meintreg postestimation — Postestimation tools for meintreg

Postestimation commands	predict	margins
Remarks and examples	Methods and formulas	Also see

Postestimation commands

The following postestimation commands are of special interest after meintreg:

Command	Description
estat group	summarize the composition of the nested groups
estat icc	estimate intraclass correlations
estat sd	display variance components as standard deviations and correlations

The following standard postestimation commands are also available:

Command	Description
contrast	contrasts and ANOVA-style joint tests of parameters
estat ic	Akaike's, consistent Akaike's, corrected Akaike's, and Schwarz's Bayesian information criteria (AIC, CAIC, AICc, and BIC, respectively)
estat summarize	summary statistics for the estimation sample
estat vce	variance-covariance matrix of the estimators (VCE)
estat(svy)	postestimation statistics for survey data
estimates	cataloging estimation results
etable	table of estimation results
* hausman	Hausman's specification test
lincom	point estimates, standard errors, testing, and inference for linear combinations of parameters
* lrtest	likelihood-ratio test
margins	marginal means, predictive margins, marginal effects, and average marginal effects
marginsplot	graph the results from margins (profile plots, interaction plots, etc.)
nlcom	point estimates, standard errors, testing, and inference for nonlinear combinations of parameters
predict	means, probabilities, densities, REs, residuals, etc.
predictnl	point estimates, standard errors, testing, and inference for generalized predictions
pwcompare	pairwise comparisons of parameters
test	Wald tests of simple and composite linear hypotheses
testnl	Wald tests of nonlinear hypotheses

^{*} hausman and lrtest are not appropriate with svy estimation results.

predict

Description for predict

predict creates a new variable containing predictions such as linear predictions, standard errors, probabilities, and expected values.

Menu for predict

Statistics > Postestimation

Syntax for predict

Syntax for obtaining predictions of the outcome and other statistics

```
predict [type] { stub* | newvarlist } [if ] [in ] [, statistic options]
```

Syntax for obtaining estimated random effects and their standard errors

```
predict [type] { stub* | newvarlist } [if] [in], reffects [re_options]
```

Syntax for obtaining ML scores

```
predict [type] { stub* | newvarlist } [if ] [in], scores
```

statistic	Description
Main	
eta	fitted linear predictor; the default
xb	linear predictor for the fixed portion of the model only
stdp	standard error of the fixed-portion linear prediction
pr(a,b)	Pr(a < y < b)
e(a,b)	$E(y \mid a < y < b)$
ystar(a,b)	$E(y^*), y^* = \max\{a, \min(y, b)\}$

These statistics are available both in and out of sample; type predict . . . if e(sample) . . . if wanted only for the estimation sample.

where a and b may be numbers or variables; a missing $(a \ge .)$ means $-\infty$, and b missing $(b \ge .)$ means $+\infty$; see [U] 12.2.1 Missing values.

options	Description
Main	
<pre>conditional(ctype)</pre>	compute <i>statistic</i> conditional on estimated random effects; default is conditional(ebmeans)
marginal	compute statistic marginally with respect to the random effects
<u>nooff</u> set	make calculation ignoring offset or exposure
Integration	
int_options	integration options
ctype	Description
<u>ebmean</u> s	empirical Bayes means of random effects; the default
<u>ebmode</u> s	empirical Bayes modes of random effects
<u>fixed</u> only	prediction for the fixed portion of the model only
re_options	Description
Main	
<u>ebmean</u> s	use empirical Bayes means of random effects; the default
<u>ebmode</u> s	use empirical Bayes modes of random effects
reses(stub* newvarlist)	calculate standard errors of empirical Bayes estimates
Integration	
int_options	integration options
int_options	Description
intpoints(#)	use # quadrature points to compute marginal predictions and empirical Bayes means
<u>iter</u> ate(#)	set maximum number of iterations in computing statistics involving empirical Bayes estimators
<pre>tolerance(#)</pre>	set convergence tolerance for computing statistics involving empirical Bayes estimators

Options for predict

```
Main
```

eta, the default, calculates the fitted linear prediction.

```
pr(a,b) calculates estimates of Pr(a < y < b), which is the probability that y would be observed in the
   interval (a, b).
   a and b may be specified as numbers or variable names; lb and ub are variable names;
   pr (20,30) calculates Pr(20 < y < 30);
   pr(lb, ub) calculates Pr(lb < y < ub); and
   pr(20, ub) calculates Pr(20 < y < ub).
   a missing (a \geq .) means -\infty; pr(.,30) calculates \Pr(-\infty < y < 30);
   pr (lb, 30) calculates Pr(-\infty < y < 30) in observations for which lb \ge .
   (and calculates Pr(lb < y < 30) elsewhere).
```

```
b missing (b \ge .) means +\infty; pr (20, .) calculates \Pr(+\infty > y > 20); pr (20, ub) calculates \Pr(+\infty > y > 20) in observations for which ub \ge . (and calculates \Pr(20 < y < ub) elsewhere).
```

e(a,b) calculates estimates of E(y | a < y < b), which is the expected value of y conditional on y being in the interval (a,b), meaning that y is truncated. a and b are specified as they are for pr().

ystar(a,b) calculates estimates of $E(y^*)$, where $y^* = a$ if $y \le a$, $y^* = b$ if $y \ge b$, and $y^* = y$ otherwise, meaning that y^* is the censored version of y. a and b are specified as they are for pr().

xb, stdp, scores, conditional(), marginal, and nooffset; see [ME] meglm postestimation.

reffects, ebmeans, ebmodes, and reses(); see [ME] meglm postestimation.

```
Integration
```

intpoints(), iterate(), tolerance(); see [ME] meglm postestimation.

margins

Description for margins

margins estimates margins of response for linear predictions, probabilities, and expected values.

Menu for margins

Statistics > Postestimation

Syntax for margins

```
margins [marginlist] [, options]
margins [marginlist], predict(statistic ...) [predict(statistic ...) [ options ]
```

statistic	Description
eta	fitted linear predictor; the default
xb	linear predictor for the fixed portion of the model only
pr(a,b)	$\Pr(a < y < b)$
e(a,b)	$E(y \mid a < y < b)$
ystar(a,b)	$E(y^*), y^* = \max\{a, \min(y, b)\}$
stdp	not allowed with margins

Statistics not allowed with margins are functions of stochastic quantities other than e(b).

For the full syntax, see [R] margins.

Remarks and examples

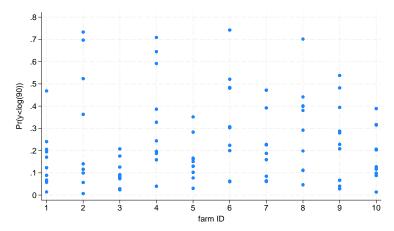
Various predictions, statistics, and diagnostic measures are available after fitting a mixed-effects interval regression model with meintreg.

The predict command allows us to compute marginal and conditional predictions. Unless stated differently, we use the word "conditional" to mean "conditional on the empirical Bayes predictions of the random effects". The default prediction is the linear prediction, eta, which is the expected value of the unobserved censored variable. Predictions of expected values for censored and truncated versions of the response are also available.

Example 1: Obtaining conditional and marginal probabilities

In example 1 of [ME] meintreg, we fit a three-level mixed-effects interval regression to model log time to udder tissue infection in dairy cows.

```
. use https://www.stata-press.com/data/r19/mastitis
(Simulated data on udder infection of dairy cows)
. generate lnleft = ln(left)
(5 missing values generated)
. generate lnright = ln(right)
(82 missing values generated)
. meintreg lnleft lnright i.multiparous || farm: || cow:
 (output omitted)
```


Let's assume that we want to predict the probability of infection within the first 90 days. Because our dependent variable is log(y), we need to compute

$$\Pr(0 < y < 90) = \Pr\{-\infty < \, \log(y) < \, \log(90)\}$$

We can use the pr() option for predict to compute the probability that our dependent variable lies in the interval $[-\infty, \log(90)]$.

We first compute the probability conditional on the random effects. Because the lower level on which we are conditioning on is cow, and we have only cow-level covariates, these predictions will be constant within cow. We can see that all the predicted probabilities for farm 3 are below 0.21, while the probabilities for farms 2 and 6 reach above 0.70 in some cases.

- . predict pr_cond, pr(.,log(90)) (predictions based on fixed effects and posterior means of random effects)
- . twoway scatter pr_cond farm, ylabel(0(.1).8) xlabel(1(1)10)

Now, we compute the marginal probabilities of infection within the first 90 days.

- . predict pr_marg, pr(.,log(90)) marginal
- . tabulate pr_marg multiparous

Marginal Pr(y <log(9< th=""><th colspan="4">=1 if cows experienced more than one calving, 0 otherwise</th></log(9<>	=1 if cows experienced more than one calving, 0 otherwise			
0))	0	1	Total	
.0589298	40 0	0 360	40 360	
Total	40	360	400	

Marginal predictions depend only on the covariate pattern (including covariates in the random-effects part, if present in the model). Because we included only a binary covariate in the model, there are only two predicted values, one for each value of the covariate. We see that the probability of developing an infection in the first 90 days is higher for multiparous cows.

Alternatively, we can use margins to calculate the marginal probabilities. One advantage of using margins is that we can obtain confidence intervals for the probabilities and the difference between them. . margins multiparous, predict(pr(.,log(90)))

Adjusted predictions Number of obs = 400

Model VCE: OIM

Expression: Pr(y<log(90)), predict(pr(.,log(90)))</pre>

	Margin	Delta-method std. err.	z	P> z	[95% conf.	interval]
multiparous 0 1	.0589298	.0305541	1.93 6.87	0.054	0009551 .1542595	.1188147

. margins, dydx(multiparous) predict(pr(.,log(90)))

Conditional marginal effects Number of obs = 400

Model VCE: OIM

Expression: Pr(y<log(90)), predict(pr(.,log(90)))</pre>

dy/dx wrt: 1.multiparous

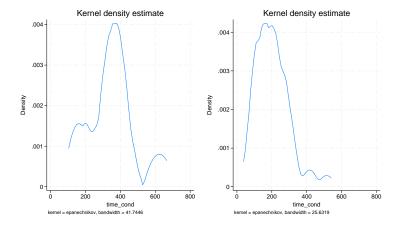
	dy/dx	Delta-method std. err.		P> z	[95% conf.	interval]
1.multipar~s	.1569036	.0396889	3.95	0.000	.0791148	. 2346923

Note: dy/dx for factor levels is the discrete change from the base level.

The default option for predict, eta, computes the fitted linear prediction; we can use this option to perform predictions for the uncensored unobserved response. We compute the conditional and marginal predictions for the log time to infection.

- . predict eta cond (option eta assumed) (predictions based on fixed effects and posterior means of random effects) (using 7 quadrature points)
- . predict eta marg, marginal (option eta assumed)
- . sort cow
- . list cow multiparous eta_cond eta_marg in 1/8, sepby(cow)

	COW	multip~s	eta_cond	eta_marg
1. 2.	1	0	5.486386 5.486386	5.644119 5.644119
3.	1	0	5.486386	5.644119
4.	1	0	5.486386	5.644119
5.	2	1	5.101668	5.075207
6.	2	1	5.101668	5.075207
7.	2	1	5.101668	5.075207
8.	2	1	5.101668	5.075207


Comparing the conditional and marginal predictions, we see that the predicted log time to infection for the first cow is slightly shorter than the one expected for a cow with this covariate pattern, and the log time to infection for the second cow is slightly longer.

Example 2: Calculating transformed predictions

Because our dependent variable is log transformed, we might want to compute predictions on the original scale. To do that, we need to obtain predictions for the exponentiated dependent variable.

This exercise is helpful to understand the distribution of the different statistics. If we want to predict the individual conditional time to infection, we need to obtain the conditional mean for $\exp(y)$. Because the conditional distribution of $\exp(y)$ is lognormal with location parameter equal to $\hat{\eta}$ and scale parameter equal to σ_{ϵ} (residual variance), then its (conditional) expected value is equal to $\exp(\hat{\eta} + \sigma_{\epsilon}^2/2)$. Here we calculate the conditional time to infection and plot kernel densities for multiparous and uniparous cows.

- . generate time_cond = exp(eta_cond + _b[/var(e.lnleft)]/2)
- . kdensity time_cond if multiparous == 0, xlabel(0(200)800) name(gr1)
- . kdensity time_cond if multiparous == 1, xlabel(0(200)800) name(gr2)
- . graph combine gr1 gr2

The density estimator of the time to infection shows that multiparous cows tend to have shorter times to infection than uniparous cows.

The marginal distribution of y is lognormal with location parameter $\mathbf{x}\boldsymbol{\beta}$ and the scale parameter equal to the marginal variance; see Methods and formulas of [ME] metobit postestimation for the description of the marginal variance. Thus the marginal expected value of the time to infection is calculated as

- . predict xb, xb
- . generate time_marg = exp(xb + (_b[/var(_cons[farm])] +
- _b[/var(_cons[farm>cow])] + _b[/var(e.lnleft)])/2)
- . tabulate time_marg multiparous

=1 if cows experienced more than one calving, 0 otherwise					
time_marg	0	1	Total		
209.1242 369.3851	0 40	360 0	360 40		
Total	40	360	400		

As before, we see that the unconditional expected value for the time to infection is shorter for multiparous cows.

Methods and formulas

Methods and formulas for predicting random effects and other statistics are given in *Methods and formulas* of [ME] **metobit postestimation**.

Also see

[ME] meintreg — Multilevel mixed-effects interval regression

[U] 20 Estimation and postestimation commands

Stata, Stata Press, Mata, NetCourse, and NetCourseNow are registered trademarks of StataCorp LLC. Stata and Stata Press are registered trademarks with the World Intellectual Property Organization of the United Nations. StataNow is a trademark of StataCorp LLC. Other brand and product names are registered trademarks or trademarks of their respective companies. Copyright © 1985–2025 StataCorp LLC, College Station, TX, USA. All rights reserved.

4

For suggested citations, see the FAQ on citing Stata documentation.