
meglm — Multilevel mixed-effects generalized linear models

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description
meglm fits multilevel mixed-effects generalized linear models. meglm allows a variety of distributions

for the response conditional on normally distributed random effects.

Quick start
Without weights

Random-effects probit regression of y on x1 with random intercepts by lev2
meglm y x1 || lev2:, family(binomial) link(probit)

Same as above, but fit a logit model and report odds ratios

meglm y x1 || lev2:, family(binomial) or

Two-level gamma model of y with fixed and random coefficients on x1
meglm y x1 || lev2: x1, family(gamma)

Nested three-level random-intercept Poisson model reporting incidence-rate ratios

meglm y x1 || lev3: || lev2:, family(poisson) irr

Two-level linear regression of y on x1 and x2 with random intercepts by lev2, random coefficients on

x2, and robust standard errors
meglm y x1 x2 || lev2: x2, vce(robust)

With weights

Two-level linear regression of y on x with random intercepts by psu for two-stage sampling with PSU-

level and observation-level sampling weights wvar2 and wvar1, respectively
meglm y x [pweight=wvar1] || psu:, pweight(wvar2)

Add secondary sampling stage with units identified by ssu having weights wvar2 and PSU-level weights

wvar3 for a three-level random-intercept model

meglm y x [pw=wvar1] || psu:, pw(wvar3) || ssu:, pw(wvar2)

Same as above, but svyset data first

svyset psu, weight(wvar3) || ssu, weight(wvar2) || _n, weight(wvar1)
svy: meglm y x || psu: || ssu:

Menu
Statistics > Multilevel mixed-effects models > Generalized linear models (GLM)
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Syntax
meglm depvar fe equation [ || re equation ] [ || re equation ... ] [ , options ]

where the syntax of fe equation is

[ indepvars ] [ if ] [ in ] [weight ] [ , fe options ]

and the syntax of re equation is one of the following:

for random coefficients and intercepts

levelvar: [ varlist ] [ , re options ]

for random effects among the values of a factor variable in a crossed-effects model

levelvar: R.varname

levelvar is a variable identifying the group structure for the random effects at that level or is all repre-

senting one group comprising all observations.

fe options Description

Model

noconstant suppress the constant term from the fixed-effects equation

exposure(varname𝑒) include ln(varname𝑒) in model with coefficient constrained to 1
offset(varname𝑜) include varname𝑜 in model with coefficient constrained to 1

asis retain perfect predictor variables

re options Description

Model

covariance(vartype) variance–covariance structure of the random effects

noconstant suppress constant term from the random-effects equation

fweight(varname) frequency weights at higher levels

iweight(varname) importance weights at higher levels

pweight(varname) sampling weights at higher levels

https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/memeglm.pdf#memeglmSyntaxoptions
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.4inrange
https://www.stata.com/manuals/memeglm.pdf#memeglmSyntaxweight
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/memeglm.pdf#memeglmSyntaxvartype
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
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options Description

Model

family(family) distribution of depvar; default is family(gaussian)
link(link) link function; default varies per family

constraints(constraints) apply specified linear constraints

SE/Robust

vce(vcetype) vcetype may be oim, opg, robust, or cluster clustvar

Reporting

level(#) set confidence level; default is level(95)
eform report exponentiated fixed-effects coefficients

irr report fixed-effects coefficients as incidence-rate ratios

or report fixed-effects coefficients as odds ratios

nocnsreport do not display constraints

notable suppress coefficient table

noheader suppress output header

nogroup suppress table summarizing groups

display options control columns and column formats, row spacing, line width,
display of omitted variables and base and empty cells, and
factor-variable labeling

Integration

intmethod(intmethod) integration method

intpoints(#) set the number of integration (quadrature) points for all levels;
default is intpoints(7)

Maximization

maximize options control the maximization process; seldom used

startvalues(svmethod) method for obtaining starting values

startgrid[ (gridspec) ] perform a grid search to improve starting values

noestimate do not fit the model; show starting values instead

dnumerical use numerical derivative techniques

collinear keep collinear variables

coeflegend display legend instead of statistics

vartype Description

independent one unique variance parameter per random effect and all covariances
0; the default unless the R. notation is used

exchangeable equal variances for random effects and one common pairwise
covariance

identity equal variances for random effects and all covariances 0; the
default if the R. notation is used

unstructured all variances and covariances to be distinctly estimated

fixed(matname) user-selected variances and covariances constrained to specified
values; the remaining variances and covariances unrestricted

pattern(matname) user-selected variances and covariances constrained to be equal;
the remaining variances and covariances unrestricted

https://www.stata.com/manuals/memeglm.pdf#memeglmSyntaxfamily
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/memeglm.pdf#memeglmSyntaxlink
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptionsOptionsconstraintsdescrip
https://www.stata.com/manuals/r.pdf#rvce_option
https://www.stata.com/manuals/memeglm.pdf#memeglmOptionsdisplay_options
https://www.stata.com/manuals/memeglm.pdf#memeglmSyntaxintmethod
https://www.stata.com/manuals/memeglm.pdf#memeglmOptionsmaxopts
https://www.stata.com/manuals/memeglm.pdf#memeglmOptionsstartvalues()
https://www.stata.com/manuals/memeglm.pdf#memeglmOptionsstartgrid()
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family Description

gaussian Gaussian (normal); the default

bernoulli Bernoulli

binomial [ # | varname ] binomial; default number of binomial trials is 1

gamma gamma

nbinomial [ mean | constant ] negative binomial; default dispersion is mean
ordinal ordinal

poisson Poisson

link Description

identity identity

log log

logit logit

probit probit

cloglog complementary log–log

intmethod Description

mvaghermite mean–variance adaptive Gauss–Hermite quadrature; the default
unless a crossed random-effects model is fit

mcaghermite mode-curvature adaptive Gauss–Hermite quadrature

pcaghermite Pinheiro–Chao mode-curvature adaptive Gauss–Hermite
quadrature

ghermite nonadaptive Gauss–Hermite quadrature

laplace Laplacian approximation; the default for crossed random-effects
models

pclaplace Pinheiro–Chao Laplacian approximation

indepvars and varlist may contain factor variables; see [U] 11.4.3 Factor variables.

depvar, indepvars, and varlist may contain time-series operators; see [U] 11.4.4 Time-series varlists.

bayes, by, collect, and svy are allowed; see [U] 11.1.10 Prefix commands. For more details, see [BAYES] bayes: meglm.

vce() and weights are not allowed with the svy prefix; see [SVY] svy.

fweights, iweights, and pweights are allowed; see [U] 11.1.6 weight. Only one type of weight may be specified. Weights
are not supported under the Laplacian approximation or for crossed models.

startvalues(), startgrid, noestimate, dnumerical, collinear, and coeflegend do not appear in the dialog box.

See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options

� � �
Model �

noconstant suppresses the constant (intercept) term and may be specified for the fixed-effects equation

and for any of or all the random-effects equations.

exposure(varname𝑒) specifies a variable that reflects the amount of exposure over which the depvar

events were observed for each observation; ln(varname𝑒) is included in the fixed-effects portion of
the model with the coefficient constrained to be 1.

https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4.3Factorvariables
https://www.stata.com/manuals/u11.pdf#u11.4.4Time-seriesvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.10Prefixcommands
https://www.stata.com/manuals/bayesbayesmeglm.pdf#bayesbayesmeglm
https://www.stata.com/manuals/svysvy.pdf#svysvy
https://www.stata.com/manuals/u11.pdf#u11.1.6weight
https://www.stata.com/manuals/u20.pdf#u20Estimationandpostestimationcommands
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
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offset(varname𝑜) specifies that varname𝑜 be included in the fixed-effects portion of the model with

the coefficient constrained to be 1.

asis forces retention of perfect predictor variables and their associated, perfectly predicted observations

and may produce instabilities in maximization; see [R] probit.

covariance(vartype) specifies the structure of the covariance matrix for the random effects and may

be specified for each random-effects equation. vartype is one of the following: independent,
exchangeable, identity, unstructured, fixed(matname), or pattern(matname).

covariance(independent) covariance structure allows for a distinct variance for each random

effect within a random-effects equation and assumes that all covariances are 0. The default is

covariance(independent) unless a crossed random-effects model is fit, in which case the de-

fault is covariance(identity).

covariance(exchangeable) structure specifies one common variance for all random effects and

one common pairwise covariance.

covariance(identity) is short for “multiple of the identity”; that is, all variances are equal and all

covariances are 0.

covariance(unstructured) allows for all variances and covariances to be distinct. If an equation

consists of 𝑝 random-effects terms, the unstructured covariance matrix will have 𝑝(𝑝+1)/2 unique
parameters.

covariance(fixed(matname)) and covariance(pattern(matname)) covariance structures

provide a convenient way to impose constraints on variances and covariances of random effects.

Each specification requires amatname that defines the restrictions placed on variances and covari-

ances. Only elements in the lower triangle of matname are used, and row and column names of

matname are ignored. Amissing value inmatnamemeans that a given element is unrestricted. In a

fixed(matname) covariance structure, (co)variance (𝑖, 𝑗) is constrained to equal the value spec-
ified in the 𝑖, 𝑗th entry of matname. In a pattern(matname) covariance structure, (co)variances

(𝑖, 𝑗) and (𝑘, 𝑙) are constrained to be equal if matname[𝑖, 𝑗] = matname[𝑘, 𝑙].
fweight(varname) specifies frequency weights at higher levels in a multilevel model, whereas fre-

quency weights at the first level (the observation level) are specified in the usual manner, for exam-

ple, [fw=fwtvar1]. varname can be any valid Stata variable name, and you can specify fweight()
at levels two and higher of a multilevel model. For example, in the two-level model

. mecmd fixed_portion [fw = wt1] || school: ... , fweight(wt2) ...

the variable wt1 would hold the first-level (the observation-level) frequency weights, and wt2 would

hold the second-level (the school-level) frequency weights.

iweight(varname) specifies importance weights at higher levels in a multilevel model, whereas impor-

tance weights at the first level (the observation level) are specified in the usual manner, for example,

[iw=iwtvar1]. varname can be any valid Stata variable name, and you can specify iweight() at

levels two and higher of a multilevel model. For example, in the two-level model

. mecmd fixed_portion [iw = wt1] || school: ... , iweight(wt2) ...

the variable wt1would hold the first-level (the observation-level) importance weights, and wt2would
hold the second-level (the school-level) importance weights.

https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/rprobit.pdf#rprobit
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
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pweight(varname) specifies sampling weights at higher levels in a multilevel model, whereas sam-

pling weights at the first level (the observation level) are specified in the usual manner, for example,

[pw=pwtvar1]. varname can be any valid Stata variable name, and you can specify pweight() at

levels two and higher of a multilevel model. For example, in the two-level model

. mecmd fixed_portion [pw = wt1] || school: ... , pweight(wt2) ...

variable wt1 would hold the first-level (the observation-level) sampling weights, and wt2 would hold

the second-level (the school-level) sampling weights.

family(family) specifies the distribution of depvar; family(gaussian) is the default.

link(link) specifies the link function; the default is the canonical link for the family() specified except
for the gamma and negative binomial families.

If you specify both family() and link(), not all combinations make sense. You may choose from
the following combinations:

identity log logit probit cloglog

Gaussian D x

Bernoulli D x x

binomial D x x

gamma D

negative binomial D

ordinal D x x

Poisson D

D denotes the default.

constraints(constraints); see [R] Estimation options.

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived from

asymptotic theory (oim, opg), that are robust to some kinds of misspecification (robust), and that

allow for intragroup correlation (cluster clustvar); see [R] vce option. If vce(robust) is specified,
robust variances are clustered at the highest level in the multilevel model.

� � �
Reporting �

level(#); see [R] Estimation options.

eform reports exponentiated fixed-effects coefficients and corresponding standard errors and confidence
intervals. This option may be specified either at estimation or upon replay.

irr reports estimated fixed-effects coefficients transformed to incidence-rate ratios, that is, exp(𝛽) rather
than 𝛽. Standard errors and confidence intervals are similarly transformed. This option affects how
results are displayed, not how they are estimated or stored. irr may be specified either at estimation

or upon replay. This option is allowed for count models only.

or reports estimated fixed-effects coefficients transformed to odds ratios, that is, exp(𝛽) rather than 𝛽.
Standard errors and confidence intervals are similarly transformed. This option affects how results

are displayed, not how they are estimated. or may be specified at estimation or upon replay. This

option is allowed for logistic models only.

nocnsreport; see [R] Estimation options.

notable suppresses the estimation table, either at estimation or upon replay.

https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/memeglm.pdf#memeglmSyntaxfamily
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/memeglm.pdf#memeglmSyntaxlink
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
https://www.stata.com/manuals/rvce_option.pdf#rvce_option
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
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noheader suppresses the output header, either at estimation or upon replay.

nogroup suppresses the display of group summary information (number of groups, average group size,

minimum, and maximum) from the output header.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] Estimation options.

� � �
Integration �

intmethod(intmethod) specifies the integration method to be used for the random-effects model.

mvaghermite performs mean–variance adaptive Gauss–Hermite quadrature; mcaghermite and

pcaghermite perform mode-curvature adaptive Gauss–Hermite quadrature; ghermite performs

nonadaptive Gauss–Hermite quadrature; and laplace and pclaplace perform the Laplacian

approximation, equivalent to mode-curvature adaptive Gaussian quadrature with one integration

point. Techniques pcaghermite and pclaplace are available only with family(binomial) and

family(bernoulli) combined with link(logit) and with family(poisson); these techniques
obtain the random-effects mode and curvature using the efficient hierarchical decomposition algo-

rithm described in Pinheiro and Chao (2006). For hierarchical models, this algorithm takes advantage

of the design structure to minimize memory use and utilizes a series of orthogonal triangulations to

compute the factored random-effects Hessian indirectly, avoiding the sparse full Hessian. Techniques

mcaghermite and laplace use Cholesky factorization on the full Hessian. For four- and higher-level
hierarchical designs, there can be dramatic computation-time differences.

The default integration method is mvaghermite unless a crossed random-effects model is fit, in which
case the default integration method is laplace. The Laplacian approximation has been known to

produce biased parameter estimates; however, the bias tends to be more prominent in the estimates of

the variance components rather than in the estimates of the fixed effects.

For crossed random-effects models, estimation with more than one quadrature point may be pro-

hibitively intensive even for a small number of levels. For this reason, the integration method defaults

to the Laplacian approximation. You may override this behavior by specifying a different integration

method.

intpoints(#) sets the number of integration points for quadrature. The default is intpoints(7),
which means that seven quadrature points are used for each level of random effects. This option is

not allowed with intmethod(laplace).

The more integration points, the more accurate the approximation to the log likelihood. However,

computation time increases as a function of the number of quadrature points raised to a power equaling

the dimension of the random-effects specification. In crossed random-effects models and in models

with many levels or many random coefficients, this increase can be substantial.

� � �
Maximization �

maximize options: difficult, technique(algorithm spec), iterate(#), [no]log, trace,
gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(init specs); see [R] Maximize. Those that require

special mention for meglm are listed below.

from() accepts a properly labeled vector of initial values or a list of coefficient names with values.

A list of values is not allowed.

https://www.stata.com/manuals/d.pdf#dformat
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
https://www.stata.com/manuals/rmaximize.pdf#rMaximizeSyntaxalgorithm_spec
https://www.stata.com/manuals/rmaximize.pdf#rMaximize
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The following options are available with meglm but are not shown in the dialog box:

startvalues(svmethod) specifies how starting values are to be computed. Starting values specified in

from() override the computed starting values.

startvalues(zero) specifies that starting values be set to 0.

startvalues(constantonly) builds on startvalues(zero) by fitting a constant-only model to

obtain estimates of the intercept and auxiliary parameters, and it substitutes 1 for the variances of

random effects.

startvalues(fixedonly[ , iterate(#) ]) builds on startvalues(constantonly) by fitting a

full fixed-effects model to obtain estimates of coefficients along with intercept and auxiliary param-

eters, and it continues to use 1 for the variances of random effects. This is the default behavior.

iterate(#) limits the number of iterations for fitting the fixed-effects model.

startvalues(iv[ , iterate(#) ]) builds on startvalues(fixedonly) by using instrumental-

variable methods with generalized residuals to obtain variances of random effects. iterate(#) limits
the number of iterations for fitting the instrumental-variable model.

startvalues(iterate(#)) limits the number of iterations for fitting the default model (fixed ef-

fects).

startgrid[ (gridspec) ] performs a grid search on variance components of random effects to improve

starting values. No grid search is performed by default unless the starting values are found to be

not feasible, in which case meglm runs startgrid() to perform a “minimal” search involving 𝑞3

likelihood evaluations, where 𝑞 is the number of random effects. Sometimes this resolves the problem.

Usually, however, there is no problem and startgrid() is not run by default. There can be benefits

from running startgrid() to get better starting values even when starting values are feasible.

startgrid() is a brute-force approach that tries various values for variances and covariances and

chooses the ones that work best. You may already be using a default form of startgrid() without

knowing it. If you see meglm displaying Grid node 1, Grid node 2, . . . following Grid node 0 in

the iteration log, that is meglm doing a default search because the original starting values were not

feasible. The default form tries 0.1, 1, and 10 for all variances of all random effects.

startgrid(numlist) specifies values to try for variances of random effects.

startgrid(covspec) specifies the particular variances and covariances in which grid searches are

to be performed. covspec is name[level] for variances and name1[level]*name2[level] for covari-

ances. For example, the variance of the random intercept at level id is specified as cons[id], and
the variance of the random slope on variable week at the same level is specified as week[id]. The
residual variance for the linear mixed-effects model is specified as e.depvar, where depvar is the

name of the dependent variable. The covariance between the random slope and the random intercept

above is specified as cons[id]*week[id].

startgrid(numlist covspec) combines the two syntaxes. You may also specify startgrid() mul-

tiple times so that you can search the different ranges for different variances and covariances.

noestimate specifies that the model is not to be fit. Instead, starting values are to be shown (as modified
by the above options if modifications were made), and they are to be shown using the coeflegend
style of output.

dnumerical specifies that during optimization, the gradient vector and Hessian matrix be computed

using numerical techniques instead of analytical formulas. By default, analytical formulas for com-

puting the gradient and Hessian are used for all integration methods except intmethod(laplace).

https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
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collinear, coeflegend; see [R] Estimation options.

Remarks and examples
For a general introduction to me commands, see [ME] me. For additional examples of mixed-effects

models for binary and binomial outcomes, see [ME] melogit, [ME] meprobit, and [ME] mecloglog. For

additional examples of mixed-effects models for ordinal responses, see [ME] meologit and [ME] meo-

probit. For additional examples of mixed-effects models for multinomial outcomes, see [SEM] Ex-

ample 41g. For additional examples of mixed-effects models for count outcomes, see [ME] mepois-

son and [ME] menbreg. For additional examples of mixed-effects parametric survival models, see

[ME]mestreg. For additional examples of mixed-effects models for censored outcomes, see [ME]meto-

bit and [ME] meintreg.

Remarks are presented under the following headings:

Introduction
Two-level models for continuous responses
Two-level models for nonlinear responses
Three-level models for nonlinear responses
Crossed-effects models
Obtaining better starting values
Survey data
Video example

Introduction
meglm fits multilevel mixed-effects generalized linear models of the form

𝑔{𝐸(y|X,u)} = Xβ + Zu, y ∼ 𝐹 (1)

where y is the 𝑛 × 1 vector of responses from the distributional family 𝐹, X is an 𝑛 × 𝑝 design/covariate

matrix for the fixed effects β, and Z is the 𝑛 × 𝑞 design/covariate matrix for the random effects u.

The Xβ + Zu part is called the linear predictor, and it is often denoted as η. The linear predictor also
contains the offset or exposure variable when offset() or exposure() is specified. 𝑔(⋅) is called the
link function and is assumed to be invertible such that

𝐸(y|X,u) = 𝑔−1(Xβ + Zu) = 𝐻(η) = µ

For notational convenience here and throughout this manual entry, we suppress the dependence of y on

X. Substituting various definitions for 𝑔(⋅) and 𝐹 results in a wide array of models. For instance, if y is

distributed as Gaussian (normal) and 𝑔(⋅) is the identity function, we have

𝐸(y) = Xβ + Zu, y ∼ normal

or mixed-effects linear regression. If 𝑔(⋅) is the logit function and y is distributed as Bernoulli, we have

logit{𝐸(y)} = Xβ + Zu, y ∼ Bernoulli

or mixed-effects logistic regression. If 𝑔(⋅) is the natural log function and y is distributed as Poisson, we
have

ln{𝐸(y)} = Xβ + Zu, y ∼ Poisson

https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
https://www.stata.com/manuals/meme.pdf#meme
https://www.stata.com/manuals/memelogit.pdf#memelogit
https://www.stata.com/manuals/memeprobit.pdf#memeprobit
https://www.stata.com/manuals/memecloglog.pdf#memecloglog
https://www.stata.com/manuals/memeologit.pdf#memeologit
https://www.stata.com/manuals/memeoprobit.pdf#memeoprobit
https://www.stata.com/manuals/memeoprobit.pdf#memeoprobit
https://www.stata.com/manuals/semexample41g.pdf#semExample41g
https://www.stata.com/manuals/semexample41g.pdf#semExample41g
https://www.stata.com/manuals/memepoisson.pdf#memepoisson
https://www.stata.com/manuals/memepoisson.pdf#memepoisson
https://www.stata.com/manuals/memenbreg.pdf#memenbreg
https://www.stata.com/manuals/memestreg.pdf#memestreg
https://www.stata.com/manuals/memetobit.pdf#memetobit
https://www.stata.com/manuals/memetobit.pdf#memetobit
https://www.stata.com/manuals/memeintreg.pdf#memeintreg
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or mixed-effects Poisson regression. In fact, some combinations of families and links are so common

that we implemented them as separate commands in terms of meglm.

Command meglm equivalent

melogit family(bernoulli) link(logit)
meprobit family(bernoulli) link(probit)
mecloglog family(bernoulli) link(cloglog)
meologit family(ordinal) link(logit)
meoprobit family(ordinal) link(probit)
mepoisson family(poisson) link(log)
menbreg family(nbinomial) link(log)

When no family–link combination is specified, meglm defaults to a Gaussian family with an identity

link. Thus meglm can be used to fit linear mixed-effects models; however, for those models we recom-

mend using the more specialized mixed, which, in addition to meglm capabilities, allows for modeling

of the structure of the residual errors; see [ME] mixed for details.

The random effects u are assumed to be distributed as multivariate normal with mean 0 and 𝑞 × 𝑞
variance matrix 𝚺. The random effects are not directly estimated (although they may be predicted), but

instead are characterized by the variance components, the elements of G = Var(u).
The general forms of the design matrices X and Z allow estimation for a broad class of generalized

mixed-effects models: blocked designs, split-plot designs, growth curves, multilevel or hierarchical de-

signs, etc. They also allow a flexible method of modeling within-cluster correlation. Subjects within

the same cluster can be correlated as a result of a shared random intercept, or through a shared random

slope on a covariate, or both. The general specification of variance components also provides additional

flexibility—the random intercept and random slope could themselves be modeled as independent, or

correlated, or independent with equal variances, and so forth.

Comprehensive treatments of mixed models are provided by, for example, Searle, Casella, and Mc-

Culloch (1992); Verbeke and Molenberghs (2000); Raudenbush and Bryk (2002); Hedeker and Gibbons

(2006); McCulloch, Searle, and Neuhaus (2008); and Rabe-Hesketh and Skrondal (2022).

The key to fitting mixed models lies in estimating the variance components, and for that there ex-

ist many methods; see, for example, Breslow and Clayton (1993); Lin and Breslow (1996); Bates and

Pinheiro (1998); and Ng et al. (2006). meglm uses maximum likelihood (ML) to estimate model param-

eters. The ML estimates are based on the usual application of likelihood theory, given the distributional

assumptions of the model.

Returning to (1): in clustered-data situations, it is convenient not to consider all 𝑛 observations at

once but instead to organize the mixed model as a series of 𝑀 independent groups (or clusters)

𝑔{𝐸(y𝑗)} = X𝑗β + Z𝑗u𝑗 (2)

for 𝑗 = 1, . . . , 𝑀, with cluster 𝑗 consisting of 𝑛𝑗 observations. The response y𝑗 comprises the rows of

y corresponding with the 𝑗th cluster, with X𝑗 defined analogously. The random effects u𝑗 can now be

thought of as 𝑀 realizations of a 𝑞 ×1 vector that is normally distributed with mean 0 and 𝑞 × 𝑞 variance
matrix 𝚺. The matrix Z𝑖 is the 𝑛𝑗 × 𝑞 design matrix for the 𝑗th cluster random effects. Relating this to

(1), note that

https://www.stata.com/manuals/memixed.pdf#memixed
https://www.stata.com/manuals/memeglm.pdf#memeglmRemarksandexampleseq1
https://www.stata.com/manuals/memeglm.pdf#memeglmRemarksandexampleseq1


meglm — Multilevel mixed-effects generalized linear models 11

Z =
⎡
⎢⎢
⎣

Z1 0 · · · 0

0 Z2 · · · 0

⋮ ⋮ ⋱ ⋮
0 0 0 Z𝑀

⎤
⎥⎥
⎦

; u = ⎡⎢
⎣

u1
⋮
u𝑀

⎤⎥
⎦

; G = I𝑀 ⊗ 𝚺

where I𝑀 is the 𝑀 × 𝑀 identity matrix and ⊗ is the Kronecker product.

The mixed-model formula (2) is from Laird and Ware (1982) and offers two key advantages. First, it

makes specifications of random-effects terms easier. If the clusters are schools, you can simply specify a

random effect at the school level, as opposed to thinking of what a school-level random effect wouldmean

when all the data are considered as a whole (if it helps, think Kronecker products). Second, representing

a mixed-model with (2) generalizes easily to more than one set of random effects. For example, if classes

are nested within schools, then (2) can be generalized to allow random effects at both the school and the

class-within-school levels.

Two-level models for continuous responses
We begin with a simple application of (2).

Example 1: Two-level linear mixed model
Consider a longitudinal dataset, used by both Ruppert, Wand, and Carroll (2003) and Diggle

et al. (2002), consisting of weight measurements of 48 pigs on 9 successive weeks. Pigs are identi-

fied by the variable id. Each pig experiences a linear trend in growth but overall weight measurements
vary from pig to pig. Because we are not really interested in these particular 48 pigs per se, we instead

treat them as a random sample from a larger population and model the between-pig variability as a ran-

dom effect, or in the terminology of (2), as a random-intercept term at the pig level. We thus wish to fit

the model

weight𝑖𝑗 = 𝛽0 + 𝛽1week𝑖𝑗 + 𝑢𝑗 + 𝜖𝑖𝑗

for 𝑖 = 1, . . . , 9 weeks and 𝑗 = 1, . . . , 48 pigs. The fixed portion of the model, 𝛽0 + 𝛽1week𝑖𝑗, simply

states that we want one overall regression line representing the population average. The random effect 𝑢𝑗
serves to shift this regression line up or down according to each pig. Because the random effects occur

at the pig level (id), we fit the model by typing

https://www.stata.com/manuals/memeglm.pdf#memeglmRemarksandexampleseq2
https://www.stata.com/manuals/memeglm.pdf#memeglmRemarksandexampleseq2
https://www.stata.com/manuals/memeglm.pdf#memeglmRemarksandexampleseq2
https://www.stata.com/manuals/memeglm.pdf#memeglmRemarksandexampleseq2
https://www.stata.com/manuals/memeglm.pdf#memeglmRemarksandexampleseq2
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. use https://www.stata-press.com/data/r19/pig
(Longitudinal analysis of pig weights)
. meglm weight week || id:
Fitting fixed-effects model:
Iteration 0: Log likelihood = -1251.2506
Iteration 1: Log likelihood = -1251.2506
Refining starting values:
Grid node 0: Log likelihood = -1150.6253
Fitting full model:
Iteration 0: Log likelihood = -1150.6253 (not concave)
Iteration 1: Log likelihood = -1036.1793
Iteration 2: Log likelihood = -1017.912
Iteration 3: Log likelihood = -1014.9537
Iteration 4: Log likelihood = -1014.9268
Iteration 5: Log likelihood = -1014.9268
Mixed-effects GLM Number of obs = 432
Family: Gaussian
Link: Identity
Group variable: id Number of groups = 48

Obs per group:
min = 9
avg = 9.0
max = 9

Integration method: mvaghermite Integration pts. = 7
Wald chi2(1) = 25337.48

Log likelihood = -1014.9268 Prob > chi2 = 0.0000

weight Coefficient Std. err. z P>|z| [95% conf. interval]

week 6.209896 .0390124 159.18 0.000 6.133433 6.286359
_cons 19.35561 .5974047 32.40 0.000 18.18472 20.52651

id
var(_cons) 14.81745 3.124202 9.801687 22.39989

var(e.weight) 4.383264 .3163349 3.805112 5.049261

LR test vs. linear model: chibar2(01) = 472.65 Prob >= chibar2 = 0.0000

At this point, a guided tour of the model specification and output is in order:

1. By typing weight week, we specified the response, weight, and the fixed portion of the model in

the same way that we would if we were using regress or any other estimation command. Our fixed

effects are a coefficient on week and a constant term.

2. When we added || id:, we specified random effects at the level identified by the group variable id,
that is, the pig level (level two). Because we wanted only a random intercept, that is all we had to

type.

3. The estimation log displays a set of iterations from optimizing the log likelihood. By default, these

are Newton–Raphson iterations, but other methods are available by specifying the appropriate maxi-

mize options; see [R]Maximize.

https://www.stata.com/manuals/rmaximize.pdf#rMaximize
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4. The header describes the model, presents a summary of the random-effects group, reports the inte-

gration method used to fit the model, and reports a Wald test against the null hypothesis that all the

coefficients on the independent variables in the mean equation are 0. Here the null hypothesis is re-

jected at all conventional levels. You can suppress the group information with the nogroup or the

noheader option, which will suppress the rest of the header as well.

5. The estimation table reports the fixed effects, followed by the random effects, followed by the overall

error term.

a. For the fixed-effects part, we estimate 𝛽0 = 19.36 and 𝛽1 = 6.21.

b. The random-effects equation is labeled id, meaning that these are random effects at the id (pig)

level. We have only one random effect at this level, the random intercept. The variance of the

level-two errors, 𝜎2
𝑢, is estimated as 14.82 with standard error 3.12.

c. The row labeled var(e.weight) displays the estimated variance of the overall error term: �̂�2
𝜖 =

4.38. This is the variance of the level-one errors, that is, the residuals.

6. Finally, a likelihood-ratio test comparing the model with ordinary linear regression is provided and

is highly significant for these data. See Distribution theory for likelihood-ratio test in [ME] me for a

discussion of likelihood-ratio testing of variance components.

See Remarks and examples in [ME]mixed for further analysis of these data including a random-slope

model and a model with an unstructured covariance structure.

Two-level models for nonlinear responses
By specifying different family–link combinations, we can fit a variety of mixed-effects models for

nonlinear responses. Here we replicate one of the models from example 2 of melogit.

Example 2: Two-level logistic regression model
Ng et al. (2006) analyzed a subsample of data from the 1989 Bangladesh fertility survey (Huq and

Cleland 1990), which polled 1,934 Bangladeshi women on their use of contraception. The women sam-

pled were from 60 districts, identified by the variable district. Each district contained either urban

or rural areas (variable urban) or both. The variable c use is the binary response, with a value of 1

indicating contraceptive use. Other covariates include mean-centered age and a factor variable for the

number of children.

https://www.stata.com/manuals/meme.pdf#memeRemarksandexamplesDistributiontheoryforlikelihood-ratiotest
https://www.stata.com/manuals/meme.pdf#meme
https://www.stata.com/manuals/memixed.pdf#memixedRemarksandexamples
https://www.stata.com/manuals/memixed.pdf#memixed
https://www.stata.com/manuals/memelogit.pdf#memelogitRemarksandexamplesex2
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We fit a standard logistic regression model, amended to have a random intercept for each district and

a random slope on the urban factor variable. We fit the model by typing

. use https://www.stata-press.com/data/r19/bangladesh
(Bangladesh Fertility Survey, 1989)
. meglm c_use i.urban age i.children
> || district: i.urban, family(bernoulli) link(logit) nofvlabel
Fitting fixed-effects model:
Iteration 0: Log likelihood = -1229.5485
Iteration 1: Log likelihood = -1228.5268
Iteration 2: Log likelihood = -1228.5263
Iteration 3: Log likelihood = -1228.5263
Refining starting values:
Grid node 0: Log likelihood = -1215.8592
Fitting full model:
Iteration 0: Log likelihood = -1215.8592 (not concave)
Iteration 1: Log likelihood = -1209.6285
Iteration 2: Log likelihood = -1205.7903
Iteration 3: Log likelihood = -1205.1337
Iteration 4: Log likelihood = -1205.0034
Iteration 5: Log likelihood = -1205.0025
Iteration 6: Log likelihood = -1205.0025
Mixed-effects GLM Number of obs = 1,934
Family: Bernoulli
Link: Logit
Group variable: district Number of groups = 60

Obs per group:
min = 2
avg = 32.2
max = 118

Integration method: mvaghermite Integration pts. = 7
Wald chi2(5) = 97.30

Log likelihood = -1205.0025 Prob > chi2 = 0.0000

c_use Coefficient Std. err. z P>|z| [95% conf. interval]

1.urban .7143927 .1513595 4.72 0.000 .4177335 1.011052
age -.0262261 .0079656 -3.29 0.001 -.0418384 -.0106138

children
1 1.128973 .1599347 7.06 0.000 .815507 1.442439
2 1.363165 .1761804 7.74 0.000 1.017857 1.708472
3 1.352238 .1815608 7.45 0.000 .9963853 1.708091

_cons -1.698137 .1505019 -11.28 0.000 -1.993115 -1.403159

district
var(1.urban) .2741013 .2131525 .059701 1.258463

var(_cons) .2390807 .0857012 .1184191 .4826891

LR test vs. logistic model: chi2(2) = 47.05 Prob > chi2 = 0.0000
Note: LR test is conservative and provided only for reference.
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Because we did not specify a covariance structure for the random effects (𝑢1𝑗, 𝑢0𝑗)′, meglm used the

default independent structure:

𝚺 = Var [𝑢1𝑗
𝑢0𝑗

] = [𝜎2
𝑢1 0
0 𝜎2

𝑢0
]

with �̂�2
𝑢1 = 0.27 and �̂�2

𝑢0 = 0.24. You can request a different covariance structure by specifying the

covariance() option. See examples 1–3 in melogit for further analysis of these data, and see [ME]me

and [ME] mixed for further examples of covariance structures.

Three-level models for nonlinear responses
Two-level models extend naturally to models with three or more levels with nested random effects.

Here we replicate the model from example 2 of [ME] meologit.

Example 3: Three-level ordered logistic regression model
We use the data from the Television, School, and Family Smoking Prevention and Cessation Project

(Flay et al. 1988; Rabe-Hesketh and Skrondal 2022, chap. 11), where schools were randomly assigned

into one of four groups defined by two treatment variables. Students within each school are nested in

classes, and classes are nested in schools. The dependent variable is the tobacco and health knowledge

(THK) scale score collapsed into four ordered categories. We regress the outcome on the treatment vari-

ables, social resistance classroom curriculum and TV intervention, and their interaction and control for

the pretreatment score.

. use https://www.stata-press.com/data/r19/tvsfpors
(Television, School, and Family Project)
. meglm thk prethk cc##tv || school: || class:, family(ordinal) link(logit)
Fitting fixed-effects model:
Iteration 0: Log likelihood = -2212.775
Iteration 1: Log likelihood = -2125.509
Iteration 2: Log likelihood = -2125.1034
Iteration 3: Log likelihood = -2125.1032
Refining starting values:
Grid node 0: Log likelihood = -2152.1514
Fitting full model:
Iteration 0: Log likelihood = -2152.1514 (not concave)
Iteration 1: Log likelihood = -2125.9213 (not concave)
Iteration 2: Log likelihood = -2120.1861
Iteration 3: Log likelihood = -2115.6177
Iteration 4: Log likelihood = -2114.5896
Iteration 5: Log likelihood = -2114.5881
Iteration 6: Log likelihood = -2114.5881
Mixed-effects GLM Number of obs = 1,600
Family: Ordinal
Link: Logit

Grouping information

No. of Observations per group
Group variable groups Minimum Average Maximum

school 28 18 57.1 137
class 135 1 11.9 28

https://www.stata.com/manuals/memelogit.pdf#memelogitRemarksandexamplesex1
https://www.stata.com/manuals/meme.pdf#meme
https://www.stata.com/manuals/memixed.pdf#memixed
https://www.stata.com/manuals/memeologit.pdf#memeologitRemarksandexamplesex2_meologit
https://www.stata.com/manuals/memeologit.pdf#memeologit
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Integration method: mvaghermite Integration pts. = 7
Wald chi2(4) = 124.39

Log likelihood = -2114.5881 Prob > chi2 = 0.0000

thk Coefficient Std. err. z P>|z| [95% conf. interval]

prethk .4085273 .039616 10.31 0.000 .3308814 .4861731
1.cc .8844369 .2099124 4.21 0.000 .4730161 1.295858
1.tv .236448 .2049065 1.15 0.249 -.1651614 .6380575

cc#tv
1 1 -.3717699 .2958887 -1.26 0.209 -.951701 .2081612

/cut1 -.0959459 .1688988 -.4269815 .2350896
/cut2 1.177478 .1704946 .8433151 1.511642
/cut3 2.383672 .1786736 2.033478 2.733865

school
var(_cons) .0448735 .0425387 .0069997 .2876749

school>class
var(_cons) .1482157 .0637521 .063792 .3443674

LR test vs. ologit model: chi2(2) = 21.03 Prob > chi2 = 0.0000
Note: LR test is conservative and provided only for reference.

Notes:

1. Our model now has two random-effects equations, separated by ||. The first is a random intercept

(constant only) at the school level (level three), and the second is a random intercept at the class
level (level two). The order in which these are specified (from left to right) is significant—meglm
assumes that class is nested within school.

2. The information on groups is now displayed as a table, with one row for each grouping. You can

suppress this table with the nogroup or the noheader option, which will suppress the rest of the

header, as well.

3. The variance-component estimates are now organized and labeled according to level. The variance

component for class is labeled school>class to emphasize that classes are nested within schools.

We refer you to example 2 of [ME] meologit and example 1 of [ME] meologit postestimation for a

substantive interpretation of the results.

The above extends to models with more than two levels of nesting by adding more random-effects

equations, each separated by ||. The order of nesting goes from left to right as the groups go from biggest

(highest level) to smallest (lowest level).

https://www.stata.com/manuals/memeologit.pdf#memeologitRemarksandexamplesex2_meologit
https://www.stata.com/manuals/memeologit.pdf#memeologit
https://www.stata.com/manuals/memeologitpostestimation.pdf#memeologitpostestimationRemarksandexamplesex1
https://www.stata.com/manuals/memeologitpostestimation.pdf#memeologitpostestimation
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Crossed-effects models
Not all mixed models contain nested levels of random effects. In this section, we consider a crossed-

effects model, that is, a mixed-effects model in which the levels of random effects are not nested; see

[ME] me for more information on crossed-effects models.

Example 4: Crossed-effects logistic regression model
Weuse the salamander cross-breeding data fromKarim and Zeger (1992) as analyzed in Rabe-Hesketh

and Skrondal (2022, sec. 16.8). The salamanders come from two populations—whiteside and rough-

butt—and are labeledwhitesidemales (wsm), whiteside females (wsf), roughbutt males (rbm), and rough-
butt females (rbf). Male identifiers are recorded in the variable male, and female identifiers are recorded
in the variable female. The salamanders were divided into groups such that each group contained 60

male–female pairs, with each salamander having three potential partners from the same population and

three potential partners from the other population. The outcome (y) is coded 1 if there was a successful
mating and is coded 0 otherwise; see the references for a detailed description of the mating experiment.

We fit a crossed-effects logistic regression for successful mating, where each male has the same value

of his random intercept across all females, and each female has the same value of her random intercept

across all males.

To fit a crossed-effects model in Stata, we use the all: R.varname syntax. We treat the entire

dataset as one super cluster, denoted all, and we nest each gender within the super cluster by using the
R.varname notation. R.male requests a random intercept for each level of male and imposes an identity

covariance structure on the random effects; that is, the variances of the random intercepts are restricted

to be equal for all male salamanders. R.female accomplishes the same for the female salamanders. In

Stata, we type

https://www.stata.com/manuals/meme.pdf#meme
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. use https://www.stata-press.com/data/r19/salamander

. meglm y wsm##wsf || _all: R.male || _all: R.female, family(bernoulli)
> link(logit) or
note: crossed random-effects model specified; option intmethod(laplace)

implied.
Fitting fixed-effects model:
Iteration 0: Log likelihood = -223.13998
Iteration 1: Log likelihood = -222.78752
Iteration 2: Log likelihood = -222.78735
Iteration 3: Log likelihood = -222.78735
Refining starting values:
Grid node 0: Log likelihood = -211.58149
Fitting full model:
Iteration 0: Log likelihood = -211.58149
Iteration 1: Log likelihood = -209.33737
Iteration 2: Log likelihood = -209.29378 (not concave)
Iteration 3: Log likelihood = -209.29291
Iteration 4: Log likelihood = -209.27663
Iteration 5: Log likelihood = -209.27659
Iteration 6: Log likelihood = -209.27659
Mixed-effects GLM Number of obs = 360
Family: Bernoulli
Link: Logit
Group variable: _all Number of groups = 1

Obs per group:
min = 360
avg = 360.0
max = 360

Integration method: laplace
Wald chi2(3) = 42.59

Log likelihood = -209.27659 Prob > chi2 = 0.0000

y Odds ratio Std. err. z P>|z| [95% conf. interval]

1.wsm .4955657 .2293702 -1.52 0.129 .2000446 1.227653
1.wsf .0547918 .0287903 -5.53 0.000 .0195638 .1534542

wsm#wsf
1 1 36.17797 22.01912 5.90 0.000 10.97424 119.2652

_cons 2.740748 1.062625 2.60 0.009 1.281878 5.859918

_all>male
var(_cons) 1.041005 .4998442 .4062035 2.667853

_all>female
var(_cons) 1.17438 .5438465 .4738309 2.910675

Note: Estimates are transformed only in the first equation to odds ratios.
Note: _cons estimates baseline odds (conditional on zero random effects).
LR test vs. logistic model: chi2(2) = 27.02 Prob > chi2 = 0.0000
Note: LR test is conservative and provided only for reference.

Becausewe specified a crossed-effectsmodel, meglm defaulted to themethod of Laplacian approximation
to calculate the likelihood; see Computation time and the Laplacian approximation in [ME] me for a

discussion of computational complexity of mixed-effects models, and see Methods and formulas below

for the formulas used by the Laplacian approximation method.

https://www.stata.com/manuals/meme.pdf#memeRemarksandexamplesComputationtimeandtheLaplacianapproximation
https://www.stata.com/manuals/meme.pdf#meme
https://www.stata.com/manuals/memeglm.pdf#memeglmMethodsandformulas
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The estimates of the random intercepts suggest that the heterogeneity among the female salamanders,

1.17, is larger than the heterogeneity among the male salamanders, 1.04.

Setting both random intercepts to 0, the odds of successful mating for a roughbutt male–female pair

are given by the estimate of cons, 2.74. Rabe-Hesketh and Skrondal (2022, sec. 16.8) show how to

calculate the odds ratios for the other three salamander pairings.

The R.varname notation is equivalent to giving a list of overparameterized (none dropped) indicator

variables for use in a random-effects specification. When you specify R.varname, meglm handles the

calculations internally rather than creating the indicators in the data. Because the set of indicators is

overparameterized, R.varname implies noconstant.

Technical note
We fit the salamander model by using

. meglm y wsm##wsf || _all: R.male || _all: R.female ...

as a direct way to demonstrate the R. notation. However, we can technically treat female salamanders

as nested within the all group, yielding the equivalent way to fit the model:

. meglm y wsm##wsf || _all: R.male || female: ...

We leave it to you to verify that both produce identical results. As we note in example 8 of [ME]me, the

latter specification, organized at the cluster (female) level with random-effects dimension one (a random

intercept) is, in general, much more computationally efficient.

Obtaining better starting values
Given the flexibility of mixed-effects models, you will find that some models “fail to converge”

when used with your data; see Diagnosing convergence problems in [ME] me for details. What we

say below applies regardless of how the convergence problem revealed itself. You might have seen the

error message “initial values not feasible” or some other error message, or you might have an infinite

iteration log.

meglm provides two options to help you obtain better starting values: startvalues() and

startgrid().

startvalues(svmethod) allows you to specify one of four starting-value calculationmethods: zero,
constantonly, fixedonly, or iv. By default, meglm uses startvalues(fixedonly). Evidently, that
did not work for you. Try the other methods, starting with startvalues(iv):

. meglm ..., ... startvalues(iv)

If that does not solve the problem, proceed through the others.

By the way, if you have starting values for some parameters but not others—perhaps you fit a simpli-

fied model to get them—you can combine the options startvalues() and from():

. meglm ..., ... // simplified model

. matrix b = e(b)

. meglm ..., ... from(b) startvalues(iv) // full model

https://www.stata.com/manuals/meme.pdf#memeRemarksandexamplesex8
https://www.stata.com/manuals/meme.pdf#meme
https://www.stata.com/manuals/meme.pdf#memeRemarksandexamplesDiagnosingconvergenceproblems
https://www.stata.com/manuals/meme.pdf#meme
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The other special option meglm provides is startgrid(), which can be used with or without

startvalues(). startgrid() is a brute-force approach that tries various values for variances and

covariances and chooses the ones that work best.

1. Youmay already be using a default form of startgrid()without knowing it. If you see meglm
displaying Grid node 1, Grid node 2, . . . following Grid node 0 in the iteration log, that is meglm
doing a default search because the original starting values were not feasible.

The default form tries 0.1, 1, and 10 for all variances of all random effects and, if applicable,

for the residual variance.

2. startgrid(numlist) specifies values to try for variances of random effects.

3. startgrid(covspec) specifies the particular variances and covariances in which grid searches

are to be performed. Variances and covariances are specified in the usual way.

startgrid( cons[id] x[id] cons[id]*x[id]) specifies that 0.1, 1, and 10 be tried for

each member of the list.

4. startgrid(numlist covspec) combines the two syntaxes. You can specify startgrid()mul-
tiple times so that you can search the different ranges for different variances and covariances.

Our advice to you is the following:

1. If you receive an iteration log and it does not contain Grid node 1, Grid node 2, . . . , then specify

startgrid(.1 1 10). Do that whether the iteration log was infinite or ended with some other
error. In this case, we know that meglm did not run startgrid() on its own because it did not

report Grid node 1, Grid node 2, etc. Your problem is poor starting values, not infeasible ones.

A synonym for startgrid(.1 1 10) is just startgrid without parentheses.

Be careful, however, if you have many random effects. Specifying startgrid() could run a

long time because it runs all possible combinations. If you have 10 random effects, that means

103 = 1,000 likelihood evaluations.

If you have many random effects, rerun your difficult meglm command including option

iterate(#) and look at the results. Identify the problematic variances and search across them

only. Do not just look for variances going to 0. Variances getting really big can be a problem,

too, and even reasonable values can be a problem. Use your knowledge and intuition about the

model.

Perhaps you will try to fit your model by specifying startgrid(.1 1 10 cons[id] x[id]
cons[id]*x[id]).

Values 0.1, 1, and 10 are the default. Equivalent to specifying

startgrid(.1 1 10 cons[id] x[id] cons[id]*x[id]) is

startgrid( cons[id] x[id] cons[id]*x[id]).

Look at covariances as well as variances. If you expect a covariance to be negative but it is

positive, then try negative starting values for the covariance by specifying startgrid(-.1 -1
-10 cons[id]*x[id]).

Remember that you can specify startgrid() multiple times. Thus you might specify both

startgrid( cons[id] x[id]) and startgrid(-.1 -1 -10 cons[id]*x[id]).
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2. If you receive the message “initial values not feasible”, you know that meglm already tried the

default startgrid().

The default startgrid() only tried the values 0.1, 1, and 10, and only tried them on the

variances of random effects. You may need to try different values or try the same values on

covariances or variances of errors of observed endogenous variables.

We suggest you first rerun the model causing difficulty and include the noestimate option.

If, looking at the results, you have an idea of which variance or covariance is a problem, or if

you have few variances and covariances, we would recommend running startgrid() first.

On the other hand, if you have no idea as to which variance or covariance is the problem and

you have many of them, you will be better off if you first simplify the model. After doing that,

if your simplified model does not include all the variances and covariances, you can specify a

combination of from() and startgrid().

Survey data
Multilevel modeling of survey data is a little different from standard modeling in that weighted sam-

pling can take place at multiple levels in the model, resulting in multiple sampling weights. Most survey

datasets, regardless of the design, contain one overall inclusion weight for each observation in the data.

This weight reflects the inverse of the probability of ultimate selection, and by “ultimate” we mean that

it factors in all levels of clustered sampling, corrections for noninclusion and oversampling, poststratifi-

cation, etc.

For simplicity, in what follows, assume a simple two-stage sampling design where groups are ran-

domly sampled and then individuals within groups are sampled. Also assume that no additional weight

corrections are performed; that is, sampling weights are simply the inverse of the probability of selection.

The sampling weight for observation 𝑖 in cluster 𝑗 in our two-level sample is then 𝑤𝑖𝑗 = 1/𝜋𝑖𝑗, where

𝜋𝑖𝑗 is the probability that observation 𝑖, 𝑗 is selected. If you were performing a standard analysis such

as OLS regression with regress, you would simply use a variable holding 𝑤𝑖𝑗 as your pweight vari-

able, and the fact that it came from two levels of sampling would not concern you. Perhaps you would

type vce(cluster groupvar) where groupvar identifies the top-level groups to get standard errors that

control for correlation within these groups, but you would still use only one weight variable.

Now take these same data and fit a two-level model with meglm. As seen in (5) in Methods and

formulas later in this entry, it is not sufficient to use the single sampling weight 𝑤𝑖𝑗, because weights

enter the log likelihood at both the group level and the individual level. Instead, what is required for a

two-level model under this sampling design is 𝑤𝑗, the inverse of the probability that group 𝑗 is selected
in the first stage, and 𝑤𝑖|𝑗, the inverse of the probability that individual 𝑖 from group 𝑗 is selected at the
second stage conditional on group 𝑗 already being selected. You cannot use 𝑤𝑖𝑗 without making any

assumptions about 𝑤𝑗.

Given the rules of conditional probability, 𝑤𝑖𝑗 = 𝑤𝑗𝑤𝑖|𝑗. If your dataset has only 𝑤𝑖𝑗, then you will

need to either assume equal probability sampling at the first stage (𝑤𝑗 = 1 for all 𝑗) or find some way to
recover 𝑤𝑗 from other variables in your data; see Rabe-Hesketh and Skrondal (2006) and the references

therein for some suggestions on how to do this, but realize that there is little yet known about how well

these approximations perform in practice.

What you really need to fit your two-level model are data that contain 𝑤𝑗 in addition to either 𝑤𝑖𝑗 or

𝑤𝑖|𝑗. If you have 𝑤𝑖𝑗—that is, the unconditional inclusion weight for observation 𝑖, 𝑗—then you need to

divide 𝑤𝑖𝑗 by 𝑤𝑗 to obtain 𝑤𝑖|𝑗.

https://www.stata.com/manuals/memeglm.pdf#memeglmMethodsandformulaseq5
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Example 5: Two-level logistic regression model with weights
Rabe-Hesketh and Skrondal (2006) analyzed data from the 2000 Programme for International Student

Assessment (PISA) study on reading proficiency among 15-year-oldAmerican students, as performed by

the Organisation for Economic Co-operation and Development (OECD). The original study was a three-

stage cluster sample, where geographic areas were sampled at the first stage, schools at the second, and

students at the third. Our version of the data does not contain the geographic-areas variable, so we treat

this as a two-stage sample where schools are sampled at the first stage and students at the second.

. use https://www.stata-press.com/data/r19/pisa2000
(Programme for International Student Assessment (PISA) 2000 data)
. describe
Contains data from https://www.stata-press.com/data/r19/pisa2000.dta
Observations: 2,069 Programme for International

Student Assessment (PISA) 2000
data

Variables: 11 12 Jun 2024 10:08
(_dta has notes)

Variable Storage Display Value
name type format label Variable label

female byte %8.0g 1 if female
isei byte %8.0g International socioeconomic index
w_fstuwt float %9.0g Student-level weight
wnrschbw float %9.0g School-level weight
high_school byte %8.0g 1 if highest level by either

parent is high school
college byte %8.0g 1 if highest level by either

parent is college
one_for byte %8.0g 1 if one parent foreign born
both_for byte %8.0g 1 if both parents are foreign

born
test_lang byte %8.0g 1 if English (the test language)

is spoken at home
pass_read byte %8.0g 1 if passed reading proficiency

threshold
id_school int %8.0g School ID

Sorted by:

For student 𝑖 in school 𝑗, where the variable id school identifies the schools, the variable w fstuwt
is a student-level overall inclusion weight (𝑤𝑖𝑗, not 𝑤𝑖|𝑗) adjusted for noninclusion and nonparticipation

of students, and the variable wnrschbw is the school-level weight𝑤𝑗 adjusted for oversampling of schools

with more minority students. The weight adjustments do not interfere with the methods prescribed above,

and thus we can treat the weight variables simply as 𝑤𝑖𝑗 and 𝑤𝑗, respectively.

Rabe-Hesketh and Skrondal (2006) fit a two-level logistic model for passing a reading proficiency

threshold. We will do the same using meglm, but first we must reproduce the “method 1” adjusted weight
variables that were used. The “method 1” adjustment scales the first-level weights so that they sum to

the effective sample size of their corresponding second-level cluster.

. sort id_school

. generate sqw = w_fstuwt * w_fstuwt

. by id_school: egen sumw = sum(w_fstuwt)

. by id_school: egen sumsqw = sum(sqw)

. generate pst1s1 = w_fstuwt*sumw/sumsqw
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The new variable pst1s1 holds the adjusted first-level weights. Rabe-Hesketh and Skrondal (2006)

also included the school mean socioeconomic index as a covariate in their analysis. We reproduce this

variable using egen.

. by id_school: egen mn_isei = mean(isei)

Here is the fitted model:

. meglm pass_read female isei mn_isei high_school college test_lang one_for
> both_for [pw=pst1s1], family(bernoulli) link(logit)
> || id_school:, pweight(wnrschbw)
(output omitted )

Mixed-effects GLM Number of obs = 2,069
Family: Bernoulli
Link: Logit
Group variable: id_school Number of groups = 148

Obs per group:
min = 1
avg = 14.0
max = 28

Integration method: mvaghermite Integration pts. = 7
Wald chi2(8) = 88.30

Log pseudolikelihood = -197395.98 Prob > chi2 = 0.0000
(Std. err. adjusted for 148 clusters in id_school)

Robust
pass_read Coefficient std. err. z P>|z| [95% conf. interval]

female .6221369 .1540088 4.04 0.000 .3202852 .9239887
isei .018215 .0048057 3.79 0.000 .0087959 .027634

mn_isei .0682472 .0164337 4.15 0.000 .0360378 .1004566
high_school .1028108 .477141 0.22 0.829 -.8323683 1.03799

college .4531688 .5053447 0.90 0.370 -.5372885 1.443626
test_lang .6251822 .3821182 1.64 0.102 -.1237557 1.37412

one_for -.1089314 .2739724 -0.40 0.691 -.6459075 .4280447
both_for -.2804038 .3264681 -0.86 0.390 -.9202696 .359462

_cons -5.877565 .954525 -6.16 0.000 -7.7484 -4.006731

id_school
var(_cons) .2955769 .1243375 .1295996 .6741201

Notes:

1. We specified the level-one weights using standard Stata weight syntax, that is,

[pw=pst1s1].

2. We specified the level-two weights via the pweight(wnrschbw) option as part of the random-effects

specification for the id school level. As such, it is treated as a school-level weight. Accordingly,

wnrschbw needs to be constant within schools, and meglm did check for that before estimating.

3. As is the case with other estimation commands in Stata, standard errors in the presence of sampling

weights are robust.

4. Robust standard errors are clustered at the top level of the model, and this will always be true unless

you specify vce(cluster clustvar), where clustvar identifies an even higher level of grouping.
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Example 6: Two-level logistic regression model with survey weights
meglm also supports the svy prefix (see [SVY] svy) for the linearized variance estimator. Here we

refit the model from the previous example using the svy prefix after we svyset (see [SVY] svyset) the

survey design variables.

. svyset id_school, weight(wnrschbw) || _n, weight(pst1s1)
note: stage 1 is sampled with replacement; further stages will be ignored for

variance estimation.
Sampling weights: <none>

VCE: linearized
Single unit: missing

Strata 1: <one>
Sampling unit 1: id_school

FPC 1: <zero>
Weight 1: wnrschbw
Strata 2: <one>

Sampling unit 2: <observations>
FPC 2: <zero>

Weight 2: pst1s1
. svy: meglm pass_read female isei mn_isei high_school college test_lang
> one_for both_for, family(bernoulli) link(logit) || id_school:
(running meglm on estimation sample)
Survey: Mixed-effects GLM
Number of strata = 1 Number of obs = 2,069
Number of PSUs = 148 Population size = 346,373.74

Design df = 147
F(8, 140) = 10.51
Prob > F = 0.0000

Linearized
pass_read Coefficient std. err. t P>|t| [95% conf. interval]

female .6221369 .1540088 4.04 0.000 .3177796 .9264943
isei .018215 .0048057 3.79 0.000 .0087177 .0277122

mn_isei .0682472 .0164337 4.15 0.000 .0357704 .100724
high_school .1028108 .477141 0.22 0.830 -.8401311 1.045753

college .4531688 .5053447 0.90 0.371 -.5455101 1.451848
test_lang .6251822 .3821182 1.64 0.104 -.1299725 1.380337

one_for -.1089314 .2739724 -0.40 0.692 -.6503648 .432502
both_for -.2804038 .3264681 -0.86 0.392 -.925581 .3647734

_cons -5.877565 .954525 -6.16 0.000 -7.763929 -3.991201

id_school
var(_cons) .2955769 .1243375 .1287156 .6787495

Notes:

1. We svyset the design variables: id school is the PSU variable, wnrschbw contains weights at the

PSU level, n specifies that the students are identified by the individual observations, and pst1s1
contains our adjusted student-level conditional weights.

2. svyset notes the lack of a finite population correction in the first stage and informs us that only the

first-stage unit information will be used in the linearized variance estimator. However, the svy prefix

will still pass the stage-two weights to meglm.

https://www.stata.com/manuals/svysvy.pdf#svysvy
https://www.stata.com/manuals/memeglm.pdf#memeglmRemarksandexamplesex5
https://www.stata.com/manuals/svysvyset.pdf#svysvyset
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3. svy produces a different header, giving us an estimate of the population size, the design degrees of

freedom, and the number of first-stage sampling units.

Video example
Tour of multilevel GLMs

Stored results
meglm stores the following in e():

Scalars

e(N) number of observations

e(k) number of parameters

e(k dv) number of dependent variables

e(k eq) number of equations in e(b)
e(k eq model) number of equations in overall model test

e(k cat) number of categories (with ordinal outcomes)

e(k f) number of fixed-effects parameters

e(k r) number of random-effects parameters

e(k rs) number of variances

e(k rc) number of covariances

e(df m) model degrees of freedom

e(ll) log likelihood

e(chi2) 𝜒2

e(p) 𝑝-value for model test
e(ll c) log likelihood, comparison model

e(chi2 c) 𝜒2, comparison test
e(df c) degrees of freedom, comparison test

e(p c) 𝑝-value for comparison test
e(N clust) number of clusters

e(rank) rank of e(V)
e(ic) number of iterations

e(rc) return code

e(converged) 1 if converged, 0 otherwise

Macros

e(cmd) gsem
e(cmd2) meglm
e(cmdline) command as typed

e(depvar) name of dependent variable

e(wtype) weight type

e(wexp) weight expression (first-level weights)

e(fweightk) fweight variable for kth highest level, if specified

e(iweightk) iweight variable for kth highest level, if specified

e(pweightk) pweight variable for kth highest level, if specified

e(covariates) list of covariates

e(ivars) grouping variables

e(model) name of marginal model

e(title) title in estimation output

e(link) link

e(family) family

e(clustvar) name of cluster variable

e(offset) offset

e(binomial) binomial number of trials (with binomial models)

e(dispersion) mean or constant (with negative binomial models)

https://www.youtube.com/watch?v=SbwApki_BnI&feature=youtu.be
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e(intmethod) integration method

e(n quad) number of integration points

e(chi2type) Wald; type of model 𝜒2

e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.

e(opt) type of optimization

e(which) max or min; whether optimizer is to perform maximization or minimization

e(ml method) type of ml method

e(user) name of likelihood-evaluator program

e(technique) maximization technique

e(datasignature) the checksum

e(datasignaturevars) variables used in calculation of checksum

e(properties) b V
e(estat cmd) program used to implement estat
e(predict) program used to implement predict
e(marginsnotok) predictions disallowed by margins
e(marginswtype) weight type for margins
e(marginswexp) weight expression for margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices

e(b) coefficient vector

e(Cns) constraints matrix

e(cat) category values (with ordinal outcomes)

e(ilog) iteration log (up to 20 iterations)

e(gradient) gradient vector

e(N g) group counts

e(g min) group-size minimums

e(g avg) group-size averages

e(g max) group-size maximums

e(V) variance–covariance matrix of the estimators

e(V modelbased) model-based variance

Functions

e(sample) marks estimation sample

In addition to the above, the following is stored in r():

Matrices

r(table) matrix containing the coefficients with their standard errors, test statistics, 𝑝-values, and
confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when any

r-class command is run after the estimation command.

Methods and formulas
Methods and formulas are presented under the following headings:

Introduction
Gauss–Hermite quadrature
Adaptive Gauss–Hermite quadrature
Laplacian approximation
Survey data
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Introduction
Without a loss of generality, consider a two-level generalized mixed-effects model

𝐸(y𝑗|X𝑗,u𝑗) = 𝑔−1(X𝑗β + Z𝑗u𝑗), y ∼ 𝐹

for 𝑗 = 1, . . . , 𝑀 clusters, with the 𝑗th cluster consisting of 𝑛𝑗 observations, where, for the 𝑗th cluster,
y𝑗 is the 𝑛𝑗 × 1 response vector, X𝑗 is the 𝑛𝑗 × 𝑝 matrix of fixed predictors, Z𝑗 is the 𝑛𝑗 × 𝑞 matrix of
random predictors, u𝑗 is the 𝑞×1 vector of random effects, β is the 𝑝×1 vector of regression coefficients

on the fixed predictors, and we use 𝚺 to denote the unknown 𝑞 ×𝑞 variance matrix of the random effects.

For simplicity, we consider a model with no auxiliary parameters.

Let η𝑗 be the linear predictor, η𝑗 = X𝑗β+Z𝑗u𝑗, that also includes the offset or the exposure variable

when offset() or exposure() is specified. Let 𝑦𝑖𝑗 and 𝜂𝑖𝑗 be the 𝑖th individual elements of y𝑗 and

η𝑗, 𝑖 = 1, . . . , 𝑛𝑗. Let 𝑓(𝑦𝑖𝑗|𝜂𝑖𝑗) be the conditional density function for the response at observation 𝑖.
Because the observations are assumed to be conditionally independent, we can overload the definition

of 𝑓(⋅) with vector inputs to mean

log𝑓(y𝑗|η𝑗) =
𝑛𝑖

∑
𝑗=1

log𝑓(𝑦𝑖𝑗|𝜂𝑖𝑗)

The random effects u𝑗 are assumed to be multivariate normal with mean 0 and variance 𝚺. The

likelihood function for cluster 𝑗 is given by

ℒ𝑗(β, 𝚺) = (2𝜋)−𝑞/2|𝚺|−1/2 ∫
ℜ𝑞

𝑓(y𝑗|η𝑗) exp(−1
2
u′

𝑗𝚺
−1u𝑗) 𝑑u𝑗

= (2𝜋)−𝑞/2|𝚺|−1/2 ∫
ℜ𝑞

exp{ log𝑓(y𝑗|η𝑗) − 1
2
u′

𝑗𝚺
−1u𝑗} 𝑑u𝑗

(3)

where ℜ denotes the set of values on the real line and ℜ𝑞 is the analog in 𝑞-dimensional space.
The multivariate integral in (3) is generally not tractable, so we must use numerical methods to ap-

proximate the integral. We can use a change-of-variables technique to transform this multivariate integral

into a set of nested univariate integrals. Each univariate integral can then be evaluated using a form of

Gaussian quadrature. meglm supports three types of Gauss–Hermite quadratures: mean–variance adap-

tive Gauss–Hermite quadrature, mode-curvature adaptive Gauss–Hermite quadrature, and nonadaptive

Gauss–Hermite quadrature. meglm also offers the Laplacian-approximation method, which is used as a

default method for crossed mixed-effects models. Below we describe the four methods. The methods

described below are based on Skrondal and Rabe-Hesketh (2004, chap. 6.3).

Gauss–Hermite quadrature
Let u𝑗 = Lv𝑗, where v𝑗 is a 𝑞 × 1 random vector whose elements are independently standard normal

variables and L is the Cholesky decomposition of 𝚺, 𝚺 = LL′. Then η𝑗 = X𝑗β + Z𝑗Lv𝑗, and the

likelihood in (3) becomes

ℒ𝑗(β, 𝚺) = (2𝜋)−𝑞/2 ∫
ℜ𝑞

exp{ log𝑓(y𝑗|η𝑗) − 1
2
v′

𝑗v𝑗} 𝑑v𝑗

= (2𝜋)−𝑞/2 ∫
∞

−∞
. . .∫

∞

−∞
exp{ log𝑓(y𝑗|η𝑗) − 1

2

𝑞

∑
𝑘=1

𝑣2
𝑗𝑘} 𝑑v𝑗1, . . . , 𝑑v𝑗𝑞

(4)

https://www.stata.com/manuals/memeglm.pdf#memeglmMethodsandformulaseq3
https://www.stata.com/manuals/memeglm.pdf#memeglmMethodsandformulaseq3
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Consider a 𝑞-dimensional quadrature grid containing 𝑟 quadrature points in each dimension. Let

ak = (𝑎𝑘1
, . . . , 𝑎𝑘𝑞

)′ be a point on this grid, and letwk = (𝑤𝑘1
, . . . , 𝑤𝑘𝑞

)′ be the vector of corresponding

weights. The nonadaptive Gauss–Hermite quadrature approximation to the likelihood is

ℒGHQ
𝑗 (β, 𝚺) =

𝑟
∑
𝑘1=1

. . .
𝑟

∑
𝑘𝑞=1

[ exp{ log𝑓(y𝑗|η𝑗k)}
𝑞

∏
𝑝=1

𝑤𝑘𝑝
]

=
𝑟

∑
𝑘1=1

. . .
𝑟

∑
𝑘𝑞=1

[ exp{
𝑛𝑗

∑
𝑖=1

log𝑓(𝑦𝑖𝑗|𝜂𝑖𝑗k)}
𝑞

∏
𝑝=1

𝑤𝑘𝑝
]

where

η𝑗k = X𝑗β + Z𝑗Lak

and 𝜂𝑖𝑗k is the 𝑖th element of η𝑗k.

Adaptive Gauss–Hermite quadrature
This section sets the stage for mean–variance adaptive Gauss–Hermite quadrature and mode-

curvature adaptive Gauss–Hermite quadrature.

Let’s reconsider the likelihood in (4). We use 𝜙(v𝑗) to denote a multivariate standard normal with

mean 0 and variance I𝑞, and we use 𝜙(v𝑗|µ𝑗, 𝚲𝑗) to denote a multivariate normal with mean µ𝑗 and

variance 𝚲𝑗.

For fixed model parameters, the posterior density for v𝑗 is proportional to

𝜙(v𝑗)𝑓(y𝑗|η𝑗)

where

η𝑗 = X𝑗β + Z𝑗Lv𝑗

It is reasonable to assume that this posterior density can be approximated by amultivariate normal density

with mean vector µ𝑗 and variance matrix 𝚲𝑗. Instead of using the prior density of v𝑗 as the weighting

distribution in the integral, we can use our approximation for the posterior density,

ℒ𝑗(β, 𝚺) = ∫
ℜ𝑞

𝑓(y𝑗|η𝑗)𝜙(v𝑗)
𝜙(v𝑗|µ𝑗, 𝚲𝑗)

𝜙(v𝑗|µ𝑗, 𝚲𝑗) 𝑑v𝑗

Then the mean–variance adaptive Gauss–Hermite approximation to the likelihood is

ℒMVAGH
𝑗 (β, 𝚺) =

𝑟
∑
𝑘1=1

. . .
𝑟

∑
𝑘𝑞=1

[ exp{ log𝑓(y𝑗|η𝑗k)}
𝑞

∏
𝑝=1

𝑤∗
𝑗𝑘𝑝

]

where

η𝑗k = X𝑗β + Z𝑗La
∗
𝑗k

https://www.stata.com/manuals/memeglm.pdf#memeglmMethodsandformulaseq4
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and a∗
𝑗k and 𝑤∗

𝑗𝑘𝑝
are the abscissas and weights after an orthogonalizing transformation of a𝑗k and 𝑤𝑗𝑘𝑝

,

respectively, which eliminates posterior covariances between the random effects.

Estimates of µ𝑗 and 𝚲𝑗 are computed using one of two different methods. The mean µ𝑗 and vari-

ance 𝚲𝑗 are computed iteratively by updating the posterior moments with the mean–variance adaptive

Gauss–Hermite approximation, starting with a 0mean vector and identity variancematrix. For the mode-

curvature adaptive Gauss–Hermite approximation, µ𝑗 and 𝚲𝑗 are computed by optimizing the integrand

with respect to v𝑗, where µ𝑗 is the optimal value and 𝚲𝑗 is the curvature at µ𝑗.

Laplacian approximation
Consider the likelihood in (3) and denote the argument in the exponential function by

ℎ(β, 𝚺, u𝑗) = log𝑓(y𝑗|X𝑗β + Z𝑗u𝑗) − 1
2
u′

𝑗𝚺
−1u𝑗

The Laplacian approximation is based on a second-order Taylor expansion of ℎ(β, 𝚺, u𝑗) about the value
of u𝑗 that maximizes it. The first and second partial derivatives with respect to u𝑗 are

ℎ′(β, 𝚺, u𝑗) =
𝜕ℎ(β, 𝚺, u𝑗)

𝜕u𝑗
= Z′

𝑗
𝜕 log𝑓(y𝑗|η𝑗)

𝜕η𝑗
− 𝚺−1u𝑗

ℎ″(β, 𝚺, u𝑗) =
𝜕2ℎ(β, 𝚺, u𝑗)

𝜕u𝑗𝜕u′
𝑗

= Z′
𝑗
𝜕2 log𝑓(y𝑗|η𝑗)

𝜕η𝑗𝜕η
′
𝑗

Z𝑗 − 𝚺−1

The maximizer of ℎ(β, 𝚺, u𝑗) is û𝑗 such that ℎ′(β, 𝚺, û𝑗) = 0. The integral in (3) is proportional to the

posterior density of u𝑗 given the data, so û𝑗 is also the posterior mode.

Pinheiro and Chao (2006) show that the posterior mode, û𝑗, and curvature, ℎ″(β, 𝚺, û𝑗)−1, can be

efficiently computed as the iterative solution to a least-squares problem by using matrix decomposition

methods similar to those used in fitting linear mixed-effects models (Bates and Pinheiro 1998; Pinheiro

and Bates 2000).

Let

p̂𝑗 = X𝑗β + Z𝑗 ̂u𝑗

S1 =
𝜕 log𝑓(y𝑗|p̂𝑗)

𝜕 ̂p𝑗

S2 = 𝜕S1
𝜕p̂′

𝑗
=

𝜕2 log𝑓(y𝑗|p̂𝑗)
𝜕p̂𝑗𝜕p̂′

𝑗

H𝑗 = ℎ″(β, 𝚺, û𝑗) = Z′
𝑗S2Z𝑗 − 𝚺−1

then

0 = ℎ′(β, 𝚺, û𝑗) = Z′
𝑗S1 − 𝚺−1û𝑗
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Given the above, the second-order Taylor approximation takes the form

ℎ(β, 𝚺, u𝑗) ≈ ℎ(β, 𝚺, ̂u𝑗) + 1
2

(u𝑗 − û𝑗)′H𝑗(u𝑗 − û𝑗)

because the first-order derivative term is 0. The integral is approximated by

∫
ℜ𝑞

exp{ℎ(β, 𝚺, u𝑗)} 𝑑u𝑗 ≈ (2𝜋)𝑞/2 ∣−H𝑗∣
−1/2

exp{ℎ(β, 𝚺, û𝑗)}

Thus the Laplacian approximated log likelihood is

logℒLap
𝑗 (β, 𝚺) = −1

2
log|𝚺| − 1

2
log ∣−H𝑗∣ + ℎ(β, 𝚺, û𝑗)

The log likelihood for the entire dataset is simply the sum of the contributions of the 𝑀 individual

clusters, namely, ℒ(β, 𝚺) = ∑𝑀
𝑗=1 ℒ𝑗(β, 𝚺).

Maximization of ℒ(β, 𝚺) is performed with respect to (β, 𝛔2), where 𝛔2 is a vector comprising

the unique elements of 𝚺. Parameter estimates are stored in e(b) as (β̂, �̂�2), with the corresponding

variance–covariance matrix stored in e(V). In the presence of auxiliary parameters, their estimates and
standard errors are included in e(b) and e(V), respectively.

Survey data
In the presence of sampling weights, following Rabe-Hesketh and Skrondal (2006), the weighted log

pseudolikelihood for a two-level model is given as

ℒ(β, 𝚺) =
𝑀

∑
𝑗=1

𝑤𝑗 log∫
∞

−∞
exp{

𝑛𝑗

∑
𝑖=1

𝑤𝑖|𝑗 log𝑓(𝑦𝑖𝑗|𝜂𝑖𝑗)} 𝜙(v𝑗1) 𝑑v𝑗1 (5)

where 𝑤𝑗 is the inverse of the probability of selection for the 𝑗th cluster; 𝑤𝑖|𝑗 is the inverse of the condi-

tional probability of selection of individual 𝑖, given the selection of cluster 𝑗, 𝑓(⋅) is as defined previously;
and 𝜙(⋅) is the standard multivariate normal density.

Weighted estimation is achieved through the direct application of 𝑤𝑗 and 𝑤𝑖|𝑗 into the likelihood

calculations as detailed above to reflect replicated clusters for 𝑤𝑗 and replicated observations within

clusters for 𝑤𝑖|𝑗. Because this estimation is based on replicated clusters and observations, frequency

weights are handled similarly.

Weights are not allowed with crossed models or the Laplacian approximation.
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