to use the `force` option with `lrtest`. In general, there is no guarantee as to the validity or interpretability of the resulting likelihood-ratio test, but in our case we know the test is valid because the mixed-effects Poisson model is nested within the mixed-effects negative binomial model.

```
. lrtest mepoisson ., force
Likelihood-ratio test LR chi2(1) = 265.10
(Assumption: mepoisson nested in .) Prob > chi2 = 0.0000
```

Note: The reported degrees of freedom assumes the null hypothesis is not on the boundary of the parameter space. If this is not true, then the reported test is conservative.

The reported likelihood-ratio test favors the mixed-effects negative binomial model. The reported test is conservative because the test of $H_0: \alpha = 0$ occurs on the boundary of the parameter space; see Distribution theory for likelihood-ratio test in [ME] me for details.

The above extends to models with more than two levels of nesting by adding more random-effects equations, each separated by `||`. The order of nesting goes from left to right as the groups go from biggest (highest level) to smallest (lowest level). To demonstrate a three-level model, we revisit example 3 from [ME] mepoisson.

### Example 2: Three-level random-intercept model


```
. use https://www.stata-press.com/data/r16/melanoma
(Skin cancer (melanoma) data)
. describe
Contains data from https://www.stata-press.com/data/r16/melanoma.dta
 obs: 354 Skin cancer (melanoma) data
 vars: 6 30 May 2018 17:10
 _dta has notes

storage display value
variable name type format label variable label

nation byte %11.0g n Nation ID
region byte %9.0g Region ID: EEC level-I areas
county int %9.0g County ID: EEC level-II/level-III areas
deaths int %9.0g No. deaths during 1971-1980
expected float %9.0g No. expected deaths
uv float %9.0g UV dose, mean-centered

Sorted by:
```
Nine European nations (variable `nation`) are represented, and data were collected over geographical regions defined by EEC statistical services as level I areas (variable `region`), with deaths being recorded for each of 354 counties, which are level II or level III EEC-defined areas (variable `county`, which identifies the observations). Counties are nested within regions, and regions are nested within nations.

The variable `deaths` records the number of deaths for each county, and `expected` records the expected number of deaths (the exposure) on the basis of crude rates for the combined countries. The variable `uv` is a measure of exposure to ultraviolet (UV) radiation.

In example 3 of [ME] `mepoisson`, we noted that because counties also identified the observations, we could model overdispersion by using a four-level Poisson model with a random intercept at the county level. Here we fit a three-level negative binomial model with the default mean-dispersion parameterization.

```
. menbreg deaths uv, exposure(expected) || nation: || region:
```

Fitting fixed-effects model:

<table>
<thead>
<tr>
<th>Iteration</th>
<th>log likelihood</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-1361.855</td>
</tr>
<tr>
<td>1</td>
<td>-1230.0211</td>
</tr>
<tr>
<td>2</td>
<td>-1211.049</td>
</tr>
<tr>
<td>3</td>
<td>-1202.5641</td>
</tr>
<tr>
<td>4</td>
<td>-1202.5329</td>
</tr>
<tr>
<td>5</td>
<td>-1202.5329</td>
</tr>
</tbody>
</table>

Refining starting values:

<table>
<thead>
<tr>
<th>Grid node</th>
<th>log likelihood</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-1209.6951</td>
</tr>
</tbody>
</table>

Fitting full model:

<table>
<thead>
<tr>
<th>Iteration</th>
<th>log likelihood</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-1209.6951 (not concave)</td>
</tr>
<tr>
<td>11</td>
<td>-1086.3902</td>
</tr>
</tbody>
</table>

Mixed-effects negative binomial regression

<table>
<thead>
<tr>
<th>Group Variable</th>
<th>No. of Groups</th>
<th>Observations per Group</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Minimum</td>
<td>Average</td>
</tr>
<tr>
<td>nation</td>
<td>9</td>
<td>3</td>
</tr>
<tr>
<td>region</td>
<td>78</td>
<td>1</td>
</tr>
</tbody>
</table>

Integration method: mvaghermite

<table>
<thead>
<tr>
<th>Integration pts.</th>
<th>Wald chi2(1)</th>
<th>Prob &gt; chi2</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>8.73</td>
<td>0.0031</td>
</tr>
</tbody>
</table>

Log likelihood = -1086.3902

| death | Coef. | Std. Err. | z      | P>|z| | [95% Conf. Interval] |
|-------|-------|-----------|--------|------|----------------------|
| uv    | -0.0335933 | 0.0113725 | -2.95  | 0.003 | -0.055883  | -0.0113035 |
| ln(expected) | -0.0790606 | 0.1295931 | -0.61  | 0.542 | -0.3330583 | 0.1749372 |

| /lnalpha | Coef. | Std. Err. | z      | P>|z| | [95% Conf. Interval] |
|----------|-------|-----------|--------|------|----------------------|
| -4.182603 | 0.3415036 | -4.851937 | -3.513268 |

| nation | var(_cons) | Coef. | Std. Err. | z      | P>|z| | [95% Conf. Interval] |
|--------|------------|-------|-----------|--------|------|----------------------|
| 0.1283614 | 0.0678971 | 0.0455187 | 0.3619758 |

| nation> region | var(_cons) | Coef. | Std. Err. | z      | P>|z| | [95% Conf. Interval] |
|----------------|------------|-------|-----------|--------|------|----------------------|
| 0.0401818 | 0.0104855 | 0.0240938 | 0.067012 |

LR test vs. nbinomial model: chi2(2) = 232.29

Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.
The estimates are very close to those of `mepoisson`. The conditional overdispersion in our model is \( \hat{\alpha} = \exp(-4.18) = 0.0153 \). It is in agreement with the estimate of the random intercept at the county level, 0.0147, in a four-level random-effects Poisson model reported by `mepoisson`. Because the negative binomial is a three-level model, we gained some computational efficiency over the four-level Poisson model.

### Stored results

`menbreg` stores the following in `e()`:

**Scalars**
- `e(N)`: number of observations
- `e(k)`: number of parameters
- `e(k_dv)`: number of dependent variables
- `e(k_eq)`: number of equations in `e(b)`
- `e(k_eq_model)`: number of equations in overall model test
- `e(k_f)`: number of fixed-effects parameters
- `e(k_r)`: number of random-effects parameters
- `e(k_rs)`: number of variances
- `e(k_rc)`: number of covariances
- `e(df_m)`: model degrees of freedom
- `e(ll)`: log likelihood
- `e(N_clust)`: number of clusters
- `e(chi2)`: \( \chi^2 \)
- `e(p)`: \( p \)-value for model test
- `e(ll_c)`: log likelihood, comparison model
- `e(chi2_c)`: \( \chi^2 \), comparison test
- `e(df_c)`: degrees of freedom, comparison test
- `e(p_c)`: \( p \)-value for comparison test
- `e(rank)`: rank of `e(V)`
- `e(ic)`: number of iterations
- `e(rc)`: return code
- `e(converged)`: 1 if converged, 0 otherwise

**Macros**
- `e(cmd)`: `meglm`
- `e(cmd2)`: `menbreg`
- `e(cmdline)`: command as typed
- `e(depvar)`: name of dependent variable
- `e(wtype)`: weight type
- `e(wexp)`: weight expression (first-level weights)
- `e(fweight)`: `fweight` variable for \( k \)th highest level, if specified
- `e(iweight)`: `iweight` variable for \( k \)th highest level, if specified
- `e(pweight)`: `pweight` variable for \( k \)th highest level, if specified
- `e(covariates)`: list of covariates
- `e(ivars)`: grouping variables
- `e(model)`: `nbreg`
- `e(title)`: title in estimation output
- `e(link)`: `log`
- `e(family)`: `nbinomial`
- `e(clustvar)`: name of cluster variable
- `e(dispersion)`: mean or constant
- `e(offset)`: offset
- `e(intmethod)`: integration method
- `e(n_quad)`: number of integration points
- `e(chi2type)`: Wald; type of model \( \chi^2 \)
- `e(vce)`: vcetype specified in `vce()`
- `e(vcetype)`: title used to label Std. Err.
- `e(opt)`: type of optimization
Methods and formulas

`menbreg` is a convenience command for `meglm` with a log link and an nbinomial family; see [ME] `meglm`.

Without a loss of generality, consider a two-level negative binomial model. For cluster $j$, $j = 1, \ldots, M$, the conditional distribution of $y_j = (y_{j1}, \ldots, y_{jn_j})'$, given a set of cluster-level random effects $u_j$ and the conditional overdispersion parameter $\alpha$ in a mean-overdispersion parameterization, is

$$f(y_j|u_j, \alpha) = \prod_{i=1}^{n_j} \left\{ \frac{\Gamma(y_{ij} + r)}{\Gamma(y_{ij} + 1)\Gamma(r)} p_{ij}^r (1 - p_{ij})^{y_{ij}} \right\}$$

$$= \exp \left[ \sum_{i=1}^{n_j} \{ \log \Gamma(y_{ij} + r) - \log \Gamma(y_{ij} + 1) - \log \Gamma(r) + c(y_{ij}, \alpha) \} \right]$$

where $c(y_{ij}, \alpha)$ is defined as

$$-\frac{1}{\alpha} \log \{ 1 + \exp(\eta_{ij} + \log \alpha) \} - y_{ij} \log \{ 1 + \exp(-\eta_{ij} - \log \alpha) \}$$

and $r = 1/\alpha$, $p_{ij} = 1/(1 + \alpha \mu_{ij})$, and $\eta_{ij} = x_{ij}' \beta + z_{ij}' u_j$. 

Matrices
- `e(b)` coefficient vector
- `e(Cns)` constraints matrix
- `e(ilog)` iteration log (up to 20 iterations)
- `e(gradient)` gradient vector
- `e(N_g)` group counts
- `e(g_min)` group-size minimums
- `e(g_avg)` group-size averages
- `e(g_max)` group-size maximums
- `e(V)` variance–covariance matrix of the estimators
- `e(V_modelbased)` model-based variance

Functions
- `e(sample)` marks estimation sample
For the constant-overdispersion parameterization with the conditional overdispersion parameter $\delta$, the conditional distribution of $y_j$ is

$$f(y_j|u_j, \delta) = \prod_{i=1}^{n_j} \left\{ \frac{\Gamma(y_{ij} + r_{ij})}{\Gamma(y_{ij} + 1)\Gamma(r_{ij})} p^{r_{ij}} (1 - p)^{y_{ij}} \right\}$$

$$= \exp \left[ \sum_{i=1}^{n_j} \left\{ \log \Gamma(y_{ij} + r_{ij}) - \log \Gamma(y_{ij} + 1) - \log \Gamma(r_{ij}) + c(y_{ij}, \delta) \right\} \right]$$

where $c(y_{ij}, \delta)$ is defined as

$$-\left( \frac{\mu_{ij}}{\delta} + y_{ij} \right) \log(1 + \delta) + y_{ij} \log \delta$$

and $r_{ij} = \mu_{ij}/\delta$ and $p = 1/(1 + \delta)$.

For conciseness, let $\gamma$ denote either conditional overdispersion parameter. Because the prior distribution of $u_j$ is multivariate normal with mean 0 and $q \times q$ variance matrix $\Sigma$, the likelihood contribution for the $j$th cluster is obtained by integrating $u_j$ out of the joint density $f(y_j, u_j, \gamma)$,

$$L_j(\beta, \Sigma, \gamma) = (2\pi)^{-q/2} |\Sigma|^{-1/2} \int f(y_j|u_j, \gamma) \exp (-u_j'\Sigma^{-1}u_j/2) \, du_j$$

$$= (2\pi)^{-q/2} |\Sigma|^{-1/2} \int \exp \{ h(\beta, \Sigma, u_j, \gamma) \} \, du_j$$

where

$$h(\beta, \Sigma, u_j, \gamma) = f(y_j|u_j, \gamma) - u_j'\Sigma^{-1}u_j/2$$

and for convenience, in the arguments of $h(\cdot)$ we suppress the dependence on the observable data $(y_j, X_j, Z_j)$.

The integration in (4) has no closed form and thus must be approximated; see Methods and formulas in [ME] meglm for details.

menbreg supports multilevel weights and survey data; see Methods and formulas in [ME] meglm for details.

References


Also see

[ME] menbreg postestimation — Postestimation tools for menbreg

[ME] mepoisson — Multilevel mixed-effects Poisson regression

[ME] me — Introduction to multilevel mixed-effects models

[BAYES] bayes: menbreg — Bayesian multilevel negative binomial regression

[SEM] Intro 5 — Tour of models (Multilevel mixed-effects models)

[SVY] svy estimation — Estimation commands for survey data

[XT] xtnbreg — Fixed-effects, random-effects, & population-averaged negative binomial models

[U] 20 Estimation and postestimation commands