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Description

melogit fits mixed-effects models for binary and binomial responses. The conditional distribution
of the response given the random effects is assumed to be Bernoulli, with success probability determined
by the logistic cumulative distribution function.

Quick start
Without weights

Two-level logistic regression of y on x with random intercepts by lev2

melogit y x || lev2:

Mixed-effects model adding random coefficients for x
melogit y x || lev2: x

Same as above, but allow the random effects to be correlated
melogit y x || lev2: x, covariance(unstructured)

Three-level random-intercept model of y on x with lev2 nested within lev3

melogit y x || lev3: || lev2:

Crossed-effects model of y on x with two-way crossed random effects by factors a and b

melogit y x || _all:R.a || b:

With weights

Two-level logistic regression of y on x with random intercepts by lev2 and observation-level frequency
weights wvar1

melogit y x [fweight=wvar1] || lev2:

Two-level random-intercept model from a two-stage sampling design with PSUs identified by psu
using PSU-level and observation-level sampling weights wvar2 and wvar1, respectively

melogit y x [pweight=wvar1] || psu:, pweight(wvar2)

Add secondary sampling stage with units identified by ssu having weights wvar2 and PSU-level
weights wvar3 for a three-level random-intercept model

melogit y x [pw=wvar1] || psu:, pw(wvar3) || ssu:, pw(wvar2)

Same as above, but svyset data first
svyset psu, weight(wvar3) || ssu, weight(wvar2) || _n, weight(wvar1)
svy: melogit y x || psu: || ssu:
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Menu
Statistics > Multilevel mixed-effects models > Logistic regression

Syntax
melogit depvar fe equation

[
|| re equation

] [
|| re equation . . .

] [
, options

]
where the syntax of fe equation is[

indepvars
] [

if
] [

in
] [

weight
] [

, fe options
]

and the syntax of re equation is one of the following:

for random coefficients and intercepts

levelvar:
[

varlist
] [

, re options
]

for random effects among the values of a factor variable in a crossed-effects model

levelvar: R.varname

levelvar is a variable identifying the group structure for the random effects at that level or is all
representing one group comprising all observations.

fe options Description

Model

noconstant suppress constant term from the fixed-effects equation
offset(varname) include varname in model with coefficient constrained to 1
asis retain perfect predictor variables

re options Description

Model

covariance(vartype) variance–covariance structure of the random effects
noconstant suppress constant term from the random-effects equation
fweight(varname) frequency weights at higher levels
iweight(varname) importance weights at higher levels
pweight(varname) sampling weights at higher levels

https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.4inrange
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists


melogit — Multilevel mixed-effects logistic regression 3

options Description

Model

binomial(varname | #) set binomial trials if data are in binomial form
constraints(constraints) apply specified linear constraints

SE/Robust

vce(vcetype) vcetype may be oim, opg, robust, or cluster clustvar

Reporting

level(#) set confidence level; default is level(95)

or report fixed-effects coefficients as odds ratios
nocnsreport do not display constraints
notable suppress coefficient table
noheader suppress output header
nogroup suppress table summarizing groups
display options control columns and column formats, row spacing, line width,

display of omitted variables and base and empty cells, and
factor-variable labeling

Integration

intmethod(intmethod) integration method
intpoints(#) set the number of integration (quadrature) points for all levels;

default is intpoints(7)

Maximization

maximize options control the maximization process; seldom used

startvalues(svmethod) method for obtaining starting values
startgrid

[
(gridspec)

]
perform a grid search to improve starting values

noestimate do not fit the model; show starting values instead
dnumerical use numerical derivative techniques
collinear keep collinear variables
coeflegend display legend instead of statistics

vartype Description

independent one unique variance parameter per random effect and all covariances
0; the default unless the R. notation is used

exchangeable equal variances for random effects and one common pairwise
covariance

identity equal variances for random effects and all covariances 0; the
default if the R. notation is used

unstructured all variances and covariances to be distinctly estimated
fixed(matname) user-selected variances and covariances constrained to specified

values; the remaining variances and covariances unrestricted
pattern(matname) user-selected variances and covariances constrained to be equal;

the remaining variances and covariances unrestricted

https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptionsOptionsconstraintsdescrip
https://www.stata.com/manuals/r.pdf#rvce_option
https://www.stata.com/manuals/memeglm.pdf#memeglmOptionsstartvalues()
https://www.stata.com/manuals/memeglm.pdf#memeglmOptionsstartgrid()
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intmethod Description

mvaghermite mean–variance adaptive Gauss–Hermite quadrature; the default
unless a crossed random-effects model is fit

mcaghermite mode-curvature adaptive Gauss–Hermite quadrature
pcaghermite Pinheiro–Chao mode-curvature adaptive Gauss–Hermite

quadrature
ghermite nonadaptive Gauss–Hermite quadrature
laplace Laplacian approximation; the default for crossed random-effects

models
pclaplace Pinheiro–Chao Laplacian approximation

indepvars and varlist may contain factor variables; see [U] 11.4.3 Factor variables.
depvar, indepvars, and varlist may contain time-series operators; see [U] 11.4.4 Time-series varlists.
bayes, by, collect, and svy are allowed; see [U] 11.1.10 Prefix commands. For more details, see [BAYES] bayes: mel-

ogit.
vce() and weights are not allowed with the svy prefix; see [SVY] svy.
fweights, iweights, and pweights are allowed; see [U] 11.1.6 weight. Only one type of weight may be specified.

Weights are not supported under the Laplacian approximation or for crossed models.
startvalues(), startgrid, noestimate, dnumerical, collinear, and coeflegend do not appear in the dialog

box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options

� � �
Model �

noconstant suppresses the constant (intercept) term and may be specified for the fixed-effects
equation and for any of or all the random-effects equations.

offset(varname) specifies that varname be included in the fixed-effects portion of the model with
the coefficient constrained to be 1.

asis forces retention of perfect predictor variables and their associated, perfectly predicted observations
and may produce instabilities in maximization; see [R] probit.

covariance(vartype) specifies the structure of the covariance matrix for the random effects and
may be specified for each random-effects equation. vartype is one of the following: independent,
exchangeable, identity, unstructured, fixed(matname), or pattern(matname).

covariance(independent) covariance structure allows for a distinct variance for each random
effect within a random-effects equation and assumes that all covariances are 0. The default is
covariance(independent) unless a crossed random-effects model is fit, in which case the
default is covariance(identity).

covariance(exchangeable) structure specifies one common variance for all random effects and
one common pairwise covariance.

covariance(identity) is short for “multiple of the identity”; that is, all variances are equal
and all covariances are 0.

covariance(unstructured) allows for all variances and covariances to be distinct. If an equation
consists of p random-effects terms, the unstructured covariance matrix will have p(p + 1)/2
unique parameters.

https://www.stata.com/manuals/u11.pdf#u11.4.3Factorvariables
https://www.stata.com/manuals/u11.pdf#u11.4.4Time-seriesvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.10Prefixcommands
https://www.stata.com/manuals/bayesbayesmelogit.pdf#bayesbayesmelogit
https://www.stata.com/manuals/bayesbayesmelogit.pdf#bayesbayesmelogit
https://www.stata.com/manuals/svysvy.pdf#svysvy
https://www.stata.com/manuals/u11.pdf#u11.1.6weight
https://www.stata.com/manuals/u20.pdf#u20Estimationandpostestimationcommands
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/rprobit.pdf#rprobit
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covariance(fixed(matname)) and covariance(pattern(matname)) covariance structures
provide a convenient way to impose constraints on variances and covariances of random effects.
Each specification requires a matname that defines the restrictions placed on variances and
covariances. Only elements in the lower triangle of matname are used, and row and column names
of matname are ignored. A missing value in matname means that a given element is unrestricted.
In a fixed(matname) covariance structure, (co)variance (i, j) is constrained to equal the
value specified in the i, jth entry of matname. In a pattern(matname) covariance structure,
(co)variances (i, j) and (k, l) are constrained to be equal if matname[i, j] = matname[k, l].

fweight(varname) specifies frequency weights at higher levels in a multilevel model, whereas
frequency weights at the first level (the observation level) are specified in the usual manner, for
example, [fw=fwtvar1]. varname can be any valid Stata variable name, and you can specify
fweight() at levels two and higher of a multilevel model. For example, in the two-level model

. mecmd fixed_portion [fw = wt1] || school: . . . , fweight(wt2) . . .

the variable wt1 would hold the first-level (the observation-level) frequency weights, and wt2
would hold the second-level (the school-level) frequency weights.

iweight(varname) specifies importance weights at higher levels in a multilevel model, whereas
importance weights at the first level (the observation level) are specified in the usual manner,
for example, [iw=iwtvar1]. varname can be any valid Stata variable name, and you can specify
iweight() at levels two and higher of a multilevel model. For example, in the two-level model

. mecmd fixed_portion [iw = wt1] || school: . . . , iweight(wt2) . . .

the variable wt1 would hold the first-level (the observation-level) importance weights, and wt2
would hold the second-level (the school-level) importance weights.

pweight(varname) specifies sampling weights at higher levels in a multilevel model, whereas
sampling weights at the first level (the observation level) are specified in the usual manner, for
example, [pw=pwtvar1]. varname can be any valid Stata variable name, and you can specify
pweight() at levels two and higher of a multilevel model. For example, in the two-level model

. mecmd fixed_portion [pw = wt1] || school: . . . , pweight(wt2) . . .

variable wt1 would hold the first-level (the observation-level) sampling weights, and wt2 would
hold the second-level (the school-level) sampling weights.

binomial(varname | #) specifies that the data are in binomial form; that is, depvar records the number
of successes from a series of binomial trials. This number of trials is given either as varname,
which allows this number to vary over the observations, or as the constant #. If binomial() is
not specified (the default), depvar is treated as Bernoulli, with any nonzero, nonmissing values
indicating positive responses.

constraints(constraints); see [R] Estimation options.

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived from
asymptotic theory (oim, opg), that are robust to some kinds of misspecification (robust), and
that allow for intragroup correlation (cluster clustvar); see [R] vce option. If vce(robust) is
specified, robust variances are clustered at the highest level in the multilevel model.

� � �
Reporting �

level(#); see [R] Estimation options.

https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
https://www.stata.com/manuals/rvce_option.pdf#rvce_option
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
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or reports estimated fixed-effects coefficients transformed to odds ratios, that is, exp(β) rather than β.
Standard errors and confidence intervals are similarly transformed. This option affects how results
are displayed, not how they are estimated. or may be specified either at estimation or upon replay.

nocnsreport; see [R] Estimation options.

notable suppresses the estimation table, either at estimation or upon replay.

noheader suppresses the output header, either at estimation or upon replay.

nogroup suppresses the display of group summary information (number of groups, average group
size, minimum, and maximum) from the output header.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] Estimation options.

� � �
Integration �

intmethod(intmethod) specifies the integration method to be used for the random-effects model.
mvaghermite performs mean–variance adaptive Gauss–Hermite quadrature; mcaghermite and
pcaghermite perform mode-curvature adaptive Gauss–Hermite quadrature; ghermite performs
nonadaptive Gauss–Hermite quadrature; and laplace and pclaplace perform the Laplacian
approximation, equivalent to mode-curvature adaptive Gaussian quadrature with one integration
point. Techniques pcaghermite and pclaplace obtain the random-effects mode and curvature
using the efficient hierarchical decomposition algorithm described in Pinheiro and Chao (2006). For
hierarchical models, this algorithm takes advantage of the design structure to minimize memory use
and utilizes a series of orthogonal triangulations to compute the factored random-effects Hessian
indirectly, avoiding the sparse full Hessian. Techniques mcaghermite and laplace use Cholesky
factorization on the full Hessian. For four- and higher-level hierarchical designs, there can be
dramatic computation-time differences.

The default integration method is mvaghermite unless a crossed random-effects model is fit, in
which case the default integration method is laplace. The Laplacian approximation has been
known to produce biased parameter estimates; however, the bias tends to be more prominent in
the estimates of the variance components rather than in the estimates of the fixed effects.

For crossed random-effects models, estimation with more than one quadrature point may be
prohibitively intensive even for a small number of levels. For this reason, the integration method
defaults to the Laplacian approximation. You may override this behavior by specifying a different
integration method.

intpoints(#) sets the number of integration points for quadrature. The default is intpoints(7),
which means that seven quadrature points are used for each level of random effects. This option
is not allowed with intmethod(laplace).

The more integration points, the more accurate the approximation to the log likelihood. However,
computation time increases as a function of the number of quadrature points raised to a power
equaling the dimension of the random-effects specification. In crossed random-effects models and
in models with many levels or many random coefficients, this increase can be substantial.

� � �
Maximization �

maximize options: difficult, technique(algorithm spec), iterate(#),
[
no
]
log, trace,

gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(init specs); see [R] Maximize. Those that require
special mention for melogit are listed below.

https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
https://www.stata.com/manuals/d.pdf#dformat
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
https://www.stata.com/manuals/rmaximize.pdf#rMaximizeSyntaxalgorithm_spec
https://www.stata.com/manuals/rmaximize.pdf#rMaximize
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from() accepts a properly labeled vector of initial values or a list of coefficient names with values.
A list of values is not allowed.

The following options are available with melogit but are not shown in the dialog box:

startvalues(svmethod), startgrid
[
(gridspec)

]
, noestimate, and dnumerical; see [ME]

meglm.

collinear, coeflegend; see [R] Estimation options.

Remarks and examples stata.com

For a general introduction to me commands, see [ME] me.

melogit is a convenience command for meglm with a logit link and a bernoulli or binomial
family; see [ME] meglm.

Remarks are presented under the following headings:

Introduction
Two-level models
Other covariance structures
Three-level models
Crossed-effects models

Introduction

Mixed-effects logistic regression is logistic regression containing both fixed effects and random
effects. In longitudinal data and panel data, random effects are useful for modeling intracluster
correlation; that is, observations in the same cluster are correlated because they share common
cluster-level random effects.

melogit allows for many levels of random effects. However, for simplicity, for now we consider
the two-level model, where for a series of M independent clusters, and conditional on a set of random
effects uj ,

Pr(yij = 1|xij ,uj) = H(xijβ+ zijuj) (1)

for j = 1, . . . ,M clusters, with cluster j consisting of i = 1, . . . , nj observations. The responses are
the binary-valued yij , and we follow the standard Stata convention of treating yij = 1 if depvarij 6= 0
and treating yij = 0 otherwise. The 1 × p row vector xij are the covariates for the fixed effects,
analogous to the covariates you would find in a standard logistic regression model, with regression
coefficients (fixed effects) β. For notational convenience here and throughout this manual entry, we
suppress the dependence of yij on xij .

The 1 × q vector zij are the covariates corresponding to the random effects and can be used to
represent both random intercepts and random coefficients. For example, in a random-intercept model,
zij is simply the scalar 1. The random effects uj are M realizations from a multivariate normal
distribution with mean 0 and q× q variance matrix Σ. The random effects are not directly estimated
as model parameters but are instead summarized according to the unique elements of Σ, known
as variance components. One special case of (1) places zij = xij so that all covariate effects are
essentially random and distributed as multivariate normal with mean β and variance Σ.

Finally, because this is logistic regression,H(·) is the logistic cumulative distribution function, which
maps the linear predictor to the probability of a success (yij = 1), with H(v) = exp(v)/{1+ exp(v)}.

https://www.stata.com/manuals/memeglm.pdf#memeglmOptionsstartval
https://www.stata.com/manuals/memeglm.pdf#memeglmOptionsstartval
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
http://stata.com
https://www.stata.com/manuals/meme.pdf#meme
https://www.stata.com/manuals/memeglm.pdf#memeglm
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Model (1) may also be stated in terms of a latent linear response, where only yij = I(y∗ij > 0)
is observed for the latent

y∗ij = xijβ+ zijuj + εij

The errors εij are distributed as logistic with mean 0 and variance π2/3 and are independent of uj .

A two-level logistic model can also be fit using xtlogit with the re option; see [XT] xtlogit. In
the absence of random effects, mixed-effects logistic regression reduces to standard logistic regression;
see [R] logit.

Two-level models

Example 1: Two-level random-intercept model

Ng et al. (2006) analyze a subsample of data from the 1989 Bangladesh fertility survey (Huq and
Cleland 1990), which polled 1,934 Bangladeshi women on their use of contraception.

. use https://www.stata-press.com/data/r18/bangladesh
(Bangladesh Fertility Survey, 1989)

. describe

Contains data from https://www.stata-press.com/data/r18/bangladesh.dta
Observations: 1,934 Bangladesh Fertility Survey,

1989
Variables: 8 28 May 2022 20:27

(_dta has notes)

Variable Storage Display Value
name type format label Variable label

district byte %9.0g District
c_use byte %9.0g yesno Use contraception
urban byte %9.0g urban Urban or rural
age float %6.2f Age, mean centered
child1 byte %9.0g 1 child
child2 byte %9.0g 2 children
child3 byte %9.0g 3 or more children
children byte %18.0g childlbl Number of children

Sorted by: district

The women sampled were from 60 districts, identified by the variable district. Each district
contained either urban or rural areas (variable urban) or both. The variable c use is the binary
response, with a value of 1 indicating contraceptive use. Other covariates include mean-centered age
and a factor variable for the number of children.

Consider a standard logistic regression model, amended to have random effects for each district.
Defining πij = Pr(c useij = 1), we have

logit(πij) = β0 + β11.urbanij + β2ageij + β31.childrenij + β42.childrenij +

β53.childrenij + uj
(2)

for j = 1, . . . , 60 districts, with i = 1, . . . , nj women in district j.

https://www.stata.com/manuals/xtxtlogit.pdf#xtxtlogit
https://www.stata.com/manuals/rlogit.pdf#rlogit
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. melogit c_use i.urban age i.children, nofvlabel|| district:

Fitting fixed-effects model:

Iteration 0: Log likelihood = -1229.5485
Iteration 1: Log likelihood = -1228.5268
Iteration 2: Log likelihood = -1228.5263
Iteration 3: Log likelihood = -1228.5263

Refining starting values:

Grid node 0: Log likelihood = -1219.2681

Fitting full model:

Iteration 0: Log likelihood = -1219.2681 (not concave)
Iteration 1: Log likelihood = -1207.5978
Iteration 2: Log likelihood = -1206.8428
Iteration 3: Log likelihood = -1206.8322
Iteration 4: Log likelihood = -1206.8322

Mixed-effects logistic regression Number of obs = 1,934
Group variable: district Number of groups = 60

Obs per group:
min = 2
avg = 32.2
max = 118

Integration method: mvaghermite Integration pts. = 7

Wald chi2(5) = 109.60
Log likelihood = -1206.8322 Prob > chi2 = 0.0000

c_use Coefficient Std. err. z P>|z| [95% conf. interval]

1.urban .7322765 .1194857 6.13 0.000 .4980888 .9664641
age -.0264981 .0078916 -3.36 0.001 -.0419654 -.0110309

children
1 1.116001 .1580921 7.06 0.000 .8061465 1.425856
2 1.365895 .1746691 7.82 0.000 1.02355 1.70824
3 1.344031 .1796549 7.48 0.000 .9919139 1.696148

_cons -1.68929 .1477591 -11.43 0.000 -1.978892 -1.399687

district
var(_cons) .215618 .0733222 .1107208 .4198954

LR test vs. logistic model: chibar2(01) = 43.39 Prob >= chibar2 = 0.0000

The estimation table reports the fixed effects and the estimated variance components. The fixed
effects can be interpreted just as you would the output from logit. You can also specify the or option
at estimation or on replay to display the fixed effects as odds ratios instead. If you did display results
as odds ratios, you would find urban women to have roughly double the odds of using contraception
as that of their rural counterparts. Having any number of children will increase the odds from three-
to fourfold when compared with the base category of no children. Contraceptive use also decreases
with age. The nofvlabel option requested the values of factor variables urban and children be
displayed instead of the value labels.

Underneath the fixed effect, the table shows the estimated variance components. The random-effects
equation is labeled district, meaning that these are random effects at the district level. Because
we have only one random effect at this level, the table shows only one variance component. The
estimate of σ2

u is 0.22 with standard error 0.07.

A likelihood-ratio test comparing the model with ordinary logistic regression is provided and is
highly significant for these data.
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We now store our estimates for later use.

. estimates store r_int

In what follows, we will be extending (2), focusing on the variable urban. Before we begin, to
keep things short we restate (2) as

logit(πij) = β0 + β11.urbanij + Fij + uj

where Fij is merely shorthand for the portion of the fixed-effects specification having to do with age
and children.

Example 2: Two-level random-slope model

Extending (2) to allow for a random slope on the indicator variable 1.urban yields the model

logit(πij) = β0 + β11.urbanij + Fij + uj + vj1.urbanij (3)

which we can fit by typing

. melogit c_use i.urban age i.children, nofvlabel || district: i.urban

(output omitted )
. estimates store r_urban

Extending the model was as simple as adding i.urban to the random-effects specification so that
the model now includes a random intercept and a random coefficient on 1.urban. We dispense with
the output because, although this is an improvement over the random-intercept model (2),

. lrtest r_int r_urban

Likelihood-ratio test
Assumption: r_int nested within r_urban

LR chi2(1) = 3.66
Prob > chi2 = 0.0558

Note: The reported degrees of freedom assumes the null hypothesis is not on
the boundary of the parameter space. If this is not true, then the
reported test is conservative.

we find the default covariance structure for (uj , vj), covariance(independent),

Σ = Var
[
uj
vj

]
=

[
σ2
u 0
0 σ2

v

]
to be inadequate. We state that the random-coefficient model is an “improvement” over the random-
intercept model because the null hypothesis of the likelihood-ratio comparison test (H0 : σ

2
v = 0) is

on the boundary of the parameter test. This makes the reported p-value, 5.6%, an upper bound on
the actual p-value, which is actually half of that; see Distribution theory for likelihood-ratio test in
[ME] me.

We see below that we can reject this model in favor of one that allows correlation between uj
and vj .

https://www.stata.com/manuals/meme.pdf#memeRemarksandexamplesDistributiontheoryforlikelihood-ratiotest
https://www.stata.com/manuals/meme.pdf#meme
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. melogit c_use i.urban age i.children, nofvlabel
> || district: i.urban, covariance(unstructured)

Fitting fixed-effects model:

Iteration 0: Log likelihood = -1229.5485
Iteration 1: Log likelihood = -1228.5268
Iteration 2: Log likelihood = -1228.5263
Iteration 3: Log likelihood = -1228.5263

Refining starting values:

Grid node 0: Log likelihood = -1215.8592

Fitting full model:

Iteration 0: Log likelihood = -1215.8592 (not concave)
Iteration 1: Log likelihood = -1201.0652
Iteration 2: Log likelihood = -1199.6394
Iteration 3: Log likelihood = -1199.3157
Iteration 4: Log likelihood = -1199.315
Iteration 5: Log likelihood = -1199.315

Mixed-effects logistic regression Number of obs = 1,934
Group variable: district Number of groups = 60

Obs per group:
min = 2
avg = 32.2
max = 118

Integration method: mvaghermite Integration pts. = 7

Wald chi2(5) = 97.50
Log likelihood = -1199.315 Prob > chi2 = 0.0000

c_use Coefficient Std. err. z P>|z| [95% conf. interval]

1.urban .8157875 .1715519 4.76 0.000 .4795519 1.152023
age -.026415 .008023 -3.29 0.001 -.0421398 -.0106902

children
1 1.13252 .1603285 7.06 0.000 .818282 1.446758
2 1.357739 .1770522 7.67 0.000 1.010723 1.704755
3 1.353827 .1828801 7.40 0.000 .9953882 1.712265

_cons -1.71165 .1605618 -10.66 0.000 -2.026345 -1.396954

district
var(1.urban) .6663237 .3224689 .258074 1.720387

var(_cons) .3897448 .1292463 .203473 .7465413

district
cov(1.urban,

_cons) -.4058861 .1755414 -2.31 0.021 -.7499408 -.0618313

LR test vs. logistic model: chi2(3) = 58.42 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

. estimates store r_urban_corr

. lrtest r_urban r_urban_corr

Likelihood-ratio test
Assumption: r_urban nested within r_urban_corr

LR chi2(1) = 11.38
Prob > chi2 = 0.0007
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By specifying covariance(unstructured) above, we told melogit to allow correlation between
random effects at the district level; that is,

Σ = Var
[
uj
vj

]
=

[
σ2
u σuv

σuv σ2
v

]

Example 3: Alternative parameterization of random slopes

The purpose of introducing a random coefficient on the binary variable urban in (3) was to allow
for separate random effects, within each district, for the urban and rural areas of that district. Hence,
if we turn off base levels for factor variable i.urban via ibn.urban, then we can reformulate (3)
as

logit(πij) = β00.urbanij +(β0+β1)1.urbanij +Fij +uj0.urbanij +(uj + vj)1.urbanij (3a)

where we have translated both the fixed portion and the random portion to be in terms of 0.urban
rather than a random intercept. Translating the fixed portion is not necessary to make the point we
make below, but we do so anyway for uniformity.

Translating the estimated random-effects parameters from the previous output to ones appropriate
for (3a), we get Var(uj) = σ̂2

u = 0.39,

Var(uj + vj) = σ̂2
u + σ̂2

v + 2σ̂uv

= 0.39 + 0.67− 2(0.41) = 0.24

and Cov(uj , uj + vj) = σ̂2
u + σ̂uv = 0.39− 0.41 = −0.02.

An alternative that does not require remembering how to calculate variances and covariances
involving sums—and one that also gives you standard errors—is to let Stata do the work for you:
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. melogit c_use ibn.urban age i.children, noconstant nofvlabel
> || district: ibn.urban, noconstant cov(unstructured)

Fitting fixed-effects model:

Iteration 0: Log likelihood = -1229.5485
Iteration 1: Log likelihood = -1228.5268
Iteration 2: Log likelihood = -1228.5263
Iteration 3: Log likelihood = -1228.5263

Refining starting values:

Grid node 0: Log likelihood = -1208.3922

Fitting full model:

Iteration 0: Log likelihood = -1208.3922 (not concave)
Iteration 1: Log likelihood = -1203.556 (not concave)
Iteration 2: Log likelihood = -1200.5896
Iteration 3: Log likelihood = -1199.7288
Iteration 4: Log likelihood = -1199.3373
Iteration 5: Log likelihood = -1199.3151
Iteration 6: Log likelihood = -1199.315

Mixed-effects logistic regression Number of obs = 1,934
Group variable: district Number of groups = 60

Obs per group:
min = 2
avg = 32.2
max = 118

Integration method: mvaghermite Integration pts. = 7

Wald chi2(6) = 120.24
Log likelihood = -1199.315 Prob > chi2 = 0.0000
( 1) [c_use]_cons = 0

c_use Coefficient Std. err. z P>|z| [95% conf. interval]

urban
0 -1.711652 .1605617 -10.66 0.000 -2.026347 -1.396956
1 -.8958623 .1704954 -5.25 0.000 -1.230027 -.5616974

age -.026415 .008023 -3.29 0.001 -.0421398 -.0106903

children
1 1.13252 .1603285 7.06 0.000 .8182819 1.446758
2 1.357739 .1770522 7.67 0.000 1.010724 1.704755
3 1.353827 .18288 7.40 0.000 .9953883 1.712265

_cons 0 (omitted)

district
var(0.urban) .3897485 .1292403 .2034823 .7465212
var(1.urban) .2442899 .1450625 .0762871 .7822759

district
cov(0.urban,

1.urban) -.0161411 .1057462 -0.15 0.879 -.2233999 .1911177

LR test vs. logistic model: chi2(3) = 58.42 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

The above output demonstrates an equivalent fit to that we displayed for model (3), with the added
benefit of a more direct comparison of the parameters for rural and urban areas.
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Technical note

Our model fits for (3) and (3a) are equivalent only because we allowed for correlation in the
random effects for both. Had we used the default independent covariance structure, we would be
fitting different models; in (3) we would be making the restriction that Cov(uj , vj) = 0, whereas in
(3a) we would be assuming that Cov(uj , uj + vj) = 0.

The moral here is that although melogit will do this by default, one should be cautious when
imposing an independent covariance structure, because the correlation between random effects is not
invariant to model translations that would otherwise yield equivalent results in standard regression
models. In our example, we remapped an intercept and binary coefficient to two complementary
binary coefficients, something we could do in standard logistic regression without consequence but
that here required more consideration.

Rabe-Hesketh and Skrondal (2022, sec. 11.4) provide a nice discussion of this phenomenon in the
related case of recentering a continuous covariate.

Other covariance structures
In the above examples, we demonstrated the independent and unstructured covariance struc-

tures. Also available are identity (seen previously in output but not directly specified), which
restricts random effects to be uncorrelated and share a common variance, and exchangeable, which
assumes a common variance and a common pairwise covariance.

You can also specify multiple random-effects equations at the same level, in which case the above
four covariance types can be combined to form more complex blocked-diagonal covariance structures.
This could be used, for example, to impose an equality constraint on a subset of variance components
or to otherwise group together a set of related random effects.

Continuing the previous example, typing

. melogit c_use i.urban age i.children,
> || district: i.children, cov(exchangeable)
> || district:

would fit a model with the same fixed effects as (3) but with random-effects structure

logit(πij) = β0 + · · ·+ u1j1.childrenij + u2j2.childrenij + u3j3.childrenij + vj

That is, we have random coefficients on the children factor levels (the first district: specification)
and an overall district random intercept (the second district: specification). The above syntax fits
a model with overall covariance structure

Σ = Var


u1j
u2j
u3j
vj

 =


σ2
u σc σc 0
σc σ2

u σc 0
σc σc σ2

u 0
0 0 0 σ2

v


reflecting the relationship among the random coefficients for children. We did not have to specify
noconstant on the first district: specification. melogit automatically avoids collinearity by
including an intercept on only the final specification among repeated-level equations.



melogit — Multilevel mixed-effects logistic regression 15

Of course, if we fit the above model, we would heed our own advice from the previous technical
note and make sure that not only our data but also our specification characterization of the random
effects permitted the above structure. That is, we would check the above against a model that had
an unstructured covariance for all four random effects and then perhaps against a model that
assumed an unstructured covariance among the three random coefficients on children, coupled
with independence with the random intercept. All comparisons can be made by storing estimates
(command estimates store) and then using lrtest, as demonstrated previously.

Three-level models

Example 4: Three-level random-intercept model

Rabe-Hesketh, Toulopoulou, and Murray (2001) analyzed data from a study measuring the cognitive
ability of patients with schizophrenia compared with their relatives and control subjects. Cognitive
ability was measured as the successful completion of the “Tower of London”, a computerized task,
measured at three levels of difficulty. For all but one of the 226 subjects, there were three measurements
(one for each difficulty level). Because patients’ relatives were also tested, a family identifier, family,
was also recorded.

. use https://www.stata-press.com/data/r18/towerlondon, clear
(Tower of London data)

. describe

Contains data from https://www.stata-press.com/data/r18/towerlondon.dta
Observations: 677 Tower of London data

Variables: 5 31 May 2022 10:41
(_dta has notes)

Variable Storage Display Value
name type format label Variable label

family int %8.0g Family ID
subject int %9.0g Subject ID
dtlm byte %9.0g 1 = task completed
difficulty byte %9.0g Level of difficulty: -1, 0, or 1
group byte %8.0g 1: controls; 2: relatives; 3:

schizophrenics

Sorted by: family subject

We fit a logistic model with response dtlm, the indicator of cognitive function, and with covariates
difficulty and a set of indicator variables for group, with the controls (group==1) being the base
category. We allow for random effects due to families and due to subjects within families, and we
request to see odds ratios.
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. melogit dtlm difficulty i.group || family: || subject: , or

Fitting fixed-effects model:

Iteration 0: Log likelihood = -317.35042
Iteration 1: Log likelihood = -313.90007
Iteration 2: Log likelihood = -313.89079
Iteration 3: Log likelihood = -313.89079

Refining starting values:

Grid node 0: Log likelihood = -310.28429

Fitting full model:

Iteration 0: Log likelihood = -310.28429
Iteration 1: Log likelihood = -307.36653
Iteration 2: Log likelihood = -305.19357
Iteration 3: Log likelihood = -305.12073
Iteration 4: Log likelihood = -305.12041
Iteration 5: Log likelihood = -305.12041

Mixed-effects logistic regression Number of obs = 677

Grouping information

No. of Observations per group
Group variable groups Minimum Average Maximum

family 118 2 5.7 27
subject 226 2 3.0 3

Integration method: mvaghermite Integration pts. = 7

Wald chi2(3) = 74.90
Log likelihood = -305.12041 Prob > chi2 = 0.0000

dtlm Odds ratio Std. err. z P>|z| [95% conf. interval]

difficulty .1923372 .037161 -8.53 0.000 .1317057 .2808806

group
2 .7798263 .2763763 -0.70 0.483 .3893369 1.561961
3 .3491318 .13965 -2.63 0.009 .15941 .764651

_cons .226307 .0644625 -5.22 0.000 .1294902 .3955112

family
var(_cons) .5692105 .5215654 .0944757 3.429459

family>
subject

var(_cons) 1.137917 .6854853 .3494165 3.705762

Note: Estimates are transformed only in the first equation to odds ratios.
Note: _cons estimates baseline odds (conditional on zero random effects).
LR test vs. logistic model: chi2(2) = 17.54 Prob > chi2 = 0.0002

Note: LR test is conservative and provided only for reference.

This is a three-level model with two random-effects equations, separated by ||. The first is a
random intercept (constant only) at the family level, and the second is a random intercept at the
subject level. The order in which these are specified (from left to right) is significant—melogit
assumes that subject is nested within family.

The information on groups is now displayed as a table, with one row for each upper level. Among
other things, we see that we have 226 subjects from 118 families.
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After adjusting for the random-effects structure, the odds of successful completion of the Tower of
London decrease dramatically as the level of difficulty increases. Also, schizophrenics (group==3)
tended not to perform as well as the control subjects. Of course, we would make similar conclusions
from a standard logistic model fit to the same data, but the odds ratios would differ somewhat.

Technical note
In the previous example, the subjects are coded with unique values between 1 and 251 (with

some gaps), but such coding is not necessary to produce nesting within families. Once we specified
the nesting structure to melogit, all that was important was the relative coding of subject within
each unique value of family. We could have coded subjects as the numbers 1, 2, 3, and so on,
restarting at 1 with each new family, and melogit would have produced the same results.

Group identifiers may also be coded using string variables.

The above extends to models with more than two levels of nesting by adding more random-effects
equations, each separated by ||. The order of nesting goes from left to right as the groups go from
biggest (highest level) to smallest (lowest level).

Crossed-effects models

Example 5: Crossed-effects model

Rabe-Hesketh and Skrondal (2022, 493–512) perform an analysis on school data from Fife,
Scotland. The data, originally from Paterson (1991), are from a study measuring students’ attainment
as an integer score from 1 to 10, based on the Scottish school exit examination taken at age 16. The
study comprises 3,435 students who first attended any one of 148 primary schools and then any one
of 19 secondary schools.

. use https://www.stata-press.com/data/r18/fifeschool
(School data from Fife, Scotland)

. describe

Contains data from https://www.stata-press.com/data/r18/fifeschool.dta
Observations: 3,435 School data from Fife, Scotland

Variables: 5 28 May 2022 10:08
(_dta has notes)

Variable Storage Display Value
name type format label Variable label

pid int %9.0g Primary school ID
sid byte %9.0g Secondary school ID
attain byte %9.0g Attainment score at age 16
vrq int %9.0g Verbal-reasoning score from final

year of primary school
sex byte %9.0g 1: female; 0: male

Sorted by:

. generate byte attain_gt_6 = attain > 6

To make the analysis relevant to our present discussion, we focus not on the attainment score itself
but instead on whether the score is greater than 6. We wish to model this indicator as a function of
the fixed effect sex and of random effects due to primary and secondary schools.
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For this analysis, it would make sense to assume that the random effects are not nested, but instead
crossed, meaning that the effect due to primary school is the same regardless of the secondary school
attended. Our model is thus

logit{Pr(attainijk > 6)} = β0 + β1sexijk + uj + vk (4)

for student i, i = 1, . . . , njk, who attended primary school j, j = 1, . . . , 148, and then secondary
school k, k = 1, . . . , 19.

Because there is no evident nesting, one solution would be to consider the data as a whole and
fit a two-level, one-cluster model with random-effects structure

u =



u1
...

u148
v1
...
v19


∼ N(0,Σ); Σ =

[
σ2
uI148 0
0 σ2

vI19

]

We can fit such a model by using the group designation all:, which tells melogit to treat the
whole dataset as one cluster, and the R.varname notation, which mimics the creation of indicator
variables identifying schools:

. melogit attain_gt_6 sex || _all:R.pid || _all:R.sid, or

But we do not recommend fitting the model this way because of high total dimension (148+19 = 167)
of the random effects. This would require working with matrices of column dimension 167, which is
probably not a problem for most current hardware, but would be a problem if this number got much
larger.

An equivalent way to fit (4) that has a smaller dimension is to treat the clusters identified by
primary schools as nested within all the data, that is, as nested within the all group.
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. melogit attain_gt_6 sex || _all:R.sid || pid:, or
note: crossed random-effects model specified; option intmethod(laplace)

implied.

Fitting fixed-effects model:

Iteration 0: Log likelihood = -2320.2374
Iteration 1: Log likelihood = -2317.9062
Iteration 2: Log likelihood = -2317.9059
Iteration 3: Log likelihood = -2317.9059

Refining starting values:

Grid node 0: Log likelihood = -2234.6403

Fitting full model:

Iteration 0: Log likelihood = -2234.6403 (not concave)
Iteration 1: Log likelihood = -2227.9507 (not concave)
Iteration 2: Log likelihood = -2227.9287 (not concave)
Iteration 3: Log likelihood = -2227.9265 (not concave)
Iteration 4: Log likelihood = -2227.9263
Iteration 5: Log likelihood = -2221.6884 (not concave)
Iteration 6: Log likelihood = -2221.1707 (not concave)
Iteration 7: Log likelihood = -2221.1232
Iteration 8: Log likelihood = -2220.1709 (not concave)
Iteration 9: Log likelihood = -2220.1556
Iteration 10: Log likelihood = -2220.0176
Iteration 11: Log likelihood = -2220.0038
Iteration 12: Log likelihood = -2220.0035
Iteration 13: Log likelihood = -2220.0035

Mixed-effects logistic regression Number of obs = 3,435

Grouping information

No. of Observations per group
Group variable groups Minimum Average Maximum

_all 1 3,435 3,435.0 3,435
pid 148 1 23.2 72

Integration method: laplace

Wald chi2(1) = 14.43
Log likelihood = -2220.0035 Prob > chi2 = 0.0001

attain_gt_6 Odds ratio Std. err. z P>|z| [95% conf. interval]

sex 1.325123 .0981968 3.80 0.000 1.145984 1.532264
_cons .531146 .0617951 -5.44 0.000 .4228463 .6671835

_all>sid
var(_cons) .1239764 .0693708 .0414048 .3712168

pid
var(_cons) .4520522 .0953939 .2989266 .6836167

Note: Estimates are transformed only in the first equation to odds ratios.
Note: _cons estimates baseline odds (conditional on zero random effects).
LR test vs. logistic model: chi2(2) = 195.80 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

Choosing the primary schools as those to nest was no accident; because there are far fewer secondary
schools than primary schools, the above required only 19 random coefficients for the secondary
schools and one random intercept at the primary school level, for a total dimension of 20. Our data
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also include a measurement of verbal reasoning, the variable vrq. Adding a fixed effect due to vrq in
(4) would negate the effect due to secondary school, a fact we leave to you to verify as an exercise.

See [ME] mixed for a similar discussion of crossed effects in the context of linear mixed models.
Also see Rabe-Hesketh and Skrondal (2022) for more examples of crossed-effects models, including
models with random interactions, and for more techniques on how to avoid high-dimensional estimation.

Technical note

The estimation in the previous example was performed using a Laplacian approximation, even
though we did not specify this. Whenever the R. notation is used in random-effects specifications,
estimation reverts to the Laplacian method because of the high dimension induced by having the R.
variables.

In the above example, through some creative nesting, we reduced the dimension of the random
effects to 20, but this is still too large to permit estimation via adaptive Gaussian quadrature; see
Computation time and the Laplacian approximation in [ME] me. Even with two quadrature points,
our rough formula for computation time would contain within it a factor of 220 = 1,048,576.

The intmethod(laplace) option is therefore assumed when you use R. notation. If the number
of distinct levels of your R. variables is small enough (say, five or fewer) to permit estimation via
quadrature, you can override the imposition of laplace by specifying a different integration method
in the intmethod() option.

Stored results
melogit stores the following in e():

Scalars
e(N) number of observations
e(k) number of parameters
e(k dv) number of dependent variables
e(k eq) number of equations in e(b)
e(k eq model) number of equations in overall model test
e(k f) number of fixed-effects parameters
e(k r) number of random-effects parameters
e(k rs) number of variances
e(k rc) number of covariances
e(df m) model degrees of freedom
e(ll) log likelihood
e(N clust) number of clusters
e(chi2) χ2

e(p) p-value for model test
e(ll c) log likelihood, comparison model
e(chi2 c) χ2, comparison test
e(df c) degrees of freedom, comparison test
e(p c) p-value for comparison test
e(rank) rank of e(V)
e(ic) number of iterations
e(rc) return code
e(converged) 1 if converged, 0 otherwise

Macros
e(cmd) meglm
e(cmd2) melogit

https://www.stata.com/manuals/memixed.pdf#memixed
https://www.stata.com/manuals/meme.pdf#memeRemarksandexamplesComputationtimeandtheLaplacianapproximation
https://www.stata.com/manuals/meme.pdf#meme
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e(cmdline) command as typed
e(depvar) name of dependent variable
e(wtype) weight type
e(wexp) weight expression (first-level weights)
e(fweightk) fweight variable for kth highest level, if specified
e(iweightk) iweight variable for kth highest level, if specified
e(pweightk) pweight variable for kth highest level, if specified
e(covariates) list of covariates
e(ivars) grouping variables
e(model) logistic
e(title) title in estimation output
e(link) logit
e(family) bernoulli or binomial
e(clustvar) name of cluster variable
e(offset) offset
e(binomial) binomial number of trials
e(intmethod) integration method
e(n quad) number of integration points
e(chi2type) Wald; type of model χ2

e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.
e(opt) type of optimization
e(which) max or min; whether optimizer is to perform maximization or minimization
e(ml method) type of ml method
e(user) name of likelihood-evaluator program
e(technique) maximization technique
e(datasignature) the checksum
e(datasignaturevars) variables used in calculation of checksum
e(properties) b V
e(estat cmd) program used to implement estat
e(predict) program used to implement predict
e(marginsnotok) predictions disallowed by margins
e(marginswtype) weight type for margins
e(marginswexp) weight expression for margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices
e(b) coefficient vector
e(Cns) constraints matrix
e(ilog) iteration log (up to 20 iterations)
e(gradient) gradient vector
e(N g) group counts
e(g min) group-size minimums
e(g avg) group-size averages
e(g max) group-size maximums
e(V) variance–covariance matrix of the estimators
e(V modelbased) model-based variance

Functions
e(sample) marks estimation sample

In addition to the above, the following is stored in r():

Matrices
r(table) matrix containing the coefficients with their standard errors, test statistics, p-values,

and confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when
any r-class command is run after the estimation command.
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Methods and formulas
melogit is a convenience command for meglm with a logit link and a bernoulli or binomial

family; see [ME] meglm.

Model (1) assumes Bernoulli data, a special case of the binomial. Because binomial data are also
supported by melogit (option binomial()), the methods presented below are in terms of the more
general binomial mixed-effects model.

For a two-level binomial model, consider the response yij as the number of successes from a
series of rij Bernoulli trials (replications). For cluster j, j = 1, . . . ,M , the conditional distribution
of yj = (yj1, . . . , yjnj

)′, given a set of cluster-level random effects uj , is

f(yj |uj) =
nj∏
i=1

[(
rij
yij

){
H(ηij)

}yij {
1−H(ηij)

}rij−yij]

= exp

(
nj∑
i=1

[
yijηij − rij log

{
1 + exp(ηij)

}
+ log

(
rij
yij

)])

for ηij = xijβ+ zijuj + offsetij and H(v) = exp(v)/{1 + exp(v)}.
Defining rj = (rj1, . . . , rjnj )

′ and

c (yj , rj) =

nj∑
i=1

log
(
rij
yij

)
where c(yj , rj) does not depend on the model parameters, we can express the above compactly in
matrix notation,

f(yj |uj) = exp
[
y′jηj − r′j log

{
1+ exp(ηj)

}
+ c (yj , rj)

]
where ηj is formed by stacking the row vectors ηij . We extend the definitions of the functions log(·)
and exp(·) to be vector functions where necessary.

Because the prior distribution of uj is multivariate normal with mean 0 and q× q variance matrix
Σ, the likelihood contribution for the jth cluster is obtained by integrating uj out of the joint density
f(yj ,uj),

Lj(β,Σ) = (2π)−q/2 |Σ|−1/2
∫
f(yj |uj) exp

(
−u′jΣ−1uj/2

)
duj

= exp {c (yj , rj)} (2π)−q/2 |Σ|−1/2
∫

exp {h (β,Σ,uj)} duj
(2)

where
h (β,Σ,uj) = y′jηj − r′j log

{
1+ exp(ηj)

}
− u′jΣ

−1uj/2

and for convenience, in the arguments of h(·) we suppress the dependence on the observable data
(yj , rj ,Xj ,Zj).

The integration in (2) has no closed form and thus must be approximated; see Methods and
formulas in [ME] meglm for details.

melogit supports multilevel weights and survey data; see Methods and formulas in [ME] meglm
for details.

https://www.stata.com/manuals/memeglm.pdf#memeglm
https://www.stata.com/manuals/memeglm.pdf#memeglmMethodsandformulas
https://www.stata.com/manuals/memeglm.pdf#memeglmMethodsandformulas
https://www.stata.com/manuals/memeglm.pdf#memeglm
https://www.stata.com/manuals/memeglm.pdf#memeglmMethodsandformulas
https://www.stata.com/manuals/memeglm.pdf#memeglm
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