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me — Introduction to multilevel mixed-effects models

Description Quick start Syntax Remarks and examples
Acknowledgments References Also see

Description
Mixed-effects models are characterized as containing both fixed effects and random effects. The

fixed effects are analogous to standard regression coefficients and are estimated directly. The random

effects are not directly estimated (although they may be obtained postestimation) but are summarized

according to their estimated variances and covariances. Random effects may take the form of either

random intercepts or random coefficients, and the grouping structure of the data may consist of multiple

levels of nested groups. As such, mixed-effects models are also known in the literature as multilevel

models and hierarchical models. Mixed-effects commands fit mixed-effects models for a variety of

distributions of the response conditional on normally distributed random effects.

Mixed-effects linear regression

mixed Multilevel mixed-effects linear regression

Mixed-effects generalized linear model

meglm Multilevel mixed-effects generalized linear models

Mixed-effects censored regression

metobit Multilevel mixed-effects tobit regression

meintreg Multilevel mixed-effects interval regression

Mixed-effects binary regression

melogit Multilevel mixed-effects logistic regression

meprobit Multilevel mixed-effects probit regression

mecloglog Multilevel mixed-effects complementary log–log regression

Mixed-effects ordinal regression

meologit Multilevel mixed-effects ordered logistic regression

meoprobit Multilevel mixed-effects ordered probit regression

Mixed-effects count-data regression

mepoisson Multilevel mixed-effects Poisson regression

menbreg Multilevel mixed-effects negative binomial regression

1
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Mixed-effects multinomial regression

Although there is no memlogit command, multilevel mixed-effects multinomial
logistic models can be fit using gsem; see [SEM] Example 41g.

Mixed-effects survival model

mestreg Multilevel mixed-effects parametric survival models

Nonlinear mixed-effects regression

menl Nonlinear mixed-effects regression

Postestimation tools specific to mixed-effects commands

estat df Calculate and display degrees of freedom for fixed effects

estat group Summarize the composition of the nested groups

estat icc Estimate intraclass correlations

estat recovariance Display the estimated random-effects covariance matrices

estat sd Display variance components as standard deviations and correlations

estat wcorrelation Display within-cluster correlations and standard deviations

Quick start

Linear mixed-effects models

Linear model of y on x with random intercepts by id
mixed y x || id:

Three-level linear model of y on x with random intercepts by doctor and patient
mixed y x || doctor: || patient:

Linear model of y on x with random intercepts and coefficients on x by id
mixed y x || id: x

Same model with covariance between the random slope and intercept

mixed y x || id: x, covariance(unstructured)

Linear model of y on x with crossed random effects for id and week
mixed y x || _all: R.id || _all: R.week

Same model specified to be more computationally efficient

mixed y x || _all: R.id || week:

Full factorial repeated-measures ANOVA of y on a and b with random effects by field
mixed y a##b || field:
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Generalized linear mixed-effects models

Logistic model of y on x with random intercepts by id, reporting odds ratios
melogit y x || id: , or

Same model specified as a GLM

meglm y x || id:, family(bernoulli) link(logit)

Three-level ordered probit model of y on x with random intercepts by doctor and patient
meoprobit y x || doctor: || patient:

Nonlinear mixed-effects models

Nonlinear mixed-effects regression of y on x1 and x2 with parameters {b0}, {b1}, {b2}, and {b3} and
random intercepts U0 by id

menl y = ({b0}+{b1}*x1+{U0[id]})/(1+exp(-(x2-{b2})/{b3}))

Same as above, but using the more efficient specification of the linear combination

menl y = ({lc: x1 U0[id]})/(1+exp(-(x2-{b2})/{b3}))

Same as above, but using define() to specify the linear combination
menl y = {lc:}/(1+exp(-(x2-{b2})/{b3})), define(lc: x1 U0[id])

Include a random slope on continuous variable x1 in the define() option, and allow correlation between

random slopes U1 and intercepts U0
menl y = {lc:}/(1+exp(-(x2-{b2})/{b3})), ///
define(lc: x1 U0[id] c.x1#U1[id]) covariance(U0 U1, unstructured)

Specify a heteroskedastic within-subject error structure that varies as a power of predicted mean values

yhat
menl y = {lc:}/(1+exp(-(x2-{b2})/{b3})), ///
define(lc: x1 U0[id] c.x1#U1[id]) ///
covariance(U0 U1, unstructured) resvariance(power _yhat)

Three-level nonlinear regression of y on x1 with random intercepts W0 and slopes W1 on continuous x1
by lev2 and with random intercepts S0 and slopes S1 on x1 by lev3, with lev2 nested within lev3,
using unstructured covariance for W0 and W1 and exchangeable covariance for S0 and S1

menl y = {phi1:}+{b1}*cos({b2}*x1), ///
define(phi1: x1 W0[lev3] S0[lev3>lev2] ///

c.x1#(W1[lev3] S1[lev3>lev2])) ///
covariance(W0 W1, unstructured) covariance(S0 S1, exchangeable)
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Syntax
Linear mixed-effects models

mixed depvar fe equation [ || re equation ] [ || re equation ... ] [ , options ]

where the syntax of the fixed-effects equation, fe equation, is

[ indepvars ] [ if ] [ in ] [weight ] [ , fe options ]

and the syntax of a random-effects equation, re equation, is the same as below for a generalized linear

mixed-effects model.

Generalized linear mixed-effects models

mecmd depvar fe equation [ || re equation ] [ || re equation ... ] [ , options ]

where the syntax of the fixed-effects equation, fe equation, is

[ indepvars ] [ if ] [ in ] [ , fe options ]

and the syntax of a random-effects equation, re equation, is one of the following:

for random coefficients and intercepts

levelvar: [ varlist ] [ , re options ]

for random effects among the values of a factor variable in a crossed-effects model

levelvar: R.varname

levelvar is a variable identifying the group structure for the random effects at that level or is all repre-
senting one group comprising all observations.

Nonlinear mixed-effects models

menl depvar = <menlexpr> [ if ] [ in ] [ , options ]

<menlexpr> defines a nonlinear regression function as a substitutable expression that contains model

parameters and random effects specified in braces {}, as in exp({b}+{U[id]}); see Random-effects
substitutable expressions in [ME] menl for details.
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Remarks and examples
Remarks are presented under the following headings:

Introduction
Using mixed-effects commands
Mixed-effects models

Linear mixed-effects models
Generalized linear mixed-effects models
Survival mixed-effects models
Nonlinear mixed-effects models
Alternative mixed-effects model specification
Likelihood calculation
Computation time and the Laplacian approximation
Diagnosing convergence problems
Distribution theory for likelihood-ratio test

Examples
Two-level models
Covariance structures
Three-level models
Crossed-effects models
Nonlinear models

Introduction
Multilevel models have been used extensively in diverse fields, from the health and social sciences

to econometrics. Mixed-effects models for binary outcomes have been used, for example, to analyze the

effectiveness of toenail infection treatments (Lesaffre and Spiessens 2001) and to model union member-

ship of young males (Vella and Verbeek 1998). Ordered outcomes have been studied by, for example,

Tutz and Hennevogl (1996), who analyzed data on wine bitterness, and De Boeck and Wilson (2004),

who studied verbal aggressiveness. For applications of mixed-effects models for count responses, see,

for example, the study on police stops in New York City (Gelman and Hill 2007) and the analysis of

the number of patents (Hall, Griliches, and Hausman 1986). Rabe-Hesketh and Skrondal (2022) provide

more examples of linear and generalized linear mixed-effects models. Nonlinear mixed-effects (NLME)

models are popular in, for example, population pharmacokinetics, bioassays, and studies of biological

and agricultural growth processes.

For a comprehensive treatment of mixed-effects models, see, for example, Searle, Casella, and Mc-

Culloch (1992); Verbeke and Molenberghs (2000); Raudenbush and Bryk (2002); Hedeker and Gibbons

(2006); McCulloch, Searle, and Neuhaus (2008); and Rabe-Hesketh and Skrondal (2022). For NLME

models, see, for example, Davidian and Giltinan (1995); Vonesh and Chinchilli (1997); Demidenko

(2013); Pinheiro and Bates (2000); and Davidian and Giltinan (2003).
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� �
Shayle R. Searle (1928–2013) was born in New Zealand. He obtained his PhD in animal breeding

from Cornell University in 1958, with a minor in statistics. Prior to moving to NewYork, he worked

as a research statistician for the New Zealand Dairy Board, which provided the data that he would

analyze for his thesis. After completing his doctoral degree, he worked as a research associate and

published several articles. He later returned to his post as a statistician in New Zealand, a position

which would have a lasting influence on his career.

Through his analysis of dairy production data, Searle made advancements in estimation methods for

unbalanced data and published a book on this topic. He later returned to Cornell University, teach-

ing courses in matrix algebra, linear regression models, and estimation of variance components.

Searle was one of the first few statisticians to use matrices in statistics, and he wrote a couple of

books applying matrix algebra to economics and statistics. In 2001, he published a book on mixed

models, which proved to be a significant contribution considering that not many statisticians were

well acquainted with random effects in the 1950s. His contributions did not go unnoticed: he was

awarded the Alexander von Humboldt US Senior Scientist Award and was elected a fellow of the

Royal Statistical Society and of the American Statistical Association.� �� �
George Casella (1951–2012) was born in Bronx, New York. After obtaining a PhD in statistics

from Purdue University, he went on to join the faculty at Rutgers University, and later Cornell

University, where he taught for 19 years, and the University of Florida. He published on topics

such as confidence estimation, Bayesian analysis, and empirical Bayes methods. In general, his

work was motivated by applications to science, and in particular, his work on variable selection and

clustering was motivated by genetics. Casella coauthored a book with Roger Berger that introduced

many graduate students to mathematical statistics. He coauthored another book with Christian P.

Robert on Monte Carlo methods. In addition to his own published work, Casella was an editor for

three journals: Statistical Science, Journal of the American Statistical Society, and Journal of the

Royal Statistical Society.

Casella’s many contributions are reflected in his election to fellowship on behalf of four different

associations and institutes and being made a foreign member of the Spanish Royal Academy of

Sciences. He acquired the Spanish language during a year he spent in Spain for sabbatical and even

gave talks on Monte Carlo methods in Spanish. Aside from his academic accomplishments, Casella

completed 13 marathons and spent time as a volunteer firefighter.� �
Using mixed-effects commands

Below we summarize general capabilities of the mixed-effects commands. We let mecmd stand for

any mixed-effects command, such as mixed, melogit, or meprobit, except menl. menl models the

mean function nonlinearly and thus has a different syntax; see [ME] menl.

1. Fit a two-level random-intercept model with levelvar defining the second level:

. mecmd depvar [ indepvars ] ... || levelvar:, ...

https://www.stata.com/giftshop/bookmarks/series10/casella/
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2. Fit a two-level random-coefficients model containing the random-effects covariates revars at the

level levelvar:

. mecmd depvar [ indepvars ] ... || levelvar: revars, ...

This model assumes an independent covariance structure between the random effects; that is, all

covariances are assumed to be 0. There is no statistical justification, however, for imposing any

particular covariance structure between random effects at the onset of the analysis. In practice,

models with an unstructured random-effects covariance matrix, which allows for distinct variances

and covariances between all random-effects covariates (revars) at the same level, must be explored

first; see Other covariance structures and example 3 in [ME] melogit for details.

Stata’s commands use the default independent covariance structure for computational feasibility.

Numerical methods for fitting mixed-effects models are computationally intensive—computation

time increases significantly as the number of parameters increases; see Computation time and the

Laplacian approximation for details. The unstructured covariance is the most general and contains

many parameters, which may result in an unreasonable computation time even for relatively simple

random-effects models. Whenever feasible, however, you should start your statistical analysis by

fitting mixed-effects models with an unstructured covariance between random effects, as we show

next.

3. Specify the unstructured covariance between the random effects in the above:

. mecmd depvar [ indepvars ] ... || levelvar: revars, covariance(unstructured) ...

4. Fit a three-level nested model with levelvar1 defining the third level and levelvar2 defining the

second level:

. mecmd depvar [ indepvars ] ... || levelvar1: || levelvar2:, ...

5. Fit the above three-level nested model as a two-level model with exchangeable covariance structure

at the second level (mixed only):

. mecmd depvar [ indepvars ] ... || levelvar1: R.levelvar2, cov(exchangeable) ...

See example 11 in [ME]mixed for details about this equivalent specification. This specification may

be useful for a more efficient fitting of random-effects models with a mixture of crossed and nested

effects.

6. Fit higher-level nested models:

. mecmd depvar [ indepvars ] ... || levelvar1: || levelvar2: || levelvar3: || ...

7. Fit a two-way crossed-effects model with the all: notation for each random-effects equation:

. mecmd depvar [ indepvars ] ... || _all: R.factor1 || _all: R.factor2 ...

When you use the all: notation for each random-effects equation, the total dimension of the

random-effects design equals 𝑟1 + 𝑟2, where 𝑟1 and 𝑟2 are the numbers of levels in factor1 and

factor2, respectively. This specificationmay be infeasible for somemixed-effects models; see item 8

below for a more efficient specification of this model.

8. Fit a two-way crossed-effects model with the all: notation for the first random-effects equation

only:

. mecmd depvar [ indepvars ] ... || _all: R.factor1 || factor2:, ...

Compared with the specification in item 7, this specification requires only 𝑟1 + 1 parameters and is

thus more efficient; see Crossed-effects models for details.
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9. Fit a two-way full-factorial random-effects model:

. mecmd depvar [ indepvars ] ... || _all: R.factor1 || factor2: || factor1: ...

10. Fit a two-level mixed-effects model with a blocked-diagonal covariance structure between revars1

and revars2:

. mecmd depvar [ indepvars ] ... || levelvar: revars1, noconstant ///
|| levelvar: revars2, noconstant ...

11. Fit a linear mixed-effects model where the correlation between the residual errors follows an autore-

gressive process of order 1:

. mixed depvar [ indepvars ] ... || levelvar:, residuals(ar 1, t(time)) ...

More residual error structures are available; see [ME] mixed for details.

12. Fit a two-level linear mixed-effects model accounting for sampling weights expr1 at the first (resid-

ual) level and for sampling weights expr2 at the level of levelvar:

. mixed depvar [ indepvars ] [pweight=expr1] ... || levelvar:, pweight(expr2) ...

Mixed-effects commands—with the exception of mixed—allow constraints on both fixed-effects

and random-effects parameters. We provide several examples below of imposing constraints on

variance components.

13. Fit a mixed-effects model with the variance of the random intercept on levelvar constrained to be 16:

. constraint 1 _b[var(_cons[levelvar]):_cons]=16

. mecmd depvar [ indepvars ] ... || levelvar:, constraints(1) ...

14. Fit a mixed-effects model with the variance of the random intercept on levelvar and the variance of

the random slope on revar to be equal:

. constraint 1 _b[var(revar[levelvar]):_cons] = _b[var(_cons[levelvar]):_cons]

. mecmd depvar [ indepvars ] ... || levelvar: revar, constraints(1) ...

Note that the constraints above are equivalent to imposing an identity covariance structure for the

random-effects equation:

. mecmd depvar [ indepvars ] ... || levelvar: revar, cov(identity) ...

15. Assuming four random slopes revars, fit a mixed-effects model with the variance components at the

level of levelvar constrained to have a banded structure:

. mat p = (1,.,.,. \ 2,1,.,. \ 3,2,1,. \ 4,3,2,1)

. mecmd depvar [ indepvars ] ... || levelvar: revars, noconstant ///
covariance(pattern(p)) ...

16. Assuming four random slopes revars, fit a mixed-effects model with the variance components at the

level of levelvar constrained to the specified numbers, and with all the covariances constrained to

be 0:

. mat f = diag((1,2,3,4))

. mecmd depvar [ indepvars ] ... || levelvar: revars, noconstant ///
covariance(fixed(f)) ...

The variance components in models in items 15 and 16 can also be constrained by using the

constraints() option, but using covariance(pattern()) or covariance(fixed()) is more con-
venient.
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Mixed-effects models

Linear mixed-effects models

Linear mixed-effects (LME) models for continuous responses are a generalization of linear regression

allowing for the inclusion of random deviations (effects) other than those associated with the overall

error term. In matrix notation,

y = Xβ + Zu + ε (1)

where y is the 𝑛×1 vector of responses, X is an 𝑛×𝑝 design/covariate matrix for the fixed effects β, and
Z is the 𝑛 × 𝑞 design/covariate matrix for the random effects u. The 𝑛 × 1 vector of errors ε is assumed
to be multivariate normal with mean 0 and variance matrix 𝜎2

𝜖R.

The fixed portion of (1), Xβ, is analogous to the linear predictor from a standard OLS regression

model with β being the regression coefficients to be estimated. For the random portion of (1), Zu + ε,
we assume that u has variance–covariance matrix G and that u is orthogonal to ε so that

Var [u
ε
] = [G 0

0 𝜎2
𝜖R

]

The random effects u are not directly estimated (although they may be predicted) but instead are char-

acterized by the elements of G, known as variance components, that are estimated along with the error-

covariance parameters that include the overall error variance 𝜎2
𝜖 and the parameters that are contained

within R.

The general forms of the design matrices X and Z allow estimation for a broad class of linear mod-

els: blocked designs, split-plot designs, growth curves, multilevel or hierarchical designs, etc. They

also allow a flexible method of modeling within-cluster correlation. Subjects within the same cluster

can be correlated as a result of a shared random intercept, or through a shared random slope on age (for

example), or both. The general specification of G also provides additional flexibility: the random in-

tercept and random slope could themselves be modeled as independent, or correlated, or independent

with equal variances, and so forth. The general structure of R also allows for within-cluster errors to be

heteroskedastic and correlated and allows flexibility in exactly how these characteristics can be modeled.

In clustered-data situations, it is convenient not to consider all 𝑛 observations at once but instead to

organize the mixed model as a series of 𝑀 independent groups (or clusters)

y𝑗 = X𝑗β + Z𝑗u𝑗 + ε𝑗 (2)

for 𝑗 = 1, . . . , 𝑀, with cluster 𝑗 consisting of 𝑛𝑗 observations. The response y𝑗 comprises the rows of

y corresponding with the 𝑗th cluster, with X𝑗 and ε𝑗 defined analogously. The random effects u𝑗 can

now be thought of as 𝑀 realizations of a 𝑞 × 1 vector that is normally distributed with mean 0 and 𝑞 × 𝑞
variance matrix 𝚺. The matrix Z𝑗 is the 𝑛𝑗 × 𝑞 design matrix for the 𝑗th cluster random effects. Relating

this to (1),

Z =
⎡
⎢⎢
⎣

Z1 0 · · · 0

0 Z2 · · · 0

⋮ ⋮ ⋱ ⋮
0 0 0 Z𝑀

⎤
⎥⎥
⎦

; u = ⎡⎢
⎣

u1
⋮
u𝑀

⎤⎥
⎦

; G = I𝑀 ⊗ 𝚺; R = I𝑀 ⊗ 𝚲

where 𝚲 denotes the variance matrix of the level-1 errors and ⊗ is the Kronecker product.
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The mixed-model formulation (2) is from Laird and Ware (1982) and offers two key advantages.

First, it makes specifications of random-effects terms easier. If the clusters are schools, you can simply

specify a random effect at the school level, as opposed to thinking of what a school-level random effect

would mean when all the data are considered as a whole (if it helps, think Kronecker products). Second,

representing a mixed-model with (2) generalizes easily to more than one set of random effects. For

example, if classes are nested within schools, then (2) can be generalized to allow random effects at both

the school and the class-within-school levels.

By our convention on counting and ordering model levels, (2) is a two-level model, with extensions

to three, four, or any number of levels. The observation 𝑦𝑖𝑗 is for individual 𝑖 within cluster 𝑗, and the
individuals compose the first level, whereas the clusters compose the second level of the model. In a

hypothetical three-level model with classes nested within schools, the observations within classes (the

students, presumably) would constitute the first level, the classes would constitute the second level, and

the schools would constitute the third level. This differs from certain citations in the classicalANOVA lit-

erature and texts such as Pinheiro and Bates (2000) but is the standard in the vast literature on hierarchical

models, for example, Skrondal and Rabe-Hesketh (2004).

In Stata, you can use mixed to fit linearmixed-effectsmodels; see [ME]mixed for a detailed discussion

and examples. Various predictions, statistics, and diagnostic measures are available after fitting an LME

model with mixed. For the most part, calculation centers around obtaining estimates of random effects;

see [ME] mixed postestimation for a detailed discussion and examples.

Generalized linear mixed-effects models

Generalized linear mixed-effects (GLME) models, also known as generalized linear mixed models

(GLMMs), are extensions of generalized linear models allowing for the inclusion of random deviations

(effects). In matrix notation,

𝑔{𝐸(y|X,u)} = Xβ + Zu, y ∼ 𝐹 (3)

where y is the 𝑛 × 1 vector of responses from the distributional family 𝐹, X is an 𝑛 × 𝑝 design/covariate
matrix for the fixed effects β, and Z is an 𝑛 × 𝑞 design/covariate matrix for the random effects u. The

Xβ + Zu part is called the linear predictor and is often denoted as η. 𝑔(⋅) is called the link function and
is assumed to be invertible such that

𝐸(y|u) = 𝑔−1(Xβ + Zu) = 𝐻(η) = µ

For notational convenience here and throughout this manual entry, we suppress the dependence of y on

X. Substituting various definitions for 𝑔(⋅) and 𝐹 results in a wide array of models. For instance, if 𝑔(⋅)
is the logit function and y is distributed as Bernoulli, we have

logit{𝐸(y|u)} = Xβ + Zu, y ∼ Bernoulli

or mixed-effects logistic regression. If 𝑔(⋅) is the natural log function and y is distributed as Poisson, we
have

ln{𝐸(y|u)} = Xβ + Zu, y ∼ Poisson

or mixed-effects Poisson regression.

For the random portion of (3), Zu, we assume that u has variance–covariance matrix G such that

Var(u) = G
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The random effects u are not directly estimated (although they may be predicted) but instead are charac-

terized by the elements of G, known as variance components.

Analogously to (2), in clustered-data situations, we can write

𝐸(y𝑗|u𝑗) = 𝑔−1(X𝑗β + Z𝑗u𝑗) y𝑗 ∼ 𝐹

with all the elements defined as before. In terms of the whole dataset, we now have

Z =
⎡
⎢⎢
⎣

Z1 0 · · · 0

0 Z2 · · · 0

⋮ ⋮ ⋱ ⋮
0 0 0 Z𝑀

⎤
⎥⎥
⎦

; u = ⎡⎢
⎣

u1
⋮
u𝑀

⎤⎥
⎦

; G = I𝑀 ⊗ 𝚺

In Stata, you can use meglm to fit mixed-effects models for nonlinear responses. Some combinations
of families and links are so common that we implemented them as separate commands in terms of meglm.

Command meglm equivalent
melogit family(bernoulli) link(logit)
meprobit family(bernoulli) link(probit)
mecloglog family(bernoulli) link(cloglog)
meologit family(ordinal) link(logit)
meoprobit family(ordinal) link(probit)
mepoisson family(poisson) link(log)
menbreg family(nbinomial) link(log)

When no family–link combination is specified, meglm defaults to a Gaussian family with an identity
link. Thus meglm can be used to fit linear mixed-effects models; however, for those models we recom-
mend using the more specialized mixed, which, in addition to meglm capabilities, allows for modeling
of the structure of the within-cluster errors; see [ME] mixed for details.

Various predictions, statistics, and diagnostic measures are available after fitting a GLME model with

meglm and other me commands. For the most part, calculation centers around obtaining estimates of

random effects; see [ME] meglm postestimation for a detailed discussion and examples.

Survival mixed-effects models

Parametric survival mixed-effects models use a trivariate response variable (𝑡0, 𝑡, 𝑑), where each re-
sponse corresponds to a period under observation (𝑡0, 𝑡] and results in either failure (𝑑 = 1) or right-

censoring (𝑑 = 0) at time 𝑡. See [ST] streg for background information on parametric survival models.
Two often-used models for adjusting survivor functions for the effects of covariates are the accelerated

failure-time (AFT) model and the multiplicative or proportional hazards (PH) model.

In the AFT parameterization, the natural logarithm of the survival time, log 𝑡, is expressed as a linear
function of the covariates. When we incorporate random effects, this yields the model

log(t𝑗) = X𝑗β + Z𝑗u𝑗 + v𝑗

where log(⋅) is an elementwise function, and v𝑗 is a vector of observation-level errors. The distributional

form of the error term determines the regression model.
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In the PH model, the covariates have a multiplicative effect on the hazard function

ℎ(t𝑗) = ℎ0(t𝑗) exp(X𝑗β + Z𝑗u𝑗)

where all the functions are elementwise, and ℎ0(⋅) is a baseline hazard function. The functional form of

ℎ0(⋅) determines the regression model.
In Stata, you can use mestreg to fit multilevel mixed-effects parametric survival models for the

following distributions and parameterizations.

Distribution Parameterization

exponential PH, AFT

loglogistic AFT

weibull PH, AFT

lognormal AFT

gamma AFT

mestreg is suitable only for data that have been set using the stset command. By using stset
on your data, you define the variables t0, t, and d, which serve as the trivariate response. See

[ME] mestreg for more details about the command. Various predictions, statistics, and diagnostic mea-

sures are available after fitting a mixed-effects survival model with mestreg; see [ME]mestreg postes-

timation for a detailed discussion and examples.

Nonlinear mixed-effects models

NLME models are models containing both fixed effects and random effects where some of, or all,

the fixed and random effects enter the model nonlinearly. They can be viewed as a generalization of

LME models, in which the conditional mean of the outcome given the random effects is a nonlinear

function of the coefficients and random effects. Alternatively, they can be considered as an extension

of nonlinear regression models for independent data (see [R] nl), in which coefficients may incorporate

random effects, allowing them to vary across different levels of hierarchy and thus inducing correlation

within observations at the same level.

Using the notation from Linear mixed-effects models for LMEmodels for clustered data, we can write

an NLME model as

y𝑗 = µ (A𝑗,β,u𝑗) + ε𝑗

where µ(⋅) is a real-valued vector function and A𝑗 is an 𝑛𝑗 × 𝑙 matrix of covariates for the 𝑗th cluster,
which includes both within-subject and between-subject covariates. Do not be surprised to see the A𝑗
matrix here instead of the more familiar fixed-effects and random-effects design matricesX𝑗 andZ𝑗 from

previous sections. Because both covariates and parameters can enter the model nonlinearly in NLME, we

cannot express the regression function as a function containing the linear term X𝑗β + Z𝑗u𝑗 as we can

for LME and GLME models. The distributional assumptions on u𝑗’s and ε𝑗’s are the same as for the LME

models.

Parameters of NLME models often have scientifically meaningful interpretations, and research ques-

tions are formed based on them. To allow parameters to reflect phenomena of interest, NLMEmodels are

often formulated by using a multistage formulation; see Alternative mixed-effects model specification

below for examples.
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We can formulate our previous NLME model as a two-stage hierarchical model:

Stage 1: Individual-level model 𝑦𝑖𝑗 = 𝑚 (x𝑤
𝑖𝑗, φ𝑗) + 𝜖𝑖𝑗, 𝑖 = 1, . . . , 𝑛𝑗

Stage 2: Group-level model φ𝑗 = 𝑑 (x𝑏
𝑗, β, u𝑗) , 𝑗 = 1, . . . , 𝑀

In stage 1, we model the response by using a function 𝑚(⋅), which describes within-subject behavior.
This function depends on subject-specific parameters φ𝑗’s, which have a natural physical interpretation,

and a vector of within-subject covariates x𝑤
𝑖𝑗. In stage 2, we use a known vector-valued function 𝑑(⋅)

to model between-subject behavior, that is, to model φ𝑗’s and to explain how they vary across subjects.

The 𝑑(⋅) function incorporates random effects and, optionally, a vector of between-subject covariates x𝑏
𝑗 .

The general idea is to specify a common functional form for each subject in stage 1 and then allow some

parameters to vary randomly across subjects in stage 2.

You can use the menl command to fitNLMEmodels to continuous outcomes; see [ME]menl. menl sup-
ports both the single-equation and multistage model formulations. It supports different covariance struc-

tures for random effects and can model heteroskedasticity and correlations within lowest-level groups.

Various predictions, statistics, and diagnostic measures are available after fitting an NLME model; see

[ME] menl postestimation.

For an introductory example, see Nonlinear models.

Alternative mixed-effects model specification

In this section, we present a hierarchical or multistage formulation of mixed-effects models where

each level is described by its own set of equations. This formulation is common for NLME models; see

Nonlinear mixed-effects models.

Consider a random-intercept model that we write here in general terms:

𝑦𝑖𝑗 = 𝛽0 + 𝛽1𝑥𝑖𝑗 + 𝑢𝑗 + 𝜖𝑖𝑗 (4)

This single-equation specification contains both level-1 and level-2 effects. In the hierarchical form, we

specify a separate equation for each level.

𝑦𝑖𝑗 = 𝛾0𝑗 + 𝛽1𝑥𝑖𝑗 + 𝜖𝑖𝑗

𝛾0𝑗 = 𝛽00 + 𝑢0𝑗
(5)

The equation for the intercept 𝛾0𝑗 consists of the overall mean intercept 𝛽00 and a cluster-specific

random intercept 𝑢0𝑗. To fit this model by using, for example, mixed, we must translate the multiple-
equation notation into a single-equation form. We substitute the second equation into the first one and

rearrange terms.

𝑦𝑖𝑗 = 𝛽00 + 𝑢0𝑗 + 𝛽1𝑥𝑖𝑗 + 𝜖𝑖𝑗

= 𝛽00 + 𝛽1𝑥𝑖𝑗 + 𝑢0𝑗 + 𝜖𝑖𝑗
(6)

Note that model (6) is the same as model (4) with 𝛽00 ≡ 𝛽0 and 𝑢0𝑗 ≡ 𝑢𝑗. Thus the syntax for our

generic random-intercept model is

. mixed y x || id:

where id is the variable designating the clusters.
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We can extend model (5) to include a random slope. We do so by specifying an additional equation

for the slope on 𝑥𝑖𝑗.

𝑦𝑖𝑗 = 𝛾0𝑗 + 𝛾1𝑗𝑥𝑖𝑗 + 𝜖𝑖𝑗

𝛾0𝑗 = 𝛽00 + 𝑢0𝑗

𝛾1𝑗 = 𝛽10 + 𝑢1𝑗

(7)

The additional equation for the slope 𝛾1𝑗 consists of the overall mean slope 𝛽10 and a cluster-specific

random slope 𝑢1𝑗. We substitute the last two equations into the first one to obtain a reduced-form model.

𝑦𝑖𝑗 = (𝛽00 + 𝑢0𝑗) + (𝛽10 + 𝑢1𝑗)𝑥𝑖𝑗 + 𝜖𝑖𝑗

= 𝛽00 + 𝛽10𝑥𝑖𝑗 + 𝑢0𝑗 + 𝑢1𝑗𝑥𝑖𝑗 + 𝜖𝑖𝑗

The syntax for this model becomes

. mixed y x || id: x, covariance(unstructured)

where we specified an unstructured covariance structure for the level-2 𝑢 terms.

Here we further extend the random-slope random-intercept model (7) by adding a level-2 covariate

𝑧𝑗 into the level-2 equations.

𝑦𝑖𝑗 = 𝛾0𝑗 + 𝛾1𝑗𝑥𝑖𝑗 + 𝜖𝑖𝑗

𝛾0𝑗 = 𝛽00 + 𝛽01𝑧𝑗 + 𝑢0𝑗

𝛾1𝑗 = 𝛽10 + 𝛽11𝑧𝑗 + 𝑢1𝑗

We substitute as before to obtain a single-equation form:

𝑦𝑖𝑗 = (𝛽00 + 𝛽01𝑧𝑗 + 𝑢0𝑗) + (𝛽10 + 𝛽11𝑧𝑗 + 𝑢1𝑗)𝑥𝑖𝑗 + 𝜖𝑖𝑗

= 𝛽00 + 𝛽01𝑧𝑗 + 𝛽10𝑥𝑖𝑗 + 𝛽11𝑧𝑗𝑥𝑖𝑗 + 𝑢0𝑗 + 𝑢1𝑗𝑥𝑖𝑗 + 𝜖𝑖𝑗

Now the fixed-effects portion of the equation contains a constant and variables 𝑥, 𝑧, and their inter-
action. Assuming both 𝑥 and 𝑧 are continuous variables, we can use the following Stata syntax to fit this
model:

. mixed y x z c.x#c.z || id: x, covariance(unstructured)

Although the menl command is not as suitable for fitting LME models as mixed, it can accommodate
a multistage formulation. For example, (5) can be fit in menl as

. menl y = {gamma0:}+{b1}*x, define(gamma0: {b00}+{U0[id]})

and (7) as

. menl y = {gamma0:}+{gamma1:}*x, define(gamma0: {b00}+{U0[id]}) ///
define(gamma1: {b10}+{U1[id]})

In the above menl’s specifications, gamma0 and gamma1 can be specified more efficiently by using linear
combinations; see [ME] menl for details.

We refer you to Raudenbush and Bryk (2002) and Rabe-Hesketh and Skrondal (2022) for a more

thorough discussion and further examples of multistage mixed-model formulations, including three-level

models.
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Likelihood calculation

The key to fitting mixed models lies in estimating the variance components, and for that there exist

many methods. Most of the early literature in LME models dealt with estimating variance components

in ANOVA models. For simple models with balanced data, estimating variance components amounts

to solving a system of equations obtained by setting expected mean-squares expressions equal to their

observed counterparts. Much of the work in extending the ANOVAmethod to unbalanced data for general

ANOVA designs is attributed to Henderson (1953).

The ANOVA method, however, has its shortcomings. Among these is a lack of uniqueness in that

alternative, unbiased estimates of variance components could be derived using other quadratic forms

of the data in place of observed mean squares (Searle, Casella, and McCulloch 1992, 38–39). As a

result, ANOVA methods gave way to more modern methods, such as minimum norm quadratic unbiased

estimation (MINQUE) and minimum variance quadratic unbiased estimation (MIVQUE); see Rao (1973)

for MINQUE and LaMotte (1973) for MIVQUE. Both methods involve finding optimal quadratic forms of

the data that are unbiased for the variance components.

Stata uses maximum likelihood (ML) to fit LME and GLMEmodels. TheML estimates are based on the

usual application of likelihood theory, given the distributional assumptions of the model. In addition, for

linear mixed-effects models, mixed offers the method of restricted maximum likelihood (REML). The

basic idea behind REML (Thompson 1962) is that you can form a set of linear contrasts of the response that

do not depend on the fixed effects β but instead depend only on the variance components to be estimated.

You then apply ML methods by using the distribution of the linear contrasts to form the likelihood; see

the Methods and formulas section of [ME] mixed for a detailed discussion of ML and REML methods in

the context of linear mixed-effects models.

Log-likelihood calculations for fitting any mixed-effects model require integrating out the random

effects. For LME models, this integral has a closed-form solution; for GLME and NLME models, it does

not. In dealing with this difficulty, early estimation methods avoided the integration altogether. Two such

popular methods are the closely related penalized quasilikelihood (PQL) and marginal quasilikelihood

(MQL) (Breslow and Clayton 1993). Both PQL and MQL use a combination of iterative reweighted least

squares (see [R] glm) and standard estimation techniques for fitting LMEmodels. Efficient computational

methods for fitting LMEmodels have existed for some time (Bates and Pinheiro 1998; Littell et al. 2006),

and PQL and MQL inherit this computational efficiency. However, both of these methods suffer from

two key disadvantages. First, they have been shown to be biased, and this bias can be severe when

clusters are small or intracluster correlation is high (Rodríguez and Goldman 1995; Lin and Breslow

1996). Second, because they are “quasilikelihood” methods and not true likelihood methods, their use

prohibits comparing nested models via likelihood-ratio (LR) tests, blocking the main avenue of inference

involving variance components.

The advent of modern computers has brought with it the development of more computationally in-

tensive methods, such as bias-corrected PQL (Lin and Breslow 1996), Bayesian Markov-Chain Monte

Carlo, and simulated maximum likelihood, just to name a few; see Ng et al. (2006) for a discussion of

these alternate strategies (and more) for mixed-effects models for binary outcomes.

One widely used modern method is to directly estimate the integral required to calculate the log like-

lihood by Gauss–Hermite quadrature or some variation thereof. Because the log likelihood itself is esti-

mated, this method has the advantage of permitting LR tests for comparing nested models. Also, if done

correctly, quadrature approximations can be quite accurate, thus minimizing bias. Stata commands for

fitting GLME models such as meglm support three types of Gauss–Hermite quadratures: mean–variance
adaptive Gauss–Hermite quadrature, mode-curvature adaptive Gauss–Hermite quadrature, and nonadap-

tive Gauss–Hermite quadrature; see Methods and formulas of [ME] meglm for a detailed discussion of
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these quadrature methods. A fourth method, the Laplacian approximation, that does not involve nu-

merical integration is also offered; see Computation time and the Laplacian approximation below and

Methods and formulas of [ME]meglm for a detailed discussion of the Laplacian approximation method.

In the context of NLME models, the use of an adaptive quadrature to fit these models can be often

computationally infeasible. A popular alternative method used to fit NLME models is the linearization

method of Lindstrom and Bates (1990), also known as the conditional first-order linearization method.

It is based on a first-order Taylor-series approximation of the mean function and essentially linearizes

the mean function with respect to fixed and random effects. The linearization method is computationally

efficient because it avoids the intractable integration, but the approximation cannot be made arbitrarily

accurate. Despite its potential limiting accuracy, the linearization method has proven the most popular

in practice (Fitzmaurice et al. 2009, sec 5.4.8). The linearization method of Lindstrom and Bates (1990),

with extensions from Pinheiro and Bates (1995), is the method of estimation in menl.

Computation time and the Laplacian approximation

Like many programs that fit generalized linear mixed models, me commands can be computationally
intensive. This is particularly true for large datasets with many lowest-level clusters, models with many

random coefficients, models with many estimable parameters (both fixed effects and variance compo-

nents), or any combination thereof.

Computation time will also depend on hardware and other external factors but in general is (roughly)

a function of 𝑝2{𝑀 + 𝑀(𝑁𝑄)𝑞𝑡}, where 𝑝 is the number of estimable parameters, 𝑀 is the number of

lowest-level (smallest) clusters, 𝑁𝑄 is the number of quadrature points, and 𝑞𝑡 is the total dimension of

the random effects, that is, the total number of random intercepts and coefficients at all levels.

For a given model and a given dataset, the only prevailing factor influencing computation time is

(𝑁𝑄)𝑞𝑡 . However, because this is a power function, this factor can get prohibitively large. For example,

using five quadrature points for a model with one random intercept and three random coefficients, we

get (𝑁𝑄)𝑞𝑡 = 54 = 625. Even a modest increase to seven quadrature points would increase this factor

by almost fourfold (74 = 2,401), which, depending on 𝑀 and 𝑝, could drastically slow down estimation.

When fitting mixed-effects models, you should always assess whether the approximation is adequate by

refitting the model with a larger number of quadrature points. If the results are essentially the same, the

lower number of quadrature points can be used.

However, we do not deny a tradeoff between speed and accuracy, and in that spirit we give you the

option to choose a (possibly) less accurate solution in the interest of getting quicker results. Toward this

end is the limiting case of 𝑁𝑄 = 1, otherwise known as the Laplacian approximation; see Methods and

formulas of [ME] meglm. The computational benefit is evident—1 raised to any power equals 1—and

the Laplacian approximation has been shown to perform well in certain situations (Liu and Pierce 1994;

Tierney and Kadane 1986). When using Laplacian approximation, keep the following in mind:

1. Fixed-effects parameters and their standard errors are well approximated by the Laplacian method.

Therefore, if your interest lies primarily here, then the Laplacian approximation may be a viable

alternative.

2. Estimates of variance components exhibit bias, particularly the variances.

3. The model log likelihood and comparison LR test are in fair agreement with statistics obtained via

quadrature methods.
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Although this is by no means the rule, we find the above observations to be fairly typical based on

our own experience. Pinheiro and Chao (2006) also make observations similar to points 1 and 2 on the

basis of their simulation studies: bias due to Laplace (when present) tends to exhibit itself more in the

estimated variance components than in the estimates of the fixed effects as well as at the lower levels in

higher-level models.

Item 3 is of particular interest, because it demonstrates that the Laplacian approximation can produce

a decent estimate of the model log likelihood. Consequently, you can use the Laplacian approximation

during the model building phase of your analysis, during which you are comparing competing models by

using LR tests. Once you settle on a parsimonious model that fits well, you can then increase the number

of quadrature points and obtain more accurate parameter estimates for further study.

Of course, sometimes the Laplacian approximation will perform either better or worse than observed

here. This behavior depends primarily on cluster size and intracluster correlation, but the relative in-

fluence of these factors is unclear. The idea behind the Laplacian approximation is to approximate the

posterior density of the random effects given the response with a normal distribution; see Methods and

formulas of [ME]meglm. Asymptotic theory dictates that this approximation improves with larger clus-

ters. Of course, the key question, as always, is “How large is large enough?” Also, there are data situa-

tions where the Laplacian approximation performs well even with small clusters. Therefore, it is difficult

to make a definitive call as to when you can expect the Laplacian approximation to yield accurate results

across all aspects of the model.

Furthermore, the Pinheiro and Chao (2006) algorithm for the random-effects mode and curvature

estimates, available with option intmethod(pclaplace), can speed up computations dramatically for
hierarchical models with four or more levels, especially when random slopes are included.

In conclusion, consider our above advice as a rule of thumb based on empirical evidence.

Diagnosing convergence problems

Given the flexibility of mixed-effects models, you will find that some models fail to converge when

used with your data. The default gradient-based method used by mixed-effects commands, except menl,
is the Newton–Raphson algorithm, requiring the calculation of a gradient vector and Hessian (second-

derivative) matrix; see [R] ml.

A failure to converge can take any one of three forms:

1. repeated nonconcave or backed-up iterations without convergence;

2. a Hessian (second-derivative) calculation that has become asymmetric, unstable, or has missing val-

ues; or

3. the message “standard error calculation has failed” when computing standard errors.

All three situations essentially amount to the same thing: the Hessian calculation has become unstable,

most likely because of a ridge in the likelihood function, a subsurface of the likelihood in which all points

give the same value of the likelihood and for which there is no unique solution.

Such behavior is usually the result of one of the following two situations:

A. Amodel that is not identified given the data, for example, fitting the three-level nested random inter-

cept model

𝑦𝑗𝑘 = x𝑗𝑘β + 𝑢(3)
𝑘 + 𝑢(2)

𝑗𝑘 + 𝜖𝑗𝑘
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without any replicated measurements at the (𝑗, 𝑘) level, that is, with only one 𝑖 per (𝑗, 𝑘) combination.
This model is unidentified for such data because the random intercepts 𝑢(2)

𝑗𝑘 are confounded with the

overall errors 𝜖𝑗𝑘.

B. Amodel that contains a variance component whose estimate is really close to 0. When this occurs, a

ridge is formed by an interval of values near 0, which produce the same likelihood and look equally

good to the optimizer.

For LMEmodels, one useful way to diagnose problems of nonconvergence is to rely on the expectation-

maximization (EM) algorithm (Dempster, Laird, and Rubin 1977), normally used by mixed only as a

means of refining starting values; see Diagnosing convergence problems of [ME] mixed for details.

If your data and model are nearly unidentified, as opposed to fully unidentified, you may be able

to obtain convergence with standard errors by changing some of the settings of the gradient-based opti-

mization. Adding the difficult option can be particularly helpful if you are seeingmany “nonconcave”
messages; you may also consider changing the technique() or using the nonrtolerance option; see
[R]Maximize.

Regardless of how the convergence problem revealed itself, you may try to obtain better starting

values; see Obtaining better starting values in [ME] meglm for details.

Achieving convergence and diagnosing convergence problems can be even more challenging with

NLMEmodels. As with other mixed-effects models, complicated variance–covariance structures for ran-

dom effects and errors can often lead to overparameterized models that fail to converge. In addition,

highly nonlinear mean specifications can lead to multiple solutions and thus to potential convergence

to a local maximum. menl uses the linearization estimation method that alternates between the penal-
ized least-squares estimation of the fixed-effects parameters and the Newton–Raphson estimation of the

random-effects parameters of the approximating LME model, which was the result of the linearization

of the original NLME model. This alternating method does not provide a joint Hessian matrix for all

parameters, so there is no check for the tolerance of the scaled gradient, and thus the convergence cannot

be established in its strict sense. The convergence is declared based on the stopping rules described in

Methods and formulas of [ME] menl. Exploring different initial values to investigate convergence is

particularly important with NLME models; see Obtaining initial values in [ME] menl.

Distribution theory for likelihood-ratio test

When determining the asymptotic distribution of an LR test comparing two nested mixed-effects mod-

els, issues concerning boundary problems imposed by estimating strictly positive quantities (that is,

variances) can complicate the situation. For example, when performing LR tests involving linear mixed-

effects models (whether comparing with linear regression within mixed or comparing two separate linear
mixed-effects models with lrtest), you may thus sometimes see a test labeled as chibar rather than
the usual chi2, or you may see a chi2 test with a note attached stating that the test is conservative or
possibly conservative depending on the hypothesis being tested.

At the heart of the issue is the number of variances being restricted to 0 in the reduced model. If there

are none, the usual asymptotic theory holds, and the distribution of the test statistic is 𝜒2 with degrees of

freedom equal to the difference in the number of estimated parameters between both models.

When there is only one variance being set to 0 in the reduced model, the asymptotic distribution of

the LR test statistic is a 50:50 mixture of a 𝜒2
𝑝 and a 𝜒2

𝑝+1 distribution, where 𝑝 is the number of other

restricted parameters in the reduced model that are unaffected by boundary conditions. Stata labels such

test statistics as chibar and adjusts the significance levels accordingly. See Self and Liang (1987) for
the appropriate theory or Gutierrez, Carter, and Drukker (2001) for a Stata-specific discussion.
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When more than one variance parameter is being set to 0 in the reduced model, however, the situation

becomesmore complicated. For example, consider a comparison test versus linear regression for a mixed

model with two random coefficients and unstructured covariance matrix

𝚺 = [ 𝜎2
0 𝜎01

𝜎01 𝜎2
1

]

Because the random component of the mixed model comprises three parameters (𝜎2
0, 𝜎01, 𝜎2

1), on the
surface it would seem that the LR comparison test would be distributed as 𝜒2

3. However, two compli-

cations need to be considered. First, the variances 𝜎2
0 and 𝜎2

1 are restricted to be positive, and second,

constraints such as 𝜎2
1 = 0 implicitly restrict the covariance 𝜎01 to be 0 as well. From a technical stand-

point, it is unclear how many parameters must be restricted to reduce the model to linear regression.

Because of these complications, appropriate and sufficiently general distribution theory for the more-

than-one-variance case has yet to be developed. Theory (for example, Stram and Lee [1994]) and em-

pirical studies (for example, McLachlan and Basford [1988]) have demonstrated that, whatever the dis-

tribution of the LR test statistic, its tail probabilities are bounded above by those of the 𝜒2 distribution

with degrees of freedom equal to the full number of restricted parameters (three in the above example).

The mixed and me commands use this reference distribution, the 𝜒2 with full degrees of freedom, to

produce a conservative test and place a note in the output labeling the test as such. Because the displayed

significance level is an upper bound, rejection of the null hypothesis based on the reported level would

imply rejection on the basis of the actual level.

Examples

Two-level models

Example 1: Growth-curve model
Consider a longitudinal dataset, used by both Ruppert, Wand, and Carroll (2003) and Diggle

et al. (2002), consisting of weight measurements of 48 pigs on 9 successive weeks. Pigs are identi-
fied by the variable id. Each pig experiences a linear trend in growth, but overall weight measurements
vary from pig to pig. Because we are not really interested in these particular 48 pigs per se, we instead

treat them as a random sample from a larger population and model the between-pig variability as a ran-

dom effect, or in the terminology of (2), as a random-intercept term at the pig level. We thus wish to fit

the model

weight𝑖𝑗 = 𝛽0 + 𝛽1week𝑖𝑗 + 𝑢𝑗 + 𝜖𝑖𝑗

for 𝑖 = 1, . . . , 9 weeks and 𝑗 = 1, . . . , 48 pigs. The fixed portion of the model, 𝛽0 + 𝛽1week𝑖𝑗, simply

states that we want one overall regression line representing the population average. The random effect 𝑢𝑗
serves to shift this regression line up or down according to each pig. Because the random effects occur

at the pig level (id), we fit the model by typing
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. use https://www.stata-press.com/data/r19/pig
(Longitudinal analysis of pig weights)
. mixed weight week || id:
Performing EM optimization ...
Performing gradient-based optimization:
Iteration 0: Log likelihood = -1014.9268
Iteration 1: Log likelihood = -1014.9268
Computing standard errors ...
Mixed-effects ML regression Number of obs = 432
Group variable: id Number of groups = 48

Obs per group:
min = 9
avg = 9.0
max = 9

Wald chi2(1) = 25337.49
Log likelihood = -1014.9268 Prob > chi2 = 0.0000

weight Coefficient Std. err. z P>|z| [95% conf. interval]

week 6.209896 .0390124 159.18 0.000 6.133433 6.286359
_cons 19.35561 .5974059 32.40 0.000 18.18472 20.52651

Random-effects parameters Estimate Std. err. [95% conf. interval]

id: Identity
var(_cons) 14.81751 3.124225 9.801716 22.40002

var(Residual) 4.383264 .3163348 3.805112 5.04926

LR test vs. linear model: chibar2(01) = 472.65 Prob >= chibar2 = 0.0000

We explain the output in detail in example 1 of [ME]mixed. Here we only highlight the most important

points.

1. The first estimation table reports the fixed effects. We estimate 𝛽0 = 19.36 and 𝛽1 = 6.21.

2. The second estimation table shows the estimated variance components. The first section of the table

is labeled id: Identity, meaning that these are random effects at the id (pig) level and that their
variance–covariance matrix is a multiple of the identity matrix; that is, 𝚺 = 𝜎2

𝑢I. The estimate of 𝜎̂2
𝑢

is 14.82 with standard error 3.12.

3. The row labeled var(Residual) displays the estimated standard deviation of the overall error term;
that is, 𝜎̂2

𝜖 = 4.38. This is the variance of the level-one errors or the variance of the residuals.

4. An LR test comparing the model with one-level ordinary linear regression is provided and is highly

significant for these data.
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We can predict the random intercept 𝑢𝑗 and list the predicted random intercept for the first 10 pigs by

typing

. predict r_int, reffects

. egen byte tag = tag(id)

. list id r_int if id<=10 & tag

id r_int

1. 1 -1.683105
10. 2 .8987018
19. 3 -1.952043
28. 4 -1.79068
37. 5 -3.189159

46. 6 -3.780823
55. 7 -2.382344
64. 8 -1.952043
73. 9 -6.739143
82. 10 1.16764

In example 3 of [ME]mixed, we show how to fit a random-slopemodel for these data, and in example 1

of [ME]mixed postestimation, we show how to plot the estimated regression lines for each of the pigs.

Example 2: Split-plot design
Here we replicate the example of a split-plot design from Kuehl (2000, 477). The researchers inves-

tigate the effects of nitrogen in four different chemical forms and the effects of thatch accumulation on

the quality of golf turf. The experimental plots were arranged in a randomized complete block design

with two replications. After two years of nitrogen treatment, the second treatment factor, years of thatch

accumulation, was added to the experiment. Each of the eight experimental plots was split into three

subplots. Within each plot, the subplots were randomly assigned to accumulate thatch for a period of 2,

5, and 8 years.
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. use https://www.stata-press.com/data/r19/clippings, clear
(Turfgrass experiment)
. describe
Contains data from https://www.stata-press.com/data/r19/clippings.dta
Observations: 24 Turfgrass experiment

Variables: 4 21 Feb 2024 14:57

Variable Storage Display Value
name type format label Variable label

chlorophyll float %9.0g Chlorophyll content (mg/g) of
grass clippings

thatch byte %9.0g Years of thatch accumulation
block byte %9.0g Replication
nitrogen byte %17.0g nitrolab Nitrogen fertilizer

Sorted by:

Nitrogen treatment is stored in the variable nitrogen, and the chemicals used are urea, ammonium
sulphate, isobutylidene diurea (IBDU), and sulphur-coated urea (urea SC). The length of thatch accumula-

tion is stored in the variable thatch. The response is the chlorophyll content of grass clippings, recorded
in mg/g and stored in the variable chlorophyll. The block variable identifies the replication group.

There are two sources of variation in this example corresponding to the whole-plot errors and the

subplot errors. The subplot errors are the residual errors. The whole-plot errors represents variation in

the chlorophyll content across nitrogen treatments and replications. We create the variable wpunit to
represent the whole-plot units that correspond to the levels of the nitrogen treatment and block interaction.

. egen wpunit = group(nitrogen block)

. mixed chlorophyll ibn.nitrogen##ibn.thatch ibn.block, noomitted noconstant ||
> wpunit:, reml
note: 8.thatch omitted because of collinearity.
note: 1.nitrogen#8.thatch omitted because of collinearity.
note: 2.nitrogen#8.thatch omitted because of collinearity.
note: 3.nitrogen#8.thatch omitted because of collinearity.
note: 4.nitrogen#2.thatch omitted because of collinearity.
note: 4.nitrogen#5.thatch omitted because of collinearity.
note: 4.nitrogen#8.thatch omitted because of collinearity.
note: 2.block omitted because of collinearity.
Performing EM optimization ...
Performing gradient-based optimization:
Iteration 0: Log restricted-likelihood = -13.212401
Iteration 1: Log restricted-likelihood = -13.203147
Iteration 2: Log restricted-likelihood = -13.203125
Iteration 3: Log restricted-likelihood = -13.203125
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Computing standard errors ...
Mixed-effects REML regression Number of obs = 24
Group variable: wpunit Number of groups = 8

Obs per group:
min = 3
avg = 3.0
max = 3

Wald chi2(13) = 2438.36
Log restricted-likelihood = -13.203125 Prob > chi2 = 0.0000

chlorophyll Coefficient Std. err. z P>|z| [95% conf. interval]

nitrogen
Urea 5.245833 .3986014 13.16 0.000 4.464589 6.027078

Ammonium s.. 5.945833 .3986014 14.92 0.000 5.164589 6.727078
IBDU 7.945834 .3986014 19.93 0.000 7.164589 8.727078

Urea (SC) 8.595833 .3986014 21.56 0.000 7.814589 9.377078

thatch
2 -1.1 .4632314 -2.37 0.018 -2.007917 -.1920828
5 .1500006 .4632314 0.32 0.746 -.7579163 1.057917

nitrogen#
thatch
Urea#2 -.1500005 .6551081 -0.23 0.819 -1.433989 1.133988
Urea#5 .0999994 .6551081 0.15 0.879 -1.183989 1.383988

Ammonium s.. #
2 .8999996 .6551081 1.37 0.169 -.3839887 2.183988

Ammonium s.. #
5 -.1000006 .6551081 -0.15 0.879 -1.383989 1.183988

IBDU#2 -.2000005 .6551081 -0.31 0.760 -1.483989 1.083988
IBDU#5 -1.950001 .6551081 -2.98 0.003 -3.233989 -.6660124

block
1 -.2916666 .2643563 -1.10 0.270 -.8097955 .2264622

Random-effects parameters Estimate Std. err. [95% conf. interval]

wpunit: Identity
var(_cons) .0682407 .1195933 .0021994 2.117345

var(Residual) .2145833 .1072917 .080537 .5717376

LR test vs. linear model: chibar2(01) = 0.53 Prob >= chibar2 = 0.2324
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We can calculate the cell means for source of nitrogen and years of thatch accumulation by using

margins.

. margins thatch#nitrogen
Predictive margins Number of obs = 24
Expression: Linear prediction, fixed portion, predict()

Delta-method
Margin std. err. z P>|z| [95% conf. interval]

thatch#
nitrogen
2#Urea 3.85 .3760479 10.24 0.000 3.11296 4.58704

2 #
Ammonium s.. 5.6 .3760479 14.89 0.000 4.86296 6.33704

2#IBDU 6.5 .3760479 17.29 0.000 5.76296 7.23704
2#Urea (SC) 7.35 .3760479 19.55 0.000 6.61296 8.087041

5#Urea 5.35 .3760479 14.23 0.000 4.61296 6.087041
5 #

Ammonium s.. 5.85 .3760479 15.56 0.000 5.11296 6.58704
5#IBDU 6 .3760479 15.96 0.000 5.26296 6.73704

5#Urea (SC) 8.6 .3760479 22.87 0.000 7.86296 9.337041
8#Urea 5.1 .3760479 13.56 0.000 4.36296 5.837041

8 #
Ammonium s.. 5.8 .3760479 15.42 0.000 5.06296 6.53704

8#IBDU 7.8 .3760479 20.74 0.000 7.06296 8.537041
8#Urea (SC) 8.45 .3760479 22.47 0.000 7.712959 9.18704

It is easier to see the effect of the treatments if we plot the impact of the four nitrogen and the three

thatch treatments. We can use marginsplot to plot the means of chlorophyll content versus years of
thatch accumulation by nitrogen source.
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. marginsplot, ytitle(Chlorophyll (mg/g)) title(””)
> subtitle(”Mean chlorophyll content of grass clippings versus”
> ”nitrogen source for years of thatch accumulation”) xsize(3) ysize(3.2)
> legend(cols(1) position(5) ring(0) region(lwidth(none)))
> ylabel(0(2)10, angle(0))
Variables that uniquely identify margins: thatch nitrogen
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We can see an increase in the mean chlorophyll content over the years of thatch accumulation for all

but one nitrogen source.

The marginal means can be obtained by using margins on one variable at a time.

. margins thatch
Predictive margins Number of obs = 24
Expression: Linear prediction, fixed portion, predict()

Delta-method
Margin std. err. z P>|z| [95% conf. interval]

thatch
2 5.825 .188024 30.98 0.000 5.45648 6.19352
5 6.45 .188024 34.30 0.000 6.08148 6.81852
8 6.7875 .188024 36.10 0.000 6.41898 7.15602
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. margins nitrogen
Predictive margins Number of obs = 24
Expression: Linear prediction, fixed portion, predict()

Delta-method
Margin std. err. z P>|z| [95% conf. interval]

nitrogen
Urea 4.766667 .2643563 18.03 0.000 4.248538 5.284796

Ammonium s.. 5.75 .2643563 21.75 0.000 5.231871 6.268129
IBDU 6.766667 .2643563 25.60 0.000 6.248538 7.284796

Urea (SC) 8.133333 .2643563 30.77 0.000 7.615205 8.651462

Marchenko (2006) shows more examples of fitting other experimental designs using linear mixed-

effects models.

Example 3: Binomial counts
We use the data taken from Agresti (2013, 219) on graduate school applications to the 23 depart-

ments within the College of Liberal Arts and Sciences at the University of Florida during the 1997–1998

academic year. The dataset contains the department ID (department), the number of applications

(napplied), and the number of students admitted (nadmitted) cross-classified by gender (female).

. use https://www.stata-press.com/data/r19/admissions, clear
(Graduate school admissions data)
. describe
Contains data from https://www.stata-press.com/data/r19/admissions.dta
Observations: 46 Graduate school admissions data

Variables: 4 25 Feb 2024 09:28
(_dta has notes)

Variable Storage Display Value
name type format label Variable label

department byte %8.0g dept Department ID
nadmitted byte %8.0g Number of admissions
napplied int %9.0g Number of applications
female byte %8.0g 1 if female; 0 if male

Sorted by:

We wish to investigate whether admission decisions are independent of gender. Given depart-

ment and gender, the probability of admission follows a binomial model, that is, Pr(𝑌𝑖𝑗 = 𝑦𝑖𝑗) =
Binomial(𝑛𝑖𝑗, 𝜋𝑖𝑗), where 𝑖 = {0, 1} and 𝑗 = 1, . . . , 23. We fit a mixed-effects binomial logistic model

with a random intercept at the department level.
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. melogit nadmitted female || department:, binomial(napplied) or
Fitting fixed-effects model:
Iteration 0: Log likelihood = -302.47786
Iteration 1: Log likelihood = -300.00004
Iteration 2: Log likelihood = -299.99934
Iteration 3: Log likelihood = -299.99934
Refining starting values:
Grid node 0: Log likelihood = -145.08843
Fitting full model:
Iteration 0: Log likelihood = -145.08843
Iteration 1: Log likelihood = -140.8514
Iteration 2: Log likelihood = -140.61709
Iteration 3: Log likelihood = -140.61628
Iteration 4: Log likelihood = -140.61628
Mixed-effects logistic regression Number of obs = 46
Binomial variable: napplied
Group variable: department Number of groups = 23

Obs per group:
min = 2
avg = 2.0
max = 2

Integration method: mvaghermite Integration pts. = 7
Wald chi2(1) = 2.14

Log likelihood = -140.61628 Prob > chi2 = 0.1435

nadmitted Odds ratio Std. err. z P>|z| [95% conf. interval]

female 1.176898 .1310535 1.46 0.144 .9461357 1.463944
_cons .7907009 .2057191 -0.90 0.367 .4748457 1.316655

department
var(_cons) 1.345383 .460702 .6876497 2.632234

Note: Estimates are transformed only in the first equation to odds ratios.
Note: _cons estimates baseline odds (conditional on zero random effects).
LR test vs. logistic model: chibar2(01) = 318.77 Prob >= chibar2 = 0.0000

The odds of being admitted are higher for females than males but without statistical significance. The

estimate of 𝜎̂2
𝑢 is 1.35 with the standard error of 0.46. An LR test comparing the model with the one-

level binomial regression model favors the random-intercept model, indicating that there is a significant

variation in the number of admissions between departments.

We can further assess the model fit by performing a residual analysis. For example, here we predict

and plot Anscombe residuals.
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. predict anscres, anscombe
(predictions based on fixed effects and posterior means of random effects)
(using 7 quadrature points)
. twoway (scatter anscres department if female, msymbol(S))
> (scatter anscres department if !female, msymbol(T)),
> yline(-2 2) xline(1/23, lwidth(vvthin) lpattern(dash))
> xlabel(1/23) legend(label(1 ”females”) label(2 ”males”))
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Anscombe residuals are constructed to be approximately normally distributed, thus residuals that are

above two in absolute value are usually considered outliers. In the graph above, the residual for female

admissions in department 2 is a clear outlier, suggesting a poor fit for that particular observation; see

[ME]meglm postestimation for more information about Anscombe residuals and other model diagnos-

tics tools.

Covariance structures

Example 4: Growth-curve model with correlated random effects
Here we extend the model from example 1 of [ME] me to allow for a random slope on week and an

unstructured covariance structure between the random intercept and the random slope on week.
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. use https://www.stata-press.com/data/r19/pig, clear
(Longitudinal analysis of pig weights)
. mixed weight week || id: week, covariance(unstructured)
Performing EM optimization ...
Performing gradient-based optimization:
Iteration 0: Log likelihood = -868.96185
Iteration 1: Log likelihood = -868.96185
Computing standard errors ...
Mixed-effects ML regression Number of obs = 432
Group variable: id Number of groups = 48

Obs per group:
min = 9
avg = 9.0
max = 9

Wald chi2(1) = 4649.17
Log likelihood = -868.96185 Prob > chi2 = 0.0000

weight Coefficient Std. err. z P>|z| [95% conf. interval]

week 6.209896 .0910745 68.18 0.000 6.031393 6.388399
_cons 19.35561 .3996387 48.43 0.000 18.57234 20.13889

Random-effects parameters Estimate Std. err. [95% conf. interval]

id: Unstructured
var(week) .3715251 .0812958 .2419532 .570486

var(_cons) 6.823363 1.566194 4.351297 10.69986
cov(week,_cons) -.0984378 .2545767 -.5973991 .4005234

var(Residual) 1.596829 .123198 1.372735 1.857505

LR test vs. linear model: chi2(3) = 764.58 Prob > chi2 = 0.0000
Note: LR test is conservative and provided only for reference.

The unstructured covariance structure allows for correlation between the random effects. Other

covariance structures supported by mixed, besides the default independent, include identity and

exchangeable; see [ME] mixed for details. You can also specify multiple random-effects equations at

the same level, in which case the covariance types can be combined to form more complex blocked-

diagonal covariance structures; see example 5 below.

We can predict the fitted values and plot the estimated regression line for each of the pigs. The fitted

values are based on both the fixed and the random effects.
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. predict wgt_hat, fitted

. twoway connected wgt_hat week if id<=10, connect(L) ytitle(”Predicted weight”)
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Example 5: Blocked-diagonal covariance structures
In this example, we fit a logistic mixed-effects model with a blocked-diagonal covariance structure

of random effects.

We use the data from the 1989 Bangladesh fertility survey (Huq and Cleland 1990), which polled

1,934 Bangladeshi women on their use of contraception. The women sampled were from 60 districts,

identified by the variable district. Each district contained either urban or rural areas (variable urban)
or both. The variable c use is the binary response, with a value of 1 indicating contraceptive use. Other
covariates include mean-centered age and a factor variable for the number of children. Below we

fit a standard logistic regression model amended to have random coefficients for the children factor
variable and an overall district random intercept.

. use https://www.stata-press.com/data/r19/bangladesh, clear
(Bangladesh Fertility Survey, 1989)



me — Introduction to multilevel mixed-effects models 31

. melogit c_use i.urban age i.children
> || district: i.children, cov(exchangeable)
> || district:, or nolog baselevel nofvlabel
Mixed-effects logistic regression Number of obs = 1,934
Group variable: district Number of groups = 60

Obs per group:
min = 2
avg = 32.2
max = 118

Integration method: mvaghermite Integration pts. = 7
Wald chi2(5) = 100.01

Log likelihood = -1206.2397 Prob > chi2 = 0.0000
( 1) [/]var(1.children[district]) - [/]var(3.children[district]) = 0
( 2) [/]cov(1.children[district],2.children[district]) -

[/]cov(2.children[district],3.children[district]) = 0
( 3) [/]cov(1.children[district],3.children[district]) -

[/]cov(2.children[district],3.children[district]) = 0
( 4) [/]var(2.children[district]) - [/]var(3.children[district]) = 0

c_use Odds ratio Std. err. z P>|z| [95% conf. interval]

urban
0 1 (constrained)
1 2.105163 .2546604 6.15 0.000 1.660796 2.668426

age .9735765 .0077461 -3.37 0.001 .9585122 .9888775

children
0 1 (constrained)
1 2.992596 .502149 6.53 0.000 2.153867 4.157931
2 3.879345 .7094125 7.41 0.000 2.710815 5.551584
3 3.774627 .7055812 7.11 0.000 2.616744 5.444863

_cons .1859471 .0274813 -11.38 0.000 .1391841 .2484214

district
var(

1.children) .0841518 .0880698 .0108201 .654479
var(

2.children) .0841518 .0880698 .0108201 .654479
var(

3.children) .0841518 .0880698 .0108201 .654479
var(_cons) .1870273 .0787274 .0819596 .426786

district
cov(

1.children,
2.children) .0616875 .0844681 0.73 0.465 -.1038669 .2272419

cov(
1.children,
3.children) .0616875 .0844681 0.73 0.465 -.1038669 .2272419

cov(
2.children,
3.children) .0616875 .0844681 0.73 0.465 -.1038669 .2272419

Note: Estimates are transformed only in the first equation to odds ratios.
Note: _cons estimates baseline odds (conditional on zero random effects).
LR test vs. logistic model: chi2(3) = 44.57 Prob > chi2 = 0.0000
Note: LR test is conservative and provided only for reference.
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The fixed effects can be interpreted just as you would the output from logit. Urban women have
roughly double the odds of using contraception as compared with their rural counterparts. Having any

number of children will increase the odds from three- to fourfold when compared with the base category

of no children. Contraceptive use also decreases with age.

Because we specified cov(exchangeable), the estimated variances for the children factor levels
are constrained to be the same, and the estimated covariances for the children factor levels are con-
strained to be the same. More complex covariance structures with constraints can be specified using

covariance(pattern()) and covariance(fixed()); see example 6 below.

Example 6: Meta analysis
In this example, we present a mixed-effects model for meta analysis of clinical trials. The term “meta-

analysis” refers to a statistical analysis that involves summary data from similar but independent studies.

The model can be fit directly with the meta suite of commands; however, in this example, we will fit it
with meglm to illustrate the use of constraints.

Turner et al. (2000) performed a study of nine clinical trials examining the effect of taking diuretics

during pregnancy on the risk of pre-eclampsia. The summary data consist of the log odds-ratio (variable

lnor) estimated from each study, and the corresponding estimated variance (variable var). The square
root of the variance is stored in the variable std and the trial identifier is stored in the variable trial.

. use https://www.stata-press.com/data/r19/diuretics
(Meta analysis of clinical trials studying diuretics and pre-eclampsia)
. list

trial lnor var std

1. 1 .04 .16 .4
2. 2 -.92 .12 .3464102
3. 3 -1.12 .18 .4242641
4. 4 -1.47 .3 .5477226
5. 5 -1.39 .11 .3316625

6. 6 -.3 .01 .1
7. 7 -.26 .12 .3464102
8. 8 1.09 .69 .8306624
9. 9 .14 .07 .2645751

In a random-effects modeling of summary data, the observed log odds-ratios are treated as a con-

tinuous outcome and assumed to be normally distributed, and the true treatment effect varies randomly

among the trials. The random-effects model can be written as

𝑦𝑖 ∼ 𝑁(𝜃 + 𝜈𝑖, 𝜎2
𝑖 )

𝜈𝑖 ∼ 𝑁(0, 𝜏2)

where 𝑦𝑖 is the observed treatment effect corresponding to the 𝑖th study, 𝜃+𝜈𝑖 is the true treatment effect,

𝜎2
𝑖 is the variance of the observed treatment effect, and 𝜏 is the between-trial variance component. Our

aim is to estimate 𝜃, the global mean.
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Notice that the responses 𝑦𝑖 do not provide enough information to estimate this model, because we

cannot estimate the group-level variance component from a dataset that contains one observation per

group. However, we already have estimates for the 𝜎𝑖’s, therefore we can constrain each 𝜎𝑖 to be equal

to its estimated value, which will allow us to estimate 𝜃 and 𝜏. We use meglm to estimate this model

because the mixed command does not support constraints.

In meglm, one way to constrain a group of individual variances to specific values is by using the fixed
covariance structure (an alternative way is to define each constraint individually with the constraint
command and specify them in the constraints() option). The covariance(fixed()) option requires
a Statamatrix defining the constraints, thuswe first creatematrix fwith the values of𝜎𝑖, stored in variable

var, on the main diagonal. We will use this matrix to constrain the variances.

. mkmat var, mat(f)

. matrix f = diag(f)

In the random-effects equation part, we need to specify nine random slopes, one for each trial. Be-

cause random-effects equations support factor variables (see [U] 11.4.3 Factor variables), we can use the

ibn.trial notation. Because the model is computationally demanding, we use Laplacian approxima-
tion instead of the default mean-variance adaptive quadrature; see Computation time and the Laplacian

approximation above for details.
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. meglm lnor || _all: ibn.trial, nocons cov(fixed(f)) intm(laplace) nocnsreport
Fitting fixed-effects model:
Iteration 0: Log likelihood = -10.643432
Iteration 1: Log likelihood = -10.643432
Refining starting values:
Grid node 0: Log likelihood = -10.205455
Fitting full model:
Iteration 0: Log likelihood = -10.205455
Iteration 1: Log likelihood = -9.4851561 (backed up)
Iteration 2: Log likelihood = -9.4587068
Iteration 3: Log likelihood = -9.4552982
Iteration 4: Log likelihood = -9.4552759
Iteration 5: Log likelihood = -9.4552759
Mixed-effects GLM Number of obs = 9
Family: Gaussian
Link: Identity
Group variable: _all Number of groups = 1

Obs per group:
min = 9
avg = 9.0
max = 9

Integration method: laplace
Wald chi2(0) = .

Log likelihood = -9.4552759 Prob > chi2 = .

lnor Coefficient Std. err. z P>|z| [95% conf. interval]

_cons -.5166151 .2059448 -2.51 0.012 -.9202594 -.1129707

_all
var(1.trial) .16 (constrained)
var(2.trial) .12 (constrained)
var(3.trial) .18 (constrained)
var(4.trial) .3 (constrained)
var(5.trial) .11 (constrained)
var(6.trial) .01 (constrained)
var(7.trial) .12 (constrained)
var(8.trial) .69 (constrained)
var(9.trial) .07 (constrained)

var(e.lnor) .2377469 .1950926 .0476023 1.187413

We estimate ̂𝜃 = −0.52, which agrees with the estimate reported by Turner et al. (2000).

We can fit the above model in a more efficient way. We can consider the trials as nine independent

random variables, each with variance unity, and each being multiplied by a different standard error. To

accomplish this, we treat trial as a random-effects level, use the standard deviations of the log odds-
ratios as a random covariate at the trial level, and constrain the variance component of trial to unity.
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. constraint 1 _b[/var(std[trial])] = 1

. meglm lnor || trial: std, nocons constraints(1)
Fitting fixed-effects model:
Iteration 0: Log likelihood = -10.643432
Iteration 1: Log likelihood = -10.643432
Refining starting values:
Grid node 0: Log likelihood = -10.205455
Fitting full model:
Iteration 0: Log likelihood = -10.205455
Iteration 1: Log likelihood = -9.4851164 (backed up)
Iteration 2: Log likelihood = -9.45869
Iteration 3: Log likelihood = -9.4552794
Iteration 4: Log likelihood = -9.4552759
Iteration 5: Log likelihood = -9.4552759
Mixed-effects GLM Number of obs = 9
Family: Gaussian
Link: Identity
Group variable: trial Number of groups = 9

Obs per group:
min = 1
avg = 1.0
max = 1

Integration method: mvaghermite Integration pts. = 7
Wald chi2(0) = .

Log likelihood = -9.4552759 Prob > chi2 = .
( 1) [/]var(std[trial]) = 1

lnor Coefficient Std. err. z P>|z| [95% conf. interval]

_cons -.5166151 .2059448 -2.51 0.012 -.9202594 -.1129708

trial
var(std) 1 (constrained)

var(e.lnor) .2377469 .1950926 .0476023 1.187413

The results are the same, but this model took a fraction of the time compared with the less efficient

specification.

Three-level models

The methods we have discussed so far extend from two-level models to models with three or more

levels with nested random effects. By “nested”, we mean that the random effects shared within lower-

level subgroups are unique to the upper-level groups. For example, assuming that classroom effects

would be nested within schools would be natural, because classrooms are unique to schools. Below we

illustrate a three-level mixed-effects ordered probit model.

Example 7: Three-level ordinal response model
In this example, we fit a three-level ordered probit model. The data are from the Television, School,

and Family Smoking Prevention and Cessation Project (Flay et al. 1988; Rabe-Hesketh and Skrondal

2022, chap. 11), where schools were randomly assigned into one of four groups defined by two treatment

variables. Students within each school are nested in classes, and classes are nested in schools. The
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dependent variable is the tobacco and health knowledge (THK) scale score collapsed into four ordered

categories. We regress the outcome on the treatment variables and their interaction and control for the

pretreatment score.

. use https://www.stata-press.com/data/r19/tvsfpors, clear
(Television, School, and Family Project)
. meoprobit thk prethk cc##tv || school: || class:
Fitting fixed-effects model:
Iteration 0: Log likelihood = -2212.775
Iteration 1: Log likelihood = -2127.8111
Iteration 2: Log likelihood = -2127.7612
Iteration 3: Log likelihood = -2127.7612
Refining starting values:
Grid node 0: Log likelihood = -2195.6424
Fitting full model:
Iteration 0: Log likelihood = -2195.6424 (not concave)
Iteration 1: Log likelihood = -2167.9576 (not concave)
Iteration 2: Log likelihood = -2140.2644 (not concave)
Iteration 3: Log likelihood = -2128.6948 (not concave)
Iteration 4: Log likelihood = -2119.9225
Iteration 5: Log likelihood = -2117.0947
Iteration 6: Log likelihood = -2116.7004
Iteration 7: Log likelihood = -2116.6981
Iteration 8: Log likelihood = -2116.6981
Mixed-effects oprobit regression Number of obs = 1,600

Grouping information

No. of Observations per group
Group variable groups Minimum Average Maximum

school 28 18 57.1 137
class 135 1 11.9 28

Integration method: mvaghermite Integration pts. = 7
Wald chi2(4) = 124.20

Log likelihood = -2116.6981 Prob > chi2 = 0.0000

thk Coefficient Std. err. z P>|z| [95% conf. interval]

prethk .238841 .0231446 10.32 0.000 .1934784 .2842036
1.cc .5254813 .1285816 4.09 0.000 .2734659 .7774967
1.tv .1455573 .1255827 1.16 0.246 -.1005803 .3916949

cc#tv
1 1 -.2426203 .1811999 -1.34 0.181 -.5977656 .1125251

/cut1 -.074617 .1029791 -.2764523 .1272184
/cut2 .6863046 .1034813 .4834849 .8891242
/cut3 1.413686 .1064889 1.204972 1.622401

school
var(_cons) .0186456 .0160226 .0034604 .1004695

school>class
var(_cons) .0519974 .0224014 .0223496 .1209745

LR test vs. oprobit model: chi2(2) = 22.13 Prob > chi2 = 0.0000
Note: LR test is conservative and provided only for reference.
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Notes:

1. Our model now has two random-effects equations, separated by ||. The first is a random intercept

(constant only) at the school level (level three), and the second is a random intercept at the class
level (level two). The order in which these are specified (from left to right) is significant—meoprobit
assumes that class is nested within school.

2. The information on groups is now displayed as a table, with one row for each grouping. You can

suppress this table with the nogroup or the noheader option, which will also suppress the rest of the
header.

3. The variance-component estimates are now organized and labeled according to level. The variance

component for class is labeled school>class to emphasize that classes are nested within schools.

The above extends to models with more than two levels of nesting in the obvious manner, by adding

more random-effects equations, each separated by ||. The order of nesting goes from left to right as the

groups go from biggest (highest level) to smallest (lowest level).

Crossed-effects models

Not all mixed-effects models contain nested levels of random effects.

Example 8: Crossed random effects
Returning to our longitudinal analysis of pig weights, suppose that we wish to fit

weight𝑖𝑗 = 𝛽0 + 𝛽1week𝑖𝑗 + 𝑢𝑖 + 𝑣𝑗 + 𝜖𝑖𝑗 (8)

for the 𝑖 = 1, . . . , 9 weeks and 𝑗 = 1, . . . , 48 pigs and

𝑢𝑖 ∼ 𝑁(0, 𝜎2
𝑢); 𝑣𝑗 ∼ 𝑁(0, 𝜎2

𝑣); 𝜖𝑖𝑗 ∼ 𝑁(0, 𝜎2
𝜖 )

all independently. That is, we assume an overall population-average growth curve 𝛽0 + 𝛽1week and

a random pig-specific shift. In other words, the effect due to week, 𝑢𝑖, is systematic to that week and

common to all pigs. The rationale behind (8) could be that, assuming that the pigs were measured con-

temporaneously, we might be concerned that week-specific random factors such as weather and feeding

patterns had significant systematic effects on all pigs.

Model (8) is an example of a two-way crossed-effects model, with the pig effects 𝑣𝑗 being crossed

with the week effects 𝑢𝑖. One way to fit such models is to consider all the data as one big cluster, and

treat 𝑢𝑖 and 𝑣𝑗 as a series of 9 + 48 = 57 random coefficients on indicator variables for week and pig.
The random effects u and the variance components G are now represented as
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u =

⎡
⎢
⎢
⎢
⎢
⎣

𝑢1
⋮

𝑢9
𝑣1
⋮

𝑣48

⎤
⎥
⎥
⎥
⎥
⎦

∼ 𝑁(0,G); G = [𝜎2
𝑢I9 0

0 𝜎2
𝑣I48

]

Because G is block diagonal, it can be represented as repeated-level equations. All we need is an ID

variable to identify all the observations as one big group and a way to tell mixed-effects commands to

treat week and pig as crossed-effects factor variables (or equivalently, as two sets of overparameterized
indicator variables identifying weeks and pigs, respectively). The mixed-effects commands support the

special group designation all for the former and the R.varname notation for the latter.

. use https://www.stata-press.com/data/r19/pig
(Longitudinal analysis of pig weights)
. mixed weight week || _all: R.id || _all: R.week
Performing EM optimization ...
Performing gradient-based optimization:
Iteration 0: Log likelihood = -1013.824
Iteration 1: Log likelihood = -1013.824
Computing standard errors ...
Mixed-effects ML regression Number of obs = 432
Group variable: _all Number of groups = 1

Obs per group:
min = 432
avg = 432.0
max = 432

Wald chi2(1) = 13258.28
Log likelihood = -1013.824 Prob > chi2 = 0.0000

weight Coefficient Std. err. z P>|z| [95% conf. interval]

week 6.209896 .0539313 115.14 0.000 6.104192 6.315599
_cons 19.35561 .6333982 30.56 0.000 18.11418 20.59705

Random-effects parameters Estimate Std. err. [95% conf. interval]

_all: Identity
var(R.id) 14.83623 3.126142 9.816733 22.42231

_all: Identity
var(R.week) .0849874 .0868856 .0114588 .6303302

var(Residual) 4.297328 .3134404 3.724888 4.957741

LR test vs. linear model: chi2(2) = 474.85 Prob > chi2 = 0.0000
Note: LR test is conservative and provided only for reference.

We estimate 𝜎̂2
𝑢 = 0.08 and 𝜎̂2

𝑣 = 14.84.

The R.varname notation is equivalent to giving a list of overparameterized (none dropped) indicator

variables for use in a random-effects specification. When you use R.varname, mixed-effects commands

handle the calculations internally rather than creating the indicators in the data. Because the set of indi-

cators is overparameterized, R.varname implies noconstant.
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Note that the column dimension of our random-effects design is 57. Computation time and mem-

ory requirements grow (roughly) quadratically with the dimension of the random effects. As a result,

fitting such crossed-effects models is feasible only when the total column dimension is small to moder-

ate. For this reason, mixed-effects commands use the Laplacian approximation as the default estimation

method for crossed-effects models; see Computation time and the Laplacian approximation above for

more details.

It is often possible to rewrite a mixed-effects model in a way that is more computationally efficient.

For example, we can treat pigs as nested within the all group, yielding the equivalent andmore efficient
(total column dimension 10) way to fit (8):

. mixed weight week || _all: R.week || id:

The results of both estimations are identical, but the latter specification, organized at the cluster (pig)

level with random-effects dimension 1 (a random intercept) is much more computationally efficient.

Whereas with the first form we are limited in how many pigs we can analyze, there is no such limitation

with the second form.

All the mixed-effects commands—except mixed—automatically attempt to recast the less efficient

model specification into a more efficient one. However, this automatic conversion may not be suffi-

cient for some complicated mixed-effects specifications, especially if both crossed and nested effects are

involved. Therefore, we strongly encourage you to always specify the more efficient syntax; see Rabe-

Hesketh and Skrondal (2022) andMarchenko (2006) for additional techniques to make calculations more

efficient in more complex mixed-effects models.

Nonlinear models

NLME models are popular in population pharmacokinetics, bioassays, studies of biological and agri-

cultural growth processes, and other applications, where the mean function is a nonlinear function of

fixed and random effects. Remarks and examples of [ME]menl provide many examples of fitting differ-

ent NLME models by using menl, including a pharmacokinetics model in example 15. Here we consider
simple data from Draper and Smith (1998) that contain trunk circumference (in mm) of five different

orange trees measured over seven different time points.
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Let’s plot our data first.

. use https://www.stata-press.com/data/r19/orange
(Growth of orange trees (Draper and Smith, 1998))
. twoway scatter circumf age, connect(L) ylabel(#6 175)
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Consider the following nonlinear growth model for these data,

circumf𝑖𝑗 = 𝛽1

1 + exp{− (age𝑖𝑗 − 𝛽2) /𝛽3}
+ 𝜖𝑖𝑗

where 𝜖𝑖𝑗’s are i.i.d. N(0, 𝜎2
𝜖 ). In this model, 𝛽1 can be interpreted as the average asymptotic trunk

circumference of trees as age𝑖𝑗 → ∞. We can crudely estimate it as the average of the trunk circum-

ference values at the last observed time point, which for these data is roughly 175 mm. 𝛽2 is the age at

which a tree attains half of the average asymptotic trunk circumference 𝛽1; that is, if we set age𝑖𝑗 = 𝛽2,

then 𝐸(circumf𝑖𝑗) = 0.5𝛽1. 𝛽3 is a scale parameter that represents the number of days it takes for a

tree to grow from 50% to about 73% of the average asymptotic trunk circumference. That is, if we set

age = 𝑡0.73 = 𝛽2 + 𝛽3, then 𝐸(circumf𝑖𝑗) = 𝛽1/{1+ exp(−1)} = 0.73𝛽1 and then 𝛽3 = 𝑡0.73 − 𝛽2.

The above model can be easily fit by using, for example, nl; see [R] nl. However, if we study the
graph more carefully, we will notice that there is an increasing variability in the trunk circumferences

of trees as they approach their limiting age. So it may be more reasonable to allow 𝛽1 to vary between

trees,

circumf𝑖𝑗 =
𝛽1 + 𝑢1𝑗

1 + exp{− (age𝑖𝑗 − 𝛽2) /𝛽3}
+ 𝜖𝑖𝑗 (9)

where 𝑢1𝑗’s are i.i.d. 𝑁(0, 𝜎2
𝑢1

). We use menl to fit this model.

The specification of NLMEmodels in menl is fairly straightforward. Following the dependent variable
and the equality sign (=), we specify the expression for the mean function as a usual Stata expression but
with parameters and random effects enclosed in curly braces ({}).
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. menl circumf = ({b1}+{U1[tree]})/(1+exp(-(age-{b2})/{b3}))
Obtaining starting values by EM:
Alternating PNLS/LME algorithm:
Iteration 1: Linearization log likelihood = -131.58458
Computing standard errors:
Mixed-effects ML nonlinear regression Number of obs = 35
Group variable: tree Number of groups = 5

Obs per group:
min = 7
avg = 7.0
max = 7

Linearization log likelihood = -131.58458

circumf Coefficient Std. err. z P>|z| [95% conf. interval]

/b1 191.049 16.15403 11.83 0.000 159.3877 222.7103
/b2 722.556 35.15082 20.56 0.000 653.6616 791.4503
/b3 344.1624 27.14739 12.68 0.000 290.9545 397.3703

Random-effects parameters Estimate Std. err. [95% conf. interval]

tree: Identity
var(U1) 991.1514 639.4637 279.8776 3510.038

var(Residual) 61.56371 15.89568 37.11466 102.1184

In the above specification, we used {U1[tree]} to include random intercepts at the tree level in our
model. U1 is the name or label associated with these random intercepts.

The output of menl is similar to that of mixed—the header information is displayed first, fixed-effects

parameter estimates are displayed in the first or the fixed-effects parameter table, and the estimates of

variance components are displayed in the second or the random-effects parameter table.

The header information is similar to that of mixed, but unlike mixed, menl in general does not report
a model 𝜒2 statistic in the header because a test of the joint significance of all fixed-effects parameters

(except the constant term) may not be relevant in a nonlinear model. menl also reports the so-called

linearization log likelihood. menl uses the linearization method of Lindstrom and Bates (1990), with

extensions from Pinheiro and Bates (1995), for estimation. This method is based on the approximation of

the NLMEmodel by an LMEmodel, in which a first-order Taylor-series approximation is used to linearize

the nonlinear mean function with respect to fixed and random effects; see Introduction and Methods

and formulas in [ME] menl for details. The linearization log likelihood is the log likelihood of this

approximating LME model. We can use this log likelihood for model comparison of different NLME

models and to form likelihood-ratio tests, but note that this is not the log likelihood of the corresponding

NLME model. Depending on the accuracy of the approximation, the linearization log likelihood may be

close to the true NLME log likelihood.

As part of Stata’s standard estimation output, menl reports 𝑧 tests against zeros for the estimated

fixed-effects parameters. Testing a parameter against zero may or may not be of interest, or may not

even be appropriate, in a nonlinear model. In our example, {b3} is the denominator of a fraction, so the
test of {b3} against zero may not be feasible in this model. Instead, we may be interested in testing {b3}
against, for example, 300, which would correspond to testing whether the average trunk circumference
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of orange trees increases from 50% to 73% of its asymptotic value in 300 days. We can perform this test

by using, for instance, the test command; see [R] test. As a side note, setting 𝛽3 = 0 in (9) results in a

simple random-intercept model, in a limiting sense.

From the random-effects table, the variability in limiting growth 𝛽1 between trees, labeled as

var(U1), is statistically significant in this model with an estimate of 991 (mm2) and a 95% CI of [280,

3510].

We can rewrite (9) as a two-stage model,

circumf𝑖𝑗 =
𝜙1𝑗

1 + exp{− (age𝑖𝑗 − 𝜙2𝑗) /𝜙3𝑗}
+ 𝜖𝑖𝑗 (10)

where the stage 2 specification is

φ𝑗 = ⎡⎢
⎣

𝜙1𝑗
𝜙2𝑗
𝜙3𝑗

⎤⎥
⎦

= ⎡⎢
⎣

𝛽1 + 𝑢1𝑗
𝛽2
𝛽3

⎤⎥
⎦

(11)

Themodel defined by (10) and (11) is the same as that defined by (9) but with a different parameterization.

In menl, we can accommodate this two-stage formulation with the define() option. For example,
we can fit the two-stage model defined by (10) and (11) as follows:

. menl circumf = {phi1:}/(1+exp(-(age-{b2})/{b3})), define(phi1: {b1}+{U1[tree]})
Obtaining starting values by EM:
Alternating PNLS/LME algorithm:
Iteration 1: Linearization log likelihood = -131.58458
Computing standard errors:
Mixed-effects ML nonlinear regression Number of obs = 35
Group variable: tree Number of groups = 5

Obs per group:
min = 7
avg = 7.0
max = 7

Linearization log likelihood = -131.58458
phi1: {b1}+{U1[tree]}

circumf Coefficient Std. err. z P>|z| [95% conf. interval]

/b1 191.049 16.15403 11.83 0.000 159.3877 222.7103
/b2 722.556 35.15082 20.56 0.000 653.6616 791.4503
/b3 344.1624 27.14739 12.68 0.000 290.9545 397.3703

Random-effects parameters Estimate Std. err. [95% conf. interval]

tree: Identity
var(U1) 991.1514 639.4637 279.8776 3510.038

var(Residual) 61.56371 15.89568 37.11466 102.1184

The results are identical to the previous model. Here we defined a substitutable expression phi1 in

the define() option as a function of {b1} and {U1[tree]} and included it in our main expression

as {phi1:}. Including a colon (:) in {phi1:} is important to notify menl that it is a substitutable

expression rather than a simple scalar parameter {phi1}.
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In general, we can accommodate multistage formulations by using the define() option repeatedly.

More conveniently, we can use a linear-combination specification (see Linear combinations in

[ME] menl) within the define() option to define the linear combination {b1}+{U1[tree]}.

. menl circumf = {phi1:}/(1+exp(-(age-{b2})/{b3})), define(phi1: U1[tree], xb)
Obtaining starting values by EM:
Alternating PNLS/LME algorithm:
Iteration 1: Linearization log likelihood = -131.58458
Computing standard errors:
Mixed-effects ML nonlinear regression Number of obs = 35
Group variable: tree Number of groups = 5

Obs per group:
min = 7
avg = 7.0
max = 7

Linearization log likelihood = -131.58458
phi1: U1[tree], xb

circumf Coefficient Std. err. z P>|z| [95% conf. interval]

phi1
_cons 191.049 16.15403 11.83 0.000 159.3877 222.7103

/b2 722.556 35.15082 20.56 0.000 653.6616 791.4503
/b3 344.1624 27.14739 12.68 0.000 290.9545 397.3703

Random-effects parameters Estimate Std. err. [95% conf. interval]

tree: Identity
var(U1) 991.1514 639.4637 279.8776 3510.038

var(Residual) 61.56371 15.89568 37.11466 102.1184

The {phi1: U1[tree], xb} specification used in the define() option, but without curly braces, creates
a linear combination named phi1 that contains a constant {phi1: cons} and random intercepts {U1} at
the tree level. In the linear-combination specification, the constant is included automatically unless you
specify the noconstant option such as {phi1: U1[tree], xb noconstant}. Also, you do not specify
curly braces around random effects within the linear-combination specification. If we had covariates,

say, x1 and x2, that we also wanted to include in the linear combination, we would have used {phi1: x1
x2 U1[tree]}. Notice that we did not specify the xb option in the previous linear combination. When

a linear combination contains more than one term, this option is implied. When a linear combination

contains only one term, such as in {phi1: U1[tree], xb}, the xb option must be specified to request
that menl treat the specification as a linear combination instead of a scalar parameter; see Random-effects
substitutable expressions in [ME] menl for details.

Instead of using define(), we could have similarly specified the linear combination directly in the
main expression:

. menl circumf = {phi1: U1[tree], xb}/(1+exp(-(age-{b2})/{b3}))
(output omitted )

However, by using the define() option, we simplified the look of the main equation.
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We can extend the stage 2 specification (11) to allow, for example, 𝛽2 to vary across trees by including

random intercepts at the tree level for 𝜙2𝑗,

φ𝑗 = ⎡⎢
⎣

𝜙1𝑗
𝜙2𝑗
𝜙3𝑗

⎤⎥
⎦

= ⎡⎢
⎣

𝛽1 + 𝑢1𝑗
𝛽2 + 𝑢2𝑗

𝛽3

⎤⎥
⎦

We can then fit the corresponding model by using menl as follows:

. menl circumf = {phi1:}/(1+exp(-(age-{phi2:})/{b3})),
> define(phi1: U1[tree], xb) define(phi2: U2[tree], xb)
Obtaining starting values by EM:
Alternating PNLS/LME algorithm:
Iteration 1: Linearization log likelihood = -131.60539
Iteration 2: Linearization log likelihood = -131.5827
Iteration 3: Linearization log likelihood = -131.5805
Iteration 4: Linearization log likelihood = -131.58027
Iteration 5: Linearization log likelihood = -131.58026
Computing standard errors:
Mixed-effects ML nonlinear regression Number of obs = 35
Group variable: tree Number of groups = 5

Obs per group:
min = 7
avg = 7.0
max = 7

Linearization log likelihood = -131.58026
phi1: U1[tree], xb
phi2: U2[tree], xb

circumf Coefficient Std. err. z P>|z| [95% conf. interval]

phi1
_cons 190.5939 16.211 11.76 0.000 158.8209 222.3669

phi2
_cons 719.6027 35.77597 20.11 0.000 649.4831 789.7223

/b3 342.0794 26.42036 12.95 0.000 290.2965 393.8624

Random-effects parameters Estimate Std. err. [95% conf. interval]

tree: Independent
var(U1) 1012.15 666.2808 278.557 3677.698
var(U2) 503.2308 2401.323 .043651 5801505

var(Residual) 59.27073 18.21298 32.45482 108.2434

The large standard error for the estimate of the variance component var(U2) suggests that our model
is overparameterized—a common problem when fitting NLME models. We could verify this, for in-

stance, by computing information criteria ([R] estimates stats) or by performing a likelihood-ratio test

([R] lrtest).
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By default, menl assumes an independent covariance structure for the random effects such as U1 and
U2 in our example. We can specify, for example, an unstructured model by using the covariance() op-
tion. We demonstrate this only for illustration, given that our simpler model that assumed independence

between U1 and U2 was already overparameterized.

. menl circumf = {phi1:}/(1+exp(-(age-{phi2:})/{b3})),
> define(phi1: U1[tree], xb) define(phi2: U2[tree], xb)
> covariance(U1 U2, unstructured)
Obtaining starting values by EM:
Alternating PNLS/LME algorithm:
Iteration 1: Linearization log likelihood = -130.90452
Iteration 2: Linearization log likelihood = -130.90205
Iteration 3: Linearization log likelihood = -130.90177
Iteration 4: Linearization log likelihood = -130.90177
Computing standard errors:
Mixed-effects ML nonlinear regression Number of obs = 35
Group variable: tree Number of groups = 5

Obs per group:
min = 7
avg = 7.0
max = 7

Linearization log likelihood = -130.90177
phi1: U1[tree], xb
phi2: U2[tree], xb

circumf Coefficient Std. err. z P>|z| [95% conf. interval]

phi1
_cons 189.8349 17.20035 11.04 0.000 156.1228 223.5469

phi2
_cons 709.5333 37.24229 19.05 0.000 636.5397 782.5268

/b3 340.4731 25.52176 13.34 0.000 290.4514 390.4948

Random-effects parameters Estimate Std. err. [95% conf. interval]

tree: Unstructured
var(U1) 1180.097 775.0821 325.7263 4275.459
var(U2) 1469.879 2777.13 36.2289 59635.9

cov(U1,U2) 1015.504 1124.568 -1188.609 3219.617

var(Residual) 56.07332 16.20294 31.82682 98.79144

In menl, we need to list the names of the random effects in the covariance() option for which we want
to specify a covariance structure other than the independent one used by default.

In our example, parameters 𝜙1𝑗 and 𝜙2𝑗 were modeled as linear functions of random effects and

parameters 𝛽1 and 𝛽2. The relationship does not have to be linear; see example 15 in [ME] menl.

This example has a small number of trees or clusters, so REML estimation would have been more

appropriate. We could have obtained REML estimates in our examples by specifying the reml option

with menl.

See [ME] menl for more examples of and details about the menl command.
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Description Menu for estat Syntax Options
Remarks and examples Stored results Also see

Description
estat df is for use after estimation with mixed.

estat df calculates and displays the degrees of freedom (DF) for each fixed effect using the specified

methods. This allows for a comparison of different DF methods. estat df can also be used to continue
with postestimation using a different DF method without rerunning the model.

Menu for estat
Statistics > Postestimation

Syntax
estat df [ , method(df methods) post[ (df method) ] eim oim ]

collect is allowed; see [U] 11.1.10 Prefix commands.

Options
method(df methods) specifies a list of methods to compute DF. The supported methods are residual,

repeated, anova, satterthwaite, and kroger; more than one method may be specified. Methods

satterthwaite and kroger are only available with REML estimation. If option dfmethod()was not
specified in the most recently fit mixed model, then option method() is required. See Small-sample
inference for fixed effects under Remarks and examples in [ME] mixed for more details.

post causes estat df to behave like a Stata estimation command. When post is specified, estat df
will post the DF for each fixed effect as well as everything related to the DF computation to e() for
the method specified in method(). Thus, after posting, you could continue to use this DF for other
postestimation commands. For example, you could use test, small to perform Wald 𝐹 tests on

linear combination of the fixed effects.

post may also be specified using the syntax post(df method). You must use this syntax if you
specify multiple df methods in option method(). With this syntax, estat df computes the DF using
the method specified in post() and stores the results in e(). Only one computation method may be
specified using the syntax post().

The df method specified in post() must be one of the DF methods specified in option method().
If only one method is specified in option method(), then one can simply use post to make this DF
method active for postestimation and for mixed replay.

eim specifies that the expected information matrix be used in the DF computation. It can be used only

when method() contains kroger or satterthwaite. eim is the default.

oim specifies that the observed information matrix be used in the DF computation. It can be used only

when method() contains kroger or satterthwaite.
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Remarks and examples

Example 1: Changing the degrees of freedom method

To illustrate the use of estat df, we refit the dental veneer data from example 14 of [ME] mixed

using the Kenward–Roger method (option dfmethod(kroger)) to compute the DF for fixed effects.

. use https://www.stata-press.com/data/r19/veneer
(Dental veneer data)
. mixed gcf followup base_gcf cda age || patient: followup,
> covariance(unstructured) || tooth:, reml nolog dfmethod(kroger)
Mixed-effects REML regression Number of obs = 110

Grouping information

No. of Observations per group
Group variable groups Minimum Average Maximum

patient 12 2 9.2 12
tooth 55 2 2.0 2

DF method: Kenward--Roger DF: min = 10.41
avg = 28.96
max = 50.71

F(4, 27.96) = 1.47
Log restricted-likelihood = -420.92761 Prob > F = 0.2370

gcf Coefficient Std. err. t P>|t| [95% conf. interval]

followup .3009815 1.938641 0.16 0.879 -3.96767 4.569633
base_gcf -.0183127 .1466261 -0.12 0.901 -.3132419 .2766164

cda -.329303 .5533506 -0.60 0.554 -1.440355 .7817493
age -.5773932 .2350491 -2.46 0.033 -1.098324 -.056462

_cons 45.73862 13.21824 3.46 0.002 18.53866 72.93858

Random-effects parameters Estimate Std. err. [95% conf. interval]

patient: Unstructured
var(followup) 41.88772 18.79997 17.38009 100.9535

var(_cons) 524.9851 253.0205 204.1287 1350.175
cov(followup,_cons) -140.4229 66.57623 -270.9099 -9.935904

tooth: Identity
var(_cons) 47.45738 16.63034 23.8792 94.3165

var(Residual) 48.86704 10.50523 32.06479 74.47382

LR test vs. linear model: chi2(4) = 91.12 Prob > chi2 = 0.0000
Note: LR test is conservative and provided only for reference.
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Rather than specifying option dftable(pvalue) or dftable(ci) at estimation, we can display the
covariate-specific DFs during postestimation by typing

. estat df
Degrees of freedom

Kenward--Roger

gcf
followup 10.96355
base_gcf 47.2708

cda 50.70932
age 10.41127

_cons 25.43377

estat df can also compare different DF methods using the method() option. For example, we can
compare the Kenward–Roger method with the Satterthwaite method by typing

. estat df, method(kroger satterthwaite)
Degrees of freedom

Kenward--Roger Satterthwaite

gcf
followup 10.96355 10.96355
base_gcf 47.2708 47.2708

cda 50.70932 50.70932
age 10.41127 10.41127

_cons 25.43377 25.43377

The two methods produce the same estimates of DFs for single-hypothesis tests, but the results differ

for multiple-hypotheses tests; see example 4 of [ME] mixed postestimation for details.

Suppose that we decide to proceed with the Satterthwaite method in subsequent analysis. Rather than

retyping our mixed command with the dfmethod(satterthwaite) option, we can post the Satterth-
waite DFs using the post option of estat df.

. estat df, method(satterthwaite) post
Degrees of freedom

Satterthwaite

gcf
followup 10.96355
base_gcf 47.2708

cda 50.70932
age 10.41127

_cons 25.43377

The returned values associated with dfmethod(kroger) from the mixed command will be replaced
with those of dfmethod(satterthwaite).
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Stored results
estat df stores the following in r():

Macros

r(dfmethods) DF methods

Matrices

r(df) parameter-specific DFs for each method specified in method()
r(V df) variance–covariance matrix of the estimators when kroger method is specified

If post() is specified, estat df also stores the following in e():

Scalars

e(F) overall 𝐹 test statistic for the method specified in post()
e(ddf m) model DDF for the method specified in post()
e(df max) maximum DF for the method specified in post()
e(df avg) average DF for the method specified in post()
e(df min) minimum DF for the method specified in post()

Macros

e(dfmethod) DF method specified in post()
e(dftitle) title for DF method

Matrices

e(df) parameter-specific DFs for the method specified in post()
e(V df) variance–covariance matrix of the estimators when kroger method is posted

Also see
[ME] mixed — Multilevel mixed-effects linear regression

[U] 20 Estimation and postestimation commands
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Description
estat group reports the number of groups and minimum, average, and maximum group sizes for

each level of the model. Model levels are identified by the corresponding group variable in the data.

Because groups are treated as nested, the information in this summary may differ from what you would

get if you used the tabulate command on each group variable individually.

Menu for estat
Statistics > Postestimation

Syntax
estat group

Remarks and examples
See example 3 in [ME] mixed postestimation and example 4 in [ME] menl postestimation.

Also see
[ME] mecloglog — Multilevel mixed-effects complementary log–log regression

[ME] meglm — Multilevel mixed-effects generalized linear models

[ME] meintreg — Multilevel mixed-effects interval regression

[ME] melogit — Multilevel mixed-effects logistic regression

[ME] menbreg — Multilevel mixed-effects negative binomial regression

[ME] menl — Nonlinear mixed-effects regression

[ME] meologit — Multilevel mixed-effects ordered logistic regression

[ME] meoprobit — Multilevel mixed-effects ordered probit regression

[ME] mepoisson — Multilevel mixed-effects Poisson regression

[ME] meprobit — Multilevel mixed-effects probit regression

[ME] mestreg — Multilevel mixed-effects parametric survival models

[ME] metobit — Multilevel mixed-effects tobit regression

[ME] mixed — Multilevel mixed-effects linear regression

[U] 20 Estimation and postestimation commands
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estat icc — Estimate intraclass correlations

Description Menu for estat Syntax Option
Remarks and examples Stored results Methods and formulas Also see

Description
estat icc is for use after estimation with mixed, meintreg, metobit, melogit, meprobit,

meologit, meoprobit, and mecloglog. estat icc is also for use after estimation with meglm in cases
when the fitted model is a linear, logit, probit, ordered logit, ordered probit, or complementary log–log

mixed-effects model.

estat icc displays the intraclass correlation for pairs of responses at each nested level of the model.
Intraclass correlations are available for random-intercept models or for random-coefficients models con-

ditional on random-effects covariates being equal to 0. They are not available for crossed-effects models

or with residual error structures other than independent structures.

Menu for estat
Statistics > Postestimation

Syntax
estat icc [ , level(#) ]

collect is allowed; see [U] 11.1.10 Prefix commands.

Option
level(#) specifies the confidence level, as a percentage, for confidence intervals. The default is

level(95) or as set by set level; see [U] 20.8 Specifying the width of confidence intervals.

Remarks and examples
See, for instance, example 2 in [ME] mixed postestimation and examples 1 and 4 in [ME] melogit

postestimation.

Stored results
estat icc stores the following in r():
Scalars

r(icc#) level-# intraclass correlation

r(se#) standard errors of level-# intraclass correlation

r(level) confidence level of confidence intervals

Macros

r(label#) label for level #

Matrices

r(ci#) vector of confidence intervals (lower and upper) for level-# intraclass correlation

For a 𝐺-level nested model, # can be any integer between 2 and 𝐺.
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Methods and formulas

Intraclass correlations
Consider a simple, two-level random-intercept model, stated in terms of a latent linear response, where

only 𝑦𝑖𝑗 = 𝐼(𝑦∗
𝑖𝑗 > 0) is observed for the latent variable,

𝑦∗
𝑖𝑗 = 𝛽 + 𝑢(2)

𝑗 + 𝜖(1)
𝑖𝑗

with 𝑖 = 1, . . . , 𝑛𝑗 and level-2 groups 𝑗 = 1, . . . , 𝑀. Here 𝛽 is an unknown fixed intercept, 𝑢(2)
𝑗 is a

level-2 random intercept, and 𝜖(1)
𝑖𝑗 is a level-1 error term. In a mixed-effects linear, probit, and ordered

probit regression, errors are assumed to be normally distributed with mean 0 and variance 𝛾. In a mixed-
effects logistic and ordered logistic regression, errors are assumed to be logistic with mean 0 and variance

𝛾. Random intercepts are assumed to be normally distributed with mean 0 and variance 𝜎2
2 and to be

independent of error terms.

The intraclass correlation for this model is

𝜌 = Corr(𝑦∗
𝑖𝑗, 𝑦∗

𝑖′𝑗) = 𝜎2
2

𝛾 + 𝜎2
2

where 𝛾 = 𝜎2
1 for a mixed-effects linear regression, 𝛾 = 1 for a mixed-effects probit and ordered

probit regression, 𝛾 = 𝜋2/3 for a mixed-effects logistic and ordered logistic regression, and 𝛾 = 𝜋2/6
for a mixed-effects complementary log–log regression. The intraclass correlation corresponds to the

correlation between the latent responses 𝑖 and 𝑖′ from the same group 𝑗.
Now consider a three-level nested random-intercept model,

𝑦∗
𝑖𝑗𝑘 = 𝛽 + 𝑢(2)

𝑗𝑘 + 𝑢(3)
𝑘 + 𝜖(1)

𝑖𝑗𝑘

for measurements 𝑖 = 1, . . . , 𝑛𝑗𝑘 and level-2 groups 𝑗 = 1, . . . , 𝑀1𝑘 nested within level-3 groups

𝑘 = 1, . . . , 𝑀2. Here 𝑢(2)
𝑗𝑘 is a level-2 random intercept, 𝑢(3)

𝑘 is a level-3 random intercept, and 𝜖(1)
𝑖𝑗𝑘 is

a level-1 error term. The random intercepts are assumed to be normally distributed with mean 0 and

variances 𝜎2
2 and 𝜎2

3 , respectively, and to be mutually independent. The error terms are also independent

of the random intercepts.

We can consider two types of intraclass correlations for this model. We will refer to them as level-2

and level-3 intraclass correlations. The level-3 intraclass correlation is

𝜌(3) = Corr(𝑦∗
𝑖𝑗𝑘, 𝑦∗

𝑖′𝑗′𝑘) = 𝜎2
3

𝛾 + 𝜎2
2 + 𝜎2

3

This is the correlation between latent responses 𝑖 and 𝑖′ from the same level-3 group 𝑘 and from different

level-2 groups 𝑗 and 𝑗′.

The level-2 intraclass correlation is

𝜌(2) = Corr(𝑦∗
𝑖𝑗𝑘, 𝑦∗

𝑖′𝑗𝑘) = 𝜎2
2 + 𝜎2

3
𝛾 + 𝜎2

2 + 𝜎2
3

This is the correlation between latent responses 𝑖 and 𝑖′ from the same level-3 group 𝑘 and level-2 group
𝑗. (Note that level-1 intraclass correlation is undefined.)
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More generally, for a 𝐺-level nested random-intercept model, the 𝑔-level intraclass correlation is

defined as

𝜌(𝑔) =
∑𝐺

𝑙=𝑔 𝜎2
𝑙

𝛾 + ∑𝐺
𝑙=2 𝜎2

𝑙

The above formulas also apply in the presence of fixed-effects covariatesX in a random-effects model.

In this case, intraclass correlations are conditional on fixed-effects covariates and are referred to as resid-

ual intraclass correlations. estat icc also uses the same formulas to compute intraclass correlations for
random-coefficients models, assuming 0 baseline values for the random-effects covariates, and labels

them as conditional intraclass correlations.

Intraclass correlations will always fall in [0,1] because variance components are nonnegative. To

accommodate the range of an intraclass correlation, we use the logit transformation to obtain confidence

intervals. We use the delta method to estimate the standard errors of the intraclass correlations.

Let ̂𝜌(𝑔) be a point estimate of the intraclass correlation and ŜE( ̂𝜌(𝑔)) be its standard error. The (1 −
𝛼) × 100% confidence interval for logit(𝜌(𝑔)) is

logit( ̂𝜌(𝑔)) ± 𝑧𝛼/2
ŜE( ̂𝜌(𝑔))

̂𝜌(𝑔)(1 − ̂𝜌(𝑔))

where 𝑧𝛼/2 is the 1 − 𝛼/2 quantile of the standard normal distribution and logit(𝑥) = ln{𝑥/(1 − 𝑥)}.
Let 𝑘𝑢 be the upper endpoint of this interval, and let 𝑘𝑙 be the lower. The (1 − 𝛼) × 100% confidence

interval for 𝜌(𝑔) is then given by

( 1
1 + 𝑒−𝑘𝑙

, 1
1 + 𝑒−𝑘𝑢

)

Also see
[ME] mecloglog — Multilevel mixed-effects complementary log–log regression

[ME] meglm — Multilevel mixed-effects generalized linear models

[ME] meintreg — Multilevel mixed-effects interval regression

[ME] melogit — Multilevel mixed-effects logistic regression

[ME] meologit — Multilevel mixed-effects ordered logistic regression

[ME] meoprobit — Multilevel mixed-effects ordered probit regression

[ME] meprobit — Multilevel mixed-effects probit regression

[ME] metobit — Multilevel mixed-effects tobit regression

[ME] mixed — Multilevel mixed-effects linear regression

[U] 20 Estimation and postestimation commands



estat recovariance — Display estimated random-effects covariance matrices

Description Menu for estat Syntax Options
Remarks and examples Stored results Also see

Description
estat recovariance is for use after estimation with menl and mixed.

estat recovariance displays the estimated variance–covariance matrix of the random effects for

each level in the model.

Menu for estat
Statistics > Postestimation

Syntax
estat recovariance [ , relevel(levelvar) correlation matlist options ]

collect is allowed; see [U] 11.1.10 Prefix commands.

Options
relevel(levelvar) specifies the level in the model for which the random-effects covariance matrix is to

be displayed. By default, the covariance matrices for all levels in the model are displayed. levelvar is

the name of the model level and is either the name of the variable describing the grouping at that level

or is all, a special designation for a group comprising all the estimation data. The all designation
is not supported with menl.

correlation displays the covariance matrix as a correlation matrix.

matlist options are style and formatting options that control how the matrix (or matrices) is displayed;

see [P] matlist for a list of options that are available.

Remarks and examples
For menl, the rows and columns of the matrix are labeled with full random-effects names as they are

defined in the model.

For other commands, the rows and columns of the matrix are labeled as cons for the random inter-

cepts; for random coefficients, the label is the name of the associated variable in the data.

See example 1 in [ME] mixed postestimation.
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Stored results
estat recovariance stores the following in r():

Scalars

r(relevels) number of levels

Matrices

r(Cov#) level-# random-effects covariance matrix

r(Corr#) level-# random-effects correlation matrix (if option correlation was specified)

For a 𝐺-level nested model, # can be any integer between 2 and 𝐺.

Also see
[ME] menl — Nonlinear mixed-effects regression

[ME] mixed — Multilevel mixed-effects linear regression

[U] 20 Estimation and postestimation commands



estat sd — Display variance components as standard deviations and correlations

Description Menu for estat Syntax Options
Remarks and examples Stored results Also see

Description
estat sd displays the random-effects and within-group error parameter estimates as standard devia-

tions and correlations.

Menu for estat
Statistics > Postestimation

Syntax
estat sd [ , variance verbose post coeflegend ]

collect is allowed; see [U] 11.1.10 Prefix commands.

Options
variance specifies that estat sd display the random-effects andwithin-group error parameter estimates

as variances and covariances. If the post option is specified, the estimated variances and covariances
and their respective standard errors are posted to e(). variance is allowed only after mixed and

menl.

verbose specifies that the full estimation table be displayed. By default, only the random-effects and
within-group error parameters are displayed. This option is implied when post is specified.

post causes estat sd to behave like a Stata estimation (e-class) command. estat sd posts the vec-

tor of calculated standard deviation and correlation parameters along with the corresponding vari-

ance–covariance matrix to e(), so that you can treat the estimated parameters just as you would re-
sults from any other estimation command. For example, you could use test to perform simultaneous

tests of hypotheses on the parameters, or you could use lincom to create linear combinations.

The following option is not shown in the dialog box:

coeflegend specifies that the legend of the coefficients and how to specify them in an expression be

displayed rather than displaying the statistics for the coefficients. This option is allowed only if post
is also specified.

Remarks and examples
See example 1 in [ME] mixed postestimation and example 16 in [ME] menl.
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Stored results
estat sd stores the following in r():

Matrices

r(b) coefficient vector

r(V) variance–covariance matrix of the estimators

r(table) table of results

If post is specified, estat sd stores the following in e():

Macros

e(cmd) estat sd
e(properties) b V

Matrices

e(b) coefficient vector

e(V) variance–covariance matrix of the estimators

Also see
[ME] mecloglog — Multilevel mixed-effects complementary log–log regression

[ME] meglm — Multilevel mixed-effects generalized linear models

[ME] meintreg — Multilevel mixed-effects interval regression

[ME] melogit — Multilevel mixed-effects logistic regression

[ME] menbreg — Multilevel mixed-effects negative binomial regression

[ME] menl — Nonlinear mixed-effects regression

[ME] meologit — Multilevel mixed-effects ordered logistic regression

[ME] meoprobit — Multilevel mixed-effects ordered probit regression

[ME] mepoisson — Multilevel mixed-effects Poisson regression

[ME] meprobit — Multilevel mixed-effects probit regression

[ME] mestreg — Multilevel mixed-effects parametric survival models

[ME] metobit — Multilevel mixed-effects tobit regression

[ME] mixed — Multilevel mixed-effects linear regression

[U] 20 Estimation and postestimation commands



estat wcorrelation — Display within-cluster correlations and standard deviations

Description Menu for estat Syntax Options
Remarks and examples Stored results Methods and formulas Reference
Also see

Description
estat wcorrelation is for use after estimation with menl and mixed.

estat wcorrelation displays the overall correlation matrix for a given cluster calculated on the

basis of the design of the random effects and their assumed covariance and the correlation structure

of the residuals. This allows for a comparison of different multilevel models in terms of the ultimate

within-cluster correlation matrix that each model implies.

Menu for estat
Statistics > Postestimation

Syntax
estat wcorrelation [ , options ]

options Description

at(at spec) specify the cluster for which you want the correlation matrix; default
is the first two-level cluster encountered in the data

all display correlation matrix for all the data

covariance display the covariance matrix instead of the correlation matrix

list list the data corresponding to the correlation matrix

nosort list the rows and columns of the correlation matrix in the order they
were originally present in the data

iterate(#) maximum number of iterations to compute random effects;
default is iterate(50); only for use after menl

tolerance(#) convergence tolerance when computing random effects;
default is tolerance(1e-6); only for use after menl

nrtolerance(#) scaled gradient tolerance when computing random effects;
default is nrtolerance(1e-5); only for use after menl

nonrtolerance ignore the nrtolerance() option; only for use after menl
format(% fmt) set the display format; default is format(%6.3f)
matlist options style and formatting options that control how matrices are displayed

collect is allowed; see [U] 11.1.10 Prefix commands.
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Options
at(at spec) specifies the cluster of observations for which you want the within-cluster correlation ma-

trix. at spec is

relevel var = value [ , relevel var = value . . . ]
For example, if you specify

. estat wcorrelation, at(school = 33)

you get the within-cluster correlation matrix for those observations in school 33. If you specify

. estat wcorrelation, at(school = 33 classroom = 4)

you get the correlation matrix for classroom 4 in school 33.

If at() is not specified, then you get the correlations for the first level-two cluster encountered in the
data. This is usually what you want.

all specifies that you want the correlation matrix for all the data. This is not recommended unless you
have a relatively small dataset or you enjoy seeing large 𝑛 × 𝑛 matrices. However, this can prove

useful in some cases.

covariance specifies that the within-cluster covariance matrix be displayed instead of the default cor-
relations and standard deviations.

list lists the model data for those observations depicted in the displayed correlation matrix. With linear

mixed-effects models, this option is also useful if you have many random-effects design variables and

you wish to see the represented values of these design variables.

nosort lists the rows and columns of the correlation matrix in the order that they were originally present
in the data. Normally, estat wcorrelation will first sort the data according to level variables, by-
group variables, and time variables to produce correlation matrices whose rows and columns follow

a natural ordering. nosort suppresses this.

iterate(#) specifies the maximum number of iterations when computing estimates of the random ef-

fects. The default is iterate(50). This option is only for use after menl.

tolerance(#) specifies a convergence tolerance when computing estimates of the random effects. The

default is tolerance(1e-6). This option is only for use after menl.

nrtolerance(#) and nonrtolerance control the tolerance for the scaled gradient when computing

estimates of the random effects. These options are only for use after menl.

nrtolerance(#) specifies the tolerance for the scaled gradient. Convergence is declared when

𝑔(−𝐻−1)𝑔′ is less than nrtolerance(#), where 𝑔 is the gradient row vector and 𝐻 is the ap-

proximated Hessian matrix from the current iteration. The default is nrtolerance(1e-5).

nonrtolerance specifies that the default nrtolerance() criterion be turned off.

format(% fmt) sets the display format for the standard deviation vector and correlation matrix. The

default is format(%6.3f).

matlist options are style and formatting options that control how the matrix (or matrices) is displayed;

see [P] matlist for a list of options that are available.
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Remarks and examples

Example 1: Displaying within-cluster correlations for different clusters
Here we fit a model where different clusters have different within-cluster correlations, and we show

how to display them for different clusters. We use the Asian children weight data from example 6 of

[ME] mixed.

. use https://www.stata-press.com/data/r19/childweight
(Weight data on Asian children)
. mixed weight age || id: age, covariance(unstructured)
Performing EM optimization ...
Performing gradient-based optimization:
Iteration 0: Log likelihood = -344.37065
Iteration 1: Log likelihood = -342.83814
Iteration 2: Log likelihood = -342.71861
Iteration 3: Log likelihood = -342.71777
Iteration 4: Log likelihood = -342.71777
Computing standard errors ...
Mixed-effects ML regression Number of obs = 198
Group variable: id Number of groups = 68

Obs per group:
min = 1
avg = 2.9
max = 5

Wald chi2(1) = 755.27
Log likelihood = -342.71777 Prob > chi2 = 0.0000

weight Coefficient Std. err. z P>|z| [95% conf. interval]

age 3.459671 .1258878 27.48 0.000 3.212936 3.706407
_cons 5.110496 .149478 34.19 0.000 4.817524 5.403468

Random-effects parameters Estimate Std. err. [95% conf. interval]

id: Unstructured
var(age) .2023928 .12429 .0607393 .6744041

var(_cons) .0970259 .1108024 .0103473 .9098067
cov(age,_cons) .1401334 .0566912 .0290206 .2512461

var(Residual) 1.357922 .1650507 1.070075 1.723199

LR test vs. linear model: chi2(3) = 27.38 Prob > chi2 = 0.0000
Note: LR test is conservative and provided only for reference.
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We use estat wcorrelation to display the within-cluster correlations for the first cluster.

. estat wcorrelation, list
Standard deviations and correlations for id = 45:
Standard deviations:

obs 1 2 3 4 5

sd 1.224 1.314 1.448 1.506 1.771
Correlations:

obs 1 2 3 4 5

1 1.000
2 0.141 1.000
3 0.181 0.274 1.000
4 0.193 0.293 0.376 1.000
5 0.230 0.348 0.447 0.477 1.000

Data:

id weight age

1. 45 5.171 .136893
2. 45 10.86 .657084
3. 45 13.15 1.21834
4. 45 13.2 1.42916
5. 45 15.88 2.27242

We specified the list option to display the data associated with the cluster. The next cluster in the
dataset has ID 258. To display the within-cluster correlations for this cluster, we specify the at() option.

. estat wcorrelation, at(id=258) list
Standard deviations and correlations for id = 258:
Standard deviations:

obs 1 2 3 4

sd 1.231 1.320 1.424 1.782
Correlations:

obs 1 2 3 4

1 1.000
2 0.152 1.000
3 0.186 0.270 1.000
4 0.244 0.356 0.435 1.000

Data:

id weight age

1. 258 5.3 .19165
2. 258 9.74 .687201
3. 258 9.98 1.12799
4. 258 11.34 2.30527

The within-cluster correlations for this model depend on age. The values for age in the two clusters
are different, as are the corresponding within-cluster correlations.
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See example 1 of [ME]mixed postestimation for a model fit where each cluster had the same model-

implied within-cluster correlations.

Stored results
estat wcorrelation stores the following in r():

Matrices

r(sd) standard deviations

r(Corr) within-cluster correlation matrix

r(Cov) within-cluster variance–covariance matrix

r(G) variance–covariance matrix of random effects

r(Z) model-based design matrix

r(R) variance–covariance matrix of level-one errors

r(path) path identifying cluster for which correlation is reported

Results r(G), r(Z), and r(R) are available only after mixed. Result r(path) is available only after
menl.

Methods and formulas
Methods and formulas are presented under the following headings:

Linear mixed-effects model
Nonlinear mixed-effects model

Linear mixed-effects model
A two-level linear mixed model of the form

y𝑗 = X𝑗β + Z𝑗u𝑗 + ε𝑗

implies the marginal model

y𝑗 = X𝑗β + ε∗
𝑗

where ε∗
𝑗 ∼ 𝑁(0,V𝑗), V𝑗 = Z𝑗GZ

′
𝑗 +R. In a marginal model, the random part is described in terms of

the marginal or total residuals ε∗
𝑗, and V𝑗 is the covariance structure of these residuals.

estat wcorrelation calculates the marginal covariance matrix Ṽ𝑗 for cluster 𝑗 and by default dis-
plays the results in terms of standard deviations and correlations. This allows for a comparison of different

multilevel models in terms of the ultimate within-cluster correlation matrix that each model implies.

Calculation of the marginal covariance matrix extends naturally to higher-level models; see, for ex-

ample, chapter 4.8 in West, Welch, and Gałecki (2022).

Nonlinear mixed-effects model
For nonlinear mixed-effects models, there is no closed-form expression for the marginal covariance

matrix Cov(y𝑗). This is because it is expressed in terms of a 𝑞-dimensional integral (𝑞 is the number
of random effects in the model), which, in general, is analytically intractable. Under the linear mixed-

effects approximation, the marginal covariance matrix is estimated by V̂𝑗 = Ẑ𝑗𝚺̂Ẑ′
𝑗 + 𝜎̂2𝚲̂𝑗, where Ẑ𝑗,

̂𝚺, and 𝚲̂𝑗 are defined in Methods and formulas of [ME] menl.
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estat wcorrelation calculates the estimated marginal covariance matrix V̂𝑗 for cluster 𝑗 and by
default displays the results in terms of standard deviations and correlations.

Under the linear mixed-effects approximation, estimation of the marginal covariance matrix extends

naturally to higher-level models; see, for example, chapter 4.8 in West, Welch, and Gałecki (2022).

Reference
West, B. T., K. B. Welch, andA. T. Gałecki. 2022. Linear Mixed Models: A Practical Guide Using Statistical Software. 3rd

ed. Boca Raton, FL: CRC Press.

Also see
[ME] menl — Nonlinear mixed-effects regression

[ME] mixed — Multilevel mixed-effects linear regression
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mecloglog — Multilevel mixed-effects complementary log–log regression

Description Quick start Menu Syntax Options
Remarks and examples Stored results Methods and formulas Reference Also see

Description
mecloglog fits mixed-effects models for binary or binomial responses. The conditional distribution

of the response given the random effects is assumed to be Bernoulli, with probability of success deter-

mined by the inverse complementary log–log function.

Quick start
Two-level complementary log–log model of y on x with random intercepts by lev2

mecloglog y x || lev2:

Add binary variable a and random coefficients for a
mecloglog y x a || lev2: a

Same as above, but allow the random effects to be correlated

mecloglog y x a || lev2: a, covariance(unstructured)

Three-level random-intercept model of y on x with lev2 nested within lev3
mecloglog y x || lev3: || lev2:

Crossed-effects model of y on x with two-way crossed random effects by factors a and b
mecloglog y x || _all:R.a || b:

Menu
Statistics > Multilevel mixed-effects models > Complementary log–log regression

67
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Syntax
mecloglog depvar fe equation [ || re equation ] [ || re equation ... ] [ , options ]

where the syntax of fe equation is

[ indepvars ] [ if ] [ in ] [weight ] [ , fe options ]

and the syntax of re equation is one of the following:

for random coefficients and intercepts

levelvar: [ varlist ] [ , re options ]

for random effects among the values of a factor variable in a crossed-effects model

levelvar: R.varname

levelvar is a variable identifying the group structure for the random effects at that level or is all repre-
senting one group comprising all observations.

fe options Description

Model

noconstant suppress constant term from the fixed-effects equation

offset(varname) include varname in model with coefficient constrained to 1

asis retain perfect predictor variables

re options Description

Model

covariance(vartype) variance–covariance structure of the random effects

noconstant suppress constant term from the random-effects equation

fweight(varname) frequency weights at higher levels

iweight(varname) importance weights at higher levels

pweight(varname) sampling weights at higher levels
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options Description

Model

binomial(varname | #) set binomial trials if data are in binomial form

constraints(constraints) apply specified linear constraints

SE/Robust

vce(vcetype) vcetype may be oim, opg, robust, or cluster clustvar

Reporting

level(#) set confidence level; default is level(95)
eform report exponentiated coefficients

nocnsreport do not display constraints

notable suppress coefficient table

noheader suppress output header

nogroup suppress table summarizing groups

display options control columns and column formats, row spacing, line width,
display of omitted variables and base and empty cells, and
factor-variable labeling

Integration

intmethod(intmethod) integration method

intpoints(#) set the number of integration (quadrature) points for all levels;
default is intpoints(7)

Maximization

maximize options control the maximization process; seldom used

startvalues(svmethod) method for obtaining starting values

startgrid[ (gridspec) ] perform a grid search to improve starting values

noestimate do not fit the model; show starting values instead

dnumerical use numerical derivative techniques

collinear keep collinear variables

coeflegend display legend instead of statistics

vartype Description

independent one unique variance parameter per random effect and all covariances
0; the default unless the R. notation is used

exchangeable equal variances for random effects and one common pairwise
covariance

identity equal variances for random effects and all covariances 0; the
default if the R. notation is used

unstructured all variances and covariances to be distinctly estimated

fixed(matname) user-selected variances and covariances constrained to specified
values; the remaining variances and covariances unrestricted

pattern(matname) user-selected variances and covariances constrained to be equal;
the remaining variances and covariances unrestricted
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intmethod Description

mvaghermite mean–variance adaptive Gauss–Hermite quadrature; the default
unless a crossed random-effects model is fit

mcaghermite mode-curvature adaptive Gauss–Hermite quadrature

ghermite nonadaptive Gauss–Hermite quadrature

laplace Laplacian approximation; the default for crossed random-effects
models

indepvars and varlist may contain factor variables; see [U] 11.4.3 Factor variables.

depvar, indepvars, and varlist may contain time-series operators; see [U] 11.4.4 Time-series varlists.

bayes, by, collect, and svy are allowed; see [U] 11.1.10 Prefix commands. For more details, see
[BAYES] bayes: mecloglog.

vce() and weights are not allowed with the svy prefix; see [SVY] svy.
fweights, iweights, and pweights are allowed; see [U] 11.1.6 weight. Only one type of weight may be specified. Weights

are not supported under the Laplacian approximation or for crossed models.

startvalues(), startgrid, noestimate, dnumerical, collinear, and coeflegend do not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options

� � �
Model �

noconstant suppresses the constant (intercept) term and may be specified for the fixed-effects equation

and for any of or all the random-effects equations.

offset(varname) specifies that varname be included in the fixed-effects portion of the model with the

coefficient constrained to be 1.

asis forces retention of perfect predictor variables and their associated, perfectly predicted observations
and may produce instabilities in maximization; see [R] probit.

covariance(vartype) specifies the structure of the covariance matrix for the random effects and may

be specified for each random-effects equation. vartype is one of the following: independent,
exchangeable, identity, unstructured, fixed(matname), or pattern(matname).

covariance(independent) covariance structure allows for a distinct variance for each random

effect within a random-effects equation and assumes that all covariances are 0. The default is

covariance(independent) unless a crossed random-effects model is fit, in which case the de-
fault is covariance(identity).

covariance(exchangeable) structure specifies one common variance for all random effects and

one common pairwise covariance.

covariance(identity) is short for “multiple of the identity”; that is, all variances are equal and all
covariances are 0.

covariance(unstructured) allows for all variances and covariances to be distinct. If an equation
consists of 𝑝 random-effects terms, the unstructured covariance matrix will have 𝑝(𝑝+1)/2 unique
parameters.

covariance(fixed(matname)) and covariance(pattern(matname)) covariance structures

provide a convenient way to impose constraints on variances and covariances of random effects.

Each specification requires amatname that defines the restrictions placed on variances and covari-

ances. Only elements in the lower triangle of matname are used, and row and column names of
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matname are ignored. Amissing value inmatnamemeans that a given element is unrestricted. In a

fixed(matname) covariance structure, (co)variance (𝑖, 𝑗) is constrained to equal the value spec-
ified in the 𝑖, 𝑗th entry of matname. In a pattern(matname) covariance structure, (co)variances
(𝑖, 𝑗) and (𝑘, 𝑙) are constrained to be equal if matname[𝑖, 𝑗] = matname[𝑘, 𝑙].

fweight(varname) specifies frequency weights at higher levels in a multilevel model, whereas fre-

quency weights at the first level (the observation level) are specified in the usual manner, for exam-

ple, [fw=fwtvar1]. varname can be any valid Stata variable name, and you can specify fweight()
at levels two and higher of a multilevel model. For example, in the two-level model

. mecmd fixed_portion [fw = wt1] || school: ... , fweight(wt2) ...

the variable wt1 would hold the first-level (the observation-level) frequency weights, and wt2 would
hold the second-level (the school-level) frequency weights.

iweight(varname) specifies importance weights at higher levels in a multilevel model, whereas impor-
tance weights at the first level (the observation level) are specified in the usual manner, for example,

[iw=iwtvar1]. varname can be any valid Stata variable name, and you can specify iweight() at

levels two and higher of a multilevel model. For example, in the two-level model

. mecmd fixed_portion [iw = wt1] || school: ... , iweight(wt2) ...

the variable wt1would hold the first-level (the observation-level) importance weights, and wt2would
hold the second-level (the school-level) importance weights.

pweight(varname) specifies sampling weights at higher levels in a multilevel model, whereas sam-

pling weights at the first level (the observation level) are specified in the usual manner, for example,

[pw=pwtvar1]. varname can be any valid Stata variable name, and you can specify pweight() at
levels two and higher of a multilevel model. For example, in the two-level model

. mecmd fixed_portion [pw = wt1] || school: ... , pweight(wt2) ...

variable wt1 would hold the first-level (the observation-level) sampling weights, and wt2 would hold
the second-level (the school-level) sampling weights.

binomial(varname | #) specifies that the data are in binomial form; that is, depvar records the number
of successes from a series of binomial trials. This number of trials is given either as varname, which

allows this number to vary over the observations, or as the constant #. If binomial() is not specified
(the default), depvar is treated as Bernoulli, with any nonzero, nonmissing values indicating positive

responses.

constraints(constraints); see [R] Estimation options.

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived from
asymptotic theory (oim, opg), that are robust to some kinds of misspecification (robust), and that
allow for intragroup correlation (cluster clustvar); see [R] vce option. If vce(robust) is specified,
robust variances are clustered at the highest level in the multilevel model.

� � �
Reporting �

level(#); see [R] Estimation options.

eform reports exponentiated coefficients and corresponding standard errors and confidence intervals.

This option may be specified either at estimation or upon replay.

nocnsreport; see [R] Estimation options.



mecloglog — Multilevel mixed-effects complementary log–log regression 72

notable suppresses the estimation table, either at estimation or upon replay.

noheader suppresses the output header, either at estimation or upon replay.

nogroup suppresses the display of group summary information (number of groups, average group size,
minimum, and maximum) from the output header.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] Estimation options.

� � �
Integration �

intmethod(intmethod) specifies the integration method to be used for the random-effects model.

mvaghermite performs mean–variance adaptive Gauss–Hermite quadrature; mcaghermite per-

forms mode-curvature adaptive Gauss–Hermite quadrature; ghermite performs nonadaptive

Gauss–Hermite quadrature; and laplace performs the Laplacian approximation, equivalent to mode-
curvature adaptive Gaussian quadrature with one integration point.

The default integration method is mvaghermite unless a crossed random-effects model is fit, in which
case the default integration method is laplace. The Laplacian approximation has been known to
produce biased parameter estimates; however, the bias tends to be more prominent in the estimates of

the variance components rather than in the estimates of the fixed effects.

For crossed random-effects models, estimation with more than one quadrature point may be pro-

hibitively intensive even for a small number of levels. For this reason, the integration method defaults

to the Laplacian approximation. You may override this behavior by specifying a different integration

method.

intpoints(#) sets the number of integration points for quadrature. The default is intpoints(7),
which means that seven quadrature points are used for each level of random effects. This option is

not allowed with intmethod(laplace).

The more integration points, the more accurate the approximation to the log likelihood. However,

computation time increases as a function of the number of quadrature points raised to a power equaling

the dimension of the random-effects specification. In crossed random-effects models and in models

with many levels or many random coefficients, this increase can be substantial.

� � �
Maximization �

maximize options: difficult, technique(algorithm spec), iterate(#), [no]log, trace,
gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(init specs); see [R] Maximize. Those that require

special mention for mecloglog are listed below.

from() accepts a properly labeled vector of initial values or a list of coefficient names with values.
A list of values is not allowed.

The following options are available with mecloglog but are not shown in the dialog box:

startvalues(svmethod), startgrid[ (gridspec) ], noestimate, and dnumerical; see [ME]meglm.

collinear, coeflegend; see [R] Estimation options.
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Remarks and examples
Mixed-effects complementary log–log (cloglog) regression is cloglog regression containing both fixed

effects and random effects. In longitudinal data and panel data, random effects are useful for modeling

intracluster correlation; that is, observations in the same cluster are correlated because they share common

cluster-level random effects.

mecloglog allows for many levels of random effects. However, for simplicity, we here consider the

two-level model, where for a series of 𝑀 independent clusters, and conditional on a set of fixed effects

x𝑖𝑗 and a set of random effects u𝑗,

Pr(𝑦𝑖𝑗 = 1|x𝑖𝑗,u𝑗) = 𝐻(x𝑖𝑗β + z𝑖𝑗u𝑗) (1)

for 𝑗 = 1, . . . , 𝑀 clusters, with cluster 𝑗 consisting of 𝑖 = 1, . . . , 𝑛𝑗 observations. The responses are the

binary-valued 𝑦𝑖𝑗, and we follow the standard Stata convention of treating 𝑦𝑖𝑗 = 1 if depvar𝑖𝑗 ≠ 0 and

treating 𝑦𝑖𝑗 = 0 otherwise. The 1 × 𝑝 row vector x𝑖𝑗 are the covariates for the fixed effects, analogous

to the covariates you would find in a standard cloglog regression model, with regression coefficients

(fixed effects) β. For notational convenience here and throughout this manual entry, we suppress the
dependence of 𝑦𝑖𝑗 on x𝑖𝑗.

The 1×𝑞 vector z𝑖𝑗 are the covariates corresponding to the random effects and can be used to represent

both random intercepts and random coefficients. For example, in a random-intercept model, z𝑖𝑗 is simply

the scalar 1. The random effects u𝑗 are 𝑀 realizations from a multivariate normal distribution with mean

0 and 𝑞 × 𝑞 variance matrix 𝚺. The random effects are not directly estimated as model parameters but

are instead summarized according to the unique elements of 𝚺, known as variance components. One

special case of (1) places z𝑖𝑗 = x𝑖𝑗, so that all covariate effects are essentially random and distributed as

multivariate normal with mean β and variance 𝚺.

Finally, because this is cloglog regression, 𝐻(⋅) is the inverse of the complementary log–log function
that maps the linear predictor to the probability of a success (𝑦𝑖𝑗 = 1) with 𝐻(𝑣) = 1− exp{− exp(𝑣)}.

Model (1) may also be stated in terms of a latent linear response, where only 𝑦𝑖𝑗 = 𝐼(𝑦∗
𝑖𝑗 > 0) is

observed for the latent

𝑦∗
𝑖𝑗 = x𝑖𝑗β + z𝑖𝑗u𝑗 + 𝜖𝑖𝑗

The errors 𝜖𝑖𝑗 are independent and identically extreme-value (Gumbel) distributed with the mean equal

to Euler’s constant and variance 𝜎2
𝜖 = 𝜋2/6, independently of u𝑗. This nonsymmetric error distribution

is an alternative to the symmetric error distribution underlying logistic and probit analysis and is usually

used when the positive (or negative) outcome is rare.

Below we present two short examples of mixed-effects cloglog regression; refer to [ME] me and

[ME] meglm for examples of other random-effects models. A two-level cloglog model can also be fit

using xtcloglogwith the re option; see [XT] xtcloglog. In the absence of random effects, mixed-effects

cloglog regression reduces to standard cloglog regression; see [R] cloglog.

Example 1: Two-level random-intercept model
In example 1 of [XT] xtcloglog, we analyze unionization of women in the United States over the period

1970–1988. Thewomen are identified by the variable idcode. Herewe refit that model with mecloglog.
Because the original example used 12 integration points by default, we request 12 integration points as

well.

. use https://www.stata-press.com/data/r19/union
(NLS Women 14-24 in 1968)



mecloglog — Multilevel mixed-effects complementary log–log regression 74

. mecloglog union age grade not_smsa south##c.year || idcode:, intpoints(12)
Fitting fixed-effects model:
Iteration 0: Log likelihood = -14237.139
Iteration 1: Log likelihood = -13546.159
Iteration 2: Log likelihood = -13540.611
Iteration 3: Log likelihood = -13540.607
Iteration 4: Log likelihood = -13540.607
Refining starting values:
Grid node 0: Log likelihood = -11104.448
Fitting full model:
Iteration 0: Log likelihood = -11104.448
Iteration 1: Log likelihood = -10617.891
Iteration 2: Log likelihood = -10537.919
Iteration 3: Log likelihood = -10535.946
Iteration 4: Log likelihood = -10535.941
Iteration 5: Log likelihood = -10535.941
Mixed-effects cloglog regression Number of obs = 26,200
Group variable: idcode Number of groups = 4,434

Obs per group:
min = 1
avg = 5.9
max = 12

Integration method: mvaghermite Integration pts. = 12
Wald chi2(6) = 248.12

Log likelihood = -10535.941 Prob > chi2 = 0.0000

union Coefficient Std. err. z P>|z| [95% conf. interval]

age .0128542 .0119441 1.08 0.282 -.0105559 .0362642
grade .0699965 .0138551 5.05 0.000 .0428409 .097152

not_smsa -.1982009 .0649258 -3.05 0.002 -.3254531 -.0709488
1.south -2.049901 .4892644 -4.19 0.000 -3.008842 -1.090961

year -.0006158 .0123999 -0.05 0.960 -.0249191 .0236875

south#c.year
1 .0164457 .0060685 2.71 0.007 .0045516 .0283399

_cons -3.277375 .6610552 -4.96 0.000 -4.57302 -1.981731

idcode
var(_cons) 3.489803 .1630921 3.184351 3.824555

LR test vs. cloglog model: chibar2(01) = 6009.33 Prob >= chibar2 = 0.0000

The estimates are practically the same. xtcloglog reports the estimated variance component as a
standard deviation, 𝜎̂u = 1.86. mecloglog reports 𝜎̂2

u = 3.49, the square root of which is 1.87. We

find that age and education each have a positive effect on union membership, although the former is not

statistically significant. Women who live outside of metropolitan areas are less likely to unionize.

The estimated variance of the random intercept at the individual level, 𝛔̂2
, is 3.49 with standard

error 0.16. The reported likelihood-ratio test shows that there is enough variability between women to

favor a mixed-effects cloglog regression over an ordinary cloglog regression; see Distribution theory for

likelihood-ratio test in [ME] me for a discussion of likelihood-ratio testing of variance components.
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Example 2: Three-level random-intercept model
Rabe-Hesketh, Toulopoulou, and Murray (2001) analyzed data from a study that measured the cogni-

tive ability of patients with schizophrenia compared with their relatives and control subjects. Cognitive

ability was measured as the successful completion of the “Tower of London”, a computerized task, mea-

sured at three levels of difficulty. For all but one of the 226 subjects, there were three measurements (one

for each difficulty level). Because patients’ relatives were also tested, a family identifier, family, was
also recorded.

We fit a cloglog model with response dtlm, the indicator of cognitive function, and with covariates
difficulty and a set of indicator variables for group, with the controls (group==1) being the base
category. We also allow for random effects due to families and due to subjects within families. The first

is a random intercept (constant only) at the family level, and the second is a random intercept at the

subject level. The order in which these are specified (from left to right) is significant—mecloglog
assumes that subject is nested within family. The equations are separated by ||.
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. use https://www.stata-press.com/data/r19/towerlondon
(Tower of London data)
. mecloglog dtlm difficulty i.group || family: || subject:
Fitting fixed-effects model:
Iteration 0: Log likelihood = -337.21921
Iteration 1: Log likelihood = -313.79023
Iteration 2: Log likelihood = -313.56906
Iteration 3: Log likelihood = -313.56888
Iteration 4: Log likelihood = -313.56888
Refining starting values:
Grid node 0: Log likelihood = -314.57061
Fitting full model:
Iteration 0: Log likelihood = -314.57061 (not concave)
Iteration 1: Log likelihood = -308.82101
Iteration 2: Log likelihood = -305.71841
Iteration 3: Log likelihood = -305.26804
Iteration 4: Log likelihood = -305.26516
Iteration 5: Log likelihood = -305.26516
Mixed-effects cloglog regression Number of obs = 677

Grouping information

No. of Observations per group
Group variable groups Minimum Average Maximum

family 118 2 5.7 27
subject 226 2 3.0 3

Integration method: mvaghermite Integration pts. = 7
Wald chi2(3) = 83.32

Log likelihood = -305.26516 Prob > chi2 = 0.0000

dtlm Coefficient Std. err. z P>|z| [95% conf. interval]

difficulty -1.342844 .1501508 -8.94 0.000 -1.637135 -1.048554

group
2 -.1331007 .269389 -0.49 0.621 -.6610935 .3948922
3 -.7714314 .3097099 -2.49 0.013 -1.378452 -.164411

_cons -1.6718 .2290325 -7.30 0.000 -2.120695 -1.222905

family
var(_cons) .2353453 .2924064 .0206122 2.687117

family>
subject

var(_cons) .7737687 .4260653 .2629714 2.276742

LR test vs. cloglog model: chi2(2) = 16.61 Prob > chi2 = 0.0002
Note: LR test is conservative and provided only for reference.

After adjusting for the random-effects structure, the probability of successful completion of the Tower

of London decreases dramatically as the level of difficulty increases. Also, schizophrenics (group==3)
tended not to perform as well as the control subjects.
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The above extends to models with more than two levels of nesting by adding more random-effects

equations, each separated by ||.

Stored results
mecloglog stores the following in e():

Scalars

e(N) number of observations

e(k) number of parameters

e(k dv) number of dependent variables

e(k eq) number of equations in e(b)
e(k eq model) number of equations in overall model test

e(k f) number of fixed-effects parameters

e(k r) number of random-effects parameters

e(k rs) number of variances

e(k rc) number of covariances

e(df m) model degrees of freedom

e(ll) log likelihood

e(N clust) number of clusters

e(chi2) 𝜒2

e(p) 𝑝-value for model test
e(ll c) log likelihood, comparison model

e(chi2 c) 𝜒2, comparison test
e(df c) degrees of freedom, comparison test

e(p c) 𝑝-value for comparison test
e(rank) rank of e(V)
e(ic) number of iterations

e(rc) return code

e(converged) 1 if converged, 0 otherwise

Macros

e(cmd) meglm
e(cmd2) mecloglog
e(cmdline) command as typed

e(depvar) name of dependent variable

e(wtype) weight type

e(wexp) weight expression (first-level weights)

e(fweightk) fweight variable for kth highest level, if specified
e(iweightk) iweight variable for kth highest level, if specified
e(pweightk) pweight variable for kth highest level, if specified
e(covariates) list of covariates

e(ivars) grouping variables

e(model) cloglog
e(title) title in estimation output

e(link) cloglog
e(family) bernoulli or binomial
e(clustvar) name of cluster variable

e(offset) offset

e(binomial) binomial number of trials

e(intmethod) integration method

e(n quad) number of integration points

e(chi2type) Wald; type of model 𝜒2

e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.

e(opt) type of optimization

e(which) max or min; whether optimizer is to perform maximization or minimization

e(ml method) type of ml method
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e(user) name of likelihood-evaluator program

e(technique) maximization technique

e(datasignature) the checksum

e(datasignaturevars) variables used in calculation of checksum

e(properties) b V
e(estat cmd) program used to implement estat
e(predict) program used to implement predict
e(marginsnotok) predictions disallowed by margins
e(marginswtype) weight type for margins
e(marginswexp) weight expression for margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices

e(b) coefficient vector

e(Cns) constraints matrix

e(ilog) iteration log (up to 20 iterations)

e(gradient) gradient vector

e(N g) group counts

e(g min) group-size minimums

e(g avg) group-size averages

e(g max) group-size maximums

e(V) variance–covariance matrix of the estimators

e(V modelbased) model-based variance

Functions

e(sample) marks estimation sample

In addition to the above, the following is stored in r():

Matrices

r(table) matrix containing the coefficients with their standard errors, test statistics, 𝑝-values, and
confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when any
r-class command is run after the estimation command.

Methods and formulas
mecloglog is a convenience command for meglmwith a cloglog link and a bernoulli or binomial

family; see [ME] meglm.

Model (1) assumes Bernoulli data, a special case of the binomial. Because binomial data are also

supported by mecloglog (option binomial()), the methods presented below are in terms of the more

general binomial mixed-effects model.

For a two-level binomial model, consider the response 𝑦𝑖𝑗 as the number of successes from a series

of 𝑟𝑖𝑗 Bernoulli trials (replications). For cluster 𝑗, 𝑗 = 1, . . . , 𝑀, the conditional distribution of y𝑗 =
(𝑦𝑗1, . . . , 𝑦𝑗𝑛𝑗

)′, given a set of cluster-level random effects u𝑗, is

𝑓(y𝑗|u𝑗) =
𝑛𝑗

∏
𝑖=1

[(𝑟𝑖𝑗
𝑦𝑖𝑗

) {𝐻(η𝑖𝑗)}
𝑦𝑖𝑗 {1 − 𝐻(η𝑖𝑗)}

𝑟𝑖𝑗−𝑦𝑖𝑗]

= exp(
𝑛𝑗

∑
𝑖=1

[𝑦𝑖𝑗 log{𝐻(η𝑖𝑗)} − (𝑟𝑖𝑗 − 𝑦𝑖𝑗) exp(η𝑖𝑗) + log(𝑟𝑖𝑗
𝑦𝑖𝑗

)])

for η𝑖𝑗 = x𝑖𝑗β + z𝑖𝑗u𝑗 + offset𝑖𝑗 and 𝐻(𝑣) = 1 − exp{− exp(𝑣)}.
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Defining r𝑗 = (𝑟𝑗1, . . . , 𝑟𝑗𝑛𝑗
)′ and

𝑐 (y𝑗, r𝑗) =
𝑛𝑗

∑
𝑖=1

log(𝑟𝑖𝑗
𝑦𝑖𝑗

)

where 𝑐(y𝑗, r𝑗) does not depend on the model parameters, we can express the above compactly in matrix
notation,

𝑓(y𝑗|u𝑗) = exp [y′
𝑗 log{𝐻(η𝑗)} − (r𝑗 − y𝑗)′ exp(η𝑗) + 𝑐 (y𝑗, r𝑗)]

where η𝑗 is formed by stacking the row vectors η𝑖𝑗. We extend the definitions of the functions 𝐻(⋅),
log(⋅), and exp(⋅) to be vector functions where necessary.

Because the prior distribution of u𝑗 is multivariate normal with mean 0 and 𝑞 × 𝑞 variance matrix
𝚺, the likelihood contribution for the 𝑗th cluster is obtained by integrating u𝑗 out of the joint density

𝑓(y𝑗,u𝑗),

ℒ𝑗(β, 𝚺) = (2𝜋)−𝑞/2 |𝚺|−1/2 ∫ 𝑓(y𝑗|u𝑗) exp (−u′
𝑗𝚺

−1u𝑗/2) 𝑑u𝑗

= exp{𝑐 (y𝑗, r𝑗)} (2𝜋)−𝑞/2 |𝚺|−1/2 ∫ exp{ℎ (β, 𝚺, u𝑗)} 𝑑u𝑗

(2)

where

ℎ (β, 𝚺, u𝑗) = y′
𝑗 log{𝐻(η𝑗)} − (r𝑗 − y𝑗)′ exp(η𝑗) − u′

𝑗𝚺
−1u𝑗/2

and for convenience, in the arguments of ℎ(⋅) we suppress the dependence on the observable data

(y𝑗, r𝑗,X𝑗,Z𝑗).
The integration in (2) has no closed form and thus must be approximated; see Methods and formulas

in [ME] meglm for details.

mecloglog supports multilevel weights and survey data; see Methods and formulas in [ME] meglm

for details.

Reference
Rabe-Hesketh, S., T. Toulopoulou, and R. M. Murray. 2001. Multilevel modeling of cognitive function in schizophrenic

patients and their first degree relatives. Multivariate Behavioral Research 36: 279–298. https://doi.org/10.1207/

S15327906MBR3602_07.

Also see
[ME] mecloglog postestimation — Postestimation tools for mecloglog

[ME] melogit — Multilevel mixed-effects logistic regression

[ME] meprobit — Multilevel mixed-effects probit regression

[ME] me — Introduction to multilevel mixed-effects models

[BAYES] bayes: mecloglog — Bayesian multilevel complementary log–log regression

[SEM] Intro 5 — Tour of models (Multilevel mixed-effects models)

[SVY] svy estimation — Estimation commands for survey data

[XT] xtcloglog — Random-effects and population-averaged cloglog models

[U] 20 Estimation and postestimation commands

https://doi.org/10.1207/S15327906MBR3602_07
https://doi.org/10.1207/S15327906MBR3602_07
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Postestimation commands predict margins
Remarks and examples Methods and formulas Also see

Postestimation commands
The following postestimation command is of special interest after mecloglog:

Command Description

estat group summarize the composition of the nested groups

estat icc estimate intraclass correlations

estat sd display variance components as standard deviations and correlations

The following standard postestimation commands are also available:

Command Description

contrast contrasts and ANOVA-style joint tests of parameters

estat ic Akaike’s, consistent Akaike’s, corrected Akaike’s, and Schwarz’s Bayesian in-
formation criteria (AIC, CAIC, AICc, and BIC, respectively)

estat summarize summary statistics for the estimation sample

estat vce variance–covariance matrix of the estimators (VCE)

estat (svy) postestimation statistics for survey data

estimates cataloging estimation results

etable table of estimation results
∗ hausman Hausman’s specification test

lincom point estimates, standard errors, testing, and inference for linear combinations
of parameters

∗ lrtest likelihood-ratio test

margins marginal means, predictive margins, marginal effects, and average marginal
effects

marginsplot graph the results from margins (profile plots, interaction plots, etc.)

nlcom point estimates, standard errors, testing, and inference for nonlinear combina-
tions of parameters

predict means, probabilities, densities, REs, residuals, etc.

predictnl point estimates, standard errors, testing, and inference for generalized predic-
tions

pwcompare pairwise comparisons of parameters

test Wald tests of simple and composite linear hypotheses

testnl Wald tests of nonlinear hypotheses

∗hausman and lrtest are not appropriate with svy estimation results.
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predict

Description for predict
predict creates a new variable containing predictions such as mean responses; linear predictions;

density and distribution functions; standard errors; and Pearson, deviance, and Anscombe residuals.

Menu for predict
Statistics > Postestimation

Syntax for predict

Syntax for obtaining predictions of the outcome and other statistics

predict [ type ] { stub* | newvarlist } [ if ] [ in ] [ , statistic options ]

Syntax for obtaining estimated random effects and their standard errors

predict [ type ] { stub* | newvarlist } [ if ] [ in ], reffects [ re options ]

Syntax for obtaining ML scores

predict [ type ] { stub* | newvarlist } [ if ] [ in ], scores

statistic Description

Main

mu mean response; the default

eta fitted linear predictor

xb linear predictor for the fixed portion of the model only

stdp standard error of the fixed-portion linear prediction

density predicted density function

distribution predicted distribution function

pearson Pearson residuals

deviance deviance residuals

anscombe Anscombe residuals

These statistics are available both in and out of sample; type predict ... if e(sample) ... if wanted
only for the estimation sample.
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options Description

Main

conditional(ctype) compute statistic conditional on estimated random effects; default is

conditional(ebmeans)
marginal compute statistic marginally with respect to the random effects

nooffset make calculation ignoring offset or exposure

Integration

int options integration options

pearson, deviance, anscombe may not be combined with marginal.

ctype Description

ebmeans empirical Bayes means of random effects; the default

ebmodes empirical Bayes modes of random effects

fixedonly prediction for the fixed portion of the model only

re options Description

Main

ebmeans use empirical Bayes means of random effects; the default

ebmodes use empirical Bayes modes of random effects

reses(stub* | newvarlist) calculate standard errors of empirical Bayes estimates

Integration

int options integration options

int options Description

intpoints(#) use # quadrature points to compute marginal predictions and empirical
Bayes means

iterate(#) set maximum number of iterations in computing statistics involving
empirical Bayes estimators

tolerance(#) set convergence tolerance for computing statistics involving empirical
Bayes estimators

Options for predict

� � �
Main �

mu, the default, calculates the predicted mean, that is, the probability of a positive outcome.

eta, xb, stdp, density, distribution, pearson, deviance, anscombe, scores, conditional(),
marginal, and nooffset; see [ME] meglm postestimation.

reffects, ebmeans, ebmodes, and reses(); see [ME] meglm postestimation.

� � �
Integration �

intpoints(), iterate(), and tolerance(); see [ME] meglm postestimation.
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margins

Description for margins
margins estimates margins of response for mean responses and linear predictions.

Menu for margins
Statistics > Postestimation

Syntax for margins
margins [marginlist ] [ , options ]
margins [marginlist ] , predict(statistic ...) [ predict(statistic ...) ... ] [ options ]

statistic Description

mu mean response; the default

eta fitted linear predictor

xb linear predictor for the fixed portion of the model only

stdp not allowed with margins
density not allowed with margins
distribution not allowed with margins
pearson not allowed with margins
deviance not allowed with margins
anscombe not allowed with margins
reffects not allowed with margins
scores not allowed with margins

Options conditional(ebmeans) and conditional(ebmodes) are not allowed with margins.
Option marginal is assumed where applicable if conditional(fixedonly) is not specified.

Statistics not allowed with margins are functions of stochastic quantities other than e(b).

For the full syntax, see [R] margins.

Remarks and examples
Various predictions, statistics, and diagnostic measures are available after fitting a mixed-effects com-

plementary log–log model with mecloglog. Here we show a short example of predicted probabilities

and predicted random effects; refer to [ME] meglm postestimation for additional examples.

Example 1: Obtaining predicted probabilities and random effects
In example 2 of [ME]mecloglog, we analyzed the cognitive ability (dtlm) of patients with schizophre-

nia compared with their relatives and control subjects, by using a three-level complementary log–log

model with random effects at the family and subject levels. Cognitive ability was measured as the suc-

cessful completion of the “Tower of London”, a computerized task, measured at three levels of difficulty.
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. use https://www.stata-press.com/data/r19/towerlondon
(Tower of London data)
. mecloglog dtlm difficulty i.group || family: || subject:
Fitting fixed-effects model:
(output omitted )

Mixed-effects cloglog regression Number of obs = 677
Grouping information

No. of Observations per group
Group variable groups Minimum Average Maximum

family 118 2 5.7 27
subject 226 2 3.0 3

Integration method: mvaghermite Integration pts. = 7
Wald chi2(3) = 83.32

Log likelihood = -305.26516 Prob > chi2 = 0.0000

dtlm Coefficient Std. err. z P>|z| [95% conf. interval]

difficulty -1.342844 .1501508 -8.94 0.000 -1.637135 -1.048554

group
2 -.1331007 .269389 -0.49 0.621 -.6610935 .3948922
3 -.7714314 .3097099 -2.49 0.013 -1.378452 -.164411

_cons -1.6718 .2290325 -7.30 0.000 -2.120695 -1.222905

family
var(_cons) .2353453 .2924064 .0206122 2.687117

family>
subject

var(_cons) .7737687 .4260653 .2629714 2.276742

LR test vs. cloglog model: chi2(2) = 16.61 Prob > chi2 = 0.0002
Note: LR test is conservative and provided only for reference.

We obtain predicted probabilities based on the contribution of both fixed effects and random effects

by typing

. predict pr
(option mu assumed)
(predictions based on fixed effects and posterior means of random effects)
(using 7 quadrature points)

As the note says, the predicted values are based on the posterior means of random effects. You can use

the modes option to obtain predictions based on the posterior modes of random effects.

We obtain predictions of the posterior means themselves by typing

. predict re*, reffects
(calculating posterior means of random effects)
(using 7 quadrature points)

Because we have one random effect at the family level and another random effect at the subject level,

Stata saved the predicted posterior means in the variables re1 and re2, respectively. If you are not sure
which prediction corresponds to which level, you can use the describe command to show the variable

labels.
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Here we list the data for family 16:

. list family subject dtlm pr re1 re2 if family==16, sepby(subject)

family subject dtlm pr re1 re2

208. 16 5 1 .486453 .4184933 .2760492
209. 16 5 0 .1597047 .4184933 .2760492
210. 16 5 0 .0444156 .4184933 .2760492

211. 16 34 1 .9659582 .4184933 1.261488
212. 16 34 1 .5862808 .4184933 1.261488
213. 16 34 1 .205816 .4184933 1.261488

214. 16 35 0 .5571261 .4184933 -.1616545
215. 16 35 1 .1915688 .4184933 -.1616545
216. 16 35 0 .0540124 .4184933 -.1616545

We can see that the predicted random effects (re1) at the family level are the same for all members of
the family. Similarly, the predicted random effects (re2) at the individual level are constant within each
individual.

Methods and formulas
Methods and formulas for predicting random effects and other statistics are given in Methods and

formulas of [ME] meglm postestimation.

Also see
[ME] mecloglog — Multilevel mixed-effects complementary log–log regression

[ME] meglm postestimation — Postestimation tools for meglm

[U] 20 Estimation and postestimation commands
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Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description
meglm fits multilevel mixed-effects generalized linear models. meglm allows a variety of distributions

for the response conditional on normally distributed random effects.

Quick start
Without weights

Random-effects probit regression of y on x1 with random intercepts by lev2
meglm y x1 || lev2:, family(binomial) link(probit)

Same as above, but fit a logit model and report odds ratios

meglm y x1 || lev2:, family(binomial) or

Two-level gamma model of y with fixed and random coefficients on x1
meglm y x1 || lev2: x1, family(gamma)

Nested three-level random-intercept Poisson model reporting incidence-rate ratios

meglm y x1 || lev3: || lev2:, family(poisson) irr

Two-level linear regression of y on x1 and x2 with random intercepts by lev2, random coefficients on

x2, and robust standard errors
meglm y x1 x2 || lev2: x2, vce(robust)

With weights

Two-level linear regression of y on x with random intercepts by psu for two-stage sampling with PSU-

level and observation-level sampling weights wvar2 and wvar1, respectively
meglm y x [pweight=wvar1] || psu:, pweight(wvar2)

Add secondary sampling stage with units identified by ssu having weights wvar2 and PSU-level weights
wvar3 for a three-level random-intercept model

meglm y x [pw=wvar1] || psu:, pw(wvar3) || ssu:, pw(wvar2)

Same as above, but svyset data first
svyset psu, weight(wvar3) || ssu, weight(wvar2) || _n, weight(wvar1)
svy: meglm y x || psu: || ssu:

Menu
Statistics > Multilevel mixed-effects models > Generalized linear models (GLM)
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Syntax
meglm depvar fe equation [ || re equation ] [ || re equation ... ] [ , options ]

where the syntax of fe equation is

[ indepvars ] [ if ] [ in ] [weight ] [ , fe options ]

and the syntax of re equation is one of the following:

for random coefficients and intercepts

levelvar: [ varlist ] [ , re options ]

for random effects among the values of a factor variable in a crossed-effects model

levelvar: R.varname

levelvar is a variable identifying the group structure for the random effects at that level or is all repre-
senting one group comprising all observations.

fe options Description

Model

noconstant suppress the constant term from the fixed-effects equation

exposure(varname𝑒) include ln(varname𝑒) in model with coefficient constrained to 1
offset(varname𝑜) include varname𝑜 in model with coefficient constrained to 1

asis retain perfect predictor variables

re options Description

Model

covariance(vartype) variance–covariance structure of the random effects

noconstant suppress constant term from the random-effects equation

fweight(varname) frequency weights at higher levels

iweight(varname) importance weights at higher levels

pweight(varname) sampling weights at higher levels
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options Description

Model

family(family) distribution of depvar; default is family(gaussian)
link(link) link function; default varies per family

constraints(constraints) apply specified linear constraints

SE/Robust

vce(vcetype) vcetype may be oim, opg, robust, or cluster clustvar

Reporting

level(#) set confidence level; default is level(95)
eform report exponentiated fixed-effects coefficients

irr report fixed-effects coefficients as incidence-rate ratios

or report fixed-effects coefficients as odds ratios

nocnsreport do not display constraints

notable suppress coefficient table

noheader suppress output header

nogroup suppress table summarizing groups

display options control columns and column formats, row spacing, line width,
display of omitted variables and base and empty cells, and
factor-variable labeling

Integration

intmethod(intmethod) integration method

intpoints(#) set the number of integration (quadrature) points for all levels;
default is intpoints(7)

Maximization

maximize options control the maximization process; seldom used

startvalues(svmethod) method for obtaining starting values

startgrid[ (gridspec) ] perform a grid search to improve starting values

noestimate do not fit the model; show starting values instead

dnumerical use numerical derivative techniques

collinear keep collinear variables

coeflegend display legend instead of statistics

vartype Description

independent one unique variance parameter per random effect and all covariances
0; the default unless the R. notation is used

exchangeable equal variances for random effects and one common pairwise
covariance

identity equal variances for random effects and all covariances 0; the
default if the R. notation is used

unstructured all variances and covariances to be distinctly estimated

fixed(matname) user-selected variances and covariances constrained to specified
values; the remaining variances and covariances unrestricted

pattern(matname) user-selected variances and covariances constrained to be equal;
the remaining variances and covariances unrestricted
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family Description

gaussian Gaussian (normal); the default

bernoulli Bernoulli

binomial [ # | varname ] binomial; default number of binomial trials is 1

gamma gamma

nbinomial [ mean | constant ] negative binomial; default dispersion is mean
ordinal ordinal

poisson Poisson

link Description

identity identity

log log

logit logit

probit probit

cloglog complementary log–log

intmethod Description

mvaghermite mean–variance adaptive Gauss–Hermite quadrature; the default
unless a crossed random-effects model is fit

mcaghermite mode-curvature adaptive Gauss–Hermite quadrature

pcaghermite Pinheiro–Chao mode-curvature adaptive Gauss–Hermite
quadrature

ghermite nonadaptive Gauss–Hermite quadrature

laplace Laplacian approximation; the default for crossed random-effects
models

pclaplace Pinheiro–Chao Laplacian approximation

indepvars and varlist may contain factor variables; see [U] 11.4.3 Factor variables.

depvar, indepvars, and varlist may contain time-series operators; see [U] 11.4.4 Time-series varlists.

bayes, by, collect, and svy are allowed; see [U] 11.1.10 Prefix commands. For more details, see [BAYES] bayes: meglm.

vce() and weights are not allowed with the svy prefix; see [SVY] svy.
fweights, iweights, and pweights are allowed; see [U] 11.1.6 weight. Only one type of weight may be specified. Weights

are not supported under the Laplacian approximation or for crossed models.

startvalues(), startgrid, noestimate, dnumerical, collinear, and coeflegend do not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options

� � �
Model �

noconstant suppresses the constant (intercept) term and may be specified for the fixed-effects equation

and for any of or all the random-effects equations.

exposure(varname𝑒) specifies a variable that reflects the amount of exposure over which the depvar
events were observed for each observation; ln(varname𝑒) is included in the fixed-effects portion of
the model with the coefficient constrained to be 1.
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offset(varname𝑜) specifies that varname𝑜 be included in the fixed-effects portion of the model with

the coefficient constrained to be 1.

asis forces retention of perfect predictor variables and their associated, perfectly predicted observations
and may produce instabilities in maximization; see [R] probit.

covariance(vartype) specifies the structure of the covariance matrix for the random effects and may

be specified for each random-effects equation. vartype is one of the following: independent,
exchangeable, identity, unstructured, fixed(matname), or pattern(matname).

covariance(independent) covariance structure allows for a distinct variance for each random

effect within a random-effects equation and assumes that all covariances are 0. The default is

covariance(independent) unless a crossed random-effects model is fit, in which case the de-
fault is covariance(identity).

covariance(exchangeable) structure specifies one common variance for all random effects and

one common pairwise covariance.

covariance(identity) is short for “multiple of the identity”; that is, all variances are equal and all
covariances are 0.

covariance(unstructured) allows for all variances and covariances to be distinct. If an equation
consists of 𝑝 random-effects terms, the unstructured covariance matrix will have 𝑝(𝑝+1)/2 unique
parameters.

covariance(fixed(matname)) and covariance(pattern(matname)) covariance structures

provide a convenient way to impose constraints on variances and covariances of random effects.

Each specification requires amatname that defines the restrictions placed on variances and covari-

ances. Only elements in the lower triangle of matname are used, and row and column names of

matname are ignored. Amissing value inmatnamemeans that a given element is unrestricted. In a

fixed(matname) covariance structure, (co)variance (𝑖, 𝑗) is constrained to equal the value spec-
ified in the 𝑖, 𝑗th entry of matname. In a pattern(matname) covariance structure, (co)variances
(𝑖, 𝑗) and (𝑘, 𝑙) are constrained to be equal if matname[𝑖, 𝑗] = matname[𝑘, 𝑙].

fweight(varname) specifies frequency weights at higher levels in a multilevel model, whereas fre-

quency weights at the first level (the observation level) are specified in the usual manner, for exam-

ple, [fw=fwtvar1]. varname can be any valid Stata variable name, and you can specify fweight()
at levels two and higher of a multilevel model. For example, in the two-level model

. mecmd fixed_portion [fw = wt1] || school: ... , fweight(wt2) ...

the variable wt1 would hold the first-level (the observation-level) frequency weights, and wt2 would
hold the second-level (the school-level) frequency weights.

iweight(varname) specifies importance weights at higher levels in a multilevel model, whereas impor-
tance weights at the first level (the observation level) are specified in the usual manner, for example,

[iw=iwtvar1]. varname can be any valid Stata variable name, and you can specify iweight() at

levels two and higher of a multilevel model. For example, in the two-level model

. mecmd fixed_portion [iw = wt1] || school: ... , iweight(wt2) ...

the variable wt1would hold the first-level (the observation-level) importance weights, and wt2would
hold the second-level (the school-level) importance weights.
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pweight(varname) specifies sampling weights at higher levels in a multilevel model, whereas sam-

pling weights at the first level (the observation level) are specified in the usual manner, for example,

[pw=pwtvar1]. varname can be any valid Stata variable name, and you can specify pweight() at
levels two and higher of a multilevel model. For example, in the two-level model

. mecmd fixed_portion [pw = wt1] || school: ... , pweight(wt2) ...

variable wt1 would hold the first-level (the observation-level) sampling weights, and wt2 would hold
the second-level (the school-level) sampling weights.

family(family) specifies the distribution of depvar; family(gaussian) is the default.

link(link) specifies the link function; the default is the canonical link for the family() specified except
for the gamma and negative binomial families.

If you specify both family() and link(), not all combinations make sense. You may choose from
the following combinations:

identity log logit probit cloglog

Gaussian D x

Bernoulli D x x

binomial D x x

gamma D

negative binomial D

ordinal D x x

Poisson D

D denotes the default.

constraints(constraints); see [R] Estimation options.

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived from
asymptotic theory (oim, opg), that are robust to some kinds of misspecification (robust), and that
allow for intragroup correlation (cluster clustvar); see [R] vce option. If vce(robust) is specified,
robust variances are clustered at the highest level in the multilevel model.

� � �
Reporting �

level(#); see [R] Estimation options.

eform reports exponentiated fixed-effects coefficients and corresponding standard errors and confidence
intervals. This option may be specified either at estimation or upon replay.

irr reports estimated fixed-effects coefficients transformed to incidence-rate ratios, that is, exp(𝛽) rather
than 𝛽. Standard errors and confidence intervals are similarly transformed. This option affects how
results are displayed, not how they are estimated or stored. irr may be specified either at estimation
or upon replay. This option is allowed for count models only.

or reports estimated fixed-effects coefficients transformed to odds ratios, that is, exp(𝛽) rather than 𝛽.
Standard errors and confidence intervals are similarly transformed. This option affects how results

are displayed, not how they are estimated. or may be specified at estimation or upon replay. This
option is allowed for logistic models only.

nocnsreport; see [R] Estimation options.

notable suppresses the estimation table, either at estimation or upon replay.
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noheader suppresses the output header, either at estimation or upon replay.

nogroup suppresses the display of group summary information (number of groups, average group size,
minimum, and maximum) from the output header.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] Estimation options.

� � �
Integration �

intmethod(intmethod) specifies the integration method to be used for the random-effects model.

mvaghermite performs mean–variance adaptive Gauss–Hermite quadrature; mcaghermite and

pcaghermite perform mode-curvature adaptive Gauss–Hermite quadrature; ghermite performs

nonadaptive Gauss–Hermite quadrature; and laplace and pclaplace perform the Laplacian

approximation, equivalent to mode-curvature adaptive Gaussian quadrature with one integration

point. Techniques pcaghermite and pclaplace are available only with family(binomial) and
family(bernoulli) combined with link(logit) and with family(poisson); these techniques
obtain the random-effects mode and curvature using the efficient hierarchical decomposition algo-

rithm described in Pinheiro and Chao (2006). For hierarchical models, this algorithm takes advantage

of the design structure to minimize memory use and utilizes a series of orthogonal triangulations to

compute the factored random-effects Hessian indirectly, avoiding the sparse full Hessian. Techniques

mcaghermite and laplace use Cholesky factorization on the full Hessian. For four- and higher-level
hierarchical designs, there can be dramatic computation-time differences.

The default integration method is mvaghermite unless a crossed random-effects model is fit, in which
case the default integration method is laplace. The Laplacian approximation has been known to
produce biased parameter estimates; however, the bias tends to be more prominent in the estimates of

the variance components rather than in the estimates of the fixed effects.

For crossed random-effects models, estimation with more than one quadrature point may be pro-

hibitively intensive even for a small number of levels. For this reason, the integration method defaults

to the Laplacian approximation. You may override this behavior by specifying a different integration

method.

intpoints(#) sets the number of integration points for quadrature. The default is intpoints(7),
which means that seven quadrature points are used for each level of random effects. This option is

not allowed with intmethod(laplace).

The more integration points, the more accurate the approximation to the log likelihood. However,

computation time increases as a function of the number of quadrature points raised to a power equaling

the dimension of the random-effects specification. In crossed random-effects models and in models

with many levels or many random coefficients, this increase can be substantial.

� � �
Maximization �

maximize options: difficult, technique(algorithm spec), iterate(#), [no]log, trace,
gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(init specs); see [R] Maximize. Those that require

special mention for meglm are listed below.

from() accepts a properly labeled vector of initial values or a list of coefficient names with values.
A list of values is not allowed.
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The following options are available with meglm but are not shown in the dialog box:

startvalues(svmethod) specifies how starting values are to be computed. Starting values specified in

from() override the computed starting values.

startvalues(zero) specifies that starting values be set to 0.

startvalues(constantonly) builds on startvalues(zero) by fitting a constant-only model to
obtain estimates of the intercept and auxiliary parameters, and it substitutes 1 for the variances of

random effects.

startvalues(fixedonly[ , iterate(#) ]) builds on startvalues(constantonly) by fitting a
full fixed-effects model to obtain estimates of coefficients along with intercept and auxiliary param-

eters, and it continues to use 1 for the variances of random effects. This is the default behavior.

iterate(#) limits the number of iterations for fitting the fixed-effects model.

startvalues(iv[ , iterate(#) ]) builds on startvalues(fixedonly) by using instrumental-

variable methods with generalized residuals to obtain variances of random effects. iterate(#) limits
the number of iterations for fitting the instrumental-variable model.

startvalues(iterate(#)) limits the number of iterations for fitting the default model (fixed ef-
fects).

startgrid[ (gridspec) ] performs a grid search on variance components of random effects to improve

starting values. No grid search is performed by default unless the starting values are found to be

not feasible, in which case meglm runs startgrid() to perform a “minimal” search involving 𝑞3

likelihood evaluations, where 𝑞 is the number of random effects. Sometimes this resolves the problem.

Usually, however, there is no problem and startgrid() is not run by default. There can be benefits
from running startgrid() to get better starting values even when starting values are feasible.

startgrid() is a brute-force approach that tries various values for variances and covariances and
chooses the ones that work best. You may already be using a default form of startgrid() without
knowing it. If you see meglm displaying Grid node 1, Grid node 2, . . . following Grid node 0 in

the iteration log, that is meglm doing a default search because the original starting values were not
feasible. The default form tries 0.1, 1, and 10 for all variances of all random effects.

startgrid(numlist) specifies values to try for variances of random effects.

startgrid(covspec) specifies the particular variances and covariances in which grid searches are
to be performed. covspec is name[level] for variances and name1[level]*name2[level] for covari-
ances. For example, the variance of the random intercept at level id is specified as cons[id], and
the variance of the random slope on variable week at the same level is specified as week[id]. The
residual variance for the linear mixed-effects model is specified as e.depvar, where depvar is the

name of the dependent variable. The covariance between the random slope and the random intercept

above is specified as cons[id]*week[id].

startgrid(numlist covspec) combines the two syntaxes. You may also specify startgrid() mul-
tiple times so that you can search the different ranges for different variances and covariances.

noestimate specifies that the model is not to be fit. Instead, starting values are to be shown (as modified
by the above options if modifications were made), and they are to be shown using the coeflegend
style of output.

dnumerical specifies that during optimization, the gradient vector and Hessian matrix be computed

using numerical techniques instead of analytical formulas. By default, analytical formulas for com-

puting the gradient and Hessian are used for all integration methods except intmethod(laplace).
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collinear, coeflegend; see [R] Estimation options.

Remarks and examples
For a general introduction to me commands, see [ME] me. For additional examples of mixed-effects

models for binary and binomial outcomes, see [ME] melogit, [ME] meprobit, and [ME] mecloglog. For

additional examples of mixed-effects models for ordinal responses, see [ME] meologit and [ME] meo-

probit. For additional examples of mixed-effects models for multinomial outcomes, see [SEM] Ex-

ample 41g. For additional examples of mixed-effects models for count outcomes, see [ME] mepois-

son and [ME] menbreg. For additional examples of mixed-effects parametric survival models, see

[ME]mestreg. For additional examples of mixed-effects models for censored outcomes, see [ME]meto-

bit and [ME] meintreg.

Remarks are presented under the following headings:

Introduction
Two-level models for continuous responses
Two-level models for nonlinear responses
Three-level models for nonlinear responses
Crossed-effects models
Obtaining better starting values
Survey data
Video example

Introduction
meglm fits multilevel mixed-effects generalized linear models of the form

𝑔{𝐸(y|X,u)} = Xβ + Zu, y ∼ 𝐹 (1)

where y is the 𝑛 × 1 vector of responses from the distributional family 𝐹, X is an 𝑛 × 𝑝 design/covariate
matrix for the fixed effects β, and Z is the 𝑛 × 𝑞 design/covariate matrix for the random effects u.

The Xβ + Zu part is called the linear predictor, and it is often denoted as η. The linear predictor also
contains the offset or exposure variable when offset() or exposure() is specified. 𝑔(⋅) is called the
link function and is assumed to be invertible such that

𝐸(y|X,u) = 𝑔−1(Xβ + Zu) = 𝐻(η) = µ

For notational convenience here and throughout this manual entry, we suppress the dependence of y on

X. Substituting various definitions for 𝑔(⋅) and 𝐹 results in a wide array of models. For instance, if y is

distributed as Gaussian (normal) and 𝑔(⋅) is the identity function, we have

𝐸(y) = Xβ + Zu, y ∼ normal

or mixed-effects linear regression. If 𝑔(⋅) is the logit function and y is distributed as Bernoulli, we have

logit{𝐸(y)} = Xβ + Zu, y ∼ Bernoulli

or mixed-effects logistic regression. If 𝑔(⋅) is the natural log function and y is distributed as Poisson, we
have

ln{𝐸(y)} = Xβ + Zu, y ∼ Poisson
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or mixed-effects Poisson regression. In fact, some combinations of families and links are so common

that we implemented them as separate commands in terms of meglm.

Command meglm equivalent
melogit family(bernoulli) link(logit)
meprobit family(bernoulli) link(probit)
mecloglog family(bernoulli) link(cloglog)
meologit family(ordinal) link(logit)
meoprobit family(ordinal) link(probit)
mepoisson family(poisson) link(log)
menbreg family(nbinomial) link(log)

When no family–link combination is specified, meglm defaults to a Gaussian family with an identity
link. Thus meglm can be used to fit linear mixed-effects models; however, for those models we recom-
mend using the more specialized mixed, which, in addition to meglm capabilities, allows for modeling
of the structure of the residual errors; see [ME] mixed for details.

The random effects u are assumed to be distributed as multivariate normal with mean 0 and 𝑞 × 𝑞
variance matrix 𝚺. The random effects are not directly estimated (although they may be predicted), but

instead are characterized by the variance components, the elements of G = Var(u).
The general forms of the design matrices X and Z allow estimation for a broad class of generalized

mixed-effects models: blocked designs, split-plot designs, growth curves, multilevel or hierarchical de-

signs, etc. They also allow a flexible method of modeling within-cluster correlation. Subjects within

the same cluster can be correlated as a result of a shared random intercept, or through a shared random

slope on a covariate, or both. The general specification of variance components also provides additional

flexibility—the random intercept and random slope could themselves be modeled as independent, or

correlated, or independent with equal variances, and so forth.

Comprehensive treatments of mixed models are provided by, for example, Searle, Casella, and Mc-

Culloch (1992); Verbeke and Molenberghs (2000); Raudenbush and Bryk (2002); Hedeker and Gibbons

(2006); McCulloch, Searle, and Neuhaus (2008); and Rabe-Hesketh and Skrondal (2022).

The key to fitting mixed models lies in estimating the variance components, and for that there ex-

ist many methods; see, for example, Breslow and Clayton (1993); Lin and Breslow (1996); Bates and

Pinheiro (1998); and Ng et al. (2006). meglm uses maximum likelihood (ML) to estimate model param-

eters. The ML estimates are based on the usual application of likelihood theory, given the distributional

assumptions of the model.

Returning to (1): in clustered-data situations, it is convenient not to consider all 𝑛 observations at

once but instead to organize the mixed model as a series of 𝑀 independent groups (or clusters)

𝑔{𝐸(y𝑗)} = X𝑗β + Z𝑗u𝑗 (2)

for 𝑗 = 1, . . . , 𝑀, with cluster 𝑗 consisting of 𝑛𝑗 observations. The response y𝑗 comprises the rows of

y corresponding with the 𝑗th cluster, with X𝑗 defined analogously. The random effects u𝑗 can now be

thought of as 𝑀 realizations of a 𝑞 ×1 vector that is normally distributed with mean 0 and 𝑞 × 𝑞 variance
matrix 𝚺. The matrix Z𝑖 is the 𝑛𝑗 × 𝑞 design matrix for the 𝑗th cluster random effects. Relating this to

(1), note that
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Z =
⎡
⎢⎢
⎣

Z1 0 · · · 0

0 Z2 · · · 0

⋮ ⋮ ⋱ ⋮
0 0 0 Z𝑀

⎤
⎥⎥
⎦

; u = ⎡⎢
⎣

u1
⋮
u𝑀

⎤⎥
⎦

; G = I𝑀 ⊗ 𝚺

where I𝑀 is the 𝑀 × 𝑀 identity matrix and ⊗ is the Kronecker product.

The mixed-model formula (2) is from Laird and Ware (1982) and offers two key advantages. First, it

makes specifications of random-effects terms easier. If the clusters are schools, you can simply specify a

random effect at the school level, as opposed to thinking of what a school-level random effect wouldmean

when all the data are considered as a whole (if it helps, think Kronecker products). Second, representing

a mixed-model with (2) generalizes easily to more than one set of random effects. For example, if classes

are nested within schools, then (2) can be generalized to allow random effects at both the school and the

class-within-school levels.

Two-level models for continuous responses
We begin with a simple application of (2).

Example 1: Two-level linear mixed model
Consider a longitudinal dataset, used by both Ruppert, Wand, and Carroll (2003) and Diggle

et al. (2002), consisting of weight measurements of 48 pigs on 9 successive weeks. Pigs are identi-
fied by the variable id. Each pig experiences a linear trend in growth but overall weight measurements
vary from pig to pig. Because we are not really interested in these particular 48 pigs per se, we instead

treat them as a random sample from a larger population and model the between-pig variability as a ran-

dom effect, or in the terminology of (2), as a random-intercept term at the pig level. We thus wish to fit

the model

weight𝑖𝑗 = 𝛽0 + 𝛽1week𝑖𝑗 + 𝑢𝑗 + 𝜖𝑖𝑗

for 𝑖 = 1, . . . , 9 weeks and 𝑗 = 1, . . . , 48 pigs. The fixed portion of the model, 𝛽0 + 𝛽1week𝑖𝑗, simply

states that we want one overall regression line representing the population average. The random effect 𝑢𝑗
serves to shift this regression line up or down according to each pig. Because the random effects occur

at the pig level (id), we fit the model by typing
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. use https://www.stata-press.com/data/r19/pig
(Longitudinal analysis of pig weights)
. meglm weight week || id:
Fitting fixed-effects model:
Iteration 0: Log likelihood = -1251.2506
Iteration 1: Log likelihood = -1251.2506
Refining starting values:
Grid node 0: Log likelihood = -1150.6253
Fitting full model:
Iteration 0: Log likelihood = -1150.6253 (not concave)
Iteration 1: Log likelihood = -1036.1793
Iteration 2: Log likelihood = -1017.912
Iteration 3: Log likelihood = -1014.9537
Iteration 4: Log likelihood = -1014.9268
Iteration 5: Log likelihood = -1014.9268
Mixed-effects GLM Number of obs = 432
Family: Gaussian
Link: Identity
Group variable: id Number of groups = 48

Obs per group:
min = 9
avg = 9.0
max = 9

Integration method: mvaghermite Integration pts. = 7
Wald chi2(1) = 25337.48

Log likelihood = -1014.9268 Prob > chi2 = 0.0000

weight Coefficient Std. err. z P>|z| [95% conf. interval]

week 6.209896 .0390124 159.18 0.000 6.133433 6.286359
_cons 19.35561 .5974047 32.40 0.000 18.18472 20.52651

id
var(_cons) 14.81745 3.124202 9.801687 22.39989

var(e.weight) 4.383264 .3163349 3.805112 5.049261

LR test vs. linear model: chibar2(01) = 472.65 Prob >= chibar2 = 0.0000

At this point, a guided tour of the model specification and output is in order:

1. By typing weight week, we specified the response, weight, and the fixed portion of the model in
the same way that we would if we were using regress or any other estimation command. Our fixed
effects are a coefficient on week and a constant term.

2. When we added || id:, we specified random effects at the level identified by the group variable id,
that is, the pig level (level two). Because we wanted only a random intercept, that is all we had to

type.

3. The estimation log displays a set of iterations from optimizing the log likelihood. By default, these

are Newton–Raphson iterations, but other methods are available by specifying the appropriate maxi-

mize options; see [R]Maximize.
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4. The header describes the model, presents a summary of the random-effects group, reports the inte-

gration method used to fit the model, and reports a Wald test against the null hypothesis that all the

coefficients on the independent variables in the mean equation are 0. Here the null hypothesis is re-

jected at all conventional levels. You can suppress the group information with the nogroup or the
noheader option, which will suppress the rest of the header as well.

5. The estimation table reports the fixed effects, followed by the random effects, followed by the overall

error term.

a. For the fixed-effects part, we estimate 𝛽0 = 19.36 and 𝛽1 = 6.21.

b. The random-effects equation is labeled id, meaning that these are random effects at the id (pig)
level. We have only one random effect at this level, the random intercept. The variance of the

level-two errors, 𝜎2
𝑢, is estimated as 14.82 with standard error 3.12.

c. The row labeled var(e.weight) displays the estimated variance of the overall error term: 𝜎̂2
𝜖 =

4.38. This is the variance of the level-one errors, that is, the residuals.

6. Finally, a likelihood-ratio test comparing the model with ordinary linear regression is provided and

is highly significant for these data. See Distribution theory for likelihood-ratio test in [ME] me for a

discussion of likelihood-ratio testing of variance components.

See Remarks and examples in [ME]mixed for further analysis of these data including a random-slope

model and a model with an unstructured covariance structure.

Two-level models for nonlinear responses
By specifying different family–link combinations, we can fit a variety of mixed-effects models for

nonlinear responses. Here we replicate one of the models from example 2 of melogit.

Example 2: Two-level logistic regression model
Ng et al. (2006) analyzed a subsample of data from the 1989 Bangladesh fertility survey (Huq and

Cleland 1990), which polled 1,934 Bangladeshi women on their use of contraception. The women sam-

pled were from 60 districts, identified by the variable district. Each district contained either urban
or rural areas (variable urban) or both. The variable c use is the binary response, with a value of 1

indicating contraceptive use. Other covariates include mean-centered age and a factor variable for the
number of children.
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We fit a standard logistic regression model, amended to have a random intercept for each district and

a random slope on the urban factor variable. We fit the model by typing

. use https://www.stata-press.com/data/r19/bangladesh
(Bangladesh Fertility Survey, 1989)
. meglm c_use i.urban age i.children
> || district: i.urban, family(bernoulli) link(logit) nofvlabel
Fitting fixed-effects model:
Iteration 0: Log likelihood = -1229.5485
Iteration 1: Log likelihood = -1228.5268
Iteration 2: Log likelihood = -1228.5263
Iteration 3: Log likelihood = -1228.5263
Refining starting values:
Grid node 0: Log likelihood = -1215.8592
Fitting full model:
Iteration 0: Log likelihood = -1215.8592 (not concave)
Iteration 1: Log likelihood = -1209.6285
Iteration 2: Log likelihood = -1205.7903
Iteration 3: Log likelihood = -1205.1337
Iteration 4: Log likelihood = -1205.0034
Iteration 5: Log likelihood = -1205.0025
Iteration 6: Log likelihood = -1205.0025
Mixed-effects GLM Number of obs = 1,934
Family: Bernoulli
Link: Logit
Group variable: district Number of groups = 60

Obs per group:
min = 2
avg = 32.2
max = 118

Integration method: mvaghermite Integration pts. = 7
Wald chi2(5) = 97.30

Log likelihood = -1205.0025 Prob > chi2 = 0.0000

c_use Coefficient Std. err. z P>|z| [95% conf. interval]

1.urban .7143927 .1513595 4.72 0.000 .4177335 1.011052
age -.0262261 .0079656 -3.29 0.001 -.0418384 -.0106138

children
1 1.128973 .1599347 7.06 0.000 .815507 1.442439
2 1.363165 .1761804 7.74 0.000 1.017857 1.708472
3 1.352238 .1815608 7.45 0.000 .9963853 1.708091

_cons -1.698137 .1505019 -11.28 0.000 -1.993115 -1.403159

district
var(1.urban) .2741013 .2131525 .059701 1.258463
var(_cons) .2390807 .0857012 .1184191 .4826891

LR test vs. logistic model: chi2(2) = 47.05 Prob > chi2 = 0.0000
Note: LR test is conservative and provided only for reference.
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Because we did not specify a covariance structure for the random effects (𝑢1𝑗, 𝑢0𝑗)′, meglm used the

default independent structure:

𝚺 = Var [𝑢1𝑗
𝑢0𝑗

] = [𝜎2
𝑢1 0
0 𝜎2

𝑢0
]

with 𝜎̂2
𝑢1 = 0.27 and 𝜎̂2

𝑢0 = 0.24. You can request a different covariance structure by specifying the

covariance() option. See examples 1–3 in melogit for further analysis of these data, and see [ME]me

and [ME] mixed for further examples of covariance structures.

Three-level models for nonlinear responses
Two-level models extend naturally to models with three or more levels with nested random effects.

Here we replicate the model from example 2 of [ME] meologit.

Example 3: Three-level ordered logistic regression model
We use the data from the Television, School, and Family Smoking Prevention and Cessation Project

(Flay et al. 1988; Rabe-Hesketh and Skrondal 2022, chap. 11), where schools were randomly assigned

into one of four groups defined by two treatment variables. Students within each school are nested in

classes, and classes are nested in schools. The dependent variable is the tobacco and health knowledge

(THK) scale score collapsed into four ordered categories. We regress the outcome on the treatment vari-

ables, social resistance classroom curriculum and TV intervention, and their interaction and control for

the pretreatment score.

. use https://www.stata-press.com/data/r19/tvsfpors
(Television, School, and Family Project)
. meglm thk prethk cc##tv || school: || class:, family(ordinal) link(logit)
Fitting fixed-effects model:
Iteration 0: Log likelihood = -2212.775
Iteration 1: Log likelihood = -2125.509
Iteration 2: Log likelihood = -2125.1034
Iteration 3: Log likelihood = -2125.1032
Refining starting values:
Grid node 0: Log likelihood = -2152.1514
Fitting full model:
Iteration 0: Log likelihood = -2152.1514 (not concave)
Iteration 1: Log likelihood = -2125.9213 (not concave)
Iteration 2: Log likelihood = -2120.1861
Iteration 3: Log likelihood = -2115.6177
Iteration 4: Log likelihood = -2114.5896
Iteration 5: Log likelihood = -2114.5881
Iteration 6: Log likelihood = -2114.5881
Mixed-effects GLM Number of obs = 1,600
Family: Ordinal
Link: Logit

Grouping information

No. of Observations per group
Group variable groups Minimum Average Maximum

school 28 18 57.1 137
class 135 1 11.9 28
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Integration method: mvaghermite Integration pts. = 7
Wald chi2(4) = 124.39

Log likelihood = -2114.5881 Prob > chi2 = 0.0000

thk Coefficient Std. err. z P>|z| [95% conf. interval]

prethk .4085273 .039616 10.31 0.000 .3308814 .4861731
1.cc .8844369 .2099124 4.21 0.000 .4730161 1.295858
1.tv .236448 .2049065 1.15 0.249 -.1651614 .6380575

cc#tv
1 1 -.3717699 .2958887 -1.26 0.209 -.951701 .2081612

/cut1 -.0959459 .1688988 -.4269815 .2350896
/cut2 1.177478 .1704946 .8433151 1.511642
/cut3 2.383672 .1786736 2.033478 2.733865

school
var(_cons) .0448735 .0425387 .0069997 .2876749

school>class
var(_cons) .1482157 .0637521 .063792 .3443674

LR test vs. ologit model: chi2(2) = 21.03 Prob > chi2 = 0.0000
Note: LR test is conservative and provided only for reference.

Notes:

1. Our model now has two random-effects equations, separated by ||. The first is a random intercept

(constant only) at the school level (level three), and the second is a random intercept at the class
level (level two). The order in which these are specified (from left to right) is significant—meglm
assumes that class is nested within school.

2. The information on groups is now displayed as a table, with one row for each grouping. You can

suppress this table with the nogroup or the noheader option, which will suppress the rest of the

header, as well.

3. The variance-component estimates are now organized and labeled according to level. The variance

component for class is labeled school>class to emphasize that classes are nested within schools.

We refer you to example 2 of [ME] meologit and example 1 of [ME] meologit postestimation for a

substantive interpretation of the results.

The above extends to models with more than two levels of nesting by adding more random-effects

equations, each separated by ||. The order of nesting goes from left to right as the groups go from biggest

(highest level) to smallest (lowest level).
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Crossed-effects models
Not all mixed models contain nested levels of random effects. In this section, we consider a crossed-

effects model, that is, a mixed-effects model in which the levels of random effects are not nested; see

[ME] me for more information on crossed-effects models.

Example 4: Crossed-effects logistic regression model
Weuse the salamander cross-breeding data fromKarim and Zeger (1992) as analyzed in Rabe-Hesketh

and Skrondal (2022, sec. 16.8). The salamanders come from two populations—whiteside and rough-

butt—and are labeledwhitesidemales (wsm), whiteside females (wsf), roughbutt males (rbm), and rough-
butt females (rbf). Male identifiers are recorded in the variable male, and female identifiers are recorded
in the variable female. The salamanders were divided into groups such that each group contained 60
male–female pairs, with each salamander having three potential partners from the same population and

three potential partners from the other population. The outcome (y) is coded 1 if there was a successful
mating and is coded 0 otherwise; see the references for a detailed description of the mating experiment.

We fit a crossed-effects logistic regression for successful mating, where each male has the same value

of his random intercept across all females, and each female has the same value of her random intercept

across all males.

To fit a crossed-effects model in Stata, we use the all: R.varname syntax. We treat the entire

dataset as one super cluster, denoted all, and we nest each gender within the super cluster by using the
R.varname notation. R.male requests a random intercept for each level of male and imposes an identity
covariance structure on the random effects; that is, the variances of the random intercepts are restricted

to be equal for all male salamanders. R.female accomplishes the same for the female salamanders. In
Stata, we type
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. use https://www.stata-press.com/data/r19/salamander

. meglm y wsm##wsf || _all: R.male || _all: R.female, family(bernoulli)
> link(logit) or
note: crossed random-effects model specified; option intmethod(laplace)

implied.
Fitting fixed-effects model:
Iteration 0: Log likelihood = -223.13998
Iteration 1: Log likelihood = -222.78752
Iteration 2: Log likelihood = -222.78735
Iteration 3: Log likelihood = -222.78735
Refining starting values:
Grid node 0: Log likelihood = -211.58149
Fitting full model:
Iteration 0: Log likelihood = -211.58149
Iteration 1: Log likelihood = -209.33737
Iteration 2: Log likelihood = -209.29378 (not concave)
Iteration 3: Log likelihood = -209.29291
Iteration 4: Log likelihood = -209.27663
Iteration 5: Log likelihood = -209.27659
Iteration 6: Log likelihood = -209.27659
Mixed-effects GLM Number of obs = 360
Family: Bernoulli
Link: Logit
Group variable: _all Number of groups = 1

Obs per group:
min = 360
avg = 360.0
max = 360

Integration method: laplace
Wald chi2(3) = 42.59

Log likelihood = -209.27659 Prob > chi2 = 0.0000

y Odds ratio Std. err. z P>|z| [95% conf. interval]

1.wsm .4955657 .2293702 -1.52 0.129 .2000446 1.227653
1.wsf .0547918 .0287903 -5.53 0.000 .0195638 .1534542

wsm#wsf
1 1 36.17797 22.01912 5.90 0.000 10.97424 119.2652

_cons 2.740748 1.062625 2.60 0.009 1.281878 5.859918

_all>male
var(_cons) 1.041005 .4998442 .4062035 2.667853

_all>female
var(_cons) 1.17438 .5438465 .4738309 2.910675

Note: Estimates are transformed only in the first equation to odds ratios.
Note: _cons estimates baseline odds (conditional on zero random effects).
LR test vs. logistic model: chi2(2) = 27.02 Prob > chi2 = 0.0000
Note: LR test is conservative and provided only for reference.

Becausewe specified a crossed-effectsmodel, meglm defaulted to themethod of Laplacian approximation
to calculate the likelihood; see Computation time and the Laplacian approximation in [ME] me for a

discussion of computational complexity of mixed-effects models, and see Methods and formulas below

for the formulas used by the Laplacian approximation method.
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The estimates of the random intercepts suggest that the heterogeneity among the female salamanders,

1.17, is larger than the heterogeneity among the male salamanders, 1.04.

Setting both random intercepts to 0, the odds of successful mating for a roughbutt male–female pair

are given by the estimate of cons, 2.74. Rabe-Hesketh and Skrondal (2022, sec. 16.8) show how to

calculate the odds ratios for the other three salamander pairings.

The R.varname notation is equivalent to giving a list of overparameterized (none dropped) indicator

variables for use in a random-effects specification. When you specify R.varname, meglm handles the
calculations internally rather than creating the indicators in the data. Because the set of indicators is

overparameterized, R.varname implies noconstant.

Technical note
We fit the salamander model by using

. meglm y wsm##wsf || _all: R.male || _all: R.female ...

as a direct way to demonstrate the R. notation. However, we can technically treat female salamanders
as nested within the all group, yielding the equivalent way to fit the model:

. meglm y wsm##wsf || _all: R.male || female: ...

We leave it to you to verify that both produce identical results. As we note in example 8 of [ME]me, the

latter specification, organized at the cluster (female) level with random-effects dimension one (a random

intercept) is, in general, much more computationally efficient.

Obtaining better starting values
Given the flexibility of mixed-effects models, you will find that some models “fail to converge”

when used with your data; see Diagnosing convergence problems in [ME] me for details. What we

say below applies regardless of how the convergence problem revealed itself. You might have seen the

error message “initial values not feasible” or some other error message, or you might have an infinite

iteration log.

meglm provides two options to help you obtain better starting values: startvalues() and

startgrid().

startvalues(svmethod) allows you to specify one of four starting-value calculationmethods: zero,
constantonly, fixedonly, or iv. By default, meglm uses startvalues(fixedonly). Evidently, that
did not work for you. Try the other methods, starting with startvalues(iv):

. meglm ..., ... startvalues(iv)

If that does not solve the problem, proceed through the others.

By the way, if you have starting values for some parameters but not others—perhaps you fit a simpli-

fied model to get them—you can combine the options startvalues() and from():

. meglm ..., ... // simplified model

. matrix b = e(b)

. meglm ..., ... from(b) startvalues(iv) // full model
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The other special option meglm provides is startgrid(), which can be used with or without

startvalues(). startgrid() is a brute-force approach that tries various values for variances and

covariances and chooses the ones that work best.

1. Youmay already be using a default form of startgrid()without knowing it. If you see meglm
displaying Grid node 1, Grid node 2, . . . following Grid node 0 in the iteration log, that is meglm
doing a default search because the original starting values were not feasible.

The default form tries 0.1, 1, and 10 for all variances of all random effects and, if applicable,

for the residual variance.

2. startgrid(numlist) specifies values to try for variances of random effects.

3. startgrid(covspec) specifies the particular variances and covariances in which grid searches
are to be performed. Variances and covariances are specified in the usual way.

startgrid( cons[id] x[id] cons[id]*x[id]) specifies that 0.1, 1, and 10 be tried for
each member of the list.

4. startgrid(numlist covspec) combines the two syntaxes. You can specify startgrid()mul-
tiple times so that you can search the different ranges for different variances and covariances.

Our advice to you is the following:

1. If you receive an iteration log and it does not contain Grid node 1, Grid node 2, . . . , then specify

startgrid(.1 1 10). Do that whether the iteration log was infinite or ended with some other
error. In this case, we know that meglm did not run startgrid() on its own because it did not
report Grid node 1, Grid node 2, etc. Your problem is poor starting values, not infeasible ones.

A synonym for startgrid(.1 1 10) is just startgrid without parentheses.

Be careful, however, if you have many random effects. Specifying startgrid() could run a
long time because it runs all possible combinations. If you have 10 random effects, that means

103 = 1,000 likelihood evaluations.

If you have many random effects, rerun your difficult meglm command including option

iterate(#) and look at the results. Identify the problematic variances and search across them
only. Do not just look for variances going to 0. Variances getting really big can be a problem,

too, and even reasonable values can be a problem. Use your knowledge and intuition about the

model.

Perhaps you will try to fit your model by specifying startgrid(.1 1 10 cons[id] x[id]
cons[id]*x[id]).

Values 0.1, 1, and 10 are the default. Equivalent to specifying

startgrid(.1 1 10 cons[id] x[id] cons[id]*x[id]) is
startgrid( cons[id] x[id] cons[id]*x[id]).

Look at covariances as well as variances. If you expect a covariance to be negative but it is

positive, then try negative starting values for the covariance by specifying startgrid(-.1 -1
-10 cons[id]*x[id]).

Remember that you can specify startgrid() multiple times. Thus you might specify both

startgrid( cons[id] x[id]) and startgrid(-.1 -1 -10 cons[id]*x[id]).
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2. If you receive the message “initial values not feasible”, you know that meglm already tried the
default startgrid().

The default startgrid() only tried the values 0.1, 1, and 10, and only tried them on the

variances of random effects. You may need to try different values or try the same values on

covariances or variances of errors of observed endogenous variables.

We suggest you first rerun the model causing difficulty and include the noestimate option.
If, looking at the results, you have an idea of which variance or covariance is a problem, or if

you have few variances and covariances, we would recommend running startgrid() first.

On the other hand, if you have no idea as to which variance or covariance is the problem and

you have many of them, you will be better off if you first simplify the model. After doing that,

if your simplified model does not include all the variances and covariances, you can specify a

combination of from() and startgrid().

Survey data
Multilevel modeling of survey data is a little different from standard modeling in that weighted sam-

pling can take place at multiple levels in the model, resulting in multiple sampling weights. Most survey

datasets, regardless of the design, contain one overall inclusion weight for each observation in the data.

This weight reflects the inverse of the probability of ultimate selection, and by “ultimate” we mean that

it factors in all levels of clustered sampling, corrections for noninclusion and oversampling, poststratifi-

cation, etc.

For simplicity, in what follows, assume a simple two-stage sampling design where groups are ran-

domly sampled and then individuals within groups are sampled. Also assume that no additional weight

corrections are performed; that is, sampling weights are simply the inverse of the probability of selection.

The sampling weight for observation 𝑖 in cluster 𝑗 in our two-level sample is then 𝑤𝑖𝑗 = 1/𝜋𝑖𝑗, where

𝜋𝑖𝑗 is the probability that observation 𝑖, 𝑗 is selected. If you were performing a standard analysis such
as OLS regression with regress, you would simply use a variable holding 𝑤𝑖𝑗 as your pweight vari-
able, and the fact that it came from two levels of sampling would not concern you. Perhaps you would

type vce(cluster groupvar) where groupvar identifies the top-level groups to get standard errors that
control for correlation within these groups, but you would still use only one weight variable.

Now take these same data and fit a two-level model with meglm. As seen in (5) in Methods and

formulas later in this entry, it is not sufficient to use the single sampling weight 𝑤𝑖𝑗, because weights

enter the log likelihood at both the group level and the individual level. Instead, what is required for a

two-level model under this sampling design is 𝑤𝑗, the inverse of the probability that group 𝑗 is selected
in the first stage, and 𝑤𝑖|𝑗, the inverse of the probability that individual 𝑖 from group 𝑗 is selected at the
second stage conditional on group 𝑗 already being selected. You cannot use 𝑤𝑖𝑗 without making any

assumptions about 𝑤𝑗.

Given the rules of conditional probability, 𝑤𝑖𝑗 = 𝑤𝑗𝑤𝑖|𝑗. If your dataset has only 𝑤𝑖𝑗, then you will

need to either assume equal probability sampling at the first stage (𝑤𝑗 = 1 for all 𝑗) or find some way to
recover 𝑤𝑗 from other variables in your data; see Rabe-Hesketh and Skrondal (2006) and the references

therein for some suggestions on how to do this, but realize that there is little yet known about how well

these approximations perform in practice.

What you really need to fit your two-level model are data that contain 𝑤𝑗 in addition to either 𝑤𝑖𝑗 or

𝑤𝑖|𝑗. If you have 𝑤𝑖𝑗—that is, the unconditional inclusion weight for observation 𝑖, 𝑗—then you need to

divide 𝑤𝑖𝑗 by 𝑤𝑗 to obtain 𝑤𝑖|𝑗.
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Example 5: Two-level logistic regression model with weights
Rabe-Hesketh and Skrondal (2006) analyzed data from the 2000 Programme for International Student

Assessment (PISA) study on reading proficiency among 15-year-oldAmerican students, as performed by

the Organisation for Economic Co-operation and Development (OECD). The original study was a three-

stage cluster sample, where geographic areas were sampled at the first stage, schools at the second, and

students at the third. Our version of the data does not contain the geographic-areas variable, so we treat

this as a two-stage sample where schools are sampled at the first stage and students at the second.

. use https://www.stata-press.com/data/r19/pisa2000
(Programme for International Student Assessment (PISA) 2000 data)
. describe
Contains data from https://www.stata-press.com/data/r19/pisa2000.dta
Observations: 2,069 Programme for International

Student Assessment (PISA) 2000
data

Variables: 11 12 Jun 2024 10:08
(_dta has notes)

Variable Storage Display Value
name type format label Variable label

female byte %8.0g 1 if female
isei byte %8.0g International socioeconomic index
w_fstuwt float %9.0g Student-level weight
wnrschbw float %9.0g School-level weight
high_school byte %8.0g 1 if highest level by either

parent is high school
college byte %8.0g 1 if highest level by either

parent is college
one_for byte %8.0g 1 if one parent foreign born
both_for byte %8.0g 1 if both parents are foreign

born
test_lang byte %8.0g 1 if English (the test language)

is spoken at home
pass_read byte %8.0g 1 if passed reading proficiency

threshold
id_school int %8.0g School ID

Sorted by:

For student 𝑖 in school 𝑗, where the variable id school identifies the schools, the variable w fstuwt
is a student-level overall inclusion weight (𝑤𝑖𝑗, not 𝑤𝑖|𝑗) adjusted for noninclusion and nonparticipation

of students, and the variable wnrschbw is the school-level weight𝑤𝑗 adjusted for oversampling of schools

with more minority students. The weight adjustments do not interfere with the methods prescribed above,

and thus we can treat the weight variables simply as 𝑤𝑖𝑗 and 𝑤𝑗, respectively.

Rabe-Hesketh and Skrondal (2006) fit a two-level logistic model for passing a reading proficiency

threshold. We will do the same using meglm, but first we must reproduce the “method 1” adjusted weight
variables that were used. The “method 1” adjustment scales the first-level weights so that they sum to

the effective sample size of their corresponding second-level cluster.

. sort id_school

. generate sqw = w_fstuwt * w_fstuwt

. by id_school: egen sumw = sum(w_fstuwt)

. by id_school: egen sumsqw = sum(sqw)

. generate pst1s1 = w_fstuwt*sumw/sumsqw
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The new variable pst1s1 holds the adjusted first-level weights. Rabe-Hesketh and Skrondal (2006)
also included the school mean socioeconomic index as a covariate in their analysis. We reproduce this

variable using egen.

. by id_school: egen mn_isei = mean(isei)

Here is the fitted model:

. meglm pass_read female isei mn_isei high_school college test_lang one_for
> both_for [pw=pst1s1], family(bernoulli) link(logit)
> || id_school:, pweight(wnrschbw)
(output omitted )

Mixed-effects GLM Number of obs = 2,069
Family: Bernoulli
Link: Logit
Group variable: id_school Number of groups = 148

Obs per group:
min = 1
avg = 14.0
max = 28

Integration method: mvaghermite Integration pts. = 7
Wald chi2(8) = 88.30

Log pseudolikelihood = -197395.98 Prob > chi2 = 0.0000
(Std. err. adjusted for 148 clusters in id_school)

Robust
pass_read Coefficient std. err. z P>|z| [95% conf. interval]

female .6221369 .1540088 4.04 0.000 .3202852 .9239887
isei .018215 .0048057 3.79 0.000 .0087959 .027634

mn_isei .0682472 .0164337 4.15 0.000 .0360378 .1004566
high_school .1028108 .477141 0.22 0.829 -.8323683 1.03799

college .4531688 .5053447 0.90 0.370 -.5372885 1.443626
test_lang .6251822 .3821182 1.64 0.102 -.1237557 1.37412

one_for -.1089314 .2739724 -0.40 0.691 -.6459075 .4280447
both_for -.2804038 .3264681 -0.86 0.390 -.9202696 .359462

_cons -5.877565 .954525 -6.16 0.000 -7.7484 -4.006731

id_school
var(_cons) .2955769 .1243375 .1295996 .6741201

Notes:

1. We specified the level-one weights using standard Stata weight syntax, that is,

[pw=pst1s1].

2. We specified the level-two weights via the pweight(wnrschbw) option as part of the random-effects
specification for the id school level. As such, it is treated as a school-level weight. Accordingly,
wnrschbw needs to be constant within schools, and meglm did check for that before estimating.

3. As is the case with other estimation commands in Stata, standard errors in the presence of sampling

weights are robust.

4. Robust standard errors are clustered at the top level of the model, and this will always be true unless

you specify vce(cluster clustvar), where clustvar identifies an even higher level of grouping.
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Example 6: Two-level logistic regression model with survey weights
meglm also supports the svy prefix (see [SVY] svy) for the linearized variance estimator. Here we

refit the model from the previous example using the svy prefix after we svyset (see [SVY] svyset) the
survey design variables.

. svyset id_school, weight(wnrschbw) || _n, weight(pst1s1)
note: stage 1 is sampled with replacement; further stages will be ignored for

variance estimation.
Sampling weights: <none>

VCE: linearized
Single unit: missing

Strata 1: <one>
Sampling unit 1: id_school

FPC 1: <zero>
Weight 1: wnrschbw
Strata 2: <one>

Sampling unit 2: <observations>
FPC 2: <zero>

Weight 2: pst1s1
. svy: meglm pass_read female isei mn_isei high_school college test_lang
> one_for both_for, family(bernoulli) link(logit) || id_school:
(running meglm on estimation sample)
Survey: Mixed-effects GLM
Number of strata = 1 Number of obs = 2,069
Number of PSUs = 148 Population size = 346,373.74

Design df = 147
F(8, 140) = 10.51
Prob > F = 0.0000

Linearized
pass_read Coefficient std. err. t P>|t| [95% conf. interval]

female .6221369 .1540088 4.04 0.000 .3177796 .9264943
isei .018215 .0048057 3.79 0.000 .0087177 .0277122

mn_isei .0682472 .0164337 4.15 0.000 .0357704 .100724
high_school .1028108 .477141 0.22 0.830 -.8401311 1.045753

college .4531688 .5053447 0.90 0.371 -.5455101 1.451848
test_lang .6251822 .3821182 1.64 0.104 -.1299725 1.380337

one_for -.1089314 .2739724 -0.40 0.692 -.6503648 .432502
both_for -.2804038 .3264681 -0.86 0.392 -.925581 .3647734

_cons -5.877565 .954525 -6.16 0.000 -7.763929 -3.991201

id_school
var(_cons) .2955769 .1243375 .1287156 .6787495

Notes:

1. We svyset the design variables: id school is the PSU variable, wnrschbw contains weights at the
PSU level, n specifies that the students are identified by the individual observations, and pst1s1
contains our adjusted student-level conditional weights.

2. svyset notes the lack of a finite population correction in the first stage and informs us that only the
first-stage unit information will be used in the linearized variance estimator. However, the svy prefix
will still pass the stage-two weights to meglm.
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3. svy produces a different header, giving us an estimate of the population size, the design degrees of
freedom, and the number of first-stage sampling units.

Video example
Tour of multilevel GLMs

Stored results
meglm stores the following in e():

Scalars

e(N) number of observations

e(k) number of parameters

e(k dv) number of dependent variables

e(k eq) number of equations in e(b)
e(k eq model) number of equations in overall model test

e(k cat) number of categories (with ordinal outcomes)

e(k f) number of fixed-effects parameters

e(k r) number of random-effects parameters

e(k rs) number of variances

e(k rc) number of covariances

e(df m) model degrees of freedom

e(ll) log likelihood

e(chi2) 𝜒2

e(p) 𝑝-value for model test
e(ll c) log likelihood, comparison model

e(chi2 c) 𝜒2, comparison test
e(df c) degrees of freedom, comparison test

e(p c) 𝑝-value for comparison test
e(N clust) number of clusters

e(rank) rank of e(V)
e(ic) number of iterations

e(rc) return code

e(converged) 1 if converged, 0 otherwise

Macros

e(cmd) gsem
e(cmd2) meglm
e(cmdline) command as typed

e(depvar) name of dependent variable

e(wtype) weight type

e(wexp) weight expression (first-level weights)

e(fweightk) fweight variable for kth highest level, if specified
e(iweightk) iweight variable for kth highest level, if specified
e(pweightk) pweight variable for kth highest level, if specified
e(covariates) list of covariates

e(ivars) grouping variables

e(model) name of marginal model

e(title) title in estimation output

e(link) link

e(family) family

e(clustvar) name of cluster variable

e(offset) offset

e(binomial) binomial number of trials (with binomial models)

e(dispersion) mean or constant (with negative binomial models)

https://www.youtube.com/watch?v=SbwApki_BnI&feature=youtu.be
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e(intmethod) integration method

e(n quad) number of integration points

e(chi2type) Wald; type of model 𝜒2

e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.

e(opt) type of optimization

e(which) max or min; whether optimizer is to perform maximization or minimization

e(ml method) type of ml method
e(user) name of likelihood-evaluator program

e(technique) maximization technique

e(datasignature) the checksum

e(datasignaturevars) variables used in calculation of checksum

e(properties) b V
e(estat cmd) program used to implement estat
e(predict) program used to implement predict
e(marginsnotok) predictions disallowed by margins
e(marginswtype) weight type for margins
e(marginswexp) weight expression for margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices

e(b) coefficient vector

e(Cns) constraints matrix

e(cat) category values (with ordinal outcomes)

e(ilog) iteration log (up to 20 iterations)

e(gradient) gradient vector

e(N g) group counts

e(g min) group-size minimums

e(g avg) group-size averages

e(g max) group-size maximums

e(V) variance–covariance matrix of the estimators

e(V modelbased) model-based variance

Functions

e(sample) marks estimation sample

In addition to the above, the following is stored in r():

Matrices

r(table) matrix containing the coefficients with their standard errors, test statistics, 𝑝-values, and
confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when any
r-class command is run after the estimation command.

Methods and formulas
Methods and formulas are presented under the following headings:

Introduction
Gauss–Hermite quadrature
Adaptive Gauss–Hermite quadrature
Laplacian approximation
Survey data
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Introduction
Without a loss of generality, consider a two-level generalized mixed-effects model

𝐸(y𝑗|X𝑗,u𝑗) = 𝑔−1(X𝑗β + Z𝑗u𝑗), y ∼ 𝐹

for 𝑗 = 1, . . . , 𝑀 clusters, with the 𝑗th cluster consisting of 𝑛𝑗 observations, where, for the 𝑗th cluster,
y𝑗 is the 𝑛𝑗 × 1 response vector, X𝑗 is the 𝑛𝑗 × 𝑝 matrix of fixed predictors, Z𝑗 is the 𝑛𝑗 × 𝑞 matrix of
random predictors, u𝑗 is the 𝑞×1 vector of random effects, β is the 𝑝×1 vector of regression coefficients

on the fixed predictors, and we use𝚺 to denote the unknown 𝑞 ×𝑞 variance matrix of the random effects.

For simplicity, we consider a model with no auxiliary parameters.

Let η𝑗 be the linear predictor, η𝑗 = X𝑗β+Z𝑗u𝑗, that also includes the offset or the exposure variable

when offset() or exposure() is specified. Let 𝑦𝑖𝑗 and 𝜂𝑖𝑗 be the 𝑖th individual elements of y𝑗 and

η𝑗, 𝑖 = 1, . . . , 𝑛𝑗. Let 𝑓(𝑦𝑖𝑗|𝜂𝑖𝑗) be the conditional density function for the response at observation 𝑖.
Because the observations are assumed to be conditionally independent, we can overload the definition

of 𝑓(⋅) with vector inputs to mean

log𝑓(y𝑗|η𝑗) =
𝑛𝑖

∑
𝑗=1

log𝑓(𝑦𝑖𝑗|𝜂𝑖𝑗)

The random effects u𝑗 are assumed to be multivariate normal with mean 0 and variance 𝚺. The

likelihood function for cluster 𝑗 is given by

ℒ𝑗(β, 𝚺) = (2𝜋)−𝑞/2|𝚺|−1/2 ∫
ℜ𝑞

𝑓(y𝑗|η𝑗) exp(−1
2
u′

𝑗𝚺
−1u𝑗) 𝑑u𝑗

= (2𝜋)−𝑞/2|𝚺|−1/2 ∫
ℜ𝑞

exp{ log𝑓(y𝑗|η𝑗) − 1
2
u′

𝑗𝚺
−1u𝑗} 𝑑u𝑗

(3)

where ℜ denotes the set of values on the real line and ℜ𝑞 is the analog in 𝑞-dimensional space.
The multivariate integral in (3) is generally not tractable, so we must use numerical methods to ap-

proximate the integral. We can use a change-of-variables technique to transform this multivariate integral

into a set of nested univariate integrals. Each univariate integral can then be evaluated using a form of

Gaussian quadrature. meglm supports three types of Gauss–Hermite quadratures: mean–variance adap-
tive Gauss–Hermite quadrature, mode-curvature adaptive Gauss–Hermite quadrature, and nonadaptive

Gauss–Hermite quadrature. meglm also offers the Laplacian-approximation method, which is used as a
default method for crossed mixed-effects models. Below we describe the four methods. The methods

described below are based on Skrondal and Rabe-Hesketh (2004, chap. 6.3).

Gauss–Hermite quadrature
Let u𝑗 = Lv𝑗, where v𝑗 is a 𝑞 × 1 random vector whose elements are independently standard normal

variables and L is the Cholesky decomposition of 𝚺, 𝚺 = LL′. Then η𝑗 = X𝑗β + Z𝑗Lv𝑗, and the

likelihood in (3) becomes

ℒ𝑗(β, 𝚺) = (2𝜋)−𝑞/2 ∫
ℜ𝑞

exp{ log𝑓(y𝑗|η𝑗) − 1
2
v′

𝑗v𝑗} 𝑑v𝑗

= (2𝜋)−𝑞/2 ∫
∞

−∞
. . .∫

∞

−∞
exp{ log𝑓(y𝑗|η𝑗) − 1

2

𝑞

∑
𝑘=1

𝑣2
𝑗𝑘} 𝑑v𝑗1, . . . , 𝑑v𝑗𝑞

(4)
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Consider a 𝑞-dimensional quadrature grid containing 𝑟 quadrature points in each dimension. Let

ak = (𝑎𝑘1
, . . . , 𝑎𝑘𝑞

)′ be a point on this grid, and letwk = (𝑤𝑘1
, . . . , 𝑤𝑘𝑞

)′ be the vector of corresponding

weights. The nonadaptive Gauss–Hermite quadrature approximation to the likelihood is

ℒGHQ
𝑗 (β, 𝚺) =

𝑟
∑
𝑘1=1

. . .
𝑟

∑
𝑘𝑞=1

[ exp{ log𝑓(y𝑗|η𝑗k)}
𝑞

∏
𝑝=1

𝑤𝑘𝑝
]

=
𝑟

∑
𝑘1=1

. . .
𝑟

∑
𝑘𝑞=1

[ exp{
𝑛𝑗

∑
𝑖=1

log𝑓(𝑦𝑖𝑗|𝜂𝑖𝑗k)}
𝑞

∏
𝑝=1

𝑤𝑘𝑝
]

where

η𝑗k = X𝑗β + Z𝑗Lak

and 𝜂𝑖𝑗k is the 𝑖th element of η𝑗k.

Adaptive Gauss–Hermite quadrature
This section sets the stage for mean–variance adaptive Gauss–Hermite quadrature and mode-

curvature adaptive Gauss–Hermite quadrature.

Let’s reconsider the likelihood in (4). We use 𝜙(v𝑗) to denote a multivariate standard normal with
mean 0 and variance I𝑞, and we use 𝜙(v𝑗|µ𝑗, 𝚲𝑗) to denote a multivariate normal with mean µ𝑗 and

variance 𝚲𝑗.

For fixed model parameters, the posterior density for v𝑗 is proportional to

𝜙(v𝑗)𝑓(y𝑗|η𝑗)

where

η𝑗 = X𝑗β + Z𝑗Lv𝑗

It is reasonable to assume that this posterior density can be approximated by amultivariate normal density

with mean vector µ𝑗 and variance matrix 𝚲𝑗. Instead of using the prior density of v𝑗 as the weighting

distribution in the integral, we can use our approximation for the posterior density,

ℒ𝑗(β, 𝚺) = ∫
ℜ𝑞

𝑓(y𝑗|η𝑗)𝜙(v𝑗)
𝜙(v𝑗|µ𝑗, 𝚲𝑗)

𝜙(v𝑗|µ𝑗, 𝚲𝑗) 𝑑v𝑗

Then the mean–variance adaptive Gauss–Hermite approximation to the likelihood is

ℒMVAGH
𝑗 (β, 𝚺) =

𝑟
∑
𝑘1=1

. . .
𝑟

∑
𝑘𝑞=1

[ exp{ log𝑓(y𝑗|η𝑗k)}
𝑞

∏
𝑝=1

𝑤∗
𝑗𝑘𝑝

]

where

η𝑗k = X𝑗β + Z𝑗La
∗
𝑗k
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and a∗
𝑗k and 𝑤∗

𝑗𝑘𝑝
are the abscissas and weights after an orthogonalizing transformation of a𝑗k and 𝑤𝑗𝑘𝑝

,

respectively, which eliminates posterior covariances between the random effects.

Estimates of µ𝑗 and 𝚲𝑗 are computed using one of two different methods. The mean µ𝑗 and vari-

ance 𝚲𝑗 are computed iteratively by updating the posterior moments with the mean–variance adaptive

Gauss–Hermite approximation, starting with a 0mean vector and identity variancematrix. For the mode-

curvature adaptive Gauss–Hermite approximation, µ𝑗 and 𝚲𝑗 are computed by optimizing the integrand

with respect to v𝑗, where µ𝑗 is the optimal value and 𝚲𝑗 is the curvature at µ𝑗.

Laplacian approximation
Consider the likelihood in (3) and denote the argument in the exponential function by

ℎ(β, 𝚺, u𝑗) = log𝑓(y𝑗|X𝑗β + Z𝑗u𝑗) − 1
2
u′

𝑗𝚺
−1u𝑗

The Laplacian approximation is based on a second-order Taylor expansion of ℎ(β, 𝚺, u𝑗) about the value
of u𝑗 that maximizes it. The first and second partial derivatives with respect to u𝑗 are

ℎ′(β, 𝚺, u𝑗) =
𝜕ℎ(β, 𝚺, u𝑗)

𝜕u𝑗
= Z′

𝑗
𝜕 log𝑓(y𝑗|η𝑗)

𝜕η𝑗
− 𝚺−1u𝑗

ℎ″(β, 𝚺, u𝑗) =
𝜕2ℎ(β, 𝚺, u𝑗)

𝜕u𝑗𝜕u′
𝑗

= Z′
𝑗
𝜕2 log𝑓(y𝑗|η𝑗)

𝜕η𝑗𝜕η
′
𝑗

Z𝑗 − 𝚺−1

The maximizer of ℎ(β, 𝚺, u𝑗) is û𝑗 such that ℎ′(β, 𝚺, û𝑗) = 0. The integral in (3) is proportional to the

posterior density of u𝑗 given the data, so û𝑗 is also the posterior mode.

Pinheiro and Chao (2006) show that the posterior mode, û𝑗, and curvature, ℎ″(β, 𝚺, û𝑗)−1, can be

efficiently computed as the iterative solution to a least-squares problem by using matrix decomposition

methods similar to those used in fitting linear mixed-effects models (Bates and Pinheiro 1998; Pinheiro

and Bates 2000).

Let

p̂𝑗 = X𝑗β + Z𝑗 ̂u𝑗

S1 =
𝜕 log𝑓(y𝑗|p̂𝑗)

𝜕 ̂p𝑗

S2 = 𝜕S1
𝜕p̂′

𝑗
=

𝜕2 log𝑓(y𝑗|p̂𝑗)
𝜕p̂𝑗𝜕p̂′

𝑗

H𝑗 = ℎ″(β, 𝚺, û𝑗) = Z′
𝑗S2Z𝑗 − 𝚺−1

then

0 = ℎ′(β, 𝚺, û𝑗) = Z′
𝑗S1 − 𝚺−1û𝑗
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Given the above, the second-order Taylor approximation takes the form

ℎ(β, 𝚺, u𝑗) ≈ ℎ(β, 𝚺, ̂u𝑗) + 1
2

(u𝑗 − û𝑗)′H𝑗(u𝑗 − û𝑗)

because the first-order derivative term is 0. The integral is approximated by

∫
ℜ𝑞

exp{ℎ(β, 𝚺, u𝑗)} 𝑑u𝑗 ≈ (2𝜋)𝑞/2 ∣−H𝑗∣
−1/2

exp{ℎ(β, 𝚺, û𝑗)}

Thus the Laplacian approximated log likelihood is

logℒLap
𝑗 (β, 𝚺) = −1

2
log|𝚺| − 1

2
log ∣−H𝑗∣ + ℎ(β, 𝚺, û𝑗)

The log likelihood for the entire dataset is simply the sum of the contributions of the 𝑀 individual

clusters, namely, ℒ(β, 𝚺) = ∑𝑀
𝑗=1 ℒ𝑗(β, 𝚺).

Maximization of ℒ(β, 𝚺) is performed with respect to (β, 𝛔2), where 𝛔2 is a vector comprising

the unique elements of 𝚺. Parameter estimates are stored in e(b) as (β̂, 𝛔̂2), with the corresponding
variance–covariance matrix stored in e(V). In the presence of auxiliary parameters, their estimates and
standard errors are included in e(b) and e(V), respectively.

Survey data
In the presence of sampling weights, following Rabe-Hesketh and Skrondal (2006), the weighted log

pseudolikelihood for a two-level model is given as

ℒ(β, 𝚺) =
𝑀

∑
𝑗=1

𝑤𝑗 log∫
∞

−∞
exp{

𝑛𝑗

∑
𝑖=1

𝑤𝑖|𝑗 log𝑓(𝑦𝑖𝑗|𝜂𝑖𝑗)} 𝜙(v𝑗1) 𝑑v𝑗1 (5)

where 𝑤𝑗 is the inverse of the probability of selection for the 𝑗th cluster; 𝑤𝑖|𝑗 is the inverse of the condi-

tional probability of selection of individual 𝑖, given the selection of cluster 𝑗, 𝑓(⋅) is as defined previously;
and 𝜙(⋅) is the standard multivariate normal density.

Weighted estimation is achieved through the direct application of 𝑤𝑗 and 𝑤𝑖|𝑗 into the likelihood

calculations as detailed above to reflect replicated clusters for 𝑤𝑗 and replicated observations within

clusters for 𝑤𝑖|𝑗. Because this estimation is based on replicated clusters and observations, frequency

weights are handled similarly.

Weights are not allowed with crossed models or the Laplacian approximation.
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Postestimation commands predict margins Remarks and examples
Methods and formulas References Also see

Postestimation commands
The following postestimation command is of special interest after meglm:

Command Description

estat group summarize the composition of the nested groups

estat icc estimate intraclass correlations

estat sd display variance components as standard deviations and correlations

The following standard postestimation commands are also available:

Command Description

contrast contrasts and ANOVA-style joint tests of parameters

estat ic Akaike’s, consistent Akaike’s, corrected Akaike’s, and Schwarz’s Bayesian in-
formation criteria (AIC, CAIC, AICc, and BIC, respectively)

estat summarize summary statistics for the estimation sample

estat vce variance–covariance matrix of the estimators (VCE)

estat (svy) postestimation statistics for survey data

estimates cataloging estimation results

etable table of estimation results
∗ hausman Hausman’s specification test

lincom point estimates, standard errors, testing, and inference for linear combinations
of parameters

∗ lrtest likelihood-ratio test

margins marginal means, predictive margins, marginal effects, and average marginal
effects

marginsplot graph the results from margins (profile plots, interaction plots, etc.)

nlcom point estimates, standard errors, testing, and inference for nonlinear combina-
tions of parameters

predict means, probabilities, densities, REs, residuals, etc.

predictnl point estimates, standard errors, testing, and inference for generalized predic-
tions

pwcompare pairwise comparisons of parameters

test Wald tests of simple and composite linear hypotheses

testnl Wald tests of nonlinear hypotheses

∗hausman and lrtest are not appropriate with svy estimation results.
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predict

Description for predict
predict creates a new variable containing predictions such as mean responses; linear predictions;

density and distribution functions; standard errors; and raw, Pearson, deviance, andAnscombe residuals.

Menu for predict
Statistics > Postestimation

Syntax for predict

Syntax for obtaining predictions of the outcome and other statistics

predict [ type ] { stub* | newvarlist } [ if ] [ in ] [ , statistic options ]

Syntax for obtaining estimated random effects and their standard errors

predict [ type ] { stub* | newvarlist } [ if ] [ in ], reffects [ re options ]

Syntax for obtaining ML scores

predict [ type ] { stub* | newvarlist } [ if ] [ in ], scores

statistic Description

Main

mu mean response; the default

pr synonym for mu for ordinal and binary response models
eta fitted linear predictor

xb linear predictor for the fixed portion of the model only

stdp standard error of the fixed-portion linear prediction

density predicted density function

distribution predicted distribution function

residuals raw residuals; available only with the Gaussian family

pearson Pearson residuals

deviance deviance residuals

anscombe Anscombe residuals

These statistics are available both in and out of sample; type predict ... if e(sample) ... if wanted
only for the estimation sample.
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options Description

Main

conditional(ctype) compute statistic conditional on estimated random effects; default is
conditional(ebmeans)

marginal compute statistic marginally with respect to the random effects

nooffset make calculation ignoring offset or exposure

outcome(outcome) outcome category for predicted probabilities for ordinal models

Integration

int options integration options

pearson, deviance, anscombe may not be combined with marginal.
For ordinal outcomes, you specify one or k new variables in newvarlist with mu and pr, where k is the number of
outcomes. If you do not specify outcome(), these options assume outcome(#1).

ctype Description

ebmeans empirical Bayes means of random effects; the default

ebmodes empirical Bayes modes of random effects

fixedonly prediction for the fixed portion of the model only

re options Description

Main

ebmeans use empirical Bayes means of random effects; the default

ebmodes use empirical Bayes modes of random effects

reses(stub* | newvarlist) calculate standard errors of empirical Bayes estimates

Integration

int options integration options

int options Description

intpoints(#) use # quadrature points to compute marginal predictions and empirical
Bayes means

iterate(#) set maximum number of iterations in computing statistics involving
empirical Bayes estimators

tolerance(#) set convergence tolerance for computing statistics involving empirical
Bayes estimators

Options for predict

� � �
Main �

mu, the default, calculates the expected value of the outcome.

pr calculates predicted probabilities and is a synonym for mu. This option is available only for ordinal
and binary response models.

eta calculates the fitted linear prediction.

xb calculates the linear prediction xβ using the estimated fixed effects (coefficients) in the model. This

is equivalent to fixing all random effects in the model to their theoretical (prior) mean value of 0.
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stdp calculates the standard error of the fixed-effects linear predictor xβ.

density calculates the density function. This prediction is computed using the current values of the

observed variables, including the dependent variable.

distribution calculates the distribution function. This prediction is computed using the current values
of the observed variables, including the dependent variable.

residuals calculates raw residuals, that is, responses minus the fitted values. This option is available

only for the Gaussian family.

pearson calculates Pearson residuals. Pearson residuals that are large in absolute value may indicate a
lack of fit.

deviance calculates deviance residuals. Deviance residuals are recommended byMcCullagh andNelder

(1989) as having the best properties for examining the goodness of fit of a GLM. They are approxi-

mately normally distributed if the model is correctly specified. They can be plotted against the fitted

values or against a covariate to inspect the model fit.

anscombe calculates Anscombe residuals, which are designed to closely follow a normal distribution.

conditional(ctype) and marginal specify how random effects are handled in computing statistic.

conditional() specifies that statisticwill be computed conditional on specified or estimated random
effects.

conditional(ebmeans), the default, specifies that empirical Bayes means be used as the esti-
mates of the random effects. These estimates are also known as posterior mean estimates of the

random effects.

conditional(ebmodes) specifies that empirical Bayes modes be used as the estimates of the

random effects. These estimates are also known as posterior mode estimates of the random

effects.

conditional(fixedonly) specifies that all random effects be set to zero, equivalent to using

only the fixed portion of the model.

marginal specifies that the predicted statistic be computed marginally with respect to the random

effects, which means that statistic is calculated by integrating the prediction function with respect

to all the random effects over their entire support.

Although this is not the default, marginal predictions are often very useful in applied analysis.

They produce what are commonly called population-averaged estimates. They are also required

by margins.

nooffset is relevant only if you specified offset(varname𝑜) or exposure(varname𝑒) with meglm.
It modifies the calculations made by predict so that they ignore the offset or the exposure variable;
the linear prediction is treated as X𝛽 +Zu rather than X𝛽 +Zu+offset, or X𝛽 +Zu+ ln(exposure),
whichever is relevant.

outcome(outcome) specifies the outcome for which the predicted probabilities are to be calculated.

outcome() should contain either one value of the dependent variable or one of #1, #2, . . . , with #1
meaning the first category of the dependent variable, #2 meaning the second category, etc.
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reffects calculates estimates of the random effects using empirical Bayes predictions. By default, or

if the ebmeans option is specified, empirical Bayes means are computed. With the ebmodes option,
empirical Bayes modes are computed. You must specify 𝑞 new variables, where 𝑞 is the number of
random-effects terms in the model. However, it is much easier to just specify stub* and let Stata name
the variables stub1, stub2, . . . , stub𝑞 for you.

ebmeans specifies that empirical Bayes means be used to predict the random effects.

ebmodes specifies that empirical Bayes modes be used to predict the random effects.

reses(stub* | newvarlist) calculates standard errors of the empirical Bayes estimators and stores the

result in newvarlist. This option requires the reffects option. You must specify 𝑞 new variables,

where 𝑞 is the number of random-effects terms in the model. However, it is much easier to just specify
stub* and let Stata name the variables stub1, stub2, . . . , stub𝑞 for you. The new variables will have

the same storage type as the corresponding random-effects variables.

The reffects and reses() options often generate multiple new variables at once. When this occurs,

the random effects (and standard errors) contained in the generated variables correspond to the order

in which the variance components are listed in the output of meglm. The generated variables are also
labeled to identify their associated random effect.

scores calculates the scores for each coefficient in e(b). This option requires a new variable list of

length equal to the number of columns in e(b). Otherwise, use the stub* syntax to have predict
generate enumerated variables with prefix stub.

� � �
Integration �

intpoints(#) specifies the number of quadrature points used to compute marginal predictions and the
empirical Bayes means; the default is the value from estimation.

iterate(#) specifies the maximum number of iterations when computing statistics involving empirical

Bayes estimators; the default is the value from estimation.

tolerance(#) specifies convergence tolerance when computing statistics involving empirical Bayes

estimators; the default is the value from estimation.
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margins

Description for margins
margins estimates margins of response for mean responses and linear predictions.

Menu for margins
Statistics > Postestimation

Syntax for margins
margins [marginlist ] [ , options ]
margins [marginlist ] , predict(statistic ...) [ predict(statistic ...) ... ] [ options ]

statistic Description

mu mean response; the default

pr synonym for mu for ordinal and binary response models
eta fitted linear predictor

xb linear predictor for the fixed portion of the model only

stdp not allowed with margins
density not allowed with margins
distribution not allowed with margins
residuals not allowed with margins
pearson not allowed with margins
deviance not allowed with margins
anscombe not allowed with margins
reffects not allowed with margins
scores not allowed with margins

Options conditional(ebmeans) and conditional(ebmodes) are not allowed with margins.
Option marginal is assumed where applicable if conditional(fixedonly) is not specified.

Statistics not allowed with margins are functions of stochastic quantities other than e(b).

For the full syntax, see [R] margins.

Remarks and examples
Various predictions, statistics, and diagnostic measures are available after fitting a mixed-effects

model using meglm. For the most part, calculation centers around obtaining predictions of the random
effects. Random effects are not estimated when the model is fit but instead need to be predicted after

estimation.

Example 1: Obtaining estimates of random effects
In example 2 of [ME] meglm, we modeled the probability of contraceptive use among Bangladeshi

women by fitting a mixed-effects logistic regression model. To facilitate a more direct comparison be-

tween urban and rural women, we specify no base level for the urban factor variable and eliminate the
constant from both the fixed-effects part and the random-effects part.
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. use https://www.stata-press.com/data/r19/bangladesh
(Bangladesh Fertility Survey, 1989)
. meglm c_use ibn.urban age i.children, nocons nolog
> || district: ibn.urban, nocons family(bernoulli) link(logit) nofvlabel
Mixed-effects GLM Number of obs = 1,934
Family: Bernoulli
Link: Logit
Group variable: district Number of groups = 60

Obs per group:
min = 2
avg = 32.2
max = 118

Integration method: mvaghermite Integration pts. = 7
Wald chi2(6) = 120.59

Log likelihood = -1199.3268 Prob > chi2 = 0.0000
( 1) [c_use]_cons = 0

c_use Coefficient Std. err. z P>|z| [95% conf. interval]

urban
0 -1.712549 .1603689 -10.68 0.000 -2.026866 -1.398232
1 -.9004495 .1674683 -5.38 0.000 -1.228681 -.5722176

age -.0264472 .0080196 -3.30 0.001 -.0421652 -.0107291

children
1 1.132291 .1603052 7.06 0.000 .8180983 1.446483
2 1.358692 .1769369 7.68 0.000 1.011902 1.705482
3 1.354788 .1827459 7.41 0.000 .9966122 1.712963

_cons 0 (omitted)

district
var(0.urban) .3882825 .1284858 .2029918 .7427064
var(1.urban) .239777 .1403374 .0761401 .7550947

LR test vs. logistic model: chi2(2) = 58.40 Prob > chi2 = 0.0000
Note: LR test is conservative and provided only for reference.

This particular model allows for district random effects that are specific to the rural and urban areas

of that district and that can be interpreted as such. We can obtain predictions of posterior means of the

random effects and their standard errors by typing

. predict re_rural re_urban, reffects reses(se_rural se_urban)
(calculating posterior means of random effects)
(using 7 quadrature points)

The order in which we specified the variables to be generated corresponds to the order in which the

variance components are listed in meglm output. If in doubt, a simple describe will show how these

newly generated variables are labeled just to be sure.
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Having generated estimated random effects and standard errors, we can now list them for the first 10

districts:

. by district, sort: generate tag = (_n==1)

. list district re_rural se_rural re_urban se_urban if district <= 10 & tag,
> sep(0)

district re_rural se_rural re_urban se_urban

1. 1 -.9523374 .316291 -.5619418 .2329456
118. 2 -.0425217 .3819309 1.01e-17 .4896702
138. 3 4.29e-18 .6231232 .2229486 .4658747
140. 4 -.2703357 .3980832 .574464 .3962131
170. 5 .0691029 .3101591 .0074569 .4650451
209. 6 -.3939819 .2759802 .2622263 .4177785
274. 7 -.1904756 .4043461 -7.77e-18 .4896702
292. 8 .0382993 .3177392 .2250237 .4654329
329. 9 -.3715211 .3919996 .0628076 .453568
352. 10 -.5624707 .4763545 1.00e-18 .4896702

The estimated standard errors are conditional on the values of the estimated model parameters: β and

the components of 𝚺. Their interpretation is therefore not one of standard sample-to-sample variability

but instead one that does not incorporate uncertainty in the estimated model parameters; see Methods

and formulas. That stated, conditional standard errors can still be used as a measure of relative precision,

provided that you keep this caveat in mind.

You can also obtain predictions of posterior modes and compare them with the posterior means:

. predict mod_rural mod_urban, reffects ebmodes
(calculating posterior modes of random effects)
. list district re_rural mod_rural re_urban mod_urban if district <= 10 & tag,
> sep(0)

district re_rural mod_rural re_urban mod_urban

1. 1 -.9523374 -.9295366 -.5619418 -.5584528
118. 2 -.0425217 -.0306312 1.01e-17 0
138. 3 4.29e-18 0 .2229486 .2223551
140. 4 -.2703357 -.2529507 .574464 .5644512
170. 5 .0691029 .0789803 .0074569 .0077525
209. 6 -.3939819 -.3803784 .2622263 .2595116
274. 7 -.1904756 -.1737696 -7.77e-18 0
292. 8 .0382993 .0488528 .2250237 .2244676
329. 9 -.3715211 -.3540084 .0628076 .0605462
352. 10 -.5624707 -.535444 1.00e-18 0

The two sets of predictions are fairly close.

Because not all districts contain both urban and rural areas, some of the posterior modes are 0 and

some of the posterior means are practically 0. A closer examination of the data reveals that district 3 has

no rural areas, and districts 2, 7, and 10 have no urban areas.
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Hadwe imposed an unstructured covariance structure in our model, the estimated posterior modes and

posterior means in the cases in question would not be exactly 0 because of the correlation between urban

and rural effects. For instance, if a district has no urban areas, it can still yield a nonzero (albeit small)

random-effects estimate for a nonexistent urban area because of the correlation with its rural counterpart;

see example 2 of [ME] melogit postestimation for details.

Example 2: Calculating predicted probabilities
Continuing with the model from example 1, we can obtain predicted probabilities, and unless we

specify the fixedonly option, these predictions will incorporate the estimated subject-specific random
effects ̃u𝑗.

. predict pr, pr
(predictions based on fixed effects and posterior means of random effects)
(using 7 quadrature points)

The predicted probabilities for observation 𝑖 in cluster 𝑗 are obtained by applying the inverse link
function to the linear predictor, ̂𝑝𝑖𝑗 = 𝑔−1(x𝑖𝑗β̂ + z𝑖𝑗ũ𝑗); see Methods and formulas for details. By

default or with the conditional(ebmeans) option, the calculation uses posterior means for ũ𝑗. You

can use the conditional(ebmodes) option to obtain predictions based on the posterior modes for ̃ũ𝑗.

. predict prm, pr conditional(ebmodes)
(predictions based on fixed effects and posterior modes of random effects)

We can list the two sets of predicted probabilities together with the actual outcome for some district,

let’s say district 38:

. list c_use pr prm if district == 38

c_use pr prm

1228. Yes .5783408 .5780864
1229. No .5326623 .5324027
1230. Yes .6411679 .6409279
1231. Yes .5326623 .5324027
1232. Yes .5718783 .5716228

1233. No .3447686 .344533
1234. No .4507973 .4505391
1235. No .1940524 .1976133
1236. No .2846738 .2893007
1237. No .1264883 .1290078

1238. No .206763 .2104961
1239. No .202459 .2061346
1240. No .206763 .2104961
1241. No .1179788 .1203522

The two sets of predicted probabilities are fairly close.
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For mixed-effects models with many levels or many random effects, the calculation of the posterior

means of random effects or any quantities that are based on the posterior means of random effects may

take a long time. This is because we must resort to numerical integration to obtain the posterior means.

In contrast, the calculation of the posterior modes of random effects is usually orders of magnitude faster

because there is no numerical integration involved. For this reason, empirical modes are often used in

practice as an approximation to empirical means. Note that for linear mixed-effects models, the two

predictors are the same.

We can compare the observed values with the predicted values by constructing a classification table.

Defining success as ̂𝑦𝑖𝑗 = 1 if ̂𝑝𝑖𝑗 > 0.5 and defining ̂𝑦𝑖𝑗 = 0 otherwise, we obtain the following table.

. generate p_use = pr > .5

. label var p_use ”Predicted outcome”

. tab2 c_use p_use, row
-> tabulation of c_use by p_use

Key

frequency
row percentage

Use
contracept Predicted outcome

ion 0 1 Total

No 991 184 1,175
84.34 15.66 100.00

Yes 423 336 759
55.73 44.27 100.00

Total 1,414 520 1,934
73.11 26.89 100.00

The model correctly classified 84% of women who did not use contraceptives but only 44% of women

who did. In the next example, we will look at some residual diagnostics.
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Example 3: A look at residual diagnostics
Continuing our discussion from example 2, here we look at residual diagnostics. meglm offers three

kinds of predicted residuals for nonlinear responses—Pearson, Anscombe, and deviance. Of the three,

Anscombe residuals are designed to be approximately normally distributed; thuswe can check for outliers

by plottingAnscombe residuals against observation numbers and seeing which residuals are greater than

2 in absolute value.

. predict anscombe, anscombe
(predictions based on fixed effects and posterior means of random effects)
(using 7 quadrature points)
. generate n = _n
. label var n ”observation number”
. twoway (scatter anscombe n if c_use) (scatter anscombe n if !c_use),
> yline(-2 2) legend(off) text(2.5 1400 ”contraceptive use”)
> text(-.1 500 ”no contraceptive use”)
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There seem to be some outliers among residuals that identify women who use contraceptives. We

could examine the observations corresponding to the outliers, or we could try fitting amodel with perhaps

a different covariance structure, which we leave as an exercise.
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Example 4: Using predicted random effects for ranking purposes
In example 3 of [ME] meglm, we estimated the effects of two treatments on the tobacco and health

knowledge (THK) scale score of students in 28 schools. The dependent variable was collapsed into four

ordered categories, and we fit a three-level ordinal logistic regression.

. use https://www.stata-press.com/data/r19/tvsfpors, clear
(Television, School, and Family Project)
. meologit thk prethk i.cc##i.tv || school: || class:
Fitting fixed-effects model:
Iteration 0: Log likelihood = -2212.775
Iteration 1: Log likelihood = -2125.509
Iteration 2: Log likelihood = -2125.1034
Iteration 3: Log likelihood = -2125.1032
Refining starting values:
Grid node 0: Log likelihood = -2152.1514
Fitting full model:
(output omitted )

Mixed-effects ologit regression Number of obs = 1,600
Grouping information

No. of Observations per group
Group variable groups Minimum Average Maximum

school 28 18 57.1 137
class 135 1 11.9 28

Integration method: mvaghermite Integration pts. = 7
Wald chi2(4) = 124.39

Log likelihood = -2114.5881 Prob > chi2 = 0.0000

thk Coefficient Std. err. z P>|z| [95% conf. interval]

prethk .4085273 .039616 10.31 0.000 .3308814 .4861731
1.cc .8844369 .2099124 4.21 0.000 .4730161 1.295858
1.tv .236448 .2049065 1.15 0.249 -.1651614 .6380575

cc#tv
1 1 -.3717699 .2958887 -1.26 0.209 -.951701 .2081612

/cut1 -.0959459 .1688988 -.4269815 .2350896
/cut2 1.177478 .1704946 .8433151 1.511642
/cut3 2.383672 .1786736 2.033478 2.733865

school
var(_cons) .0448735 .0425387 .0069997 .2876749

school>class
var(_cons) .1482157 .0637521 .063792 .3443674

LR test vs. ologit model: chi2(2) = 21.03 Prob > chi2 = 0.0000
Note: LR test is conservative and provided only for reference.

Not surprisingly, the level of knowledge before the intervention is a good predictor of the level of

knowledge after the intervention. The social resistance classroom curriculum is effective in raising the

knowledge score, but the TV intervention and the interaction term are not.
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We can rank schools by their institutional effectiveness by plotting the random effects at the school

level.

. predict re_school re_class, reffects reses(se_school se_class)
(calculating posterior means of random effects)
(using 7 quadrature points)
. generate lower = re_school - 1.96*se_school
. generate upper = re_school + 1.96*se_school
. egen tag = tag(school)
. gsort +re_school -tag
. generate rank = sum(tag)
. generate labpos = re_school + 1.96*se_school + .1
. twoway (rcap lower upper rank) (scatter re_school rank)
> (scatter labpos rank, mlabel(school) msymbol(none) mlabpos(0)),
> xtitle(rank) ytitle(Predicted posterior mean) legend(off)
> xscale(range(0 28)) xlabel(1/28) ysize(2)
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Although there is some variability in the predicted posterior means, we cannot see significant differences

among the schools in this example.

Methods and formulas
Continuing the discussion in Methods and formulas of [ME] meglm and using the definitions and

formulas defined there, we begin by considering the prediction of the random effects u𝑗 for the 𝑗th cluster
in a two-level model. Prediction of random effects in multilevel generalized linear models involves

assigning values to random effects, and there are many methods for doing so; see Skrondal and Rabe-

Hesketh (2009) and Skrondal and Rabe-Hesketh (2004, chap. 7) for a comprehensive review. Stata offers

two methods of predicting random effects: empirical Bayes means (also known as posterior means) and

empirical Bayes modes (also known as posterior modes). Below we provide more details about the two

methods.

Let θ̂ denote the estimated model parameters comprising β̂ and the unique elements of 𝚺̂. Empirical

Bayes (EB) predictors of the random effects are the means or modes of the empirical posterior distribution

with the parameter estimates θ replaced with their estimates θ̂. The method is called “empirical” because
θ̂ is treated as known. EB combines the prior information about the random effects with the likelihood

to obtain the conditional posterior distribution of random effects. Using Bayes’s theorem, the empirical

conditional posterior distribution of random effects for cluster 𝑗 is
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𝜔(u𝑗|y𝑗,X𝑗,Z𝑗; θ̂) =
Pr(y𝑗,u𝑗|X𝑗,Z𝑗; θ̂)
Pr(y𝑗|X𝑗,Z𝑗; θ̂)

=
𝑓(y𝑗|u𝑗,X𝑗,Z𝑗; β̂) 𝜙(u𝑗; 𝚺̂)

∫ 𝑓(y𝑗|u𝑗) 𝜙(u𝑗) 𝑑u𝑗

=
𝑓(y𝑗|u𝑗,X𝑗,Z𝑗; β̂) 𝜙(u𝑗; 𝚺̂)

ℒ𝑗(θ̂)

The denominator is just the likelihood contribution of the 𝑗th cluster.
EB mean predictions of random effects, ũ, also known as posterior means, are calculated as

ũ = ∫
ℜ𝑞

u𝑗 𝜔(u𝑗|y𝑗,X𝑗,Z𝑗; θ̂) 𝑑u𝑗

=
∫
ℜ𝑞 u𝑗 𝑓(y𝑗|u𝑗,X𝑗,Z𝑗; β̂) 𝜙(u𝑗; 𝚺̂) 𝑑u𝑗

∫
ℜ𝑞 𝑓(y𝑗|u𝑗) 𝜙(u𝑗) 𝑑u𝑗

where we use the notation ũ rather than û to distinguish predicted values from estimates. This multi-

variate integral is approximated by the mean–variance adaptive Gaussian quadrature; see Methods and

formulas of [ME] meglm for details about the quadrature. If you have multiple random effects within

a level or random effects across levels, the calculation involves orthogonalizing transformations using

the Cholesky transformation because the random effects are no longer independent under the posterior

distribution.

In a linear mixed-effects model, the posterior density is multivariate normal, and EB means are also

best linear unbiased predictors (BLUPs); see Skrondal and Rabe-Hesketh (2004, 227). In generalized

mixed-effects models, the posterior density tends to multivariate normal as cluster size increases.

EB modal predictions can be approximated by solving for the mode ̃ũ𝑗 in

𝜕
𝜕u𝑗

log𝜔( ̃̃u𝑗|y𝑗,X𝑗,Z𝑗; θ̂) = 0

Because the denominator in 𝜔(⋅) does not depend on u, we can omit it from the calculation to obtain

𝜕
𝜕u𝑗

log{𝑓(y𝑗|u𝑗,X𝑗,Z𝑗; β̂) 𝜙(u𝑗; 𝚺̂)}

= 𝜕
𝜕u𝑗

log𝑓 (y𝑗|u𝑗,X𝑗,Z𝑗; β̂) + 𝜕
𝜕u𝑗

log𝜙 (u𝑗; 𝚺̂) = 0

The calculation of EBmodes does not require numerical integration, and for that reason they are often

used in place of EB means. As the posterior density gets closer to being multivariate normal, EB modes

get closer and closer to EB means.

Just like there are many methods of assigning values to the random effects, there exist many methods

of calculating standard errors of the predicted random effects; see Skrondal and Rabe-Hesketh (2009)

for a comprehensive review.
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Stata uses the posterior standard deviation as the standard error of the posterior means predictor of

random effects. The EB posterior covariance matrix of the random effects is given by

cov(ũ𝑗|y𝑗,X𝑗,Z𝑗; θ̂) = ∫
ℜ𝑞

(u𝑗 − ̃u𝑗)(u𝑗 − ũ𝑗)′ 𝜔(u𝑗|y𝑗,X𝑗,Z𝑗; θ̂) 𝑑u𝑗

The posterior covariancematrix and the integrals are approximated by themean–variance adaptive Gaus-

sian quadrature; see Methods and formulas of [ME] meglm for details about the quadrature.

Conditional standard errors for the estimated posterior modes are derived from standard theory of

maximum likelihood, which dictates that the asymptotic variance matrix of ̃ũ𝑗 is the negative inverse of

the Hessian, 𝑔″(β, 𝚺, ̃ũ𝑗).
In what follows, we show formulas using the posterior means estimates of random effects ũ𝑗, which

are used by default or if the means option is specified. If the modes option is specified, ũ𝑗 are simply

replaced with the posterior modes ̃ũ𝑗 in these formulas.

For any 𝑖th observation in the 𝑗th cluster in a two-level model, define the linear predictor as

̂𝜂𝑖𝑗 = x𝑖𝑗β̂ + z𝑖𝑗ũ𝑗

The linear predictor includes the offset or exposure variable if one was specified during estimation,

unless the nooffset option is specified. If the fixedonly option is specified, ̂𝜂 contains the linear

predictor for only the fixed portion of the model, ̂𝜂𝑖𝑗 = x𝑖𝑗β̂.

The predicted mean, conditional on the random effects ̃u𝑗, is

̂𝜇𝑖𝑗 = 𝑔−1( ̂𝜂𝑖𝑗)

where 𝑔−1(⋅) is the inverse link function for 𝜇𝑖𝑗 = 𝑔−1(𝜂𝑖𝑗) defined as follows for the available links in
link(link):

link Inverse link

identity 𝜂𝑖𝑗

logit 1/{1 + exp(−𝜂𝑖𝑗)}
probit Φ(𝜂𝑖𝑗)
log exp(𝜂𝑖𝑗)
cloglog 1 − exp{− exp(𝜂𝑖𝑗)}

By default, random effects and any statistic based on them—mu, fitted, pearson, deviance,
anscombe—are calculated using posterior means of random effects unless option modes is specified,

in which case the calculations are based on posterior modes of random effects.

Raw residuals are calculated as the difference between the observed and fitted outcomes,

𝜈𝑖𝑗 = 𝑦𝑖𝑗 − ̂𝜇𝑖𝑗

and are only defined for the Gaussian family.

Let 𝑟𝑖𝑗 be the number of Bernoulli trials in a binomial model, 𝛼 be the conditional overdispersion

parameter under the mean parameterization of the negative binomial model, and 𝛿 be the conditional

overdispersion parameter under the constant parameterization of the negative binomial model.
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Pearson residuals are raw residuals divided by the square root of the variance function

𝜈𝑃
𝑖𝑗 =

𝜈𝑖𝑗

{𝑉 ( ̂𝜇𝑖𝑗)}1/2

where 𝑉 ( ̂𝜇𝑖𝑗) is the family-specific variance function defined as follows for the available families in
family(family):

family Variance function 𝑉 ( ̂𝜇𝑖𝑗)

bernoulli ̂𝜇𝑖𝑗(1 − ̂𝜇𝑖𝑗)
binomial ̂𝜇𝑖𝑗(1 − ̂𝜇𝑖𝑗/𝑟𝑖𝑗)
gamma ̂𝜇2

𝑖𝑗

gaussian 1
nbinomial mean ̂𝜇𝑖𝑗(1 + 𝛼 ̂𝜇𝑖𝑗)
nbinomial constant ̂𝜇𝑖𝑗(1 + 𝛿)
ordinal not defined

poisson ̂𝜇𝑖𝑗

Deviance residuals are calculated as

𝜈𝐷
𝑖𝑗 = sign(𝜈𝑖𝑗)√ ̂𝑑 2

𝑖𝑗
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where the squared deviance residual ̂𝑑 2
𝑖𝑗 is defined as follows:

family Squared deviance ̂𝑑 2
𝑖𝑗

bernoulli −2 log(1 − ̂𝜇𝑖𝑗) if 𝑦𝑖𝑗 = 0

−2 log( ̂𝜇𝑖𝑗) if 𝑦𝑖𝑗 = 1

binomial 2𝑟𝑖𝑗 log(
𝑟𝑖𝑗

𝑟𝑖𝑗 − ̂𝜇𝑖𝑗
) if 𝑦𝑖𝑗 = 0

2𝑦𝑖𝑗 log(
𝑦𝑖𝑗
̂𝜇𝑖𝑗

) + 2(𝑟𝑖𝑗 − 𝑦𝑖𝑗) log(
𝑟𝑖𝑗 − 𝑦𝑖𝑗
𝑟𝑖𝑗 − ̂𝜇𝑖𝑗

) if 0 < 𝑦𝑖𝑗 < 𝑟𝑖𝑗

2𝑟𝑖𝑗 log(
𝑟𝑖𝑗
̂𝜇𝑖𝑗

) if 𝑦𝑖𝑗 = 𝑟𝑖𝑗

gamma −2 { log(
𝑦𝑖𝑗
̂𝜇𝑖𝑗

) −
̂𝜈𝑖𝑗
̂𝜇𝑖𝑗

}

gaussian ̂𝜈2
𝑖𝑗

nbinomial mean 2 log (1 + 𝛼 ̂𝜇𝑖𝑗) 𝛼 if 𝑦𝑖𝑗 = 0

2𝑦𝑖𝑗 log(
𝑦𝑖𝑗
̂𝜇𝑖𝑗

) − 2
𝛼 (1 + 𝛼𝑦𝑖𝑗) log(

1 + 𝛼𝑦𝑖𝑗
1 + 𝛼 ̂𝜇𝑖𝑗

) otherwise

nbinomial constant not defined

ordinal not defined

poisson 2 ̂𝜇𝑖𝑗 if 𝑦𝑖𝑗 = 0

2𝑦𝑖𝑗 log(
𝑦𝑖𝑗
̂𝜇𝑖𝑗

) − 2 ̂𝜈𝑖𝑗 otherwise
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Anscombe residuals, denoted 𝜈𝐴
𝑖𝑗 , are calculated as follows:

family Anscombe residual 𝜈𝐴
𝑖𝑗

bernoulli
3 {𝑦2/3

𝑖𝑗 ℋ(𝑦𝑖𝑗) − ̂𝜇2/3
𝑖𝑗 ℋ( ̂𝜇𝑖𝑗)}

2 ( ̂𝜇𝑖𝑗 − ̂𝜇2
𝑖𝑗)

1/6

binomial
3 {𝑦2/3

𝑖𝑗 ℋ(𝑦𝑖𝑗/𝑟𝑖𝑗) − ̂𝜇2/3
𝑖𝑗 ℋ( ̂𝜇𝑖𝑗/𝑟𝑖𝑗)}

2 ( ̂𝜇𝑖𝑗 − ̂𝜇2
𝑖𝑗/𝑟𝑖𝑗)

1/6

gamma
3(𝑦1/3

𝑖𝑗 − ̂𝜇1/3
𝑖𝑗 )

̂𝜇1/3
𝑖𝑗

gaussian 𝜈𝑖𝑗

nbinomial mean
ℋ(−𝛼𝑦𝑖𝑗) − ℋ(−𝛼 ̂𝜇𝑖𝑗) + 1.5(𝑦2/3

𝑖𝑗 − ̂𝜇2/3
𝑖𝑗 )

( ̂𝜇𝑖𝑗 + 𝛼 ̂𝜇2
𝑖𝑗)1/6

nbinomial constant not defined

ordinal not defined

poisson
3(𝑦2/3

𝑖𝑗 − ̂𝜇2/3
𝑖𝑗 )

2 ̂𝜇1/6
𝑖𝑗

where ℋ(𝑡) is a specific univariate case of the Hypergeometric2F1 function (Wolfram 2003, 780), de-

fined here as ℋ(𝑡) = 2𝐹1(2/3, 1/3, 5/3, 𝑡).
For a discussion of the general properties of the various residuals, see Hardin and Hilbe (2018,

chap. 4).
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meintreg — Multilevel mixed-effects interval regression

Description Quick start Menu Syntax Options
Remarks and examples Stored results Methods and formulas References Also see

Description
meintreg fits mixed-effects models for continuous responses where the dependent variable may be

measured as point data, interval-censored data, left-censored data, or right-censored data. Thus, it is

a generalization of the models fit by metobit. The dependent variable must be specified using two

variables that indicate how it was measured.

Quick start
Two-level interval regression on x with random intercepts by lev2 of the interval-measured dependent

variable with lower endpoint y lower and upper endpoint y upper
meintreg y_lower y_upper x || lev2:

Same as above, but with random coefficients for x
meintreg y_lower y_upper x || lev2: x

Three-level random-intercept model with lev2 nested within lev3
meintreg y_lower y_upper x || lev3: || lev2:

Crossed-effects model with two-way crossed random effects by factors a and b
meintreg y_lower y_upper x || _all:R.a || b:

Menu
Statistics > Multilevel mixed-effects models > Interval regression

136
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Syntax
meintreg depvarlower depvarupper fe equation [ || re equation ] [ || re equation ... ]

[ , options ]

where the syntax of fe equation is

[ indepvars ] [ if ] [ in ] [weight ] [ , fe options ]

and the syntax of re equation is one of the following:

for random coefficients and intercepts

levelvar: [ varlist ] [ , re options ]

for random effects among the values of a factor variable in a crossed-effects model

levelvar: R.varname

The values in depvarlower and depvarupper should have the following form:

Type of data depvarlower depvarupper

point data 𝑎 = [ 𝑎, 𝑎 ] 𝑎 𝑎
interval data [ 𝑎, 𝑏 ] 𝑎 𝑏
left-censored data ( −∞, 𝑏 ] . 𝑏
right-censored data [ 𝑎, +∞ ) 𝑎 .
missing . .

levelvar is a variable identifying the group structure for the random effects at that level or is all repre-
senting one group comprising all observations.

fe options Description

Model

noconstant suppress constant term from the fixed-effects equation

offset(varname) include varname in model with coefficient constrained to 1

re options Description

Model

covariance(vartype) variance–covariance structure of the random effects

noconstant suppress constant term from the random-effects equation

fweight(varname) frequency weights at higher levels

iweight(varname) importance weights at higher levels

pweight(varname) sampling weights at higher levels
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options Description

Model

constraints(constraints) apply specified linear constraints

SE/Robust

vce(vcetype) vcetype may be oim, opg, robust, or cluster clustvar

Reporting

level(#) set confidence level; default is level(95)
nocnsreport do not display constraints

notable suppress coefficient table

noheader suppress output header

nogroup suppress table summarizing groups

display options control columns and column formats, row spacing, line width,
display of omitted variables and base and empty cells, and
factor-variable labeling

Integration

intmethod(intmethod) integration method

intpoints(#) set the number of integration (quadrature) points for all levels;
default is intpoints(7)

Maximization

maximize options control the maximization process; seldom used

startvalues(svmethod) method for obtaining starting values

startgrid[ (gridspec) ] perform a grid search to improve starting values

noestimate do not fit the model; show starting values instead

dnumerical use numerical derivative techniques

collinear keep collinear variables

coeflegend display legend instead of statistics

vartype Description

independent one unique variance parameter per random effect and all covariances
0; the default unless the R. notation is used

exchangeable equal variances for random effects and one common pairwise
covariance

identity equal variances for random effects and all covariances 0; the
default if the R. notation is used

unstructured all variances and covariances to be distinctly estimated

fixed(matname) user-selected variances and covariances constrained to specified
values; the remaining variances and covariances unrestricted

pattern(matname) user-selected variances and covariances constrained to be equal;
the remaining variances and covariances unrestricted
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intmethod Description

mvaghermite mean–variance adaptive Gauss–Hermite quadrature; the default
unless a crossed random-effects model is fit

mcaghermite mode-curvature adaptive Gauss–Hermite quadrature

ghermite nonadaptive Gauss–Hermite quadrature

laplace Laplacian approximation; the default for crossed random-effects
models

indepvars and varlist may contain factor variables; see [U] 11.4.3 Factor variables.

depvarlower, depvarupper, indepvars, and varlist may contain time-series operators; see [U] 11.4.4 Time-series varlists.

bayes, by, collect, and svy are allowed; see [U] 11.1.10 Prefix commands. For more details, see [BAYES] bayes: mein-

treg.

vce() and weights are not allowed with the svy prefix; see [SVY] svy.
fweights, iweights, and pweights are allowed; see [U] 11.1.6 weight. Only one type of weight may be specified. Weights

are not supported under the Laplacian approximation or for crossed models.

startvalues(), startgrid, noestimate, dnumerical, collinear, and coeflegend do not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options

� � �
Model �

noconstant suppresses the constant (intercept) term and may be specified for the fixed-effects equation

and for any of or all the random-effects equations.

offset(varname) specifies that varname be included in the fixed-effects portion of the model with the

coefficient constrained to be 1.

covariance(vartype) specifies the structure of the covariance matrix for the random effects and may

be specified for each random-effects equation. vartype is one of the following: independent,
exchangeable, identity, unstructured, fixed(matname), or pattern(matname).

covariance(independent) covariance structure allows for a distinct variance for each random

effect within a random-effects equation and assumes that all covariances are 0. The default is

covariance(independent) unless a crossed random-effects model is fit, in which case the de-
fault is covariance(identity).

covariance(exchangeable) structure specifies one common variance for all random effects and

one common pairwise covariance.

covariance(identity) is short for “multiple of the identity”; that is, all variances are equal and all
covariances are 0.

covariance(unstructured) allows for all variances and covariances to be distinct. If an equation
consists of 𝑝 random-effects terms, the unstructured covariance matrix will have 𝑝(𝑝+1)/2 unique
parameters.

covariance(fixed(matname)) and covariance(pattern(matname)) covariance structures

provide a convenient way to impose constraints on variances and covariances of random effects.

Each specification requires amatname that defines the restrictions placed on variances and covari-

ances. Only elements in the lower triangle of matname are used, and row and column names of

matname are ignored. Amissing value inmatnamemeans that a given element is unrestricted. In a
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fixed(matname) covariance structure, (co)variance (𝑖, 𝑗) is constrained to equal the value spec-
ified in the 𝑖, 𝑗th entry of matname. In a pattern(matname) covariance structure, (co)variances
(𝑖, 𝑗) and (𝑘, 𝑙) are constrained to be equal if matname[𝑖, 𝑗] = matname[𝑘, 𝑙].

fweight(varname) specifies frequency weights at higher levels in a multilevel model, whereas fre-

quency weights at the first level (the observation level) are specified in the usual manner, for exam-

ple, [fw=fwtvar1]. varname can be any valid Stata variable name, and you can specify fweight()
at levels two and higher of a multilevel model. For example, in the two-level model

. mecmd fixed_portion [fw = wt1] || school: ... , fweight(wt2) ...

the variable wt1 would hold the first-level (the observation-level) frequency weights, and wt2 would
hold the second-level (the school-level) frequency weights.

iweight(varname) specifies importance weights at higher levels in a multilevel model, whereas impor-
tance weights at the first level (the observation level) are specified in the usual manner, for example,

[iw=iwtvar1]. varname can be any valid Stata variable name, and you can specify iweight() at

levels two and higher of a multilevel model. For example, in the two-level model

. mecmd fixed_portion [iw = wt1] || school: ... , iweight(wt2) ...

the variable wt1would hold the first-level (the observation-level) importance weights, and wt2would
hold the second-level (the school-level) importance weights.

pweight(varname) specifies sampling weights at higher levels in a multilevel model, whereas sam-

pling weights at the first level (the observation level) are specified in the usual manner, for example,

[pw=pwtvar1]. varname can be any valid Stata variable name, and you can specify pweight() at
levels two and higher of a multilevel model. For example, in the two-level model

. mecmd fixed_portion [pw = wt1] || school: ... , pweight(wt2) ...

variable wt1 would hold the first-level (the observation-level) sampling weights, and wt2 would hold
the second-level (the school-level) sampling weights.

constraints(constraints); see [R] Estimation options.

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived from
asymptotic theory (oim, opg), that are robust to some kinds of misspecification (robust), and that
allow for intragroup correlation (cluster clustvar); see [R] vce option. If vce(robust) is specified,
robust variances are clustered at the highest level in the multilevel model.

� � �
Reporting �

level(#), nocnsreport; see [R] Estimation options.

notable suppresses the estimation table, either at estimation or upon replay.

noheader suppresses the output header, either at estimation or upon replay.

nogroup suppresses the display of group summary information (number of groups, average group size,
minimum, and maximum) from the output header.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] Estimation options.
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� � �
Integration �

intmethod(intmethod) specifies the integration method to be used for the random-effects model.

mvaghermite performs mean–variance adaptive Gauss–Hermite quadrature; mcaghermite per-

forms mode-curvature adaptive Gauss–Hermite quadrature; ghermite performs nonadaptive

Gauss–Hermite quadrature; and laplace performs the Laplacian approximation, equivalent to mode-
curvature adaptive Gaussian quadrature with one integration point.

The default integration method is mvaghermite unless a crossed random-effects model is fit, in which
case the default integration method is laplace. The Laplacian approximation has been known to
produce biased parameter estimates; however, the bias tends to be more prominent in the estimates of

the variance components rather than in the estimates of the fixed effects.

For crossed random-effects models, estimation with more than one quadrature point may be pro-

hibitively intensive even for a small number of levels. For this reason, the integration method defaults

to the Laplacian approximation. You may override this behavior by specifying a different integration

method.

intpoints(#) sets the number of integration points for quadrature. The default is intpoints(7),
which means that seven quadrature points are used for each level of random effects. This option is

not allowed with intmethod(laplace).

The more integration points, the more accurate the approximation to the log likelihood. However,

computation time increases as a function of the number of quadrature points raised to a power equaling

the dimension of the random-effects specification. In crossed random-effects models and in models

with many levels or many random coefficients, this increase can be substantial.

� � �
Maximization �

maximize options: difficult, technique(algorithm spec), iterate(#), [no]log, trace,
gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(init specs); see [R] Maximize. Those that require

special mention for meintreg are listed below.

from() accepts a properly labeled vector of initial values or a list of coefficient names with values.
A list of values is not allowed.

The following options are available with meintreg but are not shown in the dialog box:

startvalues(svmethod), startgrid[ (gridspec) ], noestimate, and dnumerical; see [ME]meglm.

collinear, coeflegend; see [R] Estimation options.

Remarks and examples
Mixed-effects interval regression is regression for censored data containing both fixed effects and

random effects. meintreg fits mixed-effects regressionmodels that account for left-, right-, and interval-
censoring. Thus, it is a generalization of the models fit by metobit. In longitudinal data and panel data,
random effects are useful for modeling intracluster correlation; that is, observations in the same cluster

are correlated because they share common cluster-level random effects.

Interval data arise naturally in many contexts, such as wage data where often you know only that a

person’s salary is between two values. If one of the interval’s endpoints is unknown, the observation is

censored. Interval data and right-censored data also arise in the area of survival analysis. meintreg can
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fit models for data where each observation represents interval data, left-censored data, right-censored

data, or point data. Regardless of the type of observation, the data should be stored in the dataset as

interval data; see Syntax.

Regardless of the type of censoring, the expected value of the underlying dependent variable—say,

y⋆—is modeled using the following linear prediction:

𝐸(y⋆|X,u) = Xβ + Zu (1)

X is an 𝑛 × 𝑝 design/covariate matrix, analogous to the covariates you would find in a standard linear

regression model, with regression coefficients (fixed effects) β. Z is the 𝑛 × 𝑞 design/covariate matrix
for the random effects u. This linear prediction also contains the offset when offset() is specified.

The columns of matrix Z are the covariates corresponding to the random effects and can be used to

represent both random intercepts and random coefficients. For example, in a random-intercepts model, Z

is simply the scalar 1. The random effects u are realizations from a multivariate normal distribution with

mean 0 and 𝑞 × 𝑞 variance matrix 𝚺. The random effects are not directly estimated as model parameters

but are instead summarized according to the unique elements of 𝚺, known as variance components. One

special case of (1) places Z = X so that all covariate effects are essentially random and distributed as

multivariate normal with mean β and variance 𝚺.

Below we present a short example of mixed-effects censored regression; refer to [ME] me and

[ME] meglm for additional examples of random-effects models. A two-level interval regression model

can also be fit using xtintreg; see [XT] xtintreg. In the absence of random effects, mixed-effects

censored regression reduces to standard censored regression; see [R] intreg.

Example 1: Three-level random-intercept model
Mastitis is a disease affecting dairy cows, consisting of an inflammatory reaction of the udder tissue.

Our fictional study was performed on 10 farms using a sample of 10 dairy cows taken from each farm, and

time to infection was recorded for each udder quarter for each cow in the sample. The four udder quarters

are clustered within the cow, and cows are nested within farms. This is loosely based on nonfictional

studies by Goethals et al. (2009) and Elghafghuf et al. (2014).

Cows were examined periodically. Thus, if a cow developed an infection, we do not know the exact

day the infection occurred; we only know that it occurred between the last infection-free examination

and the first examination where the infection was present. Some udder quarters did not develop an

infection by the end of the study, so these observations are right-censored. We include a binary covariate,

multiparous, which is equal to 1 for cows that have experienced more than one calving, and 0 for cows
with only one calving.

To fit a log-normal model to the data, which assumes that the outcome is always positive, we take the

log of our dependent variables and then use meintreg to apply a multilevel Gaussian model for interval-
and right-censored data.

. use https://www.stata-press.com/data/r19/mastitis
(Simulated data on udder infection of dairy cows)
. generate lnleft = ln(left)
(5 missing values generated)
. generate lnright = ln(right)
(82 missing values generated)
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. meintreg lnleft lnright i.multiparous || farm: || cow:
Fitting fixed-effects model:
Iteration 0: Log likelihood = -912.93005
Iteration 1: Log likelihood = -901.90184
Iteration 2: Log likelihood = -901.48206
Iteration 3: Log likelihood = -901.48176
Iteration 4: Log likelihood = -901.48176
Refining starting values:
Grid node 0: Log likelihood = -897.92167
Fitting full model:
Iteration 0: Log likelihood = -897.92167 (not concave)
Iteration 1: Log likelihood = -863.2033 (not concave)
Iteration 2: Log likelihood = -857.45304 (not concave)
Iteration 3: Log likelihood = -855.18135
Iteration 4: Log likelihood = -850.84325
Iteration 5: Log likelihood = -846.31976
Iteration 6: Log likelihood = -846.24446
Iteration 7: Log likelihood = -846.24426
Iteration 8: Log likelihood = -846.24426
Mixed-effects interval regression Number of obs = 400

Uncensored = 0
Left-censored = 5
Right-censored = 82
Interval-cens. = 313

Grouping information

No. of Observations per group
Group variable groups Minimum Average Maximum

farm 10 40 40.0 40
cow 100 4 4.0 4

Integration method: mvaghermite Integration pts. = 7
Wald chi2(1) = 8.75

Log likelihood = -846.24426 Prob > chi2 = 0.0031

Coefficient Std. err. z P>|z| [95% conf. interval]

1.multiparous -.5689113 .1923729 -2.96 0.003 -.9459552 -.1918674
_cons 5.644119 .1896383 29.76 0.000 5.272435 6.015803

farm
var(_cons) .0246795 .0258621 .0031648 .1924544

farm>cow
var(_cons) .2481394 .0497735 .1674773 .367651

var(e.lnleft) .2626232 .0257671 .2166796 .3183084

LR test vs. interval model: chi2(2) = 110.47 Prob > chi2 = 0.0000
Note: LR test is conservative and provided only for reference.

We see that infection was observed in 318 udder quarters, the 5 observations that are left-censored

and the 313 that are interval censored. The coefficient for multiparous is negative, which means that
the time to infection will be about 56.9% shorter for cows that experienced multiple calvings.
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The within-cow variance is 0.248, and the residual variance is 0.263, while the within-farm variance is

smaller, about 0.025. A likelihood-ratio test comparing the model to an interval regression model without

random effects is provided under the table and indicates that the three-level interval regression model is

preferred.

Stored results
meintreg stores the following in e():

Scalars

e(N) number of observations

e(N unc) number of uncensored observations

e(N lc) number of left-censored observations

e(N rc) number of right-censored observations

e(N int) number of interval-censored observations

e(k) number of parameters

e(k dv) number of dependent variables

e(k eq) number of equations in e(b)
e(k eq model) number of equations in overall model test

e(k f) number of fixed-effects parameters

e(k r) number of random-effects parameters

e(k rs) number of variances

e(k rc) number of covariances

e(df m) model degrees of freedom

e(ll) log likelihood

e(N clust) number of clusters

e(chi2) 𝜒2

e(p) 𝑝-value for model test
e(ll c) log likelihood, comparison model

e(chi2 c) 𝜒2, comparison test
e(df c) degrees of freedom, comparison test

e(p c) 𝑝-value for comparison test
e(rank) rank of e(V)
e(ic) number of iterations

e(rc) return code

e(converged) 1 if converged, 0 otherwise

Macros

e(cmd) meglm
e(cmd2) meintreg
e(cmdline) command as typed

e(depvar) names of dependent variables

e(wtype) weight type

e(wexp) weight expression (first-level weights)

e(fweightk) fweight variable for kth highest level, if specified
e(iweightk) iweight variable for kth highest level, if specified
e(pweightk) pweight variable for kth highest level, if specified
e(covariates) list of covariates

e(ivars) grouping variables

e(model) interval
e(title) title in estimation output

e(link) identity
e(family) gaussian
e(clustvar) name of cluster variable

e(offset) offset

e(intmethod) integration method

e(n quad) number of integration points
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e(chi2type) Wald; type of model 𝜒2

e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.

e(opt) type of optimization

e(which) max or min; whether optimizer is to perform maximization or minimization

e(ml method) type of ml method
e(user) name of likelihood-evaluator program

e(technique) maximization technique

e(datasignature) the checksum

e(datasignaturevars) variables used in calculation of checksum

e(properties) b V
e(estat cmd) program used to implement estat
e(predict) program used to implement predict
e(marginsnotok) predictions disallowed by margins
e(marginswtype) weight type for margins
e(marginswexp) weight expression for margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices

e(b) coefficient vector

e(Cns) constraints matrix

e(ilog) iteration log (up to 20 iterations)

e(gradient) gradient vector

e(N g) group counts

e(g min) group-size minimums

e(g avg) group-size averages

e(g max) group-size maximums

e(V) variance–covariance matrix of the estimators

e(V modelbased) model-based variance

Functions

e(sample) marks estimation sample

In addition to the above, the following is stored in r():
Matrices

r(table) matrix containing the coefficients with their standard errors, test statistics, 𝑝-values, and
confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when any
r-class command is run after the estimation command.

Methods and formulas
Without a loss of generality, consider a two-level regression model

𝐸(y⋆
𝑗|X𝑗,u𝑗) = X𝑗β + Z𝑗u𝑗, y⋆ ∼ normal

for 𝑗 = 1, . . . , 𝑀 clusters, with the 𝑗th cluster consisting of 𝑛𝑗 observations, where, for the 𝑗th cluster,
y⋆

𝑗 is the 𝑛𝑗 × 1 response vector, X𝑗 is the 𝑛𝑗 × 𝑝 matrix of fixed predictors, Z𝑗 is the 𝑛𝑗 × 𝑞 matrix
of random predictors, u𝑗 is the 𝑞 × 1 vector of random effects, and β is the 𝑝 × 1 vector of regression

coefficients on the fixed predictors. The random effects, u𝑗, are assumed to be multivariate normal with

mean 0 and variance 𝚺.

Let η𝑗 be the linear predictor, η𝑗 = X𝑗β+Z𝑗u𝑗, that also includes the offset variable when offset()
is specified. Let 𝑦⋆

𝑖𝑗 and 𝜂𝑖𝑗 be the 𝑖th individual elements of y⋆
𝑗 and η𝑗, 𝑖 = 1, . . . , 𝑛𝑗.

The dependent variable, 𝑦𝑖𝑗, is a possibly left-, right-, or interval-censored version of 𝑦⋆
𝑖𝑗, and it is

recorded using two variables.
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The conditional density function for the response at observation 𝑖𝑗 is then,

𝑓(𝑦𝐿
𝑖𝑗, 𝑦𝑈

𝑖𝑗|𝜂𝑖𝑗) =

⎧
{{{{
⎨
{{{{
⎩

(
√

2𝜋𝜎𝜖)
−1

exp−(𝑦𝐿
𝑖𝑗−𝜂𝑖𝑗)2/(2𝜎2

𝜖) if (𝑦𝐿
𝑖𝑗, 𝑦𝑈

𝑖𝑗) ∈ 𝐶

Φ ( 𝑦𝑈
𝑖𝑗−𝜂𝑖𝑗

𝜎𝜖
) if (𝑦𝐿

𝑖𝑗, 𝑦𝑈
𝑖𝑗) ∈ 𝐿

1 − Φ ( 𝑦𝐿
𝑖𝑗−𝜂𝑖𝑗

𝜎𝜖
) if (𝑦𝐿

𝑖𝑗, 𝑦𝑈
𝑖𝑗) ∈ 𝑅

Φ ( 𝑦𝑈
𝑖𝑗−𝜂𝑖𝑗

𝜎𝜖
) − Φ ( 𝑦𝐿

𝑖𝑗−𝜂𝑖𝑗
𝜎𝜖

) if (𝑦𝐿
𝑖𝑗, 𝑦𝑈

𝑖𝑗) ∈ 𝐼

where 𝐶 is the set of uncensored observations (𝑦𝐿
𝑖𝑗 = 𝑦𝑈

𝑖𝑗 and both nonmissing), 𝐿 is the set of left-

censored observations (𝑦𝐿
𝑖𝑗 missing and 𝑦𝑈

𝑖𝑗 nonmissing), 𝑅 is the set of right-censored observations (𝑦𝐿
𝑖𝑗

nonmissing and 𝑦𝑈
𝑖𝑗 missing), 𝐼 is the set of interval-censored observations (𝑦𝐿

𝑖𝑗 < 𝑦𝑈
𝑖𝑗 and both nonmiss-

ing), and Φ(⋅) is the cumulative normal distribution.
Because the observations are assumed to be conditionally independent, the conditional log density

function for cluster 𝑗 is

log𝑓(y𝑗|η𝑗) =
𝑛𝑖

∑
𝑗=1

log𝑓(𝑦𝑖𝑗|𝜂𝑖𝑗)

and the likelihood function for cluster 𝑗 is given by

ℒ𝑗(β, 𝚺) = (2𝜋)−𝑞/2|𝚺|−1/2 ∫
ℜ𝑞

𝑓(y𝑗|η𝑗) exp(−1
2
u′

𝑗𝚺
−1u𝑗) 𝑑u𝑗

= (2𝜋)−𝑞/2|𝚺|−1/2 ∫
ℜ𝑞

exp{ log𝑓(y𝑗|η𝑗) − 1
2
u′

𝑗𝚺
−1u𝑗} 𝑑u𝑗

(2)

where ℜ denotes the set of values on the real line and ℜ𝑞 is the analog in 𝑞-dimensional space.
The integration in (2) has no closed form and thus must be approximated; see Methods and formulas

in [ME] meglm for details.

meintreg supports multilevel weights and survey data; see Methods and formulas in [ME] meglm

for details.
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Also see
[ME] meintreg postestimation — Postestimation tools for meintreg

[ME] metobit — Multilevel mixed-effects tobit regression

[ME] me — Introduction to multilevel mixed-effects models

[BAYES] bayes: meintreg — Bayesian multilevel interval regression

[R] intreg — Interval regression

[SEM] Intro 5 — Tour of models (Multilevel mixed-effects models)

[ST] stintreg — Parametric models for interval-censored survival-time data

[SVY] svy estimation — Estimation commands for survey data

[XT] xtintreg — Random-effects interval-data regression model

[U] 20 Estimation and postestimation commands
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Postestimation commands predict margins
Remarks and examples Methods and formulas Also see

Postestimation commands
The following postestimation commands are of special interest after meintreg:

Command Description

estat group summarize the composition of the nested groups

estat icc estimate intraclass correlations

estat sd display variance components as standard deviations and correlations

The following standard postestimation commands are also available:

Command Description

contrast contrasts and ANOVA-style joint tests of parameters

estat ic Akaike’s, consistent Akaike’s, corrected Akaike’s, and Schwarz’s Bayesian in-
formation criteria (AIC, CAIC, AICc, and BIC, respectively)

estat summarize summary statistics for the estimation sample

estat vce variance–covariance matrix of the estimators (VCE)

estat (svy) postestimation statistics for survey data

estimates cataloging estimation results

etable table of estimation results
∗ hausman Hausman’s specification test

lincom point estimates, standard errors, testing, and inference for linear combinations
of parameters

∗ lrtest likelihood-ratio test

margins marginal means, predictive margins, marginal effects, and average marginal
effects

marginsplot graph the results from margins (profile plots, interaction plots, etc.)

nlcom point estimates, standard errors, testing, and inference for nonlinear combina-
tions of parameters

predict means, probabilities, densities, REs, residuals, etc.

predictnl point estimates, standard errors, testing, and inference for generalized predic-
tions

pwcompare pairwise comparisons of parameters

test Wald tests of simple and composite linear hypotheses

testnl Wald tests of nonlinear hypotheses

∗ hausman and lrtest are not appropriate with svy estimation results.
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predict

Description for predict
predict creates a new variable containing predictions such as linear predictions, standard errors,

probabilities, and expected values.

Menu for predict
Statistics > Postestimation

Syntax for predict

Syntax for obtaining predictions of the outcome and other statistics

predict [ type ] { stub* | newvarlist } [ if ] [ in ] [ , statistic options ]

Syntax for obtaining estimated random effects and their standard errors

predict [ type ] { stub* | newvarlist } [ if ] [ in ], reffects [ re options ]

Syntax for obtaining ML scores

predict [ type ] { stub* | newvarlist } [ if ] [ in ], scores

statistic Description

Main

eta fitted linear predictor; the default

xb linear predictor for the fixed portion of the model only

stdp standard error of the fixed-portion linear prediction

pr(a,b) Pr(𝑎 < 𝑦 < 𝑏)
e(a,b) 𝐸(𝑦 | 𝑎 < 𝑦 < 𝑏)
ystar(a,b) 𝐸(𝑦∗), 𝑦∗ = max{𝑎,min(𝑦, 𝑏)}

These statistics are available both in and out of sample; type predict ... if e(sample) ... if wanted
only for the estimation sample.

where a and b may be numbers or variables; a missing (a ≥ .) means −∞, and b missing (b ≥ .) means
+∞; see [U] 12.2.1 Missing values.
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options Description

Main

conditional(ctype) compute statistic conditional on estimated random effects; default is

conditional(ebmeans)
marginal compute statistic marginally with respect to the random effects

nooffset make calculation ignoring offset or exposure

Integration

int options integration options

ctype Description

ebmeans empirical Bayes means of random effects; the default

ebmodes empirical Bayes modes of random effects

fixedonly prediction for the fixed portion of the model only

re options Description

Main

ebmeans use empirical Bayes means of random effects; the default

ebmodes use empirical Bayes modes of random effects

reses(stub* | newvarlist) calculate standard errors of empirical Bayes estimates

Integration

int options integration options

int options Description

intpoints(#) use # quadrature points to compute marginal predictions and empirical
Bayes means

iterate(#) set maximum number of iterations in computing statistics involving
empirical Bayes estimators

tolerance(#) set convergence tolerance for computing statistics involving empirical
Bayes estimators

Options for predict

� � �
Main �

eta, the default, calculates the fitted linear prediction.

pr(a,b) calculates estimates of Pr(a < 𝑦 < b), which is the probability that 𝑦 would be observed in the
interval (a, b).
a and b may be specified as numbers or variable names; lb and ub are variable names;

pr(20,30) calculates Pr(20 < 𝑦 < 30);
pr(lb,ub) calculates Pr(lb < 𝑦 < ub); and
pr(20,ub) calculates Pr(20 < 𝑦 < ub).
a missing (a ≥ .) means −∞; pr(.,30) calculates Pr(−∞ < 𝑦 < 30);
pr(lb,30) calculates Pr(−∞ < 𝑦 < 30) in observations for which lb ≥ .
(and calculates Pr(lb < 𝑦 < 30) elsewhere).
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b missing (b ≥ .) means +∞; pr(20,.) calculates Pr(+∞ > 𝑦 > 20);
pr(20,ub) calculates Pr(+∞ > 𝑦 > 20) in observations for which ub ≥ .
(and calculates Pr(20 < 𝑦 < ub) elsewhere).

e(a,b) calculates estimates of 𝐸(𝑦 |a < 𝑦 < b), which is the expected value of 𝑦 conditional on 𝑦 being
in the interval (a, b), meaning that 𝑦 is truncated. a and b are specified as they are for pr().

ystar(a,b) calculates estimates of 𝐸(𝑦∗), where 𝑦∗ = 𝑎 if 𝑦 ≤ 𝑎, 𝑦∗ = 𝑏 if 𝑦 ≥ 𝑏, and 𝑦∗ = 𝑦
otherwise, meaning that 𝑦∗ is the censored version of 𝑦. a and b are specified as they are for pr().

xb, stdp, scores, conditional(), marginal, and nooffset; see [ME] meglm postestimation.

reffects, ebmeans, ebmodes, and reses(); see [ME] meglm postestimation.

� � �
Integration �

intpoints(), iterate(), tolerance(); see [ME] meglm postestimation.

margins

Description for margins
margins estimates margins of response for linear predictions, probabilities, and expected values.

Menu for margins
Statistics > Postestimation

Syntax for margins
margins [marginlist ] [ , options ]
margins [marginlist ] , predict(statistic ...) [ predict(statistic ...) ... ] [ options ]

statistic Description

eta fitted linear predictor; the default

xb linear predictor for the fixed portion of the model only

pr(a,b) Pr(𝑎 < 𝑦 < 𝑏)
e(a,b) 𝐸(𝑦 | 𝑎 < 𝑦 < 𝑏)
ystar(a,b) 𝐸(𝑦∗), 𝑦∗ = max{𝑎,min(𝑦, 𝑏)}
stdp not allowed with margins

Statistics not allowed with margins are functions of stochastic quantities other than e(b).

For the full syntax, see [R] margins.
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Remarks and examples
Various predictions, statistics, and diagnostic measures are available after fitting a mixed-effects in-

terval regression model with meintreg.

The predict command allows us to compute marginal and conditional predictions. Unless stated

differently, we use the word “conditional” to mean “conditional on the empirical Bayes predictions of

the random effects”. The default prediction is the linear prediction, eta, which is the expected value of
the unobserved censored variable. Predictions of expected values for censored and truncated versions of

the response are also available.

Example 1: Obtaining conditional and marginal probabilities
In example 1 of [ME] meintreg, we fit a three-level mixed-effects interval regression to model log

time to udder tissue infection in dairy cows.

. use https://www.stata-press.com/data/r19/mastitis
(Simulated data on udder infection of dairy cows)
. generate lnleft = ln(left)
(5 missing values generated)
. generate lnright = ln(right)
(82 missing values generated)
. meintreg lnleft lnright i.multiparous || farm: || cow:
(output omitted )

Let’s assume that we want to predict the probability of infection within the first 90 days. Because our

dependent variable is log(𝑦), we need to compute

Pr(0 < 𝑦 < 90) = Pr{−∞ < log(𝑦) < log(90)}

We can use the pr() option for predict to compute the probability that our dependent variable lies in
the interval [−∞, log(90)].

We first compute the probability conditional on the random effects. Because the lower level on which

we are conditioning on is cow, and we have only cow-level covariates, these predictions will be con-

stant within cow. We can see that all the predicted probabilities for farm 3 are below 0.21, while the

probabilities for farms 2 and 6 reach above 0.70 in some cases.
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. predict pr_cond, pr(.,log(90))
(predictions based on fixed effects and posterior means of random effects)
. twoway scatter pr_cond farm, ylabel(0(.1).8) xlabel(1(1)10)
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Now, we compute the marginal probabilities of infection within the first 90 days.

. predict pr_marg, pr(.,log(90)) marginal

. tabulate pr_marg multiparous
=1 if cows

experienced more than
Marginal one calving, 0

Pr(y<log(9 otherwise
0)) 0 1 Total

.0589298 40 0 40

.2158333 0 360 360

Total 40 360 400

Marginal predictions depend only on the covariate pattern (including covariates in the random-effects

part, if present in the model). Because we included only a binary covariate in the model, there are only

two predicted values, one for each value of the covariate. We see that the probability of developing an

infection in the first 90 days is higher for multiparous cows.

Alternatively, we can use margins to calculate the marginal probabilities. One advantage of using
margins is that we can obtain confidence intervals for the probabilities and the difference between them.
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. margins multiparous, predict(pr(.,log(90)))
Adjusted predictions Number of obs = 400
Model VCE: OIM
Expression: Pr(y<log(90)), predict(pr(.,log(90)))

Delta-method
Margin std. err. z P>|z| [95% conf. interval]

multiparous
0 .0589298 .0305541 1.93 0.054 -.0009551 .1188147
1 .2158333 .0314158 6.87 0.000 .1542595 .2774071

. margins, dydx(multiparous) predict(pr(.,log(90)))
Conditional marginal effects Number of obs = 400
Model VCE: OIM
Expression: Pr(y<log(90)), predict(pr(.,log(90)))
dy/dx wrt: 1.multiparous

Delta-method
dy/dx std. err. z P>|z| [95% conf. interval]

1.multipar~s .1569036 .0396889 3.95 0.000 .0791148 .2346923

Note: dy/dx for factor levels is the discrete change from the base level.

The default option for predict, eta, computes the fitted linear prediction; we can use this option to
perform predictions for the uncensored unobserved response. We compute the conditional and marginal

predictions for the log time to infection.

. predict eta_cond
(option eta assumed)
(predictions based on fixed effects and posterior means of random effects)
(using 7 quadrature points)
. predict eta_marg, marginal
(option eta assumed)
. sort cow
. list cow multiparous eta_cond eta_marg in 1/8, sepby(cow)

cow multip~s eta_cond eta_marg

1. 1 0 5.486386 5.644119
2. 1 0 5.486386 5.644119
3. 1 0 5.486386 5.644119
4. 1 0 5.486386 5.644119

5. 2 1 5.101668 5.075207
6. 2 1 5.101668 5.075207
7. 2 1 5.101668 5.075207
8. 2 1 5.101668 5.075207

Comparing the conditional and marginal predictions, we see that the predicted log time to infection

for the first cow is slightly shorter than the one expected for a cow with this covariate pattern, and the

log time to infection for the second cow is slightly longer.
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Example 2: Calculating transformed predictions
Because our dependent variable is log transformed, we might want to compute predictions on the

original scale. To do that, we need to obtain predictions for the exponentiated dependent variable.

This exercise is helpful to understand the distribution of the different statistics. If we want to predict

the individual conditional time to infection, we need to obtain the conditional mean for exp(𝑦). Because
the conditional distribution of exp(𝑦) is lognormal with location parameter equal to ̂𝜂 and scale parameter
equal to 𝜎𝜖 (residual variance), then its (conditional) expected value is equal to exp( ̂𝜂 + 𝜎2

𝜖 /2). Here we
calculate the conditional time to infection and plot kernel densities for multiparous and uniparous cows.

. generate time_cond = exp(eta_cond + _b[/var(e.lnleft)]/2)

. kdensity time_cond if multiparous == 0, xlabel(0(200)800) name(gr1)

. kdensity time_cond if multiparous == 1, xlabel(0(200)800) name(gr2)

. graph combine gr1 gr2
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The density estimator of the time to infection shows that multiparous cows tend to have shorter times

to infection than uniparous cows.

The marginal distribution of 𝑦 is lognormal with location parameter xβ and the scale parameter equal

to the marginal variance; see Methods and formulas of [ME]metobit postestimation for the description

of the marginal variance. Thus the marginal expected value of the time to infection is calculated as

. predict xb, xb

. generate time_marg = exp( xb + (_b[/var(_cons[farm])] +
> _b[/var(_cons[farm>cow])] + _b[/var(e.lnleft)])/2)
. tabulate time_marg multiparous

=1 if cows
experienced more than

one calving, 0
otherwise

time_marg 0 1 Total

209.1242 0 360 360
369.3851 40 0 40

Total 40 360 400
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As before, we see that the unconditional expected value for the time to infection is shorter for multi-

parous cows.

Methods and formulas
Methods and formulas for predicting random effects and other statistics are given in Methods and

formulas of [ME] metobit postestimation.

Also see
[ME] meintreg — Multilevel mixed-effects interval regression

[U] 20 Estimation and postestimation commands
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Description Quick start Menu Syntax Options
Remarks and examples Stored results Methods and formulas References Also see

Description
melogit fits mixed-effects models for binary and binomial responses. The conditional distribution

of the response given the random effects is assumed to be Bernoulli, with success probability determined

by the logistic cumulative distribution function.

Quick start
Without weights

Two-level logistic regression of y on x with random intercepts by lev2
melogit y x || lev2:

Mixed-effects model adding random coefficients for x
melogit y x || lev2: x

Same as above, but allow the random effects to be correlated

melogit y x || lev2: x, covariance(unstructured)

Three-level random-intercept model of y on x with lev2 nested within lev3
melogit y x || lev3: || lev2:

Crossed-effects model of y on x with two-way crossed random effects by factors a and b
melogit y x || _all:R.a || b:

With weights

Two-level logistic regression of y on x with random intercepts by lev2 and observation-level frequency
weights wvar1

melogit y x [fweight=wvar1] || lev2:

Two-level random-intercept model from a two-stage sampling design with PSUs identified by psu using
PSU-level and observation-level sampling weights wvar2 and wvar1, respectively

melogit y x [pweight=wvar1] || psu:, pweight(wvar2)

Add secondary sampling stage with units identified by ssu having weights wvar2 and PSU-level weights
wvar3 for a three-level random-intercept model

melogit y x [pw=wvar1] || psu:, pw(wvar3) || ssu:, pw(wvar2)

Same as above, but svyset data first
svyset psu, weight(wvar3) || ssu, weight(wvar2) || _n, weight(wvar1)
svy: melogit y x || psu: || ssu:
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Menu
Statistics > Multilevel mixed-effects models > Logistic regression

Syntax
melogit depvar fe equation [ || re equation ] [ || re equation ... ] [ , options ]

where the syntax of fe equation is

[ indepvars ] [ if ] [ in ] [weight ] [ , fe options ]

and the syntax of re equation is one of the following:

for random coefficients and intercepts

levelvar: [ varlist ] [ , re options ]

for random effects among the values of a factor variable in a crossed-effects model

levelvar: R.varname

levelvar is a variable identifying the group structure for the random effects at that level or is all repre-
senting one group comprising all observations.

fe options Description

Model

noconstant suppress constant term from the fixed-effects equation

offset(varname) include varname in model with coefficient constrained to 1

asis retain perfect predictor variables

re options Description

Model

covariance(vartype) variance–covariance structure of the random effects

noconstant suppress constant term from the random-effects equation

fweight(varname) frequency weights at higher levels

iweight(varname) importance weights at higher levels

pweight(varname) sampling weights at higher levels
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options Description

Model

binomial(varname | #) set binomial trials if data are in binomial form

constraints(constraints) apply specified linear constraints

SE/Robust

vce(vcetype) vcetype may be oim, opg, robust, or cluster clustvar

Reporting

level(#) set confidence level; default is level(95)
or report fixed-effects coefficients as odds ratios

nocnsreport do not display constraints

notable suppress coefficient table

noheader suppress output header

nogroup suppress table summarizing groups

display options control columns and column formats, row spacing, line width,
display of omitted variables and base and empty cells, and
factor-variable labeling

Integration

intmethod(intmethod) integration method

intpoints(#) set the number of integration (quadrature) points for all levels;
default is intpoints(7)

Maximization

maximize options control the maximization process; seldom used

startvalues(svmethod) method for obtaining starting values

startgrid[ (gridspec) ] perform a grid search to improve starting values

noestimate do not fit the model; show starting values instead

dnumerical use numerical derivative techniques

collinear keep collinear variables

coeflegend display legend instead of statistics

vartype Description

independent one unique variance parameter per random effect and all covariances
0; the default unless the R. notation is used

exchangeable equal variances for random effects and one common pairwise
covariance

identity equal variances for random effects and all covariances 0; the
default if the R. notation is used

unstructured all variances and covariances to be distinctly estimated

fixed(matname) user-selected variances and covariances constrained to specified
values; the remaining variances and covariances unrestricted

pattern(matname) user-selected variances and covariances constrained to be equal;
the remaining variances and covariances unrestricted
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intmethod Description

mvaghermite mean–variance adaptive Gauss–Hermite quadrature; the default
unless a crossed random-effects model is fit

mcaghermite mode-curvature adaptive Gauss–Hermite quadrature

pcaghermite Pinheiro–Chao mode-curvature adaptive Gauss–Hermite
quadrature

ghermite nonadaptive Gauss–Hermite quadrature

laplace Laplacian approximation; the default for crossed random-effects
models

pclaplace Pinheiro–Chao Laplacian approximation

indepvars and varlist may contain factor variables; see [U] 11.4.3 Factor variables.

depvar, indepvars, and varlist may contain time-series operators; see [U] 11.4.4 Time-series varlists.

bayes, by, collect, and svy are allowed; see [U] 11.1.10 Prefix commands. Formore details, see [BAYES] bayes:melogit.

vce() and weights are not allowed with the svy prefix; see [SVY] svy.
fweights, iweights, and pweights are allowed; see [U] 11.1.6 weight. Only one type of weight may be specified. Weights

are not supported under the Laplacian approximation or for crossed models.

startvalues(), startgrid, noestimate, dnumerical, collinear, and coeflegend do not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options

� � �
Model �

noconstant suppresses the constant (intercept) term and may be specified for the fixed-effects equation

and for any of or all the random-effects equations.

offset(varname) specifies that varname be included in the fixed-effects portion of the model with the

coefficient constrained to be 1.

asis forces retention of perfect predictor variables and their associated, perfectly predicted observations
and may produce instabilities in maximization; see [R] probit.

covariance(vartype) specifies the structure of the covariance matrix for the random effects and may

be specified for each random-effects equation. vartype is one of the following: independent,
exchangeable, identity, unstructured, fixed(matname), or pattern(matname).

covariance(independent) covariance structure allows for a distinct variance for each random

effect within a random-effects equation and assumes that all covariances are 0. The default is

covariance(independent) unless a crossed random-effects model is fit, in which case the de-
fault is covariance(identity).

covariance(exchangeable) structure specifies one common variance for all random effects and

one common pairwise covariance.

covariance(identity) is short for “multiple of the identity”; that is, all variances are equal and all
covariances are 0.

covariance(unstructured) allows for all variances and covariances to be distinct. If an equation
consists of 𝑝 random-effects terms, the unstructured covariance matrix will have 𝑝(𝑝+1)/2 unique
parameters.
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covariance(fixed(matname)) and covariance(pattern(matname)) covariance structures

provide a convenient way to impose constraints on variances and covariances of random effects.

Each specification requires amatname that defines the restrictions placed on variances and covari-

ances. Only elements in the lower triangle of matname are used, and row and column names of

matname are ignored. Amissing value inmatnamemeans that a given element is unrestricted. In a

fixed(matname) covariance structure, (co)variance (𝑖, 𝑗) is constrained to equal the value spec-
ified in the 𝑖, 𝑗th entry of matname. In a pattern(matname) covariance structure, (co)variances
(𝑖, 𝑗) and (𝑘, 𝑙) are constrained to be equal if matname[𝑖, 𝑗] = matname[𝑘, 𝑙].

fweight(varname) specifies frequency weights at higher levels in a multilevel model, whereas fre-

quency weights at the first level (the observation level) are specified in the usual manner, for exam-

ple, [fw=fwtvar1]. varname can be any valid Stata variable name, and you can specify fweight()
at levels two and higher of a multilevel model. For example, in the two-level model

. mecmd fixed_portion [fw = wt1] || school: ... , fweight(wt2) ...

the variable wt1 would hold the first-level (the observation-level) frequency weights, and wt2 would
hold the second-level (the school-level) frequency weights.

iweight(varname) specifies importance weights at higher levels in a multilevel model, whereas impor-
tance weights at the first level (the observation level) are specified in the usual manner, for example,

[iw=iwtvar1]. varname can be any valid Stata variable name, and you can specify iweight() at

levels two and higher of a multilevel model. For example, in the two-level model

. mecmd fixed_portion [iw = wt1] || school: ... , iweight(wt2) ...

the variable wt1would hold the first-level (the observation-level) importance weights, and wt2would
hold the second-level (the school-level) importance weights.

pweight(varname) specifies sampling weights at higher levels in a multilevel model, whereas sam-

pling weights at the first level (the observation level) are specified in the usual manner, for example,

[pw=pwtvar1]. varname can be any valid Stata variable name, and you can specify pweight() at
levels two and higher of a multilevel model. For example, in the two-level model

. mecmd fixed_portion [pw = wt1] || school: ... , pweight(wt2) ...

variable wt1 would hold the first-level (the observation-level) sampling weights, and wt2 would hold
the second-level (the school-level) sampling weights.

binomial(varname | #) specifies that the data are in binomial form; that is, depvar records the number
of successes from a series of binomial trials. This number of trials is given either as varname, which

allows this number to vary over the observations, or as the constant #. If binomial() is not specified
(the default), depvar is treated as Bernoulli, with any nonzero, nonmissing values indicating positive

responses.

constraints(constraints); see [R] Estimation options.

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived from
asymptotic theory (oim, opg), that are robust to some kinds of misspecification (robust), and that
allow for intragroup correlation (cluster clustvar); see [R] vce option. If vce(robust) is specified,
robust variances are clustered at the highest level in the multilevel model.

� � �
Reporting �

level(#); see [R] Estimation options.
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or reports estimated fixed-effects coefficients transformed to odds ratios, that is, exp(𝛽) rather than 𝛽.
Standard errors and confidence intervals are similarly transformed. This option affects how results

are displayed, not how they are estimated. or may be specified either at estimation or upon replay.

nocnsreport; see [R] Estimation options.

notable suppresses the estimation table, either at estimation or upon replay.

noheader suppresses the output header, either at estimation or upon replay.

nogroup suppresses the display of group summary information (number of groups, average group size,
minimum, and maximum) from the output header.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] Estimation options.

� � �
Integration �

intmethod(intmethod) specifies the integration method to be used for the random-effects model.

mvaghermite performs mean–variance adaptive Gauss–Hermite quadrature; mcaghermite and

pcaghermite perform mode-curvature adaptive Gauss–Hermite quadrature; ghermite performs

nonadaptive Gauss–Hermite quadrature; and laplace and pclaplace perform the Laplacian ap-

proximation, equivalent to mode-curvature adaptive Gaussian quadrature with one integration point.

Techniques pcaghermite and pclaplace obtain the random-effectsmode and curvature using the ef-
ficient hierarchical decomposition algorithm described in Pinheiro and Chao (2006). For hierarchical

models, this algorithm takes advantage of the design structure to minimize memory use and utilizes a

series of orthogonal triangulations to compute the factored random-effects Hessian indirectly, avoid-

ing the sparse full Hessian. Techniques mcaghermite and laplace use Cholesky factorization on the
full Hessian. For four- and higher-level hierarchical designs, there can be dramatic computation-time

differences.

The default integration method is mvaghermite unless a crossed random-effects model is fit, in which
case the default integration method is laplace. The Laplacian approximation has been known to
produce biased parameter estimates; however, the bias tends to be more prominent in the estimates of

the variance components rather than in the estimates of the fixed effects.

For crossed random-effects models, estimation with more than one quadrature point may be pro-

hibitively intensive even for a small number of levels. For this reason, the integration method defaults

to the Laplacian approximation. You may override this behavior by specifying a different integration

method.

intpoints(#) sets the number of integration points for quadrature. The default is intpoints(7),
which means that seven quadrature points are used for each level of random effects. This option is

not allowed with intmethod(laplace).

The more integration points, the more accurate the approximation to the log likelihood. However,

computation time increases as a function of the number of quadrature points raised to a power equaling

the dimension of the random-effects specification. In crossed random-effects models and in models

with many levels or many random coefficients, this increase can be substantial.
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� � �
Maximization �

maximize options: difficult, technique(algorithm spec), iterate(#), [no]log, trace,
gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(init specs); see [R] Maximize. Those that require

special mention for melogit are listed below.

from() accepts a properly labeled vector of initial values or a list of coefficient names with values.
A list of values is not allowed.

The following options are available with melogit but are not shown in the dialog box:

startvalues(svmethod), startgrid[ (gridspec) ], noestimate, and dnumerical; see [ME]meglm.

collinear, coeflegend; see [R] Estimation options.

Remarks and examples
For a general introduction to me commands, see [ME] me.

melogit is a convenience command for meglm with a logit link and a bernoulli or binomial
family; see [ME] meglm.

Remarks are presented under the following headings:

Introduction
Two-level models
Other covariance structures
Three-level models
Crossed-effects models

Introduction
Mixed-effects logistic regression is logistic regression containing both fixed effects and random ef-

fects. In longitudinal data and panel data, random effects are useful for modeling intracluster correlation;

that is, observations in the same cluster are correlated because they share common cluster-level random

effects.

melogit allows for many levels of random effects. However, for simplicity, for now we consider the

two-level model, where for a series of𝑀 independent clusters, and conditional on a set of random effects

u𝑗,

Pr(𝑦𝑖𝑗 = 1|x𝑖𝑗,u𝑗) = 𝐻(x𝑖𝑗β + z𝑖𝑗u𝑗) (1)
for 𝑗 = 1, . . . , 𝑀 clusters, with cluster 𝑗 consisting of 𝑖 = 1, . . . , 𝑛𝑗 observations. The responses are the

binary-valued 𝑦𝑖𝑗, and we follow the standard Stata convention of treating 𝑦𝑖𝑗 = 1 if depvar𝑖𝑗 ≠ 0 and

treating 𝑦𝑖𝑗 = 0 otherwise. The 1 × 𝑝 row vector x𝑖𝑗 are the covariates for the fixed effects, analogous

to the covariates you would find in a standard logistic regression model, with regression coefficients

(fixed effects) β. For notational convenience here and throughout this manual entry, we suppress the
dependence of 𝑦𝑖𝑗 on x𝑖𝑗.

The 1×𝑞 vector z𝑖𝑗 are the covariates corresponding to the random effects and can be used to represent

both random intercepts and random coefficients. For example, in a random-intercept model, z𝑖𝑗 is simply

the scalar 1. The random effects u𝑗 are 𝑀 realizations from a multivariate normal distribution with mean

0 and 𝑞 × 𝑞 variance matrix 𝚺. The random effects are not directly estimated as model parameters but

are instead summarized according to the unique elements of 𝚺, known as variance components. One

special case of (1) places z𝑖𝑗 = x𝑖𝑗 so that all covariate effects are essentially random and distributed as

multivariate normal with mean β and variance 𝚺.
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Finally, because this is logistic regression, 𝐻(⋅) is the logistic cumulative distribution function, which
maps the linear predictor to the probability of a success (𝑦𝑖𝑗 = 1), with 𝐻(𝑣) = exp(𝑣)/{1 + exp(𝑣)}.

Model (1) may also be stated in terms of a latent linear response, where only 𝑦𝑖𝑗 = 𝐼(𝑦∗
𝑖𝑗 > 0) is

observed for the latent

𝑦∗
𝑖𝑗 = x𝑖𝑗β + z𝑖𝑗u𝑗 + 𝜖𝑖𝑗

The errors 𝜖𝑖𝑗 are distributed as logistic with mean 0 and variance 𝜋2/3 and are independent of u𝑗.

A two-level logistic model can also be fit using xtlogit with the re option; see [XT] xtlogit. In the
absence of random effects, mixed-effects logistic regression reduces to standard logistic regression; see

[R] logit.

Two-level models

Example 1: Two-level random-intercept model
Ng et al. (2006) analyze a subsample of data from the 1989 Bangladesh fertility survey (Huq and

Cleland 1990), which polled 1,934 Bangladeshi women on their use of contraception.

. use https://www.stata-press.com/data/r19/bangladesh
(Bangladesh Fertility Survey, 1989)
. describe
Contains data from https://www.stata-press.com/data/r19/bangladesh.dta
Observations: 1,934 Bangladesh Fertility Survey,

1989
Variables: 8 28 May 2024 20:27

(_dta has notes)

Variable Storage Display Value
name type format label Variable label

district byte %9.0g District
c_use byte %9.0g yesno Use contraception
urban byte %9.0g urban Urban or rural
age float %6.2f Age, mean centered
child1 byte %9.0g 1 child
child2 byte %9.0g 2 children
child3 byte %9.0g 3 or more children
children byte %18.0g childlbl Number of children

Sorted by: district

The women sampled were from 60 districts, identified by the variable district. Each district con-
tained either urban or rural areas (variable urban) or both. The variable c use is the binary response,
with a value of 1 indicating contraceptive use. Other covariates include mean-centered age and a factor
variable for the number of children.

Consider a standard logistic regression model, amended to have random effects for each district.

Defining 𝜋𝑖𝑗 = Pr(c use𝑖𝑗 = 1), we have

logit(𝜋𝑖𝑗) = 𝛽0 + 𝛽11.urban𝑖𝑗 + 𝛽2age𝑖𝑗 + 𝛽31.children𝑖𝑗 + 𝛽42.children𝑖𝑗 +

𝛽53.children𝑖𝑗 + 𝑢𝑗
(2)

for 𝑗 = 1, . . . , 60 districts, with 𝑖 = 1, . . . , 𝑛𝑗 women in district 𝑗.
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. melogit c_use i.urban age i.children, nofvlabel|| district:
Fitting fixed-effects model:
Iteration 0: Log likelihood = -1229.5485
Iteration 1: Log likelihood = -1228.5268
Iteration 2: Log likelihood = -1228.5263
Iteration 3: Log likelihood = -1228.5263
Refining starting values:
Grid node 0: Log likelihood = -1219.2681
Fitting full model:
Iteration 0: Log likelihood = -1219.2681 (not concave)
Iteration 1: Log likelihood = -1207.5978
Iteration 2: Log likelihood = -1206.8428
Iteration 3: Log likelihood = -1206.8322
Iteration 4: Log likelihood = -1206.8322
Mixed-effects logistic regression Number of obs = 1,934
Group variable: district Number of groups = 60

Obs per group:
min = 2
avg = 32.2
max = 118

Integration method: mvaghermite Integration pts. = 7
Wald chi2(5) = 109.60

Log likelihood = -1206.8322 Prob > chi2 = 0.0000

c_use Coefficient Std. err. z P>|z| [95% conf. interval]

1.urban .7322765 .1194857 6.13 0.000 .4980888 .9664641
age -.0264981 .0078916 -3.36 0.001 -.0419654 -.0110309

children
1 1.116001 .1580921 7.06 0.000 .8061465 1.425856
2 1.365895 .1746691 7.82 0.000 1.02355 1.70824
3 1.344031 .1796549 7.48 0.000 .9919139 1.696148

_cons -1.68929 .1477591 -11.43 0.000 -1.978892 -1.399687

district
var(_cons) .215618 .0733222 .1107208 .4198954

LR test vs. logistic model: chibar2(01) = 43.39 Prob >= chibar2 = 0.0000

The estimation table reports the fixed effects and the estimated variance components. The fixed effects

can be interpreted just as you would the output from logit. You can also specify the or option at

estimation or on replay to display the fixed effects as odds ratios instead. If you did display results as

odds ratios, you would find urban women to have roughly double the odds of using contraception as that

of their rural counterparts. Having any number of children will increase the odds from three- to fourfold

when compared with the base category of no children. Contraceptive use also decreases with age. The

nofvlabel option requested the values of factor variables urban and children be displayed instead of
the value labels.

Underneath the fixed effect, the table shows the estimated variance components. The random-effects

equation is labeled district, meaning that these are random effects at the district level. Because we
have only one random effect at this level, the table shows only one variance component. The estimate of

𝜎2
𝑢 is 0.22 with standard error 0.07.
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Alikelihood-ratio test comparing the model with ordinary logistic regression is provided and is highly

significant for these data.

We now store our estimates for later use.

. estimates store r_int

In what follows, we will be extending (2), focusing on the variable urban. Before we begin, to keep
things short we restate (2) as

logit(𝜋𝑖𝑗) = 𝛽0 + 𝛽11.urban𝑖𝑗 + ℱ𝑖𝑗 + 𝑢𝑗

where ℱ𝑖𝑗 is merely shorthand for the portion of the fixed-effects specification having to do with age

and children.

Example 2: Two-level random-slope model
Extending (2) to allow for a random slope on the indicator variable 1.urban yields the model

logit(𝜋𝑖𝑗) = 𝛽0 + 𝛽11.urban𝑖𝑗 + ℱ𝑖𝑗 + 𝑢𝑗 + 𝑣𝑗1.urban𝑖𝑗 (3)

which we can fit by typing

. melogit c_use i.urban age i.children, nofvlabel || district: i.urban
(output omitted )

. estimates store r_urban

Extending the model was as simple as adding i.urban to the random-effects specification so that the
model now includes a random intercept and a random coefficient on 1.urban. We dispense with the

output because, although this is an improvement over the random-intercept model (2),

. lrtest r_int r_urban
Likelihood-ratio test
Assumption: r_int nested within r_urban
LR chi2(1) = 3.66
Prob > chi2 = 0.0558
Note: The reported degrees of freedom assumes the null hypothesis is not on

the boundary of the parameter space. If this is not true, then the
reported test is conservative.

we find the default covariance structure for (𝑢𝑗, 𝑣𝑗), covariance(independent),

𝚺 = Var [𝑢𝑗
𝑣𝑗

] = [𝜎2
𝑢 0
0 𝜎2

𝑣
]

to be inadequate. We state that the random-coefficient model is an “improvement” over the random-

intercept model because the null hypothesis of the likelihood-ratio comparison test (𝐻0 ∶ 𝜎2
𝑣 = 0) is on

the boundary of the parameter test. This makes the reported 𝑝-value, 5.6%, an upper bound on the actual
𝑝-value, which is actually half of that; see Distribution theory for likelihood-ratio test in [ME] me.

We see below that we can reject this model in favor of one that allows correlation between 𝑢𝑗 and 𝑣𝑗.
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. melogit c_use i.urban age i.children, nofvlabel
> || district: i.urban, covariance(unstructured)
Fitting fixed-effects model:
Iteration 0: Log likelihood = -1229.5485
Iteration 1: Log likelihood = -1228.5268
Iteration 2: Log likelihood = -1228.5263
Iteration 3: Log likelihood = -1228.5263
Refining starting values:
Grid node 0: Log likelihood = -1215.8592
Fitting full model:
Iteration 0: Log likelihood = -1215.8592 (not concave)
Iteration 1: Log likelihood = -1201.0652
Iteration 2: Log likelihood = -1199.6394
Iteration 3: Log likelihood = -1199.3157
Iteration 4: Log likelihood = -1199.315
Iteration 5: Log likelihood = -1199.315
Mixed-effects logistic regression Number of obs = 1,934
Group variable: district Number of groups = 60

Obs per group:
min = 2
avg = 32.2
max = 118

Integration method: mvaghermite Integration pts. = 7
Wald chi2(5) = 97.50

Log likelihood = -1199.315 Prob > chi2 = 0.0000

c_use Coefficient Std. err. z P>|z| [95% conf. interval]

1.urban .8157875 .1715519 4.76 0.000 .4795519 1.152023
age -.026415 .008023 -3.29 0.001 -.0421398 -.0106902

children
1 1.13252 .1603285 7.06 0.000 .818282 1.446758
2 1.357739 .1770522 7.67 0.000 1.010723 1.704755
3 1.353827 .1828801 7.40 0.000 .9953882 1.712265

_cons -1.71165 .1605618 -10.66 0.000 -2.026345 -1.396954

district
var(1.urban) .6663237 .3224689 .258074 1.720387
var(_cons) .3897448 .1292463 .203473 .7465413

district
cov(1.urban,

_cons) -.4058861 .1755414 -2.31 0.021 -.7499408 -.0618313

LR test vs. logistic model: chi2(3) = 58.42 Prob > chi2 = 0.0000
Note: LR test is conservative and provided only for reference.
. estimates store r_urban_corr
. lrtest r_urban r_urban_corr
Likelihood-ratio test
Assumption: r_urban nested within r_urban_corr
LR chi2(1) = 11.38
Prob > chi2 = 0.0007
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By specifying covariance(unstructured) above, we told melogit to allow correlation between ran-

dom effects at the district level; that is,

𝚺 = Var [𝑢𝑗
𝑣𝑗

] = [ 𝜎2
𝑢 𝜎𝑢𝑣

𝜎𝑢𝑣 𝜎2
𝑣

]

Example 3: Alternative parameterization of random slopes
The purpose of introducing a random coefficient on the binary variable urban in (3) was to allow for

separate random effects, within each district, for the urban and rural areas of that district. Hence, if we

turn off base levels for factor variable i.urban via ibn.urban, then we can reformulate (3) as

logit(𝜋𝑖𝑗) = 𝛽00.urban𝑖𝑗 + (𝛽0 + 𝛽1)1.urban𝑖𝑗 + ℱ𝑖𝑗 + 𝑢𝑗0.urban𝑖𝑗 + (𝑢𝑗 + 𝑣𝑗)1.urban𝑖𝑗 (3a)

where we have translated both the fixed portion and the random portion to be in terms of 0.urban rather
than a random intercept. Translating the fixed portion is not necessary to make the point we make below,

but we do so anyway for uniformity.

Translating the estimated random-effects parameters from the previous output to ones appropriate for

(3a), we get Var(𝑢𝑗) = 𝜎̂2
𝑢 = 0.39,

Var(𝑢𝑗 + 𝑣𝑗) = 𝜎̂2
𝑢 + 𝜎̂2

𝑣 + 2𝜎̂𝑢𝑣

= 0.39 + 0.67 − 2(0.41) = 0.24

and Cov(𝑢𝑗, 𝑢𝑗 + 𝑣𝑗) = 𝜎̂2
𝑢 + 𝜎̂𝑢𝑣 = 0.39 − 0.41 = −0.02.

An alternative that does not require remembering how to calculate variances and covariances involv-

ing sums—and one that also gives you standard errors—is to let Stata do the work for you:
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. melogit c_use ibn.urban age i.children, noconstant nofvlabel
> || district: ibn.urban, noconstant cov(unstructured)
Fitting fixed-effects model:
Iteration 0: Log likelihood = -1229.5485
Iteration 1: Log likelihood = -1228.5268
Iteration 2: Log likelihood = -1228.5263
Iteration 3: Log likelihood = -1228.5263
Refining starting values:
Grid node 0: Log likelihood = -1208.3922
Fitting full model:
Iteration 0: Log likelihood = -1208.3922 (not concave)
Iteration 1: Log likelihood = -1203.556 (not concave)
Iteration 2: Log likelihood = -1200.5896
Iteration 3: Log likelihood = -1199.7288
Iteration 4: Log likelihood = -1199.3373
Iteration 5: Log likelihood = -1199.3151
Iteration 6: Log likelihood = -1199.315
Mixed-effects logistic regression Number of obs = 1,934
Group variable: district Number of groups = 60

Obs per group:
min = 2
avg = 32.2
max = 118

Integration method: mvaghermite Integration pts. = 7
Wald chi2(6) = 120.24

Log likelihood = -1199.315 Prob > chi2 = 0.0000
( 1) [c_use]_cons = 0

c_use Coefficient Std. err. z P>|z| [95% conf. interval]

urban
0 -1.711652 .1605617 -10.66 0.000 -2.026347 -1.396956
1 -.8958623 .1704954 -5.25 0.000 -1.230027 -.5616974

age -.026415 .008023 -3.29 0.001 -.0421398 -.0106903

children
1 1.13252 .1603285 7.06 0.000 .8182819 1.446758
2 1.357739 .1770522 7.67 0.000 1.010724 1.704755
3 1.353827 .18288 7.40 0.000 .9953883 1.712265

_cons 0 (omitted)

district
var(0.urban) .3897485 .1292403 .2034823 .7465212
var(1.urban) .2442899 .1450625 .0762871 .7822759

district
cov(0.urban,

1.urban) -.0161411 .1057462 -0.15 0.879 -.2233999 .1911177

LR test vs. logistic model: chi2(3) = 58.42 Prob > chi2 = 0.0000
Note: LR test is conservative and provided only for reference.

The above output demonstrates an equivalent fit to that we displayed for model (3), with the added benefit

of a more direct comparison of the parameters for rural and urban areas.
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Technical note
Our model fits for (3) and (3a) are equivalent only because we allowed for correlation in the random

effects for both. Had we used the default independent covariance structure, we would be fitting different

models; in (3) we would be making the restriction that Cov(𝑢𝑗, 𝑣𝑗) = 0, whereas in (3a) we would be

assuming that Cov(𝑢𝑗, 𝑢𝑗 + 𝑣𝑗) = 0.

Themoral here is that although melogitwill do this by default, one should be cautious when imposing
an independent covariance structure, because the correlation between random effects is not invariant to

model translations that would otherwise yield equivalent results in standard regression models. In our

example, we remapped an intercept and binary coefficient to two complementary binary coefficients,

something we could do in standard logistic regression without consequence but that here required more

consideration.

Rabe-Hesketh and Skrondal (2022, sec. 11.4) provide a nice discussion of this phenomenon in the

related case of recentering a continuous covariate.

Other covariance structures
In the above examples, we demonstrated the independent and unstructured covariance structures.

Also available are identity (seen previously in output but not directly specified), which restricts random
effects to be uncorrelated and share a common variance, and exchangeable, which assumes a common
variance and a common pairwise covariance.

You can also specify multiple random-effects equations at the same level, in which case the above

four covariance types can be combined to form more complex blocked-diagonal covariance structures.

This could be used, for example, to impose an equality constraint on a subset of variance components or

to otherwise group together a set of related random effects.

Continuing the previous example, typing

. melogit c_use i.urban age i.children,
> || district: i.children, cov(exchangeable)
> || district:

would fit a model with the same fixed effects as (3) but with random-effects structure

logit(𝜋𝑖𝑗) = 𝛽0 + · · · + 𝑢1𝑗1.children𝑖𝑗 + 𝑢2𝑗2.children𝑖𝑗 + 𝑢3𝑗3.children𝑖𝑗 + 𝑣𝑗

That is, we have random coefficients on the children factor levels (the first district: specification)

and an overall district random intercept (the second district: specification). The above syntax fits a

model with overall covariance structure

𝚺 = Var
⎡
⎢
⎢
⎣

𝑢1𝑗
𝑢2𝑗
𝑢3𝑗
𝑣𝑗

⎤
⎥
⎥
⎦

=
⎡
⎢⎢
⎣

𝜎2
𝑢 𝜎𝑐 𝜎𝑐 0

𝜎𝑐 𝜎2
𝑢 𝜎𝑐 0

𝜎𝑐 𝜎𝑐 𝜎2
𝑢 0

0 0 0 𝜎2
𝑣

⎤
⎥⎥
⎦

reflecting the relationship among the random coefficients for children. We did not have to specify

noconstant on the first district: specification. melogit automatically avoids collinearity by in-

cluding an intercept on only the final specification among repeated-level equations.



melogit — Multilevel mixed-effects logistic regression 171

Of course, if we fit the above model, we would heed our own advice from the previous technical note

and make sure that not only our data but also our specification characterization of the random effects per-

mitted the above structure. That is, we would check the above against a model that had an unstructured
covariance for all four random effects and then perhaps against a model that assumed an unstructured
covariance among the three random coefficients on children, coupled with independence with the ran-

dom intercept. All comparisons can be made by storing estimates (command estimates store) and
then using lrtest, as demonstrated previously.

Three-level models

Example 4: Three-level random-intercept model
Rabe-Hesketh, Toulopoulou, and Murray (2001) analyzed data from a study measuring the cognitive

ability of patients with schizophrenia comparedwith their relatives and control subjects. Cognitive ability

was measured as the successful completion of the “Tower of London”, a computerized task, measured

at three levels of difficulty. For all but one of the 226 subjects, there were three measurements (one for

each difficulty level). Because patients’ relatives were also tested, a family identifier, family, was also
recorded.

. use https://www.stata-press.com/data/r19/towerlondon, clear
(Tower of London data)
. describe
Contains data from https://www.stata-press.com/data/r19/towerlondon.dta
Observations: 677 Tower of London data

Variables: 5 31 May 2024 10:41
(_dta has notes)

Variable Storage Display Value
name type format label Variable label

family int %8.0g Family ID
subject int %9.0g Subject ID
dtlm byte %9.0g 1 = task completed
difficulty byte %9.0g Level of difficulty: -1, 0, or 1
group byte %8.0g 1: controls; 2: relatives; 3:

schizophrenics

Sorted by: family subject

We fit a logistic model with response dtlm, the indicator of cognitive function, and with covariates

difficulty and a set of indicator variables for group, with the controls (group==1) being the base
category. We allow for random effects due to families and due to subjects within families, and we request

to see odds ratios.
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. melogit dtlm difficulty i.group || family: || subject: , or
Fitting fixed-effects model:
Iteration 0: Log likelihood = -317.35042
Iteration 1: Log likelihood = -313.90007
Iteration 2: Log likelihood = -313.89079
Iteration 3: Log likelihood = -313.89079
Refining starting values:
Grid node 0: Log likelihood = -310.28429
Fitting full model:
Iteration 0: Log likelihood = -310.28429
Iteration 1: Log likelihood = -307.36653
Iteration 2: Log likelihood = -305.19357
Iteration 3: Log likelihood = -305.12073
Iteration 4: Log likelihood = -305.12041
Iteration 5: Log likelihood = -305.12041
Mixed-effects logistic regression Number of obs = 677

Grouping information

No. of Observations per group
Group variable groups Minimum Average Maximum

family 118 2 5.7 27
subject 226 2 3.0 3

Integration method: mvaghermite Integration pts. = 7
Wald chi2(3) = 74.90

Log likelihood = -305.12041 Prob > chi2 = 0.0000

dtlm Odds ratio Std. err. z P>|z| [95% conf. interval]

difficulty .1923372 .037161 -8.53 0.000 .1317057 .2808806

group
2 .7798263 .2763763 -0.70 0.483 .3893369 1.561961
3 .3491318 .13965 -2.63 0.009 .15941 .764651

_cons .226307 .0644625 -5.22 0.000 .1294902 .3955112

family
var(_cons) .5692105 .5215654 .0944757 3.429459

family>
subject

var(_cons) 1.137917 .6854853 .3494165 3.705762

Note: Estimates are transformed only in the first equation to odds ratios.
Note: _cons estimates baseline odds (conditional on zero random effects).
LR test vs. logistic model: chi2(2) = 17.54 Prob > chi2 = 0.0002
Note: LR test is conservative and provided only for reference.

This is a three-level model with two random-effects equations, separated by ||. The first is a random
intercept (constant only) at the family level, and the second is a random intercept at the subject level.
The order in which these are specified (from left to right) is significant—melogit assumes that subject
is nested within family.

The information on groups is now displayed as a table, with one row for each upper level. Among

other things, we see that we have 226 subjects from 118 families.
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After adjusting for the random-effects structure, the odds of successful completion of the Tower of

London decrease dramatically as the level of difficulty increases. Also, schizophrenics (group==3)
tended not to perform as well as the control subjects. Of course, we would make similar conclusions

from a standard logistic model fit to the same data, but the odds ratios would differ somewhat.

Technical note
In the previous example, the subjects are coded with unique values between 1 and 251 (with some

gaps), but such coding is not necessary to produce nesting within families. Once we specified the nesting

structure to melogit, all that was important was the relative coding of subjectwithin each unique value
of family. We could have coded subjects as the numbers 1, 2, 3, and so on, restarting at 1 with each
new family, and melogit would have produced the same results.

Group identifiers may also be coded using string variables.

The above extends to models with more than two levels of nesting by adding more random-effects

equations, each separated by ||. The order of nesting goes from left to right as the groups go from biggest

(highest level) to smallest (lowest level).

Crossed-effects models

Example 5: Crossed-effects model
Rabe-Hesketh and Skrondal (2022, 493–512) perform an analysis on school data from Fife, Scotland.

The data, originally from Paterson (1991), are from a study measuring students’ attainment as an integer

score from 1 to 10, based on the Scottish school exit examination taken at age 16. The study comprises

3,435 students who first attended any one of 148 primary schools and then any one of 19 secondary

schools.

. use https://www.stata-press.com/data/r19/fifeschool
(School data from Fife, Scotland)
. describe
Contains data from https://www.stata-press.com/data/r19/fifeschool.dta
Observations: 3,435 School data from Fife, Scotland

Variables: 5 28 May 2024 10:08
(_dta has notes)

Variable Storage Display Value
name type format label Variable label

pid int %9.0g Primary school ID
sid byte %9.0g Secondary school ID
attain byte %9.0g Attainment score at age 16
vrq int %9.0g Verbal-reasoning score from final

year of primary school
sex byte %9.0g 1: female; 0: male

Sorted by:
. generate byte attain_gt_6 = attain > 6

To make the analysis relevant to our present discussion, we focus not on the attainment score itself but

instead on whether the score is greater than 6. We wish to model this indicator as a function of the fixed

effect sex and of random effects due to primary and secondary schools.



melogit — Multilevel mixed-effects logistic regression 174

For this analysis, it would make sense to assume that the random effects are not nested, but instead

crossed, meaning that the effect due to primary school is the same regardless of the secondary school

attended. Our model is thus

logit{Pr(attain𝑖𝑗𝑘 > 6)} = 𝛽0 + 𝛽1sex𝑖𝑗𝑘 + 𝑢𝑗 + 𝑣𝑘 (4)

for student 𝑖, 𝑖 = 1, . . . , 𝑛𝑗𝑘, who attended primary school 𝑗, 𝑗 = 1, . . . , 148, and then secondary school
𝑘, 𝑘 = 1, . . . , 19.

Because there is no evident nesting, one solution would be to consider the data as a whole and fit a

two-level, one-cluster model with random-effects structure

u =

⎡
⎢
⎢
⎢
⎢
⎣

𝑢1
⋮

𝑢148
𝑣1
⋮

𝑣19

⎤
⎥
⎥
⎥
⎥
⎦

∼ 𝑁(0, 𝚺); 𝚺 = [𝜎2
𝑢I148 0

0 𝜎2
𝑣I19

]

We can fit such a model by using the group designation all:, which tells melogit to treat the whole
dataset as one cluster, and the R.varname notation, which mimics the creation of indicator variables

identifying schools:

. melogit attain_gt_6 sex || _all:R.pid || _all:R.sid, or

But we do not recommend fitting the model this way because of high total dimension (148+ 19 = 167)

of the random effects. This would require working with matrices of column dimension 167, which is

probably not a problem for most current hardware, but would be a problem if this number got much

larger.

An equivalent way to fit (4) that has a smaller dimension is to treat the clusters identified by primary

schools as nested within all the data, that is, as nested within the all group.
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. melogit attain_gt_6 sex || _all:R.sid || pid:, or
note: crossed random-effects model specified; option intmethod(laplace)

implied.
Fitting fixed-effects model:
Iteration 0: Log likelihood = -2320.2374
Iteration 1: Log likelihood = -2317.9062
Iteration 2: Log likelihood = -2317.9059
Iteration 3: Log likelihood = -2317.9059
Refining starting values:
Grid node 0: Log likelihood = -2234.6403
Fitting full model:
Iteration 0: Log likelihood = -2234.6403 (not concave)
Iteration 1: Log likelihood = -2227.9507 (not concave)
Iteration 2: Log likelihood = -2227.9287 (not concave)
Iteration 3: Log likelihood = -2227.9265 (not concave)
Iteration 4: Log likelihood = -2227.9263
Iteration 5: Log likelihood = -2221.6884 (not concave)
Iteration 6: Log likelihood = -2221.1707 (not concave)
Iteration 7: Log likelihood = -2221.1232
Iteration 8: Log likelihood = -2220.1709 (not concave)
Iteration 9: Log likelihood = -2220.1556
Iteration 10: Log likelihood = -2220.0522
Iteration 11: Log likelihood = -2220.0039
Iteration 12: Log likelihood = -2220.0035
Iteration 13: Log likelihood = -2220.0035
Mixed-effects logistic regression Number of obs = 3,435

Grouping information

No. of Observations per group
Group variable groups Minimum Average Maximum

_all 1 3,435 3,435.0 3,435
pid 148 1 23.2 72

Integration method: laplace
Wald chi2(1) = 14.33

Log likelihood = -2220.0035 Prob > chi2 = 0.0002

attain_gt_6 Odds ratio Std. err. z P>|z| [95% conf. interval]

sex 1.325119 .0985247 3.79 0.000 1.145425 1.533003
_cons .5311554 .0621222 -5.41 0.000 .4223454 .6679984

_all>sid
var(_cons) .1239764 .0693322 .0414301 .37099

pid
var(_cons) .452049 .0951708 .2992129 .6829528

Note: Estimates are transformed only in the first equation to odds ratios.
Note: _cons estimates baseline odds (conditional on zero random effects).
LR test vs. logistic model: chi2(2) = 195.80 Prob > chi2 = 0.0000
Note: LR test is conservative and provided only for reference.
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Choosing the primary schools as those to nest was no accident; because there are far fewer secondary

schools than primary schools, the above required only 19 random coefficients for the secondary schools

and one random intercept at the primary school level, for a total dimension of 20. Our data also include a

measurement of verbal reasoning, the variable vrq. Adding a fixed effect due to vrq in (4) would negate
the effect due to secondary school, a fact we leave to you to verify as an exercise.

See [ME]mixed for a similar discussion of crossed effects in the context of linear mixed models. Also

see Rabe-Hesketh and Skrondal (2022) for more examples of crossed-effects models, including models

with random interactions, and for more techniques on how to avoid high-dimensional estimation.

Technical note
The estimation in the previous example was performed using a Laplacian approximation, even though

we did not specify this. Whenever the R. notation is used in random-effects specifications, estimation
reverts to the Laplacian method because of the high dimension induced by having the R. variables.

In the above example, through some creative nesting, we reduced the dimension of the random effects

to 20, but this is still too large to permit estimation via adaptive Gaussian quadrature; see Computation

time and the Laplacian approximation in [ME] me. Even with two quadrature points, our rough formula

for computation time would contain within it a factor of 220 = 1,048,576.

The intmethod(laplace) option is therefore assumed when you use R. notation. If the number of
distinct levels of your R. variables is small enough (say, five or fewer) to permit estimation via quadra-
ture, you can override the imposition of laplace by specifying a different integration method in the

intmethod() option.

Stored results
melogit stores the following in e():

Scalars

e(N) number of observations

e(k) number of parameters

e(k dv) number of dependent variables

e(k eq) number of equations in e(b)
e(k eq model) number of equations in overall model test

e(k f) number of fixed-effects parameters

e(k r) number of random-effects parameters

e(k rs) number of variances

e(k rc) number of covariances

e(df m) model degrees of freedom

e(ll) log likelihood

e(N clust) number of clusters

e(chi2) 𝜒2

e(p) 𝑝-value for model test
e(ll c) log likelihood, comparison model

e(chi2 c) 𝜒2, comparison test
e(df c) degrees of freedom, comparison test

e(p c) 𝑝-value for comparison test
e(rank) rank of e(V)
e(ic) number of iterations

e(rc) return code

e(converged) 1 if converged, 0 otherwise
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Macros

e(cmd) meglm
e(cmd2) melogit
e(cmdline) command as typed

e(depvar) name of dependent variable

e(wtype) weight type

e(wexp) weight expression (first-level weights)

e(fweightk) fweight variable for kth highest level, if specified
e(iweightk) iweight variable for kth highest level, if specified
e(pweightk) pweight variable for kth highest level, if specified
e(covariates) list of covariates

e(ivars) grouping variables

e(model) logistic
e(title) title in estimation output

e(link) logit
e(family) bernoulli or binomial
e(clustvar) name of cluster variable

e(offset) offset

e(binomial) binomial number of trials

e(intmethod) integration method

e(n quad) number of integration points

e(chi2type) Wald; type of model 𝜒2

e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.

e(opt) type of optimization

e(which) max or min; whether optimizer is to perform maximization or minimization

e(ml method) type of ml method
e(user) name of likelihood-evaluator program

e(technique) maximization technique

e(datasignature) the checksum

e(datasignaturevars) variables used in calculation of checksum

e(properties) b V
e(estat cmd) program used to implement estat
e(predict) program used to implement predict
e(marginsnotok) predictions disallowed by margins
e(marginswtype) weight type for margins
e(marginswexp) weight expression for margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices

e(b) coefficient vector

e(Cns) constraints matrix

e(ilog) iteration log (up to 20 iterations)

e(gradient) gradient vector

e(N g) group counts

e(g min) group-size minimums

e(g avg) group-size averages

e(g max) group-size maximums

e(V) variance–covariance matrix of the estimators

e(V modelbased) model-based variance

Functions

e(sample) marks estimation sample

In addition to the above, the following is stored in r():

Matrices

r(table) matrix containing the coefficients with their standard errors, test statistics, 𝑝-values, and
confidence intervals
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Note that results stored in r() are updated when the command is replayed and will be replaced when any
r-class command is run after the estimation command.

Methods and formulas
melogit is a convenience command for meglm with a logit link and a bernoulli or binomial

family; see [ME] meglm.

Model (1) assumes Bernoulli data, a special case of the binomial. Because binomial data are also

supported by melogit (option binomial()), the methods presented below are in terms of the more

general binomial mixed-effects model.

For a two-level binomial model, consider the response 𝑦𝑖𝑗 as the number of successes from a series

of 𝑟𝑖𝑗 Bernoulli trials (replications). For cluster 𝑗, 𝑗 = 1, . . . , 𝑀, the conditional distribution of y𝑗 =
(𝑦𝑗1, . . . , 𝑦𝑗𝑛𝑗

)′, given a set of cluster-level random effects u𝑗, is

𝑓(y𝑗|u𝑗) =
𝑛𝑗

∏
𝑖=1

[(𝑟𝑖𝑗
𝑦𝑖𝑗

) {𝐻(η𝑖𝑗)}
𝑦𝑖𝑗 {1 − 𝐻(η𝑖𝑗)}

𝑟𝑖𝑗−𝑦𝑖𝑗]

= exp(
𝑛𝑗

∑
𝑖=1

[𝑦𝑖𝑗η𝑖𝑗 − 𝑟𝑖𝑗 log{1 + exp(η𝑖𝑗)} + log(𝑟𝑖𝑗
𝑦𝑖𝑗

)])

for η𝑖𝑗 = x𝑖𝑗β + z𝑖𝑗u𝑗 + offset𝑖𝑗 and 𝐻(𝑣) = exp(𝑣)/{1 + exp(𝑣)}.

Defining r𝑗 = (𝑟𝑗1, . . . , 𝑟𝑗𝑛𝑗
)′ and

𝑐 (y𝑗, r𝑗) =
𝑛𝑗

∑
𝑖=1

log(𝑟𝑖𝑗
𝑦𝑖𝑗

)

where 𝑐(y𝑗, r𝑗) does not depend on the model parameters, we can express the above compactly in matrix
notation,

𝑓(y𝑗|u𝑗) = exp [y′
𝑗η𝑗 − r′

𝑗 log{1 + exp(η𝑗)} + 𝑐 (y𝑗, r𝑗)]

where η𝑗 is formed by stacking the row vectors η𝑖𝑗. We extend the definitions of the functions log(⋅)
and exp(⋅) to be vector functions where necessary.

Because the prior distribution of u𝑗 is multivariate normal with mean 0 and 𝑞 × 𝑞 variance matrix
𝚺, the likelihood contribution for the 𝑗th cluster is obtained by integrating u𝑗 out of the joint density

𝑓(y𝑗,u𝑗),

ℒ𝑗(β, 𝚺) = (2𝜋)−𝑞/2 |𝚺|−1/2 ∫ 𝑓(y𝑗|u𝑗) exp (−u′
𝑗𝚺

−1u𝑗/2) 𝑑u𝑗

= exp{𝑐 (y𝑗, r𝑗)} (2𝜋)−𝑞/2 |𝚺|−1/2 ∫ exp{ℎ (β, 𝚺, u𝑗)} 𝑑u𝑗

(5)

where

ℎ (β, 𝚺, u𝑗) = y′
𝑗η𝑗 − r′

𝑗 log{1 + exp(η𝑗)} − u′
𝑗𝚺

−1u𝑗/2

and for convenience, in the arguments of ℎ(⋅) we suppress the dependence on the observable data

(y𝑗, r𝑗,X𝑗,Z𝑗).
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The integration in (5) has no closed form and thus must be approximated; see Methods and formulas

in [ME] meglm for details.

melogit supports multilevel weights and survey data; see Methods and formulas in [ME]meglm for

details.
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Also see
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[ME] mecloglog — Multilevel mixed-effects complementary log–log regression

[ME] meprobit — Multilevel mixed-effects probit regression

[ME] me — Introduction to multilevel mixed-effects models

[BAYES] bayes: melogit — Bayesian multilevel logistic regression

[SEM] Intro 5 — Tour of models (Multilevel mixed-effects models)

[SVY] svy estimation — Estimation commands for survey data

[XT] xtlogit — Fixed-effects, random-effects, and population-averaged logit models

[U] 20 Estimation and postestimation commands
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Postestimation commands predict margins Remarks and examples
Methods and formulas References Also see

Postestimation commands
The following postestimation commands are of special interest after melogit:

Command Description

estat group summarize the composition of the nested groups

estat icc estimate intraclass correlations

estat sd display variance components as standard deviations and correlations

The following standard postestimation commands are also available:

Command Description

contrast contrasts and ANOVA-style joint tests of parameters

estat ic Akaike’s, consistent Akaike’s, corrected Akaike’s, and Schwarz’s Bayesian in-
formation criteria (AIC, CAIC, AICc, and BIC, respectively)

estat summarize summary statistics for the estimation sample

estat vce variance–covariance matrix of the estimators (VCE)

estat (svy) postestimation statistics for survey data

estimates cataloging estimation results

etable table of estimation results
∗ hausman Hausman’s specification test

lincom point estimates, standard errors, testing, and inference for linear combinations
of parameters

∗ lrtest likelihood-ratio test

margins marginal means, predictive margins, marginal effects, and average marginal
effects

marginsplot graph the results from margins (profile plots, interaction plots, etc.)

nlcom point estimates, standard errors, testing, and inference for nonlinear combina-
tions of parameters

predict means, probabilities, densities, REs, residuals, etc.

predictnl point estimates, standard errors, testing, and inference for generalized predic-
tions

pwcompare pairwise comparisons of parameters

test Wald tests of simple and composite linear hypotheses

testnl Wald tests of nonlinear hypotheses

∗hausman and lrtest are not appropriate with svy estimation results.

181
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predict

Description for predict
predict creates a new variable containing predictions such as mean responses; linear predictions;

density and distribution functions; standard errors; and Pearson, deviance, and Anscombe residuals.

Menu for predict
Statistics > Postestimation

Syntax for predict

Syntax for obtaining predictions of the outcome and other statistics

predict [ type ] { stub* | newvarlist } [ if ] [ in ] [ , statistic options ]

Syntax for obtaining estimated random effects and their standard errors

predict [ type ] { stub* | newvarlist } [ if ] [ in ], reffects [ re options ]

Syntax for obtaining ML scores

predict [ type ] { stub* | newvarlist } [ if ] [ in ], scores

statistic Description

Main

mu mean response; the default

eta fitted linear predictor

xb linear predictor for the fixed portion of the model only

stdp standard error of the fixed-portion linear prediction

density predicted density function

distribution predicted distribution function

pearson Pearson residuals

deviance deviance residuals

anscombe Anscombe residuals

These statistics are available both in and out of sample; type predict ... if e(sample) ... if wanted
only for the estimation sample.
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options Description

Main

conditional(ctype) compute statistic conditional on estimated random effects; default is

conditional(ebmeans)
marginal compute statistic marginally with respect to the random effects

nooffset make calculation ignoring offset or exposure

Integration

int options integration options

pearson, deviance, anscombe may not be combined with marginal.

ctype Description

ebmeans empirical Bayes means of random effects; the default

ebmodes empirical Bayes modes of random effects

fixedonly prediction for the fixed portion of the model only

re options Description

Main

ebmeans use empirical Bayes means of random effects; the default

ebmodes use empirical Bayes modes of random effects

reses(stub* | newvarlist) calculate standard errors of empirical Bayes estimates

Integration

int options integration options

int options Description

intpoints(#) use # quadrature points to compute marginal predictions and empirical
Bayes means

iterate(#) set maximum number of iterations in computing statistics involving
empirical Bayes estimators

tolerance(#) set convergence tolerance for computing statistics involving empirical
Bayes estimators

Options for predict

� � �
Main �

mu, the default, calculates the predicted mean, that is, the probability of a positive outcome.

eta, xb, stdp, density, distribution, pearson, deviance, anscombe, scores, conditional(),
marginal, and nooffset; see [ME] meglm postestimation.

reffects, ebmeans, ebmodes, and reses(); see [ME] meglm postestimation.

� � �
Integration �

intpoints(), iterate(), and tolerance(); see [ME] meglm postestimation.
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margins

Description for margins
margins estimates margins of response for mean responses and linear predictions.

Menu for margins
Statistics > Postestimation

Syntax for margins
margins [marginlist ] [ , options ]
margins [marginlist ] , predict(statistic ...) [ predict(statistic ...) ... ] [ options ]

statistic Description

mu mean response; the default

eta fitted linear predictor

xb linear predictor for the fixed portion of the model only

stdp not allowed with margins
density not allowed with margins
distribution not allowed with margins
pearson not allowed with margins
deviance not allowed with margins
anscombe not allowed with margins
reffects not allowed with margins
scores not allowed with margins

Options conditional(ebmeans) and conditional(ebmodes) are not allowed with margins.
Option marginal is assumed where applicable if conditional(fixedonly) is not specified.

Statistics not allowed with margins are functions of stochastic quantities other than e(b).

For the full syntax, see [R] margins.
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Remarks and examples
Various predictions, statistics, and diagnostic measures are available after fitting a logistic mixed-

effects model with melogit. For the most part, calculation centers around obtaining estimates of the
subject/group-specific random effects. Random effects are not provided as estimates when the model is

fit but instead need to be predicted after estimation. Calculation of intraclass correlations, estimating the

dependence between latent linear responses for different levels of nesting, may also be of interest.

Example 1: Estimating the residual intraclass correlation
Following Rabe-Hesketh and Skrondal (2022, chap. 10), we consider a two-level mixed-effects model

for onycholysis (separation of toenail plate from nail bed) among those who contract toenail fungus. The

data are obtained from De Backer et al. (1998) and were also studied by Lesaffre and Spiessens (2001).

The onycholysis outcome is dichotomously coded as 1 (moderate or severe onycholysis) or 0 (none or

mild onycholysis). Fixed-effects covariates include treatment (0: itraconazole; 1: terbinafine), the month

of measurement, and their interaction.

We fit the two-level model with melogit:

. use https://www.stata-press.com/data/r19/toenail
(Onycholysis severity)
. melogit outcome treatment month trt_month || patient:, intpoints(30)
(iteration log omitted)

Mixed-effects logistic regression Number of obs = 1,908
Group variable: patient Number of groups = 294

Obs per group:
min = 1
avg = 6.5
max = 7

Integration method: mvaghermite Integration pts. = 30
Wald chi2(3) = 150.61

Log likelihood = -625.38557 Prob > chi2 = 0.0000

outcome Coefficient Std. err. z P>|z| [95% conf. interval]

treatment -.1608934 .5802058 -0.28 0.782 -1.298076 .9762891
month -.3911056 .0443906 -8.81 0.000 -.4781097 -.3041016

trt_month -.1368286 .0680213 -2.01 0.044 -.2701479 -.0035093
_cons -1.620355 .4322382 -3.75 0.000 -2.467526 -.7731834

patient
var(_cons) 16.0841 3.062625 11.07431 23.36021

LR test vs. logistic model: chibar2(01) = 565.24 Prob >= chibar2 = 0.0000

It is of interest to determine the dependence among responses for the same subject (between-subject

heterogeneity). Under the latent-linear-response formulation, this dependence can be obtained with the

intraclass correlation. Formally, in a two-level random-effects model, the intraclass correlation corre-

sponds to the correlation of latent responses within the same individual and also to the proportion of

variance explained by the individual random effect.
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We use estat icc to estimate the residual intraclass correlation:

. estat icc
Residual intraclass correlation

Level ICC Std. err. [95% conf. interval]

patient .8301913 .0268433 .7709672 .8765531

In the presence of fixed-effects covariates, estat icc reports the residual intraclass correlation, which
is the correlation between latent linear responses conditional on the fixed-effects covariates.

Conditional on treatment and month of treatment, we estimate that latent responses within the same

patient have a large correlation of approximately 0.83. Further, 83% of the variance of a latent response

is explained by the between-patient variability.

Example 2: Predicting random effects
In example 3 of [ME]melogit, we represented the probability of contraceptive use among Bangladeshi

women by using the model (stated with slightly different notation here)

logit(𝜋𝑖𝑗) = 𝛽00.urban𝑖𝑗+𝛽11.urban𝑖𝑗 + 𝛽2age𝑖𝑗+

𝛽31.children𝑖𝑗 + 𝛽42.children𝑖𝑗 + 𝛽53.children𝑖𝑗+
𝑎𝑗0.urban𝑖𝑗 + 𝑏𝑗1.urban𝑖𝑗

where 𝜋𝑖𝑗 is the probability of contraceptive use, 𝑗 = 1, . . . , 60 districts, 𝑖 = 1, . . . , 𝑛𝑗 women within

each district, and 𝑎𝑗 and 𝑏𝑗 are normally distributed with mean 0 and variance–covariance matrix

𝚺 = Var [𝑎𝑗
𝑏𝑗

] = [ 𝜎2
𝑎 𝜎𝑎𝑏

𝜎𝑎𝑏 𝜎2
𝑏

]
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. use https://www.stata-press.com/data/r19/bangladesh
(Bangladesh Fertility Survey, 1989)
. melogit c_use ibn.urban age i.children, noconstant nofvlabel
> || district: ibn.urban, noconstant cov(unstructured)
Fitting fixed-effects model:
(iteration log omitted)

Mixed-effects logistic regression Number of obs = 1,934
Group variable: district Number of groups = 60

Obs per group:
min = 2
avg = 32.2
max = 118

Integration method: mvaghermite Integration pts. = 7
Wald chi2(6) = 120.24

Log likelihood = -1199.315 Prob > chi2 = 0.0000
( 1) [c_use]_cons = 0

c_use Coefficient Std. err. z P>|z| [95% conf. interval]

urban
0 -1.711652 .1605617 -10.66 0.000 -2.026347 -1.396956
1 -.8958623 .1704954 -5.25 0.000 -1.230027 -.5616974

age -.026415 .008023 -3.29 0.001 -.0421398 -.0106903

children
1 1.13252 .1603285 7.06 0.000 .8182819 1.446758
2 1.357739 .1770522 7.67 0.000 1.010724 1.704755
3 1.353827 .18288 7.40 0.000 .9953883 1.712265

_cons 0 (omitted)

district
var(0.urban) .3897485 .1292403 .2034823 .7465212
var(1.urban) .2442899 .1450625 .0762871 .7822759

district
cov(0.urban,

1.urban) -.0161411 .1057462 -0.15 0.879 -.2233999 .1911177

LR test vs. logistic model: chi2(3) = 58.42 Prob > chi2 = 0.0000
Note: LR test is conservative and provided only for reference.

The purpose of using this particular model was to allow for district random effects that were specific

to the rural and urban areas of that district and that could be interpreted as such. We can obtain predictions

of these random effects and their corresponding standard errors,

. predict re_rural re_urban, reffects reses(se_rural se_urban)
(calculating posterior means of random effects)
(using 7 quadrature points)

The order in which we specified the variables to be generated corresponds to the order in which the

variance components are listed in melogit output. If in doubt, a simple describe will show how these

newly generated variables are labeled just to be sure.

Having generated estimated random effects and standard errors, we can now list them for the first 10

districts:
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. by district, sort: generate tolist = (_n==1)

. list district re_rural se_rural re_urban se_urban if district <= 10 & tolist,
> sep(0)

district re_rural se_rural re_urban se_urban

1. 1 -.9432691 .3156852 -.558359 .2332665
118. 2 -.0427011 .3822029 .0017684 .493834
138. 3 -.0149571 .6242161 .2263715 .4698407
140. 4 -.2864846 .3990107 .5869046 .3988538
170. 5 .0688648 .3102899 .0046016 .4685461
209. 6 -.3979315 .2762392 .2761181 .4204175
274. 7 -.1910399 .4046772 .0079117 .4938647
292. 8 .034071 .3180097 .2266263 .4689558
329. 9 -.3737992 .3923573 .0764026 .4569863
352. 10 -.5640147 .4769353 .0233582 .4939753

Technical note
When these data were first introduced in [ME] melogit, we noted that not all districts contained both

urban and rural areas. This fact is somewhat demonstrated by the random effects that are nearly 0 in the

above. A closer examination of the data would reveal that district 3 has no rural areas, and districts 2, 7,

and 10 have no urban areas.

The estimated random effects are not exactly 0 in these cases because of the correlation between urban

and rural effects. For instance, if a district has no urban areas, it can still yield a nonzero (albeit small)

random-effects estimate for a nonexistent urban area because of the correlation with its rural counterpart.

Had we imposed an independent covariance structure in our model, the estimated random effects in

the cases in question would be exactly 0.

Technical note
The estimated standard errors produced above with the reses() option are conditional on the values

of the estimated model parameters: β and the components of 𝚺. Their interpretation is therefore not

one of standard sample-to-sample variability but instead one that does not incorporate uncertainty in the

estimated model parameters; see Methods and formulas.

That stated, conditional standard errors can still be used as a measure of relative precision, provided

that you keep this caveat in mind.

Example 3: Obtaining predicted probabilities
Continuing with example 2, we can obtain predicted probabilities, the default prediction:

. predict p
(option mu assumed)
(predictions based on fixed effects and posterior means of random effects)
(using 7 quadrature points)

These predictions are based on a linear predictor that includes both the fixed effects and the random

effects due to district. Specifying the conditional(fixedonly) option gives predictions that set the
random effects to their prior mean of 0. Below we compare both over the first 20 observations:
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. predict p_fixed, conditional(fixedonly)
(option mu assumed)
. list c_use p p_fixed age children in 1/20

c_use p p_fixed age children

1. No .3572114 .4927182 18.44 3 or more children
2. No .21293 .3210403 -5.56 No children
3. No .4664207 .6044016 1.44 2 children
4. No .4198625 .5584863 8.44 3 or more children
5. No .2504834 .3687281 -13.56 No children

6. No .2406963 .3565185 -11.56 No children
7. No .3572114 .4927182 18.44 3 or more children
8. No .4984106 .6345998 -3.56 3 or more children
9. No .4564025 .594723 -5.56 1 child

10. No .465447 .6034657 1.44 3 or more children

11. Yes .2406963 .3565185 -11.56 No children
12. No .1999512 .3040173 -2.56 No children
13. No .4498569 .5883406 -4.56 1 child
14. No .439278 .5779263 5.44 3 or more children
15. No .4786124 .6160359 -0.56 3 or more children

16. Yes .4457945 .584356 4.44 3 or more children
17. No .21293 .3210403 -5.56 No children
18. Yes .4786124 .6160359 -0.56 3 or more children
19. Yes .4629632 .6010735 -6.56 1 child
20. No .4993888 .6355067 -3.56 2 children

Example 4: Estimating the conditional intraclass correlation
Continuing with example 2, we can also compute intraclass correlations for the model using estat

icc; see [ME] estat icc.

In the presence of random-effects covariates, the intraclass correlation is no longer constant and de-

pends on the values of the random-effects covariates. In this case, estat icc reports conditional in-

traclass correlations assuming 0 values for all random-effects covariates. For example, in a two-level

model, this conditional correlation represents the correlation of the latent responses for two measure-

ments on the same subject, both of which have random-effects covariates equal to 0. Similarly to the

interpretation of intercept variances in random-coefficients models (Rabe-Hesketh and Skrondal 2022,

chap. 16), interpretation of this conditional intraclass correlation relies on the usefulness of the 0 baseline

values of random-effects covariates. For example, mean centering of the covariates is often used to make

a 0 value a useful reference.

Estimation of the conditional intraclass correlation in the Bangladeshi contraceptive study setting of

example 2 is of interest. In example 2, the random-effects covariates 0.urban and 1.urban for the

random level district are mutually exclusive indicator variables and can never be simultaneously 0.
Thuswe could not use estat icc to estimate the conditional intraclass correlation for thismodel, because
estat icc requires that the random intercept is included in all random-effects specifications.
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Instead, we consider an alternative model for the Bangladeshi contraceptive study. In example 2 of

[ME]melogit, we represented the probability of contraceptive use among Bangladeshi womenwith fixed-

effects for urban residence (urban), age (age), and the number of children (children). The random
effects for urban and rural residence are represented as a random slope for urban residence and a random

intercept at the district level.

We fit the model with melogit:

. use https://www.stata-press.com/data/r19/bangladesh, clear
(Bangladesh Fertility Survey, 1989)
. melogit c_use i.urban age i.children, nofvlabel
> || district: i.urban, covariance(unstructured)
(iteration log omitted)

Mixed-effects logistic regression Number of obs = 1,934
Group variable: district Number of groups = 60

Obs per group:
min = 2
avg = 32.2
max = 118

Integration method: mvaghermite Integration pts. = 7
Wald chi2(5) = 97.50

Log likelihood = -1199.315 Prob > chi2 = 0.0000

c_use Coefficient Std. err. z P>|z| [95% conf. interval]

1.urban .8157875 .1715519 4.76 0.000 .4795519 1.152023
age -.026415 .008023 -3.29 0.001 -.0421398 -.0106902

children
1 1.13252 .1603285 7.06 0.000 .818282 1.446758
2 1.357739 .1770522 7.67 0.000 1.010723 1.704755
3 1.353827 .1828801 7.40 0.000 .9953882 1.712265

_cons -1.71165 .1605618 -10.66 0.000 -2.026345 -1.396954

district
var(1.urban) .6663237 .3224689 .258074 1.720387
var(_cons) .3897448 .1292463 .203473 .7465413

district
cov(1.urban,

_cons) -.4058861 .1755414 -2.31 0.021 -.7499408 -.0618313

LR test vs. logistic model: chi2(3) = 58.42 Prob > chi2 = 0.0000
Note: LR test is conservative and provided only for reference.

We use estat icc to estimate the intraclass correlation conditional on urban being equal to 0:

. estat icc
Conditional intraclass correlation

Level ICC Std. err. [95% conf. interval]

district .1059201 .0314045 .058246 .1849518

Note: ICC is conditional on zero values of random-effects covariates.
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This estimate suggests that the latent responses are not strongly correlated for rural residents

(0.urban) within the same district, conditional on the fixed-effects covariates.

Example 5: Intraclass correlations for higher-level models
In example 4 of [ME] melogit, we fit a three-level model for the cognitive ability of schizophrenia

patients as compared with their relatives and a control. Fixed-effects covariates include the difficulty of

the test, difficulty, and an individual’s category, group (control, familymember of patient, or patient).
Family units (family) represent the third nesting level, and individual subjects (subject) represent the
second nesting level. Three measurements were taken on all but one subject, one for each difficulty

measure.

We fit the model with melogit:

. use https://www.stata-press.com/data/r19/towerlondon
(Tower of London data)
. melogit dtlm difficulty i.group || family: || subject:
(iteration log omitted)

Mixed-effects logistic regression Number of obs = 677
Grouping information

No. of Observations per group
Group variable groups Minimum Average Maximum

family 118 2 5.7 27
subject 226 2 3.0 3

Integration method: mvaghermite Integration pts. = 7
Wald chi2(3) = 74.90

Log likelihood = -305.12041 Prob > chi2 = 0.0000

dtlm Coefficient Std. err. z P>|z| [95% conf. interval]

difficulty -1.648505 .1932075 -8.53 0.000 -2.027185 -1.269826

group
2 -.2486841 .3544076 -0.70 0.483 -.9433102 .445942
3 -1.052306 .3999921 -2.63 0.009 -1.836276 -.2683357

_cons -1.485863 .2848455 -5.22 0.000 -2.04415 -.9275762

family
var(_cons) .5692105 .5215654 .0944757 3.429459

family>
subject

var(_cons) 1.137917 .6854853 .3494165 3.705762

LR test vs. logistic model: chi2(2) = 17.54 Prob > chi2 = 0.0002
Note: LR test is conservative and provided only for reference.
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We can use estat icc to estimate the residual intraclass correlation (conditional on the difficulty

level and the individual’s category) between the latent responses of subjects within the same family or

between the latent responses of the same subject and family:

. estat icc
Residual intraclass correlation

Level ICC Std. err. [95% conf. interval]

family .1139105 .0997727 .0181851 .4715289
subject|family .3416307 .0889471 .192923 .5297291

estat icc reports two intraclass correlations for this three-level nested model. The first is the level-3
intraclass correlation at the family level, the correlation between latent measurements of the cognitive

ability in the same family. The second is the level-2 intraclass correlation at the subject-within-family

level, the correlation between the latent measurements of cognitive ability in the same subject and family.

There is not a strong correlation between individual realizations of the latent response, even within

the same subject.

Methods and formulas
Methods and formulas for predicting random effects and other statistics are given in Methods and

formulas of [ME] meglm postestimation.
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Description Quick start Menu Syntax Options
Remarks and examples Stored results Methods and formulas References Also see

Description
menbreg fits mixed-effects negative binomial models to count data. The conditional distribution of

the response given random effects is assumed to follow a Poisson-like process, except that the variation

is greater than that of a true Poisson process.

Quick start
Mixed-effects negative binomial regression of y on x with random intercepts by v1

menbreg y x || v1:

Add evar measuring exposure
menbreg y x, exposure(evar) || v1:

Same as above, but report incidence-rate ratios instead of coefficients

menbreg y x, exposure(evar) || v1:, irr

Add random coefficients for x
menbreg y x, exposure(evar) || v1: x, irr

Three-level random-intercept model of y on x with v1 nested within v2
menbreg y x || v2: || v1:

Menu
Statistics > Multilevel mixed-effects models > Negative binomial regression

193
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Syntax
menbreg depvar fe equation [ || re equation ] [ || re equation ... ] [ , options ]

where the syntax of fe equation is

[ indepvars ] [ if ] [ in ] [weight ] [ , fe options ]

and the syntax of re equation is one of the following:

for random coefficients and intercepts

levelvar: [ varlist ] [ , re options ]

for random effects among the values of a factor variable in a crossed-effects model

levelvar: R.varname

levelvar is a variable identifying the group structure for the random effects at that level or is all repre-
senting one group comprising all observations.

fe options Description

Model

noconstant suppress the constant term from the fixed-effects equation

exposure(varname𝑒) include ln(varname𝑒) in model with coefficient constrained to 1
offset(varname𝑜) include varname𝑜 in model with coefficient constrained to 1

re options Description

Model

covariance(vartype) variance–covariance structure of the random effects

noconstant suppress constant term from the random-effects equation

fweight(varname) frequency weights at higher levels

iweight(varname) importance weights at higher levels

pweight(varname) sampling weights at higher levels
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options Description

Model

dispersion(dispersion) parameterization of the conditional overdispersion;
dispersion may be mean (default) or constant

constraints(constraints) apply specified linear constraints

SE/Robust

vce(vcetype) vcetype may be oim, opg, robust, or cluster clustvar

Reporting

level(#) set confidence level; default is level(95)
irr report fixed-effects coefficients as incidence-rate ratios

nocnsreport do not display constraints

notable suppress coefficient table

noheader suppress output header

nogroup suppress table summarizing groups

display options control columns and column formats, row spacing, line width,
display of omitted variables and base and empty cells, and
factor-variable labeling

Integration

intmethod(intmethod) integration method

intpoints(#) set the number of integration (quadrature) points for all levels;
default is intpoints(7)

Maximization

maximize options control the maximization process; seldom used

startvalues(svmethod) method for obtaining starting values

startgrid[ (gridspec) ] perform a grid search to improve starting values

noestimate do not fit the model; show starting values instead

dnumerical use numerical derivative techniques

collinear keep collinear variables

coeflegend display legend instead of statistics

vartype Description

independent one unique variance parameter per random effect and all covariances
0; the default unless the R. notation is used

exchangeable equal variances for random effects and one common pairwise
covariance

identity equal variances for random effects and all covariances 0; the
default if the R. notation is used

unstructured all variances and covariances to be distinctly estimated

fixed(matname) user-selected variances and covariances constrained to specified
values; the remaining variances and covariances unrestricted

pattern(matname) user-selected variances and covariances constrained to be equal;
the remaining variances and covariances unrestricted
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intmethod Description

mvaghermite mean–variance adaptive Gauss–Hermite quadrature; the default
unless a crossed random-effects model is fit

mcaghermite mode-curvature adaptive Gauss–Hermite quadrature

ghermite nonadaptive Gauss–Hermite quadrature

laplace Laplacian approximation; the default for crossed random-effects
models

indepvars and varlist may contain factor variables; see [U] 11.4.3 Factor variables.

depvar, indepvars, and varlist may contain time-series operators; see [U] 11.4.4 Time-series varlists.

bayes, by, collect, and svy are allowed; see [U] 11.1.10 Prefix commands. For more details, see [BAYES] bayes: men-

breg.

vce() and weights are not allowed with the svy prefix; see [SVY] svy.
fweights, iweights, and pweights are allowed; see [U] 11.1.6 weight. Only one type of weight may be specified. Weights

are not supported under the Laplacian approximation or for crossed models.

startvalues(), startgrid, noestimate, dnumerical, collinear, and coeflegend do not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options

� � �
Model �

noconstant suppresses the constant (intercept) term and may be specified for the fixed-effects equation

and for any of or all the random-effects equations.

exposure(varname𝑒) specifies a variable that reflects the amount of exposure over which the depvar
events were observed for each observation; ln(varname𝑒) is included in the fixed-effects portion of
the model with the coefficient constrained to be 1.

offset(varname𝑜) specifies that varname𝑜 be included in the fixed-effects portion of the model with

the coefficient constrained to be 1.

covariance(vartype) specifies the structure of the covariance matrix for the random effects and may

be specified for each random-effects equation. vartype is one of the following: independent,
exchangeable, identity, unstructured, fixed(matname), or pattern(matname).

covariance(independent) covariance structure allows for a distinct variance for each random

effect within a random-effects equation and assumes that all covariances are 0. The default is

covariance(independent) unless a crossed random-effects model is fit, in which case the de-
fault is covariance(identity).

covariance(exchangeable) structure specifies one common variance for all random effects and

one common pairwise covariance.

covariance(identity) is short for “multiple of the identity”; that is, all variances are equal and all
covariances are 0.

covariance(unstructured) allows for all variances and covariances to be distinct. If an equation
consists of 𝑝 random-effects terms, the unstructured covariance matrix will have 𝑝(𝑝+1)/2 unique
parameters.

covariance(fixed(matname)) and covariance(pattern(matname)) covariance structures

provide a convenient way to impose constraints on variances and covariances of random effects.

Each specification requires amatname that defines the restrictions placed on variances and covari-
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ances. Only elements in the lower triangle of matname are used, and row and column names of

matname are ignored. Amissing value inmatnamemeans that a given element is unrestricted. In a

fixed(matname) covariance structure, (co)variance (𝑖, 𝑗) is constrained to equal the value spec-
ified in the 𝑖, 𝑗th entry of matname. In a pattern(matname) covariance structure, (co)variances
(𝑖, 𝑗) and (𝑘, 𝑙) are constrained to be equal if matname[𝑖, 𝑗] = matname[𝑘, 𝑙].

fweight(varname) specifies frequency weights at higher levels in a multilevel model, whereas fre-

quency weights at the first level (the observation level) are specified in the usual manner, for exam-

ple, [fw=fwtvar1]. varname can be any valid Stata variable name, and you can specify fweight()
at levels two and higher of a multilevel model. For example, in the two-level model

. mecmd fixed_portion [fw = wt1] || school: ... , fweight(wt2) ...

the variable wt1 would hold the first-level (the observation-level) frequency weights, and wt2 would
hold the second-level (the school-level) frequency weights.

iweight(varname) specifies importance weights at higher levels in a multilevel model, whereas impor-
tance weights at the first level (the observation level) are specified in the usual manner, for example,

[iw=iwtvar1]. varname can be any valid Stata variable name, and you can specify iweight() at

levels two and higher of a multilevel model. For example, in the two-level model

. mecmd fixed_portion [iw = wt1] || school: ... , iweight(wt2) ...

the variable wt1would hold the first-level (the observation-level) importance weights, and wt2would
hold the second-level (the school-level) importance weights.

pweight(varname) specifies sampling weights at higher levels in a multilevel model, whereas sam-

pling weights at the first level (the observation level) are specified in the usual manner, for example,

[pw=pwtvar1]. varname can be any valid Stata variable name, and you can specify pweight() at
levels two and higher of a multilevel model. For example, in the two-level model

. mecmd fixed_portion [pw = wt1] || school: ... , pweight(wt2) ...

variable wt1 would hold the first-level (the observation-level) sampling weights, and wt2 would hold
the second-level (the school-level) sampling weights.

dispersion(mean | constant) specifies the parameterization of the conditional overdispersion given
random effects. dispersion(mean), the default, yields amodel where the conditional overdispersion
is a function of the conditional mean given random effects. For example, in a two-level model, the

conditional overdispersion is equal to 1+𝛼𝐸(𝑦𝑖𝑗|u𝑗). dispersion(constant) yields amodel where
the conditional overdispersion is constant and is equal to 1+ 𝛿. 𝛼 and 𝛿 are the respective conditional
overdispersion parameters.

constraints(constraints); see [R] Estimation options.

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived from
asymptotic theory (oim, opg), that are robust to some kinds of misspecification (robust), and that
allow for intragroup correlation (cluster clustvar); see [R] vce option. If vce(robust) is specified,
robust variances are clustered at the highest level in the multilevel model.
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� � �
Reporting �

level(#); see [R] Estimation options.

irr reports estimated fixed-effects coefficients transformed to incidence-rate ratios, that is, exp(𝛽) rather
than 𝛽. Standard errors and confidence intervals are similarly transformed. This option affects how
results are displayed, not how they are estimated or stored. irr may be specified either at estimation
or upon replay.

nocnsreport; see [R] Estimation options.

notable suppresses the estimation table, either at estimation or upon replay.

noheader suppresses the output header, either at estimation or upon replay.

nogroup suppresses the display of group summary information (number of groups, average group size,
minimum, and maximum) from the output header.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] Estimation options.

� � �
Integration �

intmethod(intmethod) specifies the integration method to be used for the random-effects model.

mvaghermite performs mean–variance adaptive Gauss–Hermite quadrature; mcaghermite per-

forms mode-curvature adaptive Gauss–Hermite quadrature; ghermite performs nonadaptive

Gauss–Hermite quadrature; and laplace performs the Laplacian approximation, equivalent to mode-
curvature adaptive Gaussian quadrature with one integration point.

The default integration method is mvaghermite unless a crossed random-effects model is fit, in which
case the default integration method is laplace. The Laplacian approximation has been known to
produce biased parameter estimates; however, the bias tends to be more prominent in the estimates of

the variance components rather than in the estimates of the fixed effects.

For crossed random-effects models, estimation with more than one quadrature point may be pro-

hibitively intensive even for a small number of levels. For this reason, the integration method defaults

to the Laplacian approximation. You may override this behavior by specifying a different integration

method.

intpoints(#) sets the number of integration points for quadrature. The default is intpoints(7),
which means that seven quadrature points are used for each level of random effects. This option is

not allowed with intmethod(laplace).

The more integration points, the more accurate the approximation to the log likelihood. However,

computation time increases as a function of the number of quadrature points raised to a power equaling

the dimension of the random-effects specification. In crossed random-effects models and in models

with many levels or many random coefficients, this increase can be substantial.

� � �
Maximization �

maximize options: difficult, technique(algorithm spec), iterate(#), [no]log, trace,
gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(init specs); see [R] Maximize. Those that require

special mention for menbreg are listed below.

from() accepts a properly labeled vector of initial values or a list of coefficient names with values.
A list of values is not allowed.
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The following options are available with menbreg but are not shown in the dialog box:

startvalues(svmethod), startgrid[ (gridspec) ], noestimate, and dnumerical; see [ME]meglm.

collinear, coeflegend; see [R] Estimation options.

Remarks and examples
Mixed-effects negative binomial regression is negative binomial regression containing both fixed

effects and random effects. In longitudinal data and panel data, random effects are useful for modeling

intracluster correlation; that is, observations in the same cluster are correlated because they share common

cluster-level random effects.

menbreg allows for many levels of random effects. However, for simplicity, consider a two-level

model, where for a series of 𝑀 independent clusters, and conditional on the latent variable 𝜁𝑖𝑗 and a set

of random effects u𝑗,

𝑦𝑖𝑗|𝜁𝑖𝑗 ∼ Poisson(𝜁𝑖𝑗)
and

𝜁𝑖𝑗|u𝑗 ∼ Gamma(𝑟𝑖𝑗, 𝑝𝑖𝑗)
and

u𝑗 ∼ 𝑁(0, 𝚺)

where 𝑦𝑖𝑗 is the count response of the 𝑖th observation, 𝑖 = 1, . . . , 𝑛𝑗, from the 𝑗th cluster, 𝑗 = 1, . . . , 𝑀,

and 𝑟𝑖𝑗 and 𝑝𝑖𝑗 have two different parameterizations, (2) and (3) below. The random effects u𝑗 are 𝑀
realizations from a multivariate normal distribution with mean 0 and 𝑞 × 𝑞 variance matrix 𝚺. The

random effects are not directly estimated as model parameters but are instead summarized according to

the unique elements of 𝚺, known as variance components.

The probability that a random response 𝑦𝑖𝑗 takes the value 𝑦 is then given by

Pr(𝑦𝑖𝑗 = 𝑦|u𝑗) =
Γ(𝑦 + 𝑟𝑖𝑗)

Γ(𝑦 + 1)Γ(𝑟𝑖𝑗)
𝑝𝑟𝑖𝑗

𝑖𝑗 (1 − 𝑝𝑖𝑗)𝑦 (1)

where for convenience we suppress the dependence of the observable data 𝑦𝑖𝑗 on 𝑟𝑖𝑗 and 𝑝𝑖𝑗.

Model (1) is an extension of the standard negative binomial model (see [R] nbreg) to incorporate

normally distributed random effects at different hierarchical levels. (The negative binomial model itself

can be viewed as a random-effects model, a Poisson model with a gamma-distributed random effect.)

The standard negative binomial model is used to model overdispersed count data for which the variance

is greater than that of a Poisson model. In a Poisson model, the variance is equal to the mean, and thus

overdispersion is defined as the extra variability compared with the mean. According to this definition,

the negative binomial model presents two different parameterizations of the overdispersion: the mean

parameterization, where the overdispersion is a function of the mean, 1 + 𝛼𝐸(𝑌 |x), 𝛼 > 0; and the

constant parameterization, where the overdispersion is a constant function, 1 + 𝛿, 𝛿 ≥ 0. We refer to 𝛼
and 𝛿 as conditional overdispersion parameters.

Let 𝜇𝑖𝑗 = 𝐸(𝑦𝑖𝑗|x,uj) = exp(x𝑖𝑗β + z𝑖𝑗u𝑗), where x𝑖𝑗 is the 1 × 𝑝 row vector of the fixed-effects

covariates, analogous to the covariates you would find in a standard negative binomial regression model,

with regression coefficients (fixed effects) β; z𝑖𝑗 is the 1× 𝑞 vector of the random-effects covariates and
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can be used to represent both random intercepts and random coefficients. For example, in a random-

intercept model, z𝑖𝑗 is simply the scalar 1. One special case places z𝑖𝑗 = x𝑖𝑗, so that all covariate effects

are essentially random and distributed as multivariate normal with mean β and variance 𝚺.

Similarly to the standard negative binomial model, we can consider two parameterizations of what

we call the conditional overdispersion, the overdispersion conditional on random effects, in a random-

effects negative binomial model. For the mean-overdispersion (or, more technically, mean-conditional-

overdispersion) parameterization,

𝑟𝑖𝑗 = 1/𝛼 and 𝑝𝑖𝑗 = 1
1 + 𝛼𝜇𝑖𝑗

(2)

and the conditional overdispersion is equal to 1 + 𝛼𝜇𝑖𝑗. For the constant-overdispersion (or, more tech-

nically, constant-conditional-overdispersion) parameterization,

𝑟𝑖𝑗 = 𝜇𝑖𝑗/𝛿 and 𝑝𝑖𝑗 = 1
1 + 𝛿

(3)

and the conditional overdispersion is equal to 1 + 𝛿. In what follows, for brevity, we will use the term
overdispersion parameter to mean conditional overdispersion parameter, unless stated otherwise.

In the context of random-effects negative binomial models, it is important to decide which model

is used as a reference model for the definition of the overdispersion. For example, if we consider a

corresponding random-effects Poisson model as a comparison model, the parameters 𝛼 and 𝛿 can still be
viewed as unconditional overdispersion parameters, as we show below, although the notion of a constant

overdispersion is no longer applicable.

If we retain the definition of the overdispersion as the excess variation with respect to a Poisson

process for which the variance is equal to themean, we need to carefully distinguish between themarginal

(unconditional) mean with random effects integrated out and the conditional mean given random effects.

In what follows, for simplicity, we omit the dependence of the formulas on x. Contingent on random

effects, the (conditional) dispersion Var(𝑦𝑖𝑗|uj) = (1 + 𝛼𝜇𝑖𝑗)𝜇𝑖𝑗 for the mean parameterization and

Var(𝑦𝑖𝑗|uj) = (1 + 𝛿)𝜇𝑖𝑗 for the constant parameterization; the usual interpretation of the parameters

holds (conditionally).

If we consider the marginal mean or, specifically, the marginal dispersion for, for example, a two-level

random-intercept model, then

Var(𝑦𝑖𝑗) = [1 + { exp(𝜎2)(1 + 𝛼) − 1}𝐸(𝑦𝑖𝑗)] 𝐸(𝑦𝑖𝑗)

for the mean parameterization and

Var(𝑦𝑖𝑗) = [1 + 𝛿 + { exp(𝜎2) − 1}𝐸(𝑦𝑖𝑗)] 𝐸(𝑦𝑖𝑗)

for the constant parameterization, where 𝜎2 is the variance component corresponding to the random

intercept.

A few things of interest compared with the standard negative binomial model. First, the random-

effects negative binomial model is not strictly an overdispersed model. The combination of values of 𝛼
and 𝜎2 can lead to an underdispersed model, a model with smaller variability than the Poisson variability.

Underdispersed models are not as common in practice, so we will concentrate on the overdispersion in

this entry. Second, 𝛼 (or 𝛿) no longer solely determine the overdispersion and thus cannot be viewed
as unconditional overdispersion parameters. Overdispersion is now a function of both 𝛼 (or 𝛿) and 𝜎2.

Third, the notion of a constant overdispersion is not applicable.
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Two special cases are worth mentioning. When 𝜎2 = 0, the dispersion reduces to that of a stan-

dard negative binomial model. When 𝛼 = 0 (or 𝛿 = 0), the dispersion reduces to that of a two-level

random-intercept Poisson model, which itself is, in general, an overdispersed model; see Rabe-Hesketh

and Skrondal (2022, sec. 13.7) for more details. As such, 𝛼 and 𝛿 retain the typical interpretation as

dispersion parameters relative to a random-intercept Poisson model.

Belowwe present two short examples of mixed-effects negative binomial regression; refer to [ME]me

and [ME] meglm for more examples including crossed-effects models.

Example 1: Two-level random-intercept model
Rabe-Hesketh and Skrondal (2022, sec. 13.7) analyze the data fromWinkelmann (2004) on the impact

of the 1997 health reform in Germany on the number of doctor visits. The intent of policymakers was

to reduce government expenditures on healthcare. We use a subsample of the data restricted to 1,158

women who were employed full time the year before or after the reform.

. use https://www.stata-press.com/data/r19/drvisits
(Doctor visits)
. describe
Contains data from https://www.stata-press.com/data/r19/drvisits.dta
Observations: 2,227 Doctor visits

Variables: 8 23 Jan 2024 18:39

Variable Storage Display Value
name type format label Variable label

id int %9.0g Person ID
numvisit byte %9.0g Number of doctor visits in the

last 3 months before interview
age byte %9.0g Age in years
educ float %9.0g Education in years
married byte %9.0g 1 if married; 0 otherwise
badh byte %9.0g Self-reported health status; 1 if

bad
loginc float %9.0g Log of household income
reform byte %9.0g 0 if interview before reform; 1

if interview after reform

Sorted by:

The dependent variable, numvisit, is a count of doctor visits. The covariate of interest is a dummy
variable, reform, which indicates whether a doctor visit took place before or after the reform. Other
covariates include a self-reported health status, age, education, marital status, and a log of household

income.
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We first fit a two-level random-intercept Poisson model. We specify the random intercept at the id
level, that is, an individual-person level.

. mepoisson numvisit reform age educ married badh loginc || id:, irr
Fitting fixed-effects model:
Iteration 0: Log likelihood = -9326.8542
Iteration 1: Log likelihood = -5989.7308
Iteration 2: Log likelihood = -5942.7581
Iteration 3: Log likelihood = -5942.7243
Iteration 4: Log likelihood = -5942.7243
Refining starting values:
Grid node 0: Log likelihood = -4761.1257
Fitting full model:
Iteration 0: Log likelihood = -4761.1257
Iteration 1: Log likelihood = -4683.2239
Iteration 2: Log likelihood = -4646.9329
Iteration 3: Log likelihood = -4645.736
Iteration 4: Log likelihood = -4645.7371
Iteration 5: Log likelihood = -4645.7371
Mixed-effects Poisson regression Number of obs = 2,227
Group variable: id Number of groups = 1,518

Obs per group:
min = 1
avg = 1.5
max = 2

Integration method: mvaghermite Integration pts. = 7
Wald chi2(6) = 249.37

Log likelihood = -4645.7371 Prob > chi2 = 0.0000

numvisit IRR Std. err. z P>|z| [95% conf. interval]

reform .9517026 .0309352 -1.52 0.128 .8929617 1.014308
age 1.005821 .002817 2.07 0.038 1.000315 1.011357

educ 1.008788 .0127394 0.69 0.488 .9841258 1.034068
married 1.082078 .0596331 1.43 0.152 .9712905 1.205503

badh 2.471857 .151841 14.73 0.000 2.191471 2.788116
loginc 1.094144 .0743018 1.32 0.185 .9577909 1.249909
_cons .5216748 .2668604 -1.27 0.203 .191413 1.421766

id
var(_cons) .8177932 .0503902 .724761 .9227673

Note: Estimates are transformed only in the first equation to incidence-rate
ratios.

Note: _cons estimates baseline incidence rate (conditional on zero random
effects).

LR test vs. Poisson model: chibar2(01) = 2593.97 Prob >= chibar2 = 0.0000
. estimates store mepoisson

Because we specified the irr option, the parameters are reported as incidence-rate ratios. The healthcare
reform seems to reduce the expected number of visits by 5% but without statistical significance.

Because we have only one random effect at the id level, the table shows only one variance component.
The estimate of 𝜎2

𝑢 is 0.82 with standard error 0.05. The reported likelihood-ratio test shows that there is

enough variability between women to favor a mixed-effects Poisson regression over a standard Poisson

regression; see Distribution theory for likelihood-ratio test in [ME]me for a discussion of likelihood-ratio

testing of variance components.
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It is possible that after conditioning on the person-level random effect, the counts of doctor visits are

overdispersed. For example, medical problems occurring during the time period leading to the survey

can result in extra doctor visits. We thus reexamine the data with menbreg.

. menbreg numvisit reform age educ married badh loginc || id:, irr
Fitting fixed-effects model:
Iteration 0: Log likelihood = -4610.7165
Iteration 1: Log likelihood = -4563.4682
Iteration 2: Log likelihood = -4562.3241
Iteration 3: Log likelihood = -4562.3238
Refining starting values:
Grid node 0: Log likelihood = -4643.5216
Fitting full model:
Iteration 0: Log likelihood = -4643.5216 (not concave)
Iteration 1: Log likelihood = -4555.961
Iteration 2: Log likelihood = -4518.7353
Iteration 3: Log likelihood = -4513.1951
Iteration 4: Log likelihood = -4513.1853
Iteration 5: Log likelihood = -4513.1853
Mixed-effects nbinomial regression Number of obs = 2,227
Overdispersion: mean
Group variable: id Number of groups = 1,518

Obs per group:
min = 1
avg = 1.5
max = 2

Integration method: mvaghermite Integration pts. = 7
Wald chi2(6) = 237.35

Log likelihood = -4513.1853 Prob > chi2 = 0.0000

numvisit IRR Std. err. z P>|z| [95% conf. interval]

reform .9008536 .042022 -2.24 0.025 .8221449 .9870975
age 1.003593 .0028206 1.28 0.202 .9980799 1.009137

educ 1.007026 .012827 0.55 0.583 .9821969 1.032483
married 1.089597 .064213 1.46 0.145 .970738 1.223008

badh 3.043562 .2366182 14.32 0.000 2.613404 3.544523
loginc 1.136342 .0867148 1.67 0.094 .9784833 1.319668
_cons .5017199 .285146 -1.21 0.225 .1646994 1.528377

/lnalpha -.7962692 .1190614 -1.029625 -.5629132

id
var(_cons) .4740088 .0582404 .3725642 .6030754

Note: Estimates are transformed only in the first equation to incidence-rate
ratios.

Note: _cons estimates baseline incidence rate (conditional on zero random
effects).

LR test vs. nbinomial model: chibar2(01) = 98.28 Prob >= chibar2 = 0.0000

The estimated effect of the healthcare reform now corresponds to the reduction in the number of doctor

visits by 10%—twice as much compared with the Poisson model—and this effect is significant at the

5% level.

The estimate of the variance component 𝜎2
𝑢 drops down to 0.47 compared with mepoisson, which is

not surprising given that now we have an additional parameter that controls the variability of the data.



menbreg — Multilevel mixed-effects negative binomial regression 204

Because the conditional overdispersion𝛼 is assumed to be greater than 0, it is parameterized on the log

scale, and its log estimate is reported as /lnalpha in the output. In our model, ̂𝛼 = exp(−0.80) = 0.45.

We can also compute the unconditional overdispersion in thismodel by using exp(0.47)×(1+0.45)−1 =
1.32.

The reported likelihood-ratio test shows that there is enough variability between women to favor a

mixed-effects negative binomial regression over negative binomial regression without random effects.

We can also perform a likelihood-ratio test comparing the mixed-effects negative binomial model to

the mixed-effects Poisson model. Because we are comparing two different estimators, we need to use

the force option with lrtest. In general, there is no guarantee as to the validity or interpretability of
the resulting likelihood-ratio test, but in our case we know the test is valid because the mixed-effects

Poisson model is nested within the mixed-effects negative binomial model.

. lrtest mepoisson ., force
Likelihood-ratio test
Assumption: mepoisson nested within .
LR chi2(1) = 265.10
Prob > chi2 = 0.0000
Note: The reported degrees of freedom assumes the null hypothesis is not on

the boundary of the parameter space. If this is not true, then the
reported test is conservative.

The reported likelihood-ratio test favors the mixed-effects negative binomial model. The reported

test is conservative because the test of 𝐻0 ∶ 𝛼 = 0 occurs on the boundary of the parameter space; see

Distribution theory for likelihood-ratio test in [ME] me for details.

The above extends to models with more than two levels of nesting by adding more random-effects

equations, each separated by ||. The order of nesting goes from left to right as the groups go from biggest

(highest level) to smallest (lowest level). To demonstrate a three-level model, we revisit example 3 from

[ME] mepoisson.

Example 2: Three-level random-intercept model
Rabe-Hesketh and Skrondal (2022, exercise 13.7) describe data from the Atlas of Cancer Mortality

in the European Economic Community (EEC) (Smans, Mair, and Boyle 1992). The data were analyzed

in Langford, Bentham, and McDonald (1998) and record the number of deaths among males due to

malignant melanoma during 1971–1980.
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. use https://www.stata-press.com/data/r19/melanoma
(Skin cancer (melanoma) data)
. describe
Contains data from https://www.stata-press.com/data/r19/melanoma.dta
Observations: 354 Skin cancer (melanoma) data

Variables: 6 30 May 2024 17:10
(_dta has notes)

Variable Storage Display Value
name type format label Variable label

nation byte %11.0g n Nation ID
region byte %9.0g Region ID: EEC level-I areas
county int %9.0g County ID: EEC level-II/level-III

areas
deaths int %9.0g No. deaths during 1971-1980
expected float %9.0g No. expected deaths
uv float %9.0g UV dose, mean-centered

Sorted by:

Nine European nations (variable nation) are represented, and data were collected over geographical
regions defined by EEC statistical services as level I areas (variable region), with deaths being recorded
for each of 354 counties, which are level II or level III EEC-defined areas (variable county, which iden-
tifies the observations). Counties are nested within regions, and regions are nested within nations.

The variable deaths records the number of deaths for each county, and expected records the ex-
pected number of deaths (the exposure) on the basis of crude rates for the combined countries. The

variable uv is a measure of exposure to ultraviolet (UV) radiation.

In example 3 of [ME]mepoisson, we noted that because counties also identified the observations, we

could model overdispersion by using a four-level Poisson model with a random intercept at the county

level. Here we fit a three-level negative binomial model with the default mean-dispersion parameteriza-

tion.

. menbreg deaths uv, exposure(expected) || nation: || region:
Fitting fixed-effects model:
Iteration 0: Log likelihood = -1361.855
Iteration 1: Log likelihood = -1230.0211
Iteration 2: Log likelihood = -1211.049
Iteration 3: Log likelihood = -1202.5641
Iteration 4: Log likelihood = -1202.5329
Iteration 5: Log likelihood = -1202.5329
Refining starting values:
Grid node 0: Log likelihood = -1209.6951
Fitting full model:
(output omitted )

Mixed-effects nbinomial regression Number of obs = 354
Overdispersion: mean

Grouping information

No. of Observations per group
Group variable groups Minimum Average Maximum

nation 9 3 39.3 95
region 78 1 4.5 13
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Integration method: mvaghermite Integration pts. = 7
Wald chi2(1) = 8.73

Log likelihood = -1086.3902 Prob > chi2 = 0.0031

deaths Coefficient Std. err. z P>|z| [95% conf. interval]

uv -.0335933 .0113725 -2.95 0.003 -.055883 -.0113035
_cons -.0790606 .1295931 -0.61 0.542 -.3330583 .1749372

ln(expected) 1 (exposure)

/lnalpha -4.182603 .3415036 -4.851937 -3.513268

nation
var(_cons) .1283614 .0678971 .0455187 .3619758

nation>
region

var(_cons) .0401818 .0104855 .0240938 .067012

LR test vs. nbinomial model: chi2(2) = 232.29 Prob > chi2 = 0.0000
Note: LR test is conservative and provided only for reference.

The estimates are very close to those of mepoisson. The conditional overdispersion in our model
is ̂𝛼 = exp(−4.18) = 0.0153. It is in agreement with the estimate of the random intercept at the

county level, 0.0147, in a four-level random-effects Poisson model reported by mepoisson. Because the
negative binomial is a three-level model, we gained some computational efficiency over the four-level

Poisson model.

Stored results
menbreg stores the following in e():

Scalars

e(N) number of observations

e(k) number of parameters

e(k dv) number of dependent variables

e(k eq) number of equations in e(b)
e(k eq model) number of equations in overall model test

e(k f) number of fixed-effects parameters

e(k r) number of random-effects parameters

e(k rs) number of variances

e(k rc) number of covariances

e(df m) model degrees of freedom

e(ll) log likelihood

e(N clust) number of clusters

e(chi2) 𝜒2

e(p) 𝑝-value for model test
e(ll c) log likelihood, comparison model

e(chi2 c) 𝜒2, comparison test
e(df c) degrees of freedom, comparison test

e(p c) 𝑝-value for comparison test
e(rank) rank of e(V)
e(ic) number of iterations

e(rc) return code

e(converged) 1 if converged, 0 otherwise
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Macros

e(cmd) meglm
e(cmd2) menbreg
e(cmdline) command as typed

e(depvar) name of dependent variable

e(wtype) weight type

e(wexp) weight expression (first-level weights)

e(fweightk) fweight variable for kth highest level, if specified
e(iweightk) iweight variable for kth highest level, if specified
e(pweightk) pweight variable for kth highest level, if specified
e(covariates) list of covariates

e(ivars) grouping variables

e(model) nbreg
e(title) title in estimation output

e(link) log
e(family) nbinomial
e(clustvar) name of cluster variable

e(dispersion) mean or constant
e(offset) offset

e(intmethod) integration method

e(n quad) number of integration points

e(chi2type) Wald; type of model 𝜒2

e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.

e(opt) type of optimization

e(which) max or min; whether optimizer is to perform maximization or minimization

e(ml method) type of ml method
e(user) name of likelihood-evaluator program

e(technique) maximization technique

e(datasignature) the checksum

e(datasignaturevars) variables used in calculation of checksum

e(properties) b V
e(estat cmd) program used to implement estat
e(predict) program used to implement predict
e(marginsnotok) predictions disallowed by margins
e(marginswtype) weight type for margins
e(marginswexp) weight expression for margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices

e(b) coefficient vector

e(Cns) constraints matrix

e(ilog) iteration log (up to 20 iterations)

e(gradient) gradient vector

e(N g) group counts

e(g min) group-size minimums

e(g avg) group-size averages

e(g max) group-size maximums

e(V) variance–covariance matrix of the estimators

e(V modelbased) model-based variance

Functions

e(sample) marks estimation sample

In addition to the above, the following is stored in r():

Matrices

r(table) matrix containing the coefficients with their standard errors, test statistics, 𝑝-values, and
confidence intervals
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Note that results stored in r() are updated when the command is replayed and will be replaced when any
r-class command is run after the estimation command.

Methods and formulas
menbreg is a convenience command for meglm with a log link and an nbinomial family; see

[ME] meglm.

Without a loss of generality, consider a two-level negative binomial model. For cluster 𝑗, 𝑗 =
1, . . . , 𝑀, the conditional distribution of y𝑗 = (𝑦𝑗1, . . . , 𝑦𝑗𝑛𝑗

)′, given a set of cluster-level random effects

u𝑗 and the conditional overdispersion parameter 𝛼 in a mean-overdispersion parameterization, is

𝑓(y𝑗|u𝑗, 𝛼) =
𝑛𝑗

∏
𝑖=1

{
Γ(𝑦𝑖𝑗 + 𝑟)

Γ(𝑦𝑖𝑗 + 1)Γ(𝑟)
𝑝𝑟

𝑖𝑗(1 − 𝑝𝑖𝑗)𝑦𝑖𝑗}

= exp[
𝑛𝑗

∑
𝑖=1

{ logΓ(𝑦𝑖𝑗 + 𝑟) − logΓ(𝑦𝑖𝑗 + 1) − logΓ(𝑟) + 𝑐(𝑦𝑖𝑗, 𝛼)}]

where 𝑐(𝑦𝑖𝑗, 𝛼) is defined as

− 1
𝛼
log{1 + exp(𝜂𝑖𝑗 + log𝛼)} − 𝑦𝑖𝑗 log{1 + exp(−𝜂𝑖𝑗 − log𝛼)}

and 𝑟 = 1/𝛼, 𝑝𝑖𝑗 = 1/(1 + 𝛼𝜇𝑖𝑗), and 𝜂𝑖𝑗 = x𝑖𝑗β + z𝑖𝑗u𝑗.

For the constant-overdispersion parameterization with the conditional overdispersion parameter 𝛿, the
conditional distribution of y𝑗 is

𝑓(y𝑗|u𝑗, 𝛿) =
𝑛𝑗

∏
𝑖=1

{
Γ(𝑦𝑖𝑗 + 𝑟𝑖𝑗)

Γ(𝑦𝑖𝑗 + 1)Γ(𝑟𝑖𝑗)
𝑝𝑟𝑖𝑗(1 − 𝑝)𝑦𝑖𝑗}

= exp[
𝑛𝑗

∑
𝑖=1

{ logΓ(𝑦𝑖𝑗 + 𝑟𝑖𝑗) − logΓ(𝑦𝑖𝑗 + 1) − logΓ(𝑟𝑖𝑗) + 𝑐(𝑦𝑖𝑗, 𝛿)}]

where 𝑐(𝑦𝑖𝑗, 𝛿) is defined as

− (
𝜇𝑖𝑗

𝛿
+ 𝑦𝑖𝑗) log(1 + 𝛿) + 𝑦𝑖𝑗 log𝛿

and 𝑟𝑖𝑗 = 𝜇𝑖𝑗/𝛿 and 𝑝 = 1/(1 + 𝛿).
For conciseness, let 𝛾 denote either conditional overdispersion parameter. Because the prior distribu-

tion of u𝑗 is multivariate normal with mean 0 and 𝑞 × 𝑞 variance matrix 𝚺, the likelihood contribution

for the 𝑗th cluster is obtained by integrating u𝑗 out of the joint density 𝑓(y𝑗,u𝑗, 𝛾),

ℒ𝑗(β, 𝚺, 𝛾) = (2𝜋)−𝑞/2 |𝚺|−1/2 ∫ 𝑓(y𝑗|u𝑗, 𝛾) exp (−u′
𝑗𝚺

−1u𝑗/2) 𝑑u𝑗

= (2𝜋)−𝑞/2 |𝚺|−1/2 ∫ exp{ℎ (β, 𝚺, u𝑗, 𝛾)} 𝑑u𝑗

(4)

where

ℎ (β, 𝚺, u𝑗, 𝛾) = 𝑓(y𝑗|u𝑗, 𝛾) − u′
𝑗𝚺

−1u𝑗/2
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and for convenience, in the arguments of ℎ(⋅) we suppress the dependence on the observable data

(y𝑗,X𝑗,Z𝑗).
The integration in (4) has no closed form and thus must be approximated; see Methods and formulas

in [ME] meglm for details.

menbreg supports multilevel weights and survey data; see Methods and formulas in [ME]meglm for

details.
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Postestimation commands predict margins
Remarks and examples Methods and formulas Also see

Postestimation commands
The following postestimation command is of special interest after menbreg:

Command Description

estat group summarize the composition of the nested groups

estat sd display variance components as standard deviations and correlations

The following standard postestimation commands are also available:

Command Description

contrast contrasts and ANOVA-style joint tests of parameters

estat ic Akaike’s, consistent Akaike’s, corrected Akaike’s, and Schwarz’s Bayesian in-
formation criteria (AIC, CAIC, AICc, and BIC, respectively)

estat summarize summary statistics for the estimation sample

estat vce variance–covariance matrix of the estimators (VCE)

estat (svy) postestimation statistics for survey data

estimates cataloging estimation results

etable table of estimation results
∗ hausman Hausman’s specification test

lincom point estimates, standard errors, testing, and inference for linear combinations
of parameters

∗ lrtest likelihood-ratio test

margins marginal means, predictive margins, marginal effects, and average marginal
effects

marginsplot graph the results from margins (profile plots, interaction plots, etc.)

nlcom point estimates, standard errors, testing, and inference for nonlinear combina-
tions of parameters

predict means, probabilities, densities, REs, residuals, etc.

predictnl point estimates, standard errors, testing, and inference for generalized predic-
tions

pwcompare pairwise comparisons of parameters

test Wald tests of simple and composite linear hypotheses

testnl Wald tests of nonlinear hypotheses

∗hausman and lrtest are not appropriate with svy estimation results.

210
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predict

Description for predict
predict creates a new variable containing predictions such as mean responses; linear predictions;

density and distribution functions; standard errors; and Pearson, deviance, and Anscombe residuals.

Menu for predict
Statistics > Postestimation

Syntax for predict

Syntax for obtaining predictions of the outcome and other statistics

predict [ type ] { stub* | newvarlist } [ if ] [ in ] [ , statistic options ]

Syntax for obtaining estimated random effects and their standard errors

predict [ type ] { stub* | newvarlist } [ if ] [ in ], reffects [ re options ]

Syntax for obtaining ML scores

predict [ type ] { stub* | newvarlist } [ if ] [ in ], scores

statistic Description

Main

mu mean response; the default

eta fitted linear predictor

xb linear predictor for the fixed portion of the model only

stdp standard error of the fixed-portion linear prediction

density predicted density function

distribution predicted distribution function

pearson Pearson residuals

deviance deviance residuals

anscombe Anscombe residuals

These statistics are available both in and out of sample; type predict ... if e(sample) ... if wanted
only for the estimation sample.
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options Description

Main

conditional(ctype) compute statistic conditional on estimated random effects; default is

conditional(ebmeans)
marginal compute statistic marginally with respect to the random effects

nooffset make calculation ignoring offset or exposure

Integration

int options integration options

pearson, deviance, anscombe may not be combined with marginal.

ctype Description

ebmeans empirical Bayes means of random effects; the default

ebmodes empirical Bayes modes of random effects

fixedonly prediction for the fixed portion of the model only

re options Description

Main

ebmeans use empirical Bayes means of random effects; the default

ebmodes use empirical Bayes modes of random effects

reses(stub* | newvarlist) calculate standard errors of empirical Bayes estimates

Integration

int options integration options

int options Description

intpoints(#) use # quadrature points to compute marginal predictions and empirical
Bayes means

iterate(#) set maximum number of iterations in computing statistics involving
empirical Bayes estimators

tolerance(#) set convergence tolerance for computing statistics involving empirical
Bayes estimators

Options for predict

� � �
Main �

mu, the default, calculates the predicted mean, that is, the predicted number of events.

eta, xb, stdp, density, distribution, pearson, deviance, anscombe, scores, conditional(),
marginal, and nooffset; see [ME] meglm postestimation.

reffects, ebmeans, ebmodes, and reses(); see [ME] meglm postestimation.

� � �
Integration �

intpoints(), iterate(), and tolerance(); see [ME] meglm postestimation.
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margins

Description for margins
margins estimates margins of response for mean responses and linear predictions.

Menu for margins
Statistics > Postestimation

Syntax for margins
margins [marginlist ] [ , options ]
margins [marginlist ] , predict(statistic ...) [ predict(statistic ...) ... ] [ options ]

statistic Description

mu mean response; the default

eta fitted linear predictor

xb linear predictor for the fixed portion of the model only

stdp not allowed with margins
density not allowed with margins
distribution not allowed with margins
pearson not allowed with margins
deviance not allowed with margins
anscombe not allowed with margins
reffects not allowed with margins
scores not allowed with margins

Options conditional(ebmeans) and conditional(ebmodes) are not allowed with margins.
Option marginal is assumed where applicable if conditional(fixedonly) is not specified.

Statistics not allowed with margins are functions of stochastic quantities other than e(b).

For the full syntax, see [R] margins.

Remarks and examples
Various predictions, statistics, and diagnostic measures are available after fitting a mixed-effects neg-

ative binomial model with menbreg. For the most part, calculation centers around obtaining estimates
of the subject/group-specific random effects. Random effects are not estimated when the model is fit but

instead need to be predicted after estimation.

Here we show a short example of predicted counts and predicted random effects; refer to [ME]meglm

postestimation for additional examples applicable to mixed-effects generalized linear models.

Example 1: Predicting counts and random effects
In example 2 of [ME] menbreg, we modeled the number of deaths among males in nine European

nations as a function of exposure to ultraviolet radiation (uv). We used a three-level negative binomial

model with random effects at the nation and region levels.
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. use https://www.stata-press.com/data/r19/melanoma
(Skin cancer (melanoma) data)
. menbreg deaths uv, exposure(expected) || nation: || region:
(output omitted )

We can use predict to obtain the predicted counts as well as the estimates of the random effects at

the nation and region levels.

. predict mu
(option mu assumed)
(predictions based on fixed effects and posterior means of random effects)
(using 7 quadrature points)
. predict re_nat re_reg, reffects
(calculating posterior means of random effects)
(using 7 quadrature points)

Stata displays a note that the predicted values of mu are based on the posterior means of random effects.

You can use option modes to obtain predictions based on the posterior modes of random effects.

Here we list the data for the first nation in the dataset, which happens to be Belgium:

. list nation region deaths mu re_nat re_reg if nation==1, sepby(region)

nation region deaths mu re_nat re_reg

1. Belgium 1 79 64.4892 -.0819939 .2937711

2. Belgium 2 80 77.64736 -.0819939 .024005
3. Belgium 2 51 44.56528 -.0819939 .024005
4. Belgium 2 43 53.10434 -.0819939 .024005
5. Belgium 2 89 65.35963 -.0819939 .024005
6. Belgium 2 19 35.18457 -.0819939 .024005

7. Belgium 3 19 8.770186 -.0819939 -.3434432
8. Belgium 3 15 43.95521 -.0819939 -.3434432
9. Belgium 3 33 34.17878 -.0819939 -.3434432

10. Belgium 3 9 7.332448 -.0819939 -.3434432
11. Belgium 3 12 12.93873 -.0819939 -.3434432

We can see that the predicted random effects at the nation level, re nat, are the same for all the obser-
vations. Similarly, the predicted random effects at the region level, re reg, are the same within each
region.

Methods and formulas
Methods and formulas for predicting random effects and other statistics are given in Methods and

formulas of [ME] meglm postestimation.

Also see
[ME] menbreg — Multilevel mixed-effects negative binomial regression

[ME] meglm postestimation — Postestimation tools for meglm

[U] 20 Estimation and postestimation commands
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Description Quick start Menu Syntax Options
Remarks and examples Stored results Methods and formulas References Also see

Description
menl fits nonlinear mixed-effects models in which some or all fixed and random effects enter non-

linearly. These models are also known as multilevel nonlinear models or hierarchical nonlinear models.

The overall error distribution of the nonlinear mixed-effects model is assumed to be Gaussian. Different

covariance structures are provided to model random effects and to model heteroskedasticity and correla-

tions within lowest-level groups.

Quick start
Nonlinear mixed-effects regression of y on x1 and x2 with random intercepts B0 by id

menl y = {a}*(1-exp(-({b0}+{b1}*x1+{b2}*x2+{B0[id]})))

Same as above, but using the more efficient specification of the linear combination

menl y = {a}*(1-exp(-{xb: x1 x2 B0[id]}))

Same as above, but using define() to specify the linear combination
menl y = {a}*(1-exp(-{xb:})), define(xb: x1 x2 B0[id])

Same as above, but perform restricted maximum-likelihood estimation instead of the default maximum-

likelihood estimation

menl y = {a}*(1-exp(-{xb:})), define(xb: x1 x2 B0[id]) reml

Specify your own initial values for fixed effects, but use the default expectation-maximization (EM)

method to obtain initial values for random-effects parameters

menl y = {a}*(1-exp(-{xb:})), define(xb: x1 x2 B0[id]) ///
initial({a} 1 {xb:x1} 1 {xb:x2} 0.5 {xb: cons} 2, fixed)

Include random intercepts A0 by id to allow parameter a to vary between levels of id, and specify the
xb suboption to indicate that a: contains a linear combination rather than a scalar parameter

menl y = {a:}*(1-exp(-{xb:})), define(xb: x1 x2 B0[id]) ///
define(a: A0[id], xb)

Include a random slope on continuous variable x2 in the linear combination, and allow correlation be-

tween random slopes B1 and intercepts B0
menl y = {a}*(1-exp(-{xb:})), define(xb: x1 x2 B0[id] c.x2#B1[id]) ///
covariance(B0 B1, unstructured)

Specify a heteroskedastic within-subject error variance that varies as a power of x2
menl y = {a}*(1-exp(-{xb:})), define(xb: x1 x2 B0[id] c.x2#B1[id]) ///
covariance(B0 B1, unstructured) resvariance(power x2)

Display random-effects and within-group error parameters as standard deviations and correlations

menl, stddeviations

215



menl — Nonlinear mixed-effects regression 216

Fit a nonlinear marginal regression of y on variables x1, x2, and x3 with an exchangeable covariance
structure for the within-id errors

menl y = {phi1}*(1-exp(-0.5*(x1-{phi2: x2 i.x3}))), ///
rescovariance(exchangeable, group(id))

Three-level nonlinear regression of y on variable time and factor variable f with random intercepts S0
by lev3 and W0 by lev2 nested within lev3, using an AR(1) correlation structure for the residuals

menl y = {phi1:}+{phi2:}*exp(-{phi3}*time), ///
define(phi1: i.f S0[lev3]) define(phi2: i.f W0[lev3>lev2]) ///
rescorrelation(ar 1, t(time))

Three-level nonlinear regression of y on x1 with random intercepts W0 and slopes W1 on continuous

x1 by lev3 and with random intercepts S0 and slopes S1 on x1 by lev2 nested within lev3, using
unstructured covariance for W0 and W1 and exchangeable covariance for S0 and S1

menl y = {phi1:}+{b1}*cos({b2}*x1), ///
define(phi1:x1 W0[lev3] S0[lev3>lev2] ///

c.x1#(W1[lev3] S1[lev3>lev2])) ///
covariance(W0 W1, unstructured) ///
covariance(S0 S1, exchangeable)

Same as above, but assume that residuals are independent but have different variances for males and

females

menl y = {phi1:}+{b1}*cos({b2}*x1), ///
define(phi1:x1 W0[lev3] S0[lev3>lev2] ///

c.x1#(W1[lev3] S1[lev3>lev2])) ///
covariance(W0 W1, unstructured) ///
covariance(S0 S1, exchangeable) ///
rescovariance(identity, by(female))

Menu
Statistics > Multilevel mixed-effects models > Nonlinear regression
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Syntax
menl depvar = <menlexpr> [ if ] [ in ] [ , options ]

<menlexpr> defines a nonlinear regression function as a substitutable expression that contains model

parameters and random effects specified in braces {}, as in exp({b}+{U[id]}); see Random-effects
substitutable expressions for details.

options Description

Model

mle fit model via maximum likelihood; the default

reml fit model via restricted maximum likelihood

define(name:<resubexpr>) define a function of model parameters; this option may be repeated

covariance(covspec) variance–covariance structure of the random effects; this
option may be repeated

initial(initial values) initial values for parameters

Residuals

rescovariance(rescovspec) covariance structure for within-group errors

resvariance(resvarspec) heteroskedastic variance structure for within-group errors

rescorrelation(rescorrspec) correlation structure for within-group errors

Time series

tsorder(varname) specify time variable to determine the ordering for time-series
operators

tsinit({name:}=<resubexpr>) specify initial conditions for lag operators used with named
expressions; this option may be repeated

tsmissing keep observations with missing values in depvar in computation

Reporting

level(#) set confidence level; default is level(95)
variance show random-effects and within-group error parameter

estimates as variances and covariances; the default

stddeviations show random-effects and within-group error parameter
estimates as standard deviations and correlations

noretable suppress random-effects table

nofetable suppress fixed-effects table

estmetric show parameter estimates as stored in e(b)
nolegend suppress table expression legend

noheader suppress output header

nogroup suppress table summarizing groups

nostderr do not estimate standard errors of random-effects parameters

lrtest perform a likelihood-ratio test to compare the nonlinear
mixed-effects model with ordinary nonlinear regression

notsshow do not show ts setting information

display options control columns and column formats, row spacing, line width,
display of omitted variables and base and empty cells, and
factor-variable labeling
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EM options

emiterate(#) number of EM iterations; default is emiterate(25)
emtolerance(#) EM convergence tolerance; default is emtolerance(1e-10)
emlog show EM iteration log

Maximization

menlmaxopts control the maximization process

coeflegend display legend instead of statistics

collect is allowed; see [U] 11.1.10 Prefix commands.

coeflegend does not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

The syntax of covspec is

rename1 rename2 [ ... ], vartype

vartype Description

independent one unique variance parameter per random effect; all covariances
are 0; the default

exchangeable equal variances for random effects and one common pairwise
covariance

identity equal variances for random effects; all covariances are 0

unstructured all variances and covariances to be distinctly estimated

The syntax of rescovspec is

rescov [ , rescovopts ]

rescov Description

identity uncorrelated within-group errors with one common variance;
the default

independent uncorrelated within-group errors with distinct variances

exchangeable within-group errors with equal variances and one common
covariance

ar [ # ] within-group errors with autoregressive (AR) structure of order #,
AR(#); ar 1 is implied by ar

ma [ # ] within-group errors with moving-average (MA) structure of order #,
MA(#); ma 1 is implied by ma

ctar1 within-group errors with continuous-time AR(1) structure

toeplitz [ # ] within-group errors have Toeplitz structure of order #;
toeplitz implies that all matrix off-diagonals be estimated

banded [ # ] within-group errors with distinct variances and covariances within
first # off-diagonals; banded implies all matrix bands
(unstructured)

unstructured within-group errors with distinct variances and covariances
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The syntax of resvarspec is

resvarfunc [ , resvaropts ]
resvarfunc Description

identity equal within-group error variances; the default

linear varname within-group error variance varies linearly with varname

power varname | yhat variance function is a power of varname or of predicted mean

exponential varname | yhat variance function is exponential of varname or of predicted mean

distinct distinct within-group error variances

The syntax of rescorrspec is

rescorr [ , rescorropts ]
rescorr Description

identity uncorrelated within-group errors; the default

exchangeable within-group errors with one common correlation

ar [ # ] within-group errors with AR(#) structure; ar 1 is implied by ar
ma [ # ] within-group errors with MA(#) structure; ma 1 is implied by ma
ctar1 within-group errors with continuous-time AR(1) structure

toeplitz [ # ] within-group errors have Toeplitz correlation structure of order #;
toeplitz implies that all matrix off-diagonals be estimated

banded [ # ] within-group errors with distinct correlations within first #
off-diagonals; banded implies all matrix bands (unstructured)

unstructured within-group errors with distinct correlations

Options

� � �
Model �

mle and reml specify the statistical method for fitting the model.

mle, the default, specifies that the model be fit using maximum likelihood (ML).

reml specifies that the model be fit using restricted maximum likelihood (REML), also known as

residual maximum likelihood.

define(name:<resubexpr>) defines a function of model parameters, <resubexpr>, and labels it as

name. This option can be repeated to define multiple functions. The define() option is useful for
expressions that appear multiple times in the main nonlinear specification menlexpr: you define the

expression once and then simply refer to it by using {name:} in the nonlinear specification. This

option can also be used for notational convenience. See Random-effects substitutable expressions for

how to specify <resubexpr>. <resubexpr> within define() may not contain the lagged predicted
mean function.

covariance(rename1 rename2 [ ... ], vartype) specifies the structure of the covariance matrix for the
random effects. rename1, rename2, and so on, are the names of the random effects to be correlated

(see Random effects), and vartype is one of the following: independent, exchangeable, identity,
or unstructured. Instead of renames, you can specify restub* to refer to random effects that share

the same restub in their names.
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independent allows for a distinct variance for each random effect and assumes that all covariances

are 0; the default.

exchangeable specifies one common variance for all random effects and one common pairwise

covariance.

identity is short for “multiple of the identity”; that is, all variances are equal, and all covariances
are 0.

unstructured allows for all variances and covariances to be distinct. If 𝑝 random effects are speci-

fied, the unstructured covariance matrix will have 𝑝(𝑝 + 1)/2 unique parameters.
initial(initial values) specifies the initial values formodel parameters. You can specify a 1×𝑘matrix,

where 𝑘 is the total number of parameters in the model, or you can specify a parameter name, its initial
value, another parameter name, its initial value, and so on. For example, to initialize {alpha} to 1.23
and {delta} to 4.57, you would type

. menl ..., initial(alpha 1.23 delta 4.57) ...

To initialize multiple parameters that have the same group name, for example, {y:x1} and {y:x2},
with the same initial value, you can simply type

. menl ..., initial({y:} 1) ...

For the full specification, see Specifying initial values.

� � �
Residuals �

menl provides two ways to model the within-group error covariance structure, sometimes also referred
to as residual covariance structure in the literature. You can model the covariance directly by using the

rescovariance() option or indirectly by using the resvariance() and rescorrelation() options.

rescovariance(rescov [ , rescovopts ]) specifies the within-group errors covariance structure or co-

variance structure of the residuals within the lowest-level group of the nonlinear mixed-effects

model. For example, if you are modeling random effects for classes nested within schools, then

rescovariance() refers to the residual variance–covariance structure of the observations within

classes, the lowest-level groups.

rescov is one of the following: identity, independent, exchangeable, ar [ # ], ma [ # ], ctar1,
toeplitz [ # ], banded [ # ], or unstructured. Below, we describe each rescov with its specific

options rescovopts:

identity [ , by(byvar) ], the default, specifies that all within-group errors be independent and
identically distributed (i.i.d.) with one common error variance 𝜎2

𝜖 . When combined with by(by-
var), independence is still assumed, but you estimate a distinct variance for each category of
byvar.

independent, index(varname) [ group(grpvar) ] specifies that within-group errors are inde-
pendent with distinct variances for each value (index) of varname. index(varname) is re-

quired. group(grpvar) is required if there are no random effects in the model.

exchangeable [ , by(byvar) group(grpvar) ] assumes that within-group errors have equal

variances and a common covariance.

ar [ # ], t(timevar) [ by(byvar) group(grpvar) ] assumes that within-group errors have an

AR(#) structure. If # is omitted, ar 1 is assumed. t(timevar) is required. For this structure,
# + 1 parameters are estimated: # AR coefficients and one overall error variance, 𝜎2

𝜖 .
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ma [ # ], t(timevar) [ by(byvar) group(grpvar) ] assumes that within-group errors have an

MA(#) structure. If # is omitted, ma 1 is assumed. t(timevar) is required. For this structure,
# + 1 parameters are estimated: # MA coefficients and one overall error variance, 𝜎2

𝜖 .

ctar1, t(timevar) [ by(byvar) group(grpvar) ] assumes that within-group errors have a

continuous-time AR(1) structure. This is a generalization of the AR covariance structure that

allows for unequally spaced and noninteger time values. t(timevar) is required. For this struc-
ture, two parameters are estimated: the correlation parameter, 𝜌, and one overall error variance,
𝜎2

𝜖 . The correlation between two error terms is the parameter 𝜌 raised to a power equal to the

absolute value of the difference between the t() values for those errors.

toeplitz [ # ], t(timevar) [ by(byvar) group(grpvar) ] assumes that within-group errors have
a Toeplitz structure of order #, for which correlations are constant with respect to time lags less

than or equal to # and are 0 for lags greater than #. # is an integer between 1 and the maximum

observed lag (the default). t(timevar) is required. For this structure, # + 1 parameters are

estimated: # correlations and one overall error variance, 𝜎2
𝜖 .

banded [ # ], index(varname) [ group(grpvar) ] is a special case of unstructured that re-

stricts estimation to the covariances within the first # off-diagonals and sets the covariances

outside this band to 0. index(varname) is required. # is an integer between 0 and 𝐿 − 1,

where 𝐿 is the number of levels of index(). By default, # is 𝐿 − 1; that is, all elements of

the covariance matrix are estimated. When # is 0, only the diagonal elements of the covariance

matrix are estimated. group(grpvar) is required if there are no random effects in the model.

unstructured, index(varname) [ group(grpvar) ] assumes that within-group errors have dis-
tinct variances and covariances. This is themost general covariance structure in that no structure

is imposed on the covariance parameters. index(varname) is required. When you have 𝐿 lev-

els of index(), then 𝐿(𝐿+1)/2 parameters are estimated. group(grpvar) is required if there
are no random effects in the model.

rescovopts are index(varname), t(timevar), by(byvar), and group(grpvar).

index(varname) is used within the rescovariance() option with rescov independent,
banded, or unstructured. varname is a nonnegative-integer–valued variable that identifies

the observations within the lowest-level groups (for example, obsid). The groups may be un-
balanced in that different groups may have different index() values, but you may not have

repeated index() values within any particular group.

t(timevar) is used within the rescovariance() option to specify a time variable for the ar, ma,
ctar1, and toeplitz structures.

With rescov ar, ma, and toeplitz, timevar is an integer-valued time variable used to order

the observations within the lowest-level groups and to determine the lags between successive

observations. Any nonconsecutive time values will be treated as gaps.

With rescov ctar1, timevar is a real-valued time variable.

by(byvar) is for use within the rescovariance() option and specifies that a set of distinct

within-group error covariance parameters be estimated for each category of byvar. In other

words, you can use by() to model heteroskedasticity. byvar must be nonnegative-integer val-
ued and constant within the lowest-level groups.

group(grpvar) is used to identify the lowest-level groups (panels) when modeling within-group
error covariance structures. grpvar is a nonnegative-integer–valued group membership vari-

able. This option lets you model within-group error covariance structures at the lowest level



menl — Nonlinear mixed-effects regression 222

of your model hierarchy without having to include random effects at that level in your model.

This is useful, for instance, when fitting nonlinear marginal or population-averaged models

that model the dependence between error terms directly, without introducing random effects;

see example 19. In the presence of random effects at other levels of hierarchy in your model,

grpvar is assumed to be nested within those levels.

resvariance(resvarfunc [ , resvaropts ]) specifies a heteroskedastic variance structure of the within-
group errors. It can be used with the rescorrelation() option to specify flexible within-group error
covariance structures. The heteroskedastic variance structure is modeled as Var (𝜖𝑖𝑗) = 𝜎2𝑔2 (δ, 𝜐𝑖𝑗),
where 𝜎 is an unknown scale parameter, 𝑔(⋅) is a function that models heteroskedasticity (also known
as variance function in the literature), δ is a vector of unknown parameters of the variance function,
and 𝜐𝑖𝑗’s are the values of a fixed covariate 𝑥𝑖𝑗 or of the predicted mean ̂𝜇𝑖𝑗.

resvarfunc, omitting the arguments, is one of the following: identity, linear, power, exponen-
tial, or distinct, and resvaropts are options specific to each variance function.

identity, the default, specifies a homoskedastic variance structure for the within-group errors;
𝑔 (δ, 𝜐𝑖𝑗) = 1, so that Var (𝜖𝑖𝑗) = 𝜎2 = 𝜎2

𝜖 .

linear varname specifies that the within-group error variance vary linearly with varname; that

is, 𝑔 (δ, 𝜐𝑖𝑗) = √
varname𝑖𝑗, so that Var (𝜖𝑖𝑗) = 𝜎2varname𝑖𝑗. varname must be positive.

power varname, | yhat [ , strata(stratavar) noconstant ] specifies that the within-group er-
ror variance, or more precisely the variance function, be expressed in terms of a power of ei-

ther varname or the predicted mean yhat, plus a constant term; 𝑔 (δ, 𝜐𝑖𝑗) = |𝑣𝑖𝑗|𝛿1 + 𝛿2. If

noconstant is specified, the constant term 𝛿2 is suppressed. In general, three parameters are es-

timated: a scale parameter 𝜎, the power 𝛿1, and the constant term 𝛿2. When strata(stratavar)
is specified, the power and constant parameters (but not the scale) are distinctly estimated for

each stratum. A total number of 2𝐿 + 1 parameters are estimated (𝐿 power parameters, 𝐿 con-

stant parameters, and scale 𝜎), where 𝐿 is the number of strata defined by variable stratavar.

exponential varname | yhat [ , strata(stratavar) ] specifies that the within-group error

variance vary exponentially with varname or with the predicted mean yhat; 𝑔 (𝛾, 𝜐𝑖𝑗) =
exp(𝛾𝑣𝑖𝑗). Two parameters are estimated: a scale parameter 𝜎 and an exponential parameter 𝛾.
When strata(stratavar) is specified, the exponential parameter 𝛾 (but not scale 𝜎) is distinctly
estimated for each stratum. A total number of 𝐿 + 1 parameters are estimated (𝐿 exponential

parameters and scale 𝜎), where 𝐿 is the number of strata defined by variable stratavar.

distinct, index(varname) [ group(grpvar) ] specifies that the within-group errors have dis-
tinct variances, 𝜎2

𝑙 , for each value (index), 𝑙, of varname, 𝑣𝑖𝑗; 𝑔 (δ, 𝑣𝑖𝑗) = 𝛿𝑣𝑖𝑗
with 𝛿𝑣𝑖𝑗

=
𝜎𝑣𝑖𝑗

/𝜎1 (𝛿1 = 1 for identifiability purposes) such that Var (𝜖𝑖𝑗) = 𝜎2
𝑣𝑖𝑗

= 𝜎2
1𝛿2

𝑣𝑖𝑗
for

𝑙 = 1, 2, . . . , 𝐿 and 𝑣𝑖𝑗 ∈ {1, 2, . . . , 𝐿}. index(varname) is required. group(grpvar) is

required if there are no random effects in the model. resvariance(distinct) in combina-
tion with rescorrelation(identity) is equivalent to rescovariance(independent).

resvaropts are strata(stratavar), noconstant, index(), and group(grpvar).

strata(stratavar) is used within the resvariance() option with resvarfunc power and

exponential. strata() specifies that the parameters of the variance function 𝑔(⋅) be dis-
tinctly estimated for each stratum. The scale parameter 𝜎 remains constant across strata. In

contrast, rescovariance()’s by(byvar) suboption specifies that all covariance parameters,
including 𝜎 (whenever applicable), be estimated distinctly for each category of byvar. stratavar
must be nonnegative-integer valued and constant within the lowest-level groups.
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noconstant is used within the resvariance() option with resvarfunc power. noconstant
specifies that the constant parameter be suppressed in the expression of the variance function

𝑔(⋅).
index(varname) is used within the resvariance() option with resvarfunc distinct. varname

is a nonnegative-integer–valued variable that identifies the observations within the lowest-level

groups (for example, obsid). The groups may be unbalanced in that different groups may have
different index() values, but you may not have repeated index() values within any particular
group.

group(grpvar) is used within the resvariance() option with resvarfunc distinct. It identi-
fies the lowest-level groups (panels) when no random effects are included in the model specifi-

cation such as with nonlinear marginal models. grpvar is a nonnegative-integer–valued group

membership variable.

rescorrelation(rescorr [ , rescorropts ]) specifies a correlation structure of the within-group errors.
It can be used with the resvariance() option to specify flexible within-group error covariance

structures.

rescorr is one of the following: identity, exchangeable, ar [ # ], ma [ # ], ctar1, toeplitz [ # ],
banded [ # ], or unstructured.
identity, the default, specifies that all within-group error correlations be zeros.

exchangeable [ , by(byvar) group(grpvar) ] assumes that within-group errors have a common
correlation.

ar [ # ], t(timevar) [ by(byvar) group(grpvar) ] assumes that within-group errors have an

AR(#) correlation structure. If # is omitted, ar 1 is assumed. The t(timevar) option is re-

quired. For this structure, # AR coefficients are estimated.

ma [ # ], t(timevar) [ by(byvar) group(grpvar) ] assumes that within-group errors have an

MA(#) correlation structure. If # is omitted, ma 1 is assumed. The t(timevar) option is re-

quired. For this structure, # MA coefficients are estimated.

ctar1, t(timevar) [ by(byvar) group(grpvar) ] assumes that within-group errors have a con-
tinuous-time AR(1) correlation structure. The t(timevar) option is required. The correlation
between two errors is the parameter 𝜌 raised to a power equal to the absolute value of the

difference between the t() values for those errors.

toeplitz [ # ], t(timevar) [ by(byvar) group(grpvar) ] assumes that within-group errors have
a Toeplitz correlation structure of order #, for which correlations are constant with respect to

time lags less than or equal to # and are 0 for lags greater than #. # is an integer between

1 and the maximum observed lag (the default). t(timevar) is required. For this structure, #
correlation parameters are estimated.

banded [ # ], index(varname) [ group(grpvar) ] is a special case of unstructured that re-

stricts estimation to the correlations within the first # off-diagonals and sets the correlations

outside this band to 0. index(varname) is required. # is an integer between 0 and 𝐿 − 1,

where 𝐿 is the number of levels of index(). By default, # is 𝐿 − 1; that is, all elements of the

correlation matrix are estimated. When # is 0, the correlation matrix is assumed to be identity.

group(grpvar) is required if there are no random effects in the model.
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unstructured, index(varname) [ group(grpvar) ] assumes that within-group errors have dis-
tinct correlations. This is the most general correlation structure in that no structure is imposed

on the correlation parameters. index(varname) is required. group(grpvar) is required if

there are no random effects in the model.

rescorropts are index(varname), t(timevar), by(byvar), and group(grpvar).

index(varname) is used within the rescorrelation() option with rescorr banded or un-
structured. varname is a nonnegative-integer–valued variable that identifies the observa-

tions within the lowest-level groups (for example, obsid). The groups may be unbalanced

in that different groups may have different index() values, but you may not have repeated

index() values within any particular group.

t(timevar) is used within the rescorrelation() option to specify a time variable for the ar,
ma, ctar1, and toeplitz structures.

With rescorr ar, ma, and toeplitz, timevar is an integer-valued time variable used to order

the observations within the lowest-level groups and to determine the lags between successive

observations. Any nonconsecutive time values will be treated as gaps.

With rescorr ctar1, timevar is a real-valued time variable.

by(byvar) is usedwithin the rescorrelation() option and specifies that a set of distinct within-
group error correlation parameters be estimated for each category of byvar. byvar must be

nonnegative-integer valued and constant within the lowest-level groups.

group(grpvar) is used to identify the lowest-level groups (panels) when modeling within-group
error correlation structures. grpvar is a nonnegative-integer–valued group membership vari-

able. This option lets you model within-group error correlation structures at the lowest level

of your model hierarchy without having to include random effects at that level in your model.

This is useful, for instance, when fitting nonlinear marginal or population-averaged models

that model the dependence between error terms directly, without introducing random effects;

see example 19. In the presence of random effects at other levels of hierarchy in your model,

grpvar is assumed to be nested within those levels.

� � �
Time series �

tsorder(varname) specifies the time variable that determines the time order for time-series operators
used in expressions; see Time-series operators. When you use time-series operators with menl, you
must either tsset your data prior to executing menl or specify option tsorder(). When you specify

tsorder(), menl uses the time variable varname to create a new temporary variable that contains

consecutive integers, which determine the sort order of observations within the lowest-level group.

menl also creates and uses the appropriate panel variable based on the hierarchy of your model spec-
ification and the estimation sample; see example 17 and example 18.

tsinit({name:}=<resubexpr>) specifies an initial condition for the named expression name used

with the one-period lag operator, L.{name:} or L1.{name:}, in the model specification. name can

be the depvar or the name of a function of model parameters previously defined in, for instance,

option define(). If you include the lagged predicted mean function L.{depvar:} or, equivalently,

L. yhat in your model, you must specify its initial condition in tsinit({depvar:}=...). The

initial condition can be expressed as a random-effects substitutable expression,<resubexpr>. Option

tsinit() may be repeated. Also see Time-series operators, example 17, and example 18.
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tsmissing specifies that observations containing system missing values (.) in depvar be retained in the
computation when a lagged named expression is used in the model specification. Extended missing

values in depvar are excluded. Both missing and nonmissing observations are used to evaluate the

predicted nonlinear mean function but only nonmissing observations are used to evaluate the likeli-

hood. Observations containing missing values in variables used in the model other than the dependent

variable are excluded. This option is often used when subjects have intermittent depvarmeasurements

and the lagged predicted mean function, L.{depvar:} or L. yhat, is used in the model specification.
Such models are common in pharmacokinetics; see example 17 and example 18.

� � �
Reporting �

level(#); see [R] Estimation options.

variance, the default, displays the random-effects and within-group error parameter estimates as vari-
ances and covariances.

stddeviations displays the random-effects and within-group error parameter estimates as standard

deviations and correlations.

noretable suppresses the random-effects table from the output.

nofetable suppresses the fixed-effects table from the output.

estmetric displays all parameter estimates in one table using the metric in which they are stored in

e(b). Random-effects parameter estimates are stored as log standard-deviations and hyperbolic arct-
angents of correlations. Within-group error parameter estimates are stored as log standard-deviations

and, when applicable, as hyperbolic arctangents of correlations. Note that fixed-effects estimates are

always stored and displayed in the same metric.

nolegend suppresses the expression legend that appears before the fixed-effects estimation table when
functions of parameters or named substitutable expressions are specified in the main equation or in

the define() options.

noheader suppresses the output header, either at estimation or upon replay.

nogroup suppresses the display of group summary information (number of groups, average group size,
minimum, and maximum) from the output header.

nostderr prevents menl from calculating standard errors for the estimated random-effects parameters,

although standard errors are still provided for the fixed-effects parameters. Specifying this option will

speed up computation times.

lrtest specifies to fit a reference nonlinear regression model and to use this model in calculating a

likelihood-ratio test, comparing the nonlinearmixed-effectsmodel with ordinary nonlinear regression.

notsshow prevents menl from showing the key ts variables; see [TS] tsset.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] Estimation options.

� � �
EM options �

These options control the EM iterations that occur before estimation switches to the Lindstrom–Bates

method. EM is used to obtain starting values.

emiterate(#) specifies the number of EM iterations to perform. The default is emiterate(25).
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emtolerance(#) specifies the convergence tolerance for the EM algorithm. The default is

emtolerance(1e-10). EM iterations will be halted once the log (restricted) likelihood changes by a

relative amount less than #. At that point, optimization switches to the Lindstrom–Bates method.

emlog specifies that the EM iteration log be shown. The EM iteration log is not displayed by default.

� � �
Maximization �

menlmaxopts: iterate(#), tolerance(#), ltolerance(#), nrtolerance(#), nonrtolerance,
pnlsopts(), lmeopts(), [no]log. The convergence is declared when either tolerance() or

ltolerance() is satisfied; see Stopping rules for details.

menlmaxopts control the maximization process of the Lindstrom–Bates, the generalized nonlinear

least-squares (GNLS), and the nonlinear least-squares (NLS) algorithms. The Lindstrom–Bates algo-

rithm is the main optimization algorithm used for nonlinear models containing random effects. The

GNLS algorithm is used for the models without random effects but with non-i.i.d. errors. The NLS

algorithm is used for the models without random effects and with i.i.d. errors. The Lindstrom–Bates

and GNLS algorithms are alternating algorithms—they alternate between two optimization steps and

thus support options to control the overall optimization as well as the optimization of each step.

The Lindstrom–Bates algorithm alternates between the penalized least-squares (PNLS) and the lin-

ear mixed-effects (LME) optimization steps. The GNLS algorithm alternates between the GNLS andML

or, if option reml is used, REML steps. Option pnlsopts() controls the PNLS and GNLS steps, and

option lmeopts() controls the LME and ML/REML steps. The other menlmaxopts control the overall

optimization of the alternating algorithms as well as the NLS optimization.

iterate(#) specifies the maximum number of iterations for the alternating algorithms and the NLS

algorithm. One alternating iteration of the Lindstrom–Bates algorithm involves #pnls PNLS iter-

ations as specified in pnlsopts()’s iterate() suboption and #lme LME iterations as specified

in lmeopts()’s iterate() suboption. Similarly, one alternating iteration of the GNLS algorithm
involves #gnls GNLS iterations and #ml ML/REML iterations. The default is the number set using

set maxiter, which is 300 by default.

tolerance(#) specifies the tolerance for the parameter vector in the alternating algorithms and the
NLS algorithm. When the relative change in the parameter vector from one (alternating) iteration to

the next is less than or equal to tolerance(), the parameter convergence is satisfied. The default
is tolerance(1e-6).

ltolerance(#) specifies the tolerance for the linearization log likelihood of the Lindstrom–Bates
algorithm and for the log likelihood of the GNLS and NLS algorithms. The linearization log likeli-

hood is the log likelihood from the LME optimization step in the last iteration. When the relative

change in the log likelihood from one (alternating) iteration to the next is less than or equal to

ltolerance(), the log-likelihood convergence is satisfied. The default is ltolerance(1e-7).

nrtolerance(#) and nonrtolerance control the tolerance for the scaled gradient.

nrtolerance(#) specifies the tolerance for the scaled gradient. Convergence is declared when
𝑔(−𝐻−1)𝑔′ is less than nrtolerance(#), where 𝑔 is the gradient row vector and 𝐻 is the

approximated Hessian matrix from the current iteration. The default is nrtolerance(1e-5).

nonrtolerance specifies that the default nrtolerance() criterion be turned off.

nrtolerance(#) and nonrtolerance are allowed only with the NLS algorithm.
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pnlsopts(pnlsopts) controls the PNLS optimization step of the Lindstrom–Bates alternating algo-

rithm and the GNLS optimization step of the GNLS alternating algorithm. pnlsopts include any

of the following: iterate(#), ltolerance(#), tolerance(#), nrtolerance(#), and max-

imize options. The convergence of this step within each alternating iteration is declared when

nrtolerance() and one of tolerance() or ltolerance() are satisfied. This option is not

allowed with the NLS algorithm.

iterate(#) specifies the maximum number of iterations for the PNLS and GNLS optimization

steps of the alternating algorithms. The default is iterate(5).

ltolerance(#) specifies the tolerance for the objective function in the PNLS and GNLS opti-

mization steps. When the relative change in the objective function from one PNLS or GNLS

iteration to the next is less than or equal to ltolerance(), the objective-function convergence
is satisfied. The default is ltolerance(1e-7).

tolerance(#) specifies the tolerance for the vector of fixed-effects parameters. When the rel-

ative change in the coefficient vector from one PNLS or GNLS iteration to the next is less than

or equal to tolerance(), the parameter convergence criterion is satisfied. The default is

tolerance(1e-6).

nrtolerance(#) specifies the tolerance for the scaled gradient in the PNLS and GNLS optimiza-

tion steps. Convergence is declared when 𝑔(−𝐻−1)𝑔′ is less than nrtolerance(#), where 𝑔
is the gradient row vector and 𝐻 is the approximated Hessian matrix from the current iteration.

The default is nrtolerance(1e-5).

maximize options are [no]log, trace, showtolerance, nonrtolerance; see [R]Maximize.

lmeopts(lmeopts) controls the LME optimization step of the Lindstrom–Bates alternating algo-

rithm and the ML/REML optimization step of the GNLS alternating algorithm. lmeopts include any

of the following: iterate(#), ltolerance(#), tolerance(#), nrtolerance(#), and max-

imize options. The convergence of this step within each alternating iteration is declared when

nrtolerance() and one of tolerance() or ltolerance() are satisfied. This option is not

allowed with the NLS algorithm.

iterate(#) specifies the maximum number of iterations for the LME andML/REML optimization

steps of the alternating algorithms. The default is iterate(5).

ltolerance(#) specifies the tolerance for the log likelihood in the LME and ML/REML optimiza-

tion steps. When the relative change in the log likelihood from one LME or ML/REML iteration

to the next is less than or equal to ltolerance(), the log-likelihood convergence is satisfied.
The default is ltolerance(1e-7).

tolerance(#) specifies the tolerance for the random-effects and within-group error covariance
parameters. When the relative change in the vector of parameters from one LME or ML/REML

iteration to the next is less than or equal to tolerance(), the convergence criterion for covari-
ance parameters is satisfied. The default is tolerance(1e-6).

nrtolerance(#) specifies the tolerance for the scaled gradient in the LME and ML/REML op-

timization steps. Convergence is declared when 𝑔(−𝐻−1)𝑔′ is less than nrtolerance(#),
where 𝑔 is the gradient row vector and 𝐻 is the approximated Hessian matrix from the current

iteration. The default is nrtolerance(1e-5).

maximize options are [no]log, trace, gradient, showstep, hessian, showtolerance,
nonrtolerance; see [R]Maximize.

[no]log; see [R]Maximize.
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The following option is available with menl but is not shown in the dialog box:

coeflegend; see [R] Estimation options.

Remarks and examples
Remarks are presented under the following headings:

Introduction
Random-effects substitutable expressions

Substitutable expressions
Linear combinations
Linear forms versus linear combinations
Random effects
Multilevel specifications
Time-series operators
Summary

Specifying initial values
Two-level models
Testing variance components
Random-effects covariance structures
Heteroskedastic within-group errors
Restricted maximum likelihood
Pharmacokinetic modeling

Single-dose pharmacokinetic modeling
Multiple-dose pharmacokinetic modeling

Nonlinear marginal models
Three-level models
Obtaining initial values

Linearization approach to finding initial values
Graphical approach to finding initial values
Smart regressions approach to finding initial values
Examples of specifying initial values

Introduction
Nonlinear mixed-effects (NLME) models are models containing both fixed effects and random effects

where some of, or all, the fixed and random effects enter the model nonlinearly. They can be viewed as

a generalization of linear mixed-effects (LME) models (see [ME] mixed), in which the conditional mean

of the outcome given the random effects is a nonlinear function of the coefficients and random effects.

Alternatively, they can be considered as an extension of nonlinear regression models for independent

data (see [R] nl), in which coefficients may incorporate random effects, allowing them to vary across

different levels of hierarchy and thus inducing correlation within observations at the same level.

Why use NLME models? Can’t we use higher-order polynomial LME models or generalized linear

mixed-effects (GLME) models instead?

In principle, any smooth nonlinear function can be approximated by a higher-order polynomial. One

may argue that we can use an LME (see [ME]mixed) polynomial model and increase the order of the poly-

nomial until we get an accurate approximation of the desired nonlinear model. There are three problems

with this approach. First, parameters in NLMEmodels often have natural physical interpretations such as

half-life and limiting growth. This is not the case in LME polynomial models. For example, what is the

physical interpretation of the coefficient of time4? Second, NLMEmodels typically use fewer parameters

than the corresponding LME polynomial model, which provides a more parsimonious summarization of

the data. Third, NLME models usually provide better predictions outside the range of the observed data

than predictions based on LME higher-order polynomial models.
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GLME models (see [ME] meglm) are also nonlinear, but in the restricted sense that the conditional

mean response given random effects is a nonlinear function of the linear predictor that contains both

fixed and random effects, and only indirectly nonlinear in fixed and random effects themselves. That is,

the nonlinear function must be an invertible function of the linear predictor. However, many estimation

methods for GLME and NLME models are similar because random effects enter both models nonlinearly.

Population pharmacokinetics, bioassays, and studies of biological and agricultural growth processes

are just a few areas that use NLME models to analyze multilevel data such as longitudinal or repeated-

measures data. Comprehensive treatments of both methodology and history of NLME models may be

found in Davidian and Giltinan (1995), Vonesh and Chinchilli (1997), Demidenko (2013), and Pinheiro

and Bates (2000). Davidian and Giltinan (2003) provide an excellent summary.

Consider a sample of𝑀 subjects from a population of interest, where 𝑛𝑗 measurements, 𝑦1𝑗, . . . , 𝑦𝑛𝑗𝑗,

are observed on subject 𝑗 at times 𝑡1𝑗, . . . , 𝑡𝑛𝑗𝑗. By “subject”, we mean any distinct experimental unit,

individual, panel, or cluster with two or more correlated observations. The basic nonlinear two-level

model can be written as follows (in our terminology, a one-level NLME is just a nonlinear regression

model for independent data),

𝑦𝑖𝑗 = 𝜇 (x′
𝑖𝑗, β, u𝑗) + 𝜖𝑖𝑗 𝑖 = 1, . . . , 𝑛𝑗; 𝑗 = 1, . . . , 𝑀 (1)

where 𝜇(⋅) is a real-valued function that depends on a 𝑝 × 1 vector of fixed effects β, a 𝑞 × 1 vector of

random effects u𝑗, which are distributed as multivariate normal with mean 0 and variance–covariance

matrix 𝚺, and a covariate vector x𝑖𝑗 that contains both within-subject covariates x
𝑤
𝑖𝑗 and between-subject

covariates x𝑏
𝑗 . The 𝑛𝑗 × 1 vector of errors ε𝑗 = (𝜖1𝑗, . . . , 𝜖𝑛𝑗𝑗)

′
is assumed to be multivariate normal

with mean 0 and variance–covariance matrix 𝜎2𝚲𝑗, where depending on 𝚲𝑗, 𝜎2 is either a within-group

error variance 𝜎2
𝜖 or a squared scale parameter 𝜎2.

Parameters of NLME models often have scientifically meaningful interpretations, and research ques-

tions are formed based on them. To allow parameters to reflect phenomena of interest, (1) can be equiv-

alently formulated as a two-stage hierarchical model as follows:

Stage 1: Individual-level model 𝑦𝑖𝑗 = 𝑚 (x𝑤
𝑖𝑗, φ𝑗) + 𝜖𝑖𝑗 𝑖 = 1, . . . , 𝑛𝑗

Stage 2: Group-level model φ𝑗 = 𝑑 (x𝑏
𝑗, β, u𝑗) 𝑗 = 1, . . . , 𝑀

(2)

In stage 1, we model the response by using a function 𝑚(⋅), which describes within-subject behavior.
This function depends on subject-specific parameters φ𝑗’s, which have a natural physical interpretation,

and a vector of within-subject covariates x𝑤
𝑖𝑗. In stage 2, we use a known vector-valued function 𝑑(⋅)

to model between-subject behavior, that is, to model φ𝑗’s and to explain how they vary across subjects.

The 𝑑(⋅) function incorporates random effects and, optionally, a vector of between-subject covariates x𝑏
𝑗 .

The general idea is to specify a common functional form for each subject in stage 1 and then allow some

parameters to vary randomly across subjects in stage 2.

To further illustrate (1) and (2), we consider the soybean plants data (Davidian and Giltinan 1995), in

which we model the average leaf weight per soybean plant, 𝑦𝑖𝑗, in plot 𝑗 at 𝑡𝑖𝑗 days after planting. Let’s

first use (1):

𝑦𝑖𝑗 = 𝜇 (x′
𝑖𝑗, β, u𝑗) + 𝜖𝑖𝑗

=
𝛽1 + 𝑢1𝑗

1 + exp [− {𝑡𝑖𝑗 − (𝛽2 + 𝑢2𝑗)} / (𝛽3 + 𝑢3𝑗)]
+ 𝜖𝑖𝑗

Here β = (𝛽1, 𝛽2, 𝛽3)′
, u𝑗 = (𝑢1𝑗, 𝑢2𝑗, 𝑢3𝑗)

′
, and x𝑖𝑗 is simply 𝑡𝑖𝑗.
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Equivalently, we can use (2) to define our model,

Stage 1: 𝑦𝑖𝑗 = 𝑚 (x𝑤
𝑖𝑗, φ𝑗) + 𝜖𝑖𝑗

=
𝜙1𝑗

1 + exp{− (𝑡𝑖𝑗 − 𝜙2𝑗) /𝜙3𝑗}
+ 𝜖𝑖𝑗

Stage 2: 𝜙1𝑗 = 𝛽1 + 𝑢1𝑗

𝜙2𝑗 = 𝛽2 + 𝑢2𝑗

𝜙3𝑗 = 𝛽3 + 𝑢3𝑗

where x𝑤
𝑖𝑗 = 𝑡𝑖𝑗, φ𝑗 = (𝜙1𝑗, 𝜙2𝑗, 𝜙3𝑗)

′ = 𝑑 (x𝑏
𝑗, β, u𝑗) = β + u𝑗. A key advantage of (2) is the

interpretability. φ𝑗’s are parameters that characterize features of the trajectory. For example, 𝜙1𝑗 can be

interpreted as the asymptotic average leaf weight per soybean plant in plot 𝑗 when 𝑡𝑖𝑗 → ∞ and 𝜙2𝑗 as

the time at which half of 𝜙1𝑗 is reached; that is, if we set 𝑡𝑖𝑗 = 𝜙2𝑗, then 𝐸(𝑦𝑖𝑗) = 𝜙1𝑗/2. menl provides
both representations.

The random effects u𝑗 are not directly estimated (although they may be predicted) but instead are

characterized by the elements of 𝚺, known as variance components, which are estimated together with

the parameters of the within-group error variance–covariance matrix 𝜎2𝚲𝑗. Correlation among repeated

measures is induced either indirectly through the subject-specific random effects u𝑗 or directly through

specification of the within-subject covariance matrix 𝜎2𝚲𝑗. Several covariance structures are available

for 𝚺, similar to those allowed in mixed. In contrast to mixed, menl provides more flexible modeling
of the within-subject variance and correlation structures.

menl uses the following decomposition of the 𝚲𝑗 matrix,

𝚲𝑗 = S𝑗C𝑗S𝑗 (3)

where S𝑗 is diagonal with positive elements such that Var (𝜖𝑖𝑗) = 𝜎2[S𝑗]2𝑖𝑖 and C𝑗 is a correlation matrix

such that corr (𝜖𝑖𝑗, 𝜖𝑘𝑗) = [C𝑗]𝑖𝑘; [𝐴]𝑖𝑗 denotes the 𝑖𝑗th element of matrix 𝐴. Decomposition (3) of 𝚲𝑗
allows us to separately model the variance structure (heteroskedasticity) and the correlation structure by

using disjoint sets of parameters for C𝑗 and S𝑗. This is different from how mixed handles within-subject
correlation, where heteroskedasticity and correlation are determined by the type of the chosen residual

covariance structure. For convenience, menl accommodates the behavior of the mixed command for

specifying residual covariance structures via the rescovariance() option. The more flexible modeling
of the residual structures according to (3) is available via the resvariance() and rescorrelation()
options.

For LME models, because the random effects u𝑗’s are unobserved, inference about β and the covari-

ance parameters are based on the marginal likelihood obtained after integrating out the random effects.

Unlike LMEmodels, no closed-form solution is available because the random effects enter the model non-

linearly, making the integration analytically intractable in all but the simplest situations. There are two

principal methods proposed in the literature for fitting NLME models. One is to use an adaptive Gauss–

Hermite (AGH) quadrature to approximate the integral that appears in the expression of the marginal like-

lihood. The other one is to use the linearization method of Lindstrom and Bates (1990), also known as a

conditional first-order linearization method, which is based on a first-order Taylor-series approximation

of the mean function and essentially linearizes the mean function with respect to fixed and random ef-

fects. With theAGHmethod, the level of accuracy increases as the number of quadrature points increases

but at the expense of increasing computational burden. The linearization method is computationally ef-

ficient because it avoids the intractable integration, but the approximation cannot be made arbitrarily
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accurate. Despite its potential limiting accuracy, the linearization method has proven the most popular in

practice (Fitzmaurice et al. 2009, sec. 5.4.8). The linearization method of Lindstrom and Bates (1990),

with extensions from Pinheiro and Bates (1995), is the method of estimation in menl.

The linearization method uses a first-order Taylor-series expansion of the specified nonlinear mean

function to approximate it with a linear function of fixed and random effects. Thus an NLME model is

approximated by an LME model, in which the fixed-effects and random-effects design matrices involve

derivatives of the nonlinear mean function with respect to fixed effects (coefficients) and random effects,

respectively. As such, inference after the linearization method uses the computational machinery of the

LME models. For example, estimates of random effects are computed as best linear unbiased predictors

(BLUPs) of random effects from the approximating LME model. The accuracy of the inferential results

will depend on the accuracy of the linearization method in approximating the original NLME model. In

general, asymptotic inference for the NLME models based on the linearization method is only “approx-

imately asymptotic”, making it less accurate than the corresponding asymptotic inference for true LME

models. In practice, however, the linearization method was found to perform well in many situations (for

example, Pinheiro and Bates [1995]; Wolfinger and Lin [1997]; Plan et al. [2012]; and Harring and Liu

[2016]).

Both ML and REML estimation are supported by menl. The ML estimates are based on the usual

application of likelihood theory, given the distributional assumptions of the model. In small samples,

ML estimation generally leads to small-sample bias in the estimated variance components. The REML

method (Thompson 1962) reduces this bias by forming a set of linear contrasts of the response that do

not depend on the fixed effects β but instead depend only on the variance components to be estimated.

The likelihood is then formed based on the distribution of the linear contrasts, and standard MLmethods

are applied.

The next section describes how to specify nonlinear expressions containing random effects in menl.

Random-effects substitutable expressions
You define the nonlinear model to be fit by menl by using a random-effects substitutable ex-

pression, a substitutable expression that contains random effects. For example, exp({b}+{U[id]}),
{b1}/({b2}+{b3}*x+{U[id]}), and ({b1}+{U1[id]})/(1+{b2}*x+{c.x#U2[id]}) are a few ex-

amples of such expressions. We describe them in more detail below.

Substitutable expressions

Let’s first consider substitutable expressions without random effects. Substitutable expressions are

just like any other mathematical expressions involving scalars and variables, such as those you would

use with Stata’s generate command, except that the parameters to be estimated are bound in braces.
See [U] 13.2 Operators and [U] 13.3 Functions for more information on expressions.

For teaching purposes, we will start with simpler substitutable expressions that do not contain random

effects. Suppose that we wish to fit the model

𝑦𝑖𝑗 = 𝛼 (1 − 𝑒−(𝛽0+𝛽1𝑥1𝑖𝑗+𝛽2𝑥2𝑖𝑗)) + 𝜖𝑖𝑗

where 𝛼, 𝛽0, 𝛽1, and 𝛽2 are the parameters to be estimated and 𝜖𝑖𝑗 is an error term. We could simply type

. menl y = {a}*(1 - exp(-({b0}+{b1}*x1+{b2}*x2)))

Because a, b0, b1, and b2 are enclosed in braces, menl knows that they are parameters in the model.
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You can group several parameters together by assigning a group name (or equation name) to them.

Parameters with the same group name, lc in the example below, will be grouped together in the output
table:

. menl y = {a}*(1 - exp(-({lc:b0}+{lc:b1}*x1+{lc:b2}*x2)))

That is, parameters b0, b1, and b2 will appear together in the output table in the equation labeled lc.
Parameters without equation names will appear at the bottom of the output table.

Sometimes, it may be convenient to define subexpressions within the main expression. This can be

done inside the expression itself or by using the define() option. For example,

. menl y = {a}*(1 - exp(-{xb:})), define(xb: {lc:b0}+{lc:b1}*x1+{lc:b2}*x2)

defines the linear predictor of the exponent in the define() option with label xb and then refers to it
inside the exponent as {xb:}. You can define as many subexpressions as you like by using the define()
option repeatedly. Defining subexpressions is also useful for later predictions; see, for instance, exam-

ple 13.

The above is equivalent to

. menl y = {a}*(1 - exp(-{xb: {lc:b0}+{lc:b1}*x1+{lc:b2}*x2}))

Parameters {a}, {lc:b0}, {lc:b1}, and {lc:b2} are what we call “free parameters”, meaning that
they are not defined by a linear form, whichwe describe in the next section. Free parameters are displayed

with a forward slash in front of their names or their group names.

The general syntax for a free parameter is

{[ eqname: ] name}

Linear combinations

Nonlinear functions will often contain linear combinations of variables. Recall our nonlinear function

from Substitutable expressions:

𝑦𝑖𝑗 = 𝛼 (1 − 𝑒−(𝛽0+𝛽1𝑥1𝑖𝑗+𝛽2𝑥2𝑖𝑗)) + 𝜖𝑖𝑗

Instead of explicitly specifying the linear combination that appears in the exponent, as we did in the

previous section, we can use menl’s shorthand notation
. menl y = {a}*(1 - exp(-({lc: x1 x2})))

By specifying {lc:x1 x2}, you are telling menl that you are declaring a linear combination named lc
that is a function of two variables, x1 and x2. menl will create three parameters, named {lc: cons},
{lc:x1}, and {lc:x2}.

Although both specifications produce the same results, the shorthand specification is more convenient.

The general syntax for defining a linear combination is

{ eqname: varspec[ , xb noconstant ]}

where varspec includes a list of variables (varlist), a list of random-effects terms, or both.
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The xb option is used to distinguish between the linear combination that contains one variable and a
free parameter that has the same name as the variable and the same group name as the linear combination.

For example, {lc: x1, xb} is equivalent to {lc: cons} + {lc:x1}*x1, whereas {lc:x1} refers to

either a free parameter x1 with a group name lc or the coefficient of the x1 variable, if {lc:} has been

previously defined in the expression as a linear combination that involves variable x1; see examples
below. Thus the xb option indicates that the specification is a linear combination rather than a single

parameter to be estimated.

When you define a linear combination, a constant term is included by default (a mathematician would

argue that “affine combination” is the correct terminology!). The noconstant option suppresses the

constant.

Having defined a linear combination such as {lc:x1 x2}, you can refer to its individual coefficients
by using {lc:x1} and {lc:x2} or, more generally, {eqname:varname}. For example, suppose that we
want to fit the following model, where the coefficient of x1, 𝛽1, appears in two places in the expression:

𝑦𝑖𝑗 = 1
(1 + 𝛽1𝑥1𝑖𝑗 + 𝛽2𝑥2𝑖𝑗 + 𝛽3𝑥3𝑖𝑗)

exp{− (𝛼0 + 𝛼1𝑧𝑖𝑗) / (1 + 𝛽1𝑥4𝑖𝑗)} + 𝜖𝑖𝑗

We use {lc1: x1 x2 x3, noconstant} to specify the first linear combination, which appears in the
denominator outside the exponentiated expression, and then use {lc1:x1} to refer to 𝛽1 in the denomi-

nator inside the exponentiated expression. We also use the xb option, when we specify the second linear
combination that contains only one covariate z. Below is the full specification:

. menl y = 1/(1+{lc1: x1 x2 x3, noconstant})*exp(-{lc2: z, xb}/(1+{lc1:x1}*x4))

You may also refer to a “subset” of a previously defined linear combination. For example, let’s

modify our previous expression by substituting 𝛽1𝑥4𝑖𝑗 in the denominator in the exponent with the subset

𝛽1𝑥1𝑖𝑗 + 𝛽3𝑥3𝑖𝑗 of the first linear combination:

𝑦𝑖𝑗 = 1
(1 + 𝛽1𝑥1𝑖𝑗 + 𝛽2𝑥2𝑖𝑗 + 𝛽3𝑥3𝑖𝑗)

exp{− (𝛼0 + 𝛼1𝑧𝑖𝑗) / (1 + 𝛽1𝑥1𝑖𝑗 + 𝛽3𝑥3𝑖𝑗)} + 𝜖𝑖𝑗

The coefficients for variables x1 and x3 are the same in the denominators inside and outside the

exponent. We fit this model by typing

. menl y = 1/(1+{lc1: x1 x2 x3, nocons})* ///
exp(-{lc2: z, xb}/(1+{lc1: x1 x3, nocons}))

We used the same equation name, lc1, to constrain the coefficients to be the same between the two linear-
combination specifications. If we used a different equation name, say, lc3, in the last linear combination,
we would have specified 𝛽4𝑥1𝑖𝑗 +𝛽5𝑥3𝑖𝑗 instead of 𝛽1𝑥1𝑖𝑗 +𝛽3𝑥3𝑖𝑗 and estimated two extra parameters,

𝛽4 named {lc3:x1} and 𝛽5 named {lc3:x3}.

To refer to the entire linear combination that was already defined, you can simply refer to its name.

For example, if both denominators included the same linear combination, 𝛽1𝑥1𝑖𝑗 + 𝛽2𝑥2𝑖𝑗 + 𝛽3𝑥3𝑖𝑗, the

corresponding menl specification would be

. menl y = 1/(1+{lc1: x1 x2 x3, nocons})*exp(-{lc2: z, xb}/(1+{lc1:}))

Just like subexpressions, linear combinations can be defined in the define() option. For example,
the above is equivalent to

. menl y = 1/(1+{lc1:})*exp(-{lc2:}/(1+{lc1:})), define(lc1: x1 x2 x3, nocons) ///
define(lc2: z, xb)
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Linear forms versus linear combinations

As we mentioned in Linear combinations, the linear-combination specification is syntactically con-

venient. It can also be more computationally efficient when a linear combination is a linear form.

A linear combination is what we call a linear form as long as you do not refer to its coefficients or

any subset of the linear combination anywhere in the expression. Linear forms are beneficial for some

nonlinear commands such as nl because they make derivative computation faster and more accurate.

Although menl does not fully utilize the linear-form specification in its computations, it is still important

to learn to distinguish between linear forms and linear combinations.

For example, in Linear combinations, the first linear combination {lc:}, the linear combination
{lc2:}, and the linear combination {lc1:} in the last example are all linear forms. The linear combi-

nation {lc1:} in the examples where we referred to {lc1:x1} and {lc1:x1 x3} is not a linear form.

In contrast to free parameters, parameters of a linear form are displayed without forward slashes in the

output. Rather, they are displayed as parameters within an equation whose name is the linear combination

name. Parameters of linear combinations that are not linear forms are considered free parameters.

Random effects

So far, we have restricted our discussion to substitutable expressions that do not contain random

effects. Examples of random effects specified within the menl syntax are {U1[id]}, {U2[id1>id2]},
{c.x1#U3[id]}, and {2.f1#U4[id]}. These represent a random intercept at the id level, a random
intercept at the id2-within-id1 level, a random slope for the continuous variable x1, and a random slope

associated with the second level of the factor variable f1, respectively.

The general syntax for specifying random effects, respec, is provided below.

respec Description

{rename[levelspec]} Random intercepts rename at hierarchy levelspec

{c.varname#rename[levelspec]} Random coefficients rename for continuous variable varname

{#.fvvarname#rename[levelspec]} Random coefficients rename for the #th level of
factor variable fvvarname

rename is a random-effects name. It is a Stata name that starts with a capital letter. levelspec defines the

level of hierarchy and is described below.

levelspec Description

levelvar variable identifying the group structure for the random effect at that level

lv2 > lv1 two-level nesting: levels of variable lv1 are nested within lv2

lv3 > lv2 > lv1 three-level nesting: levels of variable lv1 are nested within lv2,
which is nested within lv3

. . . > lv3 > lv2 > lv1 higher-level nesting

You can equivalently specify levels in the opposite order, from the lowest level to the highest; for example, lv1 < lv2 < lv3,
but they will be displayed in the canonical order, from the highest level to the lowest.

Random effects can be specified within a linear-combination specification such as {lc u: x1 x2
U1[id1] U2[id2>id1]}. In this case, the curly braces around each random effect are not needed.

Let us illustrate several random-effects specifications with menl. In this section, we concentrate on
two-level nonlinear models; see Multilevel specifications for higher-level models.
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Suppose that we want to fit the following model:

𝑦𝑖𝑗 =
𝛼𝑧𝑖𝑗 + 𝑢0𝑗

1 + exp{− (𝛽0 + 𝛽1𝑥1𝑖𝑗)}
+ 𝜖𝑖𝑗

Compared with models we considered in previous sections, this model includes random effects or,

specifically, random intercepts 𝑢0𝑗. Suppose that these random intercepts correspond to the levels of the

id variable. Then, we can include them in our model by using {U0[id]}, where U0 will be their name.
. menl y = ({a}*z+{U0[id]})/(1+exp(-({b0}+{b1}*x1)))

Amore efficient specification is to use the linear-combination notation:

. menl y = {lc1: z U0[id], nocons}/(1+exp(-{lc2: x1, xb}))

The curly braces around U0[id] are removed when it is specified within a linear-combination specifica-
tion.

If you need to refer to the random-effects term again in the expression, you can simply use its name.

For example, suppose that our model includes the same random intercepts in both the numerator and the

denominator.

𝑦𝑖𝑗 =
𝛼𝑧𝑖𝑗 + 𝑢0𝑗

1 + exp{− (𝛽0 + 𝛽1𝑥1𝑖𝑗 + 𝑢0𝑗)}
+ 𝜖𝑖𝑗

We include random intercepts 𝑢0𝑗’s in the second linear combination by simply referring to their name,

U0:

. menl y = {lc1: z U0[id], nocons}/(1+exp(-{lc2: x1 U0}))

If instead of 𝑢0𝑗’s, we had a different set of random intercepts, 𝑣0𝑗’s, in the denominator, we would

need to specify a new set of random intercepts, say, V0[id], with menl:

. menl y = {lc1: z U0[id], nocons}/(1+exp(-{lc2: x1 V0[id]}))

The shorthand notation for referring to random effects only by name, that is, without the brackets and

the levelspec, is also useful when specifying the covariance() option, especially for multilevel random
effects with long-level specifications; see Multilevel specifications.

Let’s now see how to include random slopes. Consider the following extension of the first, simpler

model in this subsection:

𝑦𝑖𝑗 =
𝛼𝑧𝑖𝑗 + 𝑢0𝑗 + 𝑢1𝑗𝑧𝑖𝑗

1 + exp{− (𝛽0 + 𝛽1𝑥1𝑖𝑗)}
+ 𝜖𝑖𝑗

Here 𝑢1𝑗 is a random slope for a continuous variable z and is specified as {c.z#U1[id]} directly or
without curly braces within a linear-combination specification.

. menl y = {lc1: z U0[id] c.z#U1[id], nocons}/(1+exp(-{lc2: x1, xb}))
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We can also include random slopes for factor variables. To demonstrate this, let’s consider a different

nonlinear model for variety. Consider the model below, where binary variables 𝑥1𝑖𝑗 and 𝑥2𝑖𝑗 correspond

to the factor levels 1 and 2 of a factor variable 𝑥 that takes on values 0, 1, and 2, with 0 being the base

level.

𝑦𝑖𝑗 = 𝛼0 + 𝛼1𝑧1𝑖𝑗 − √𝑤2
𝑖𝑗 + exp (𝛽0 + 𝛽1𝑥1𝑖𝑗 + 𝛽2𝑥2𝑖𝑗 + 𝑢0𝑗 + 𝑢1𝑗𝑥1𝑖𝑗 + 𝑢2𝑗𝑥2𝑖𝑗) + 𝜖𝑖𝑗

There are three random-effects terms in this model: random intercepts 𝑢0𝑗, random slopes 𝑢1𝑗 for 𝑥1𝑖𝑗
(level 1 of 𝑥), and random slopes 𝑢2𝑗 for 𝑥2𝑖𝑗 (level 2 of 𝑥). In Stata, for a factor variable x, we can use
the factor-variable notation ([U] 11.4.3 Factor variables) to refer to its levels, 1.x for level 1 and 2.x
for level 2. So, to include the three random-effects terms in menl, we will use U0[id], 1.x#U1[id],
and 2.x#U2[id], respectively.

. menl y = {lc1: z1, xb} - sqrt(c.w#c.w + ///
exp({lc2: i.x U0[id] 1.x#U1[id] 2.x#U2[id]}))

In the above specification, we used the factor-variable notations i.x to include fixed effects for all levels
of x, except the base level, and c.w#c.w to include a square of w; see [U] 11.4.3 Factor variables for
details. The factor-variable specification i. or any other specification that refers to multiple levels of

a factor variable is not allowed when specifying random coefficients, because each level will typically

require a different set of random effects. For example, if we had specified i.x#U[id] in the above

example, we would have received an error.

Multilevel specifications

In Random effects, we focused on specifying substitutable expressions containing random effects for

two-level nonlinear mixed-effects models. Here we will consider higher-level models.

Suppose that we want to fit the following three-level nonlinear mixed-effects model,

𝑦𝑖𝑗𝑘 = 𝛽0 + 𝑢(3)
0𝑘 + 𝑢(2)

0𝑗𝑘 + cos{(𝛽1 + 𝑢(3)
1𝑘 ) 𝑥1𝑖𝑗𝑘} + 𝜖𝑖𝑗𝑘

where first-level observations, indexed by 𝑖, are nested within second-level groups, indexed by 𝑗, which
are nested within third-level groups, indexed by 𝑘.

There are three random-effects terms in this model: random intercepts, 𝑢(3)
0𝑘 , and random slopes for

𝑥1, 𝑢
(3)
1𝑘 , at the third level (idk) and random intercepts 𝑢(2)

0𝑗𝑘 at the second level (idj-nested-within-idk).
We specify random intercepts and random slopes for 𝑥1 at the highest hierarchical level just like we

did in Random effects for two-level models. Specifically, we can use U0[idk] and c.x1#U1[idk],
respectively. To specify random intercepts 𝑢(2)

0𝑗𝑘 at the idj-nested-within-idk level, we need to use one
of the levelspec specifications for two nested levels. For example, we can use UU0[idk>idj]. Below is

the full specification:

. menl y = {lc1: U0[idk] UU0[idk>idj]} + cos({lc2: x1 c.x1#U1[idk], noconstant})

We can also include a random slope of the x1 variable at the idj-within-idk level in the cosine

function by specifying c.x1#UU1[idk>idj] inside the cos() function.

. menl y = {lc1: U0[idk] UU0[idk>idj]} + ///
cos({lc2: x1 c.x1#U1[idk] c.x1#UU1[idk>idj], noconstant})

We can shorten the above specification by writing c.x1#U1[idk] c.x1#UU1[idk>idj] more com-
pactly as c.x1#(U1[idk] UU1[idk>idj]),
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. menl y = {lc1: U0[idk] UU0[idk>idj]} + ///
cos({lc2: x1 c.x1#(U1[idk] UU1[idk>idj]), noconstant})

Similarly, if we had a four-level model with, say, a random intercept at the idj-within-idk-within-idl
level, we could specify it as W[idl>idk>idj]; see levelspec for other specifications.

Time-series operators

You can use time-series operators in the specification of your nonlinear model (see [U] 11.4.4 Time-

series varlists) but with some exceptions described next. You can use time-series operators in the main

nonlinear specification <menlexpr> or any random-effects substitutable expression <resubexpr>. The

supported time-series operators include L. and L#., F. and F#., and D. and D#.. You cannot combine
time-series operators or use them with a list of variables. Also, you cannot combine time-series operators

with factor variables.

You can also include the lagged predicted mean function and lagged functions of model parameters

in your expressions. For brevity, we will refer to both types of lagged functions as lagged named expres-

sions. Lagged named expressions are useful, for instance, for fitting certain pharmacokinetic models;

see example 17 and example 18.

To include the lagged predicted mean function, you can use the specification L.{depvar:} or, equiv-

alently, L. yhat. (Do not confuse this with the lagged dependent variable specification L.depvar.) You
can specify the lagged predicted mean function only in the main nonlinear specification menlexpr. To

include a lagged function of model parameters, you can use the specification L.{name:}, where name

is the name of the previously defined function of model parameters. Such functions are typically de-

fined in the define() options. Only the one-period lag operator, L. or L1., is supported with named
expressions.

To use time-series operators, you must either tsset your data prior to executing menl or specify the
tsorder() option with menl. You must specify time and panel variables with tsset. When you use

the tsorder(varname) option, menl uses the time variable varname to determine the ordering for time-

series operators. menl creates a new temporary time variable that takes on values 1, 2, . . . in each panel

for the estimation sample. menl also creates the appropriate panel variable and uses the newly generated
variables with tsset. For two-level models, menl uses the specified level variable as the panel variable.
With more than two levels, menl creates the panel variable as a variable that takes on values 1, 2, . . . for
the groups formed by all level variables in the estimation sample. The generated panel and time variables

are labeled as <panel> and <time> in the output of tsset as displayed by menl.

When you use time-series operators with variables in the dataset, some of the observations are used

to initialize the series for those variables. For example, if you include a lagged variable varname𝑡−1
(L.varname) in your model, the value of varname in the first observation in each panel is used to initialize

the series; see [TS] tsset. But what happens when you include a lagged named expression for which there

is no existing variable in the dataset? If your named expression is a function of existing variables, the

values of those variables in the first observation (in each panel) will be used to compute an initial value

for the lagged named expression. For some models, a named expression can depend on its own lag; see

example 17 and example 18. In this case, you must specify the initial condition for it in the tsinit()
option. Note that you will always need to specify the tsinit() option for the lagged predicted mean
function. The tsinit() option may be repeated and may contain functions of variables and model

parameters. When you specify the tsinit() option, menl uses its value (or values in the first observation
of each panel) to initialize the corresponding lagged named expression. Just like with regular time-series

variables, the first observation in each panel will be excluded from the estimation sample whenever you

use lagged named expressions in the model.
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Summary

To summarize, here are a few rules to keep in mind when defining substitutable expressions.

1. Model parameters and random effects are bound in braces if specified directly in the expression:

{b0}, {U0[id]}, etc.

2. Model parameters can be assigned group names: {slopes:x1}, {slopes:x2}, etc.

3. Random-effects names must start with a capital letter as in {U0[id]}, {c.x#U1[id]},
{V0[id2>id1]}, {1.z#V1[id2>id1]}, etc.

4. The factor-variable specification i., as in {i.z#V1[id2>id1]}, or any other specification that
refers to multiple levels of a factor variable, as in {i(1/4).z#V1[id2>id1]}, is not allowed
when specifying random coefficients.

5. Linear combinations of variables can be included using the specification

{eqname:varlist[ , xb noconstant ]}
For example, {price: mpg weight i.rep78} and {lc: x1 x2, noconstant}.

6. Random effects can be specified within a linear combination, in which case they should be

included without curly braces, for example, {lc u: x1 x2 U[id]}.

7. To specify a linear combination that contains only one variable, use the xb option, for example,
{lc: x1, xb}.

8. To refer to the previously defined linear combination again in the expression, simply use its

name {eqname:}, for example, {lc:} and {lc u:}.

9. You can refer to individual parameters of the linear combination by using {eqname: cons}
and {eqname:varname}, for example, {price: cons} and {price:weight}.

10. You can refer to a “subset” of the previously defined linear combination by using

{eqname:subset}, where subset is a subset of the variables from varlist used to define eqname,

as in {price: mpg weight}. To refer to the subset containing only one variable, use the xb
option, as in {price: weight, xb}. If a linear combination contains only one random-effects
term, the xb option is implied.

11. To refer to the previously defined random effects again in the expression or in the

covariance() option, simply use their names, such as {U0} and {U1}.

12. You can define subexpressions, including linear combinations, inside the main expression or in

the define() option, which can be repeated. For example,
. menl y = {numer:}/{denom:}, define(numer: z U0[id]) ///

define(denom:1+exp(-{lc: x1, xb}))

13. Specify linear formswhenever possible for faster andmore accurate computation of derivatives;

see Linear forms versus linear combinations.

14. Model parameters that are not defined by linear forms are considered free parameters. They are

included in the output with a forward slash in front of their names or group names and displayed

after linear forms in the estimation table.
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Specifying initial values
By default, menl uses the EM algorithm to obtain initial values, but you may often need to specify

your own. You specify your own initial values in the initial() option. For example, specifying the
initial(a 1.1 b -2) option with menl initializes parameter {a} to 1.1 and parameter {b} to −2.

When you specify your own initial values, they are used for initialization, and the EM algorithm is

not performed. When you specify initial values for only a subset of model parameters, the remaining

parameters are initialized with some predetermined values such as zeros for fixed-effects parameters and

correlations and ones for variances. You can specify the iterate(0) option to see the initial values that
will be used by menl in the optimization.

Often, you may have good initial values for fixed-effects parameters but not for random-effects pa-

rameters. In this case, you can specify initial()’s fixed suboption to supply your own fixed-effects
parameters, but use the EM algorithm to obtain initial values for the random-effects parameters.

There are three ways in which you can use the initial(initial values) option: you can specify a
vector of values, a list of values, or values for individual parameters and groups of parameters.

Specifically, initial values is one of the following:

vectorname [ , skip copy fixed ]
# [ # ] [ ... ], copy
paramlist[ = ]# [ paramlist[ = ]# [ ... ] ] [ , fixed ]

skip specifies that any parameters found in the specified initialization vector, vectorname, that are not

also found in the model be ignored. The default action is to issue an error message.

copy specifies that the initial values be copied into the initialization vector without checking for valid
column names. copy must be specified when initial values are supplied as a list of numbers.

fixed specifies that initial estimates are being supplied for the fixed effects only and that menl should still
perform the EM algorithm to refine initial values for variance components. The specified initial values

are used for fixed-effects parameters during the EM algorithm. If you omit fixed, menl presumes
that you are specifying starting values for all parameters in e(b), and the EM algorithm will not be

performed.

Examples of paramlist are param, {param}, {param1} {param2}, {param1 param2},
{grp:param1} {grp:param2} {grp:param3}, {grp:param1 param2}, and {grp:}.

Let’s describe each specification in more detail. You can specify the name of a vector containing

the initial values, say, initial(b0). Vector b0 should be properly labeled with labels found in column
names of e(b), unless you specify the copy option. A properly labeled vector can have fewer elements

than e(b) or, if skip is specified, even more elements. A vector without labels must be of the same

dimension as e(b).

Alternatively, you can supply a list of numbers to initial(), in which case copymust be specified.
The list of numbers should be of length equal to the dimension of e(b). For example, if e(b) has

four parameters and you type initial(1.1 0 3 -2, copy), then the four coefficients in e(b) will be
initialized to 1.1, 0, 3, and −2, respectively. If instead you specify, for example, only three initial values

in your list, an error will be issued.

Finally, you can initialize parameters by referring to their names. You can specify a parameter name,

its initial value, another parameter name, its initial value, and so on, for example, initial(a 1.1 b -
2). You can also assign the same initial value to a group of parameters. For example, initial({a b c}
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1) will initialize parameters {a}, {b}, and {c} to 1 and initial({lc:x1 x2 cons} 0) will initialize
{lc:x1}, {lc:x2}, and {lc: cons} to 0. You can assign the same initial value to all parameters with
the same group name. For example, we can shorten the previous specification to initial({lc:} 0).

Depending on the situation, it may also be beneficial to specify initial values for the NLS algorithm

used by menl to obtain starting values for the EM algorithm. These initial values can be specified in the

parameter definition such as {a=0.5}, in which case the NLS algorithm used during the initialization will

use 0.5 as the starting value for parameter a instead of the default 0. Such initialization is particularly
useful for parameters used in the denominators for which zero values may lead to an undefined value of

the mean function.

See Examples of specifying initial values and Obtaining initial values for examples.

Two-level models
The sole purpose of this section and its examples is to highlight the syntax of menl and make you fa-

miliar with how to specify substitutable expressions in menl and with its output. Also see an introductory
example in Nonlinear models in [ME] me.

We will use the data from the Longitudinal Study of Unicorn Health in Zootopia, which contain the

brain weight (weight) of 30 newborn male unicorns and 30 newborn female unicorns. Measurements

were collected at 13 occasions every 2 months over the first 2 years after birth (time). Based on previous
studies, a model for unicorn brain shrinkage is believed to be

weight𝑖𝑗 = 𝛽1 + (𝛽2 − 𝛽1) exp (−𝛽3time𝑖𝑗) + 𝜖𝑖𝑗 𝑖 = 1, 2, . . . , 13; 𝑗 = 1, 2, . . . , 60

Parameter 𝛽1 represents the average brain weight of unicorns as time𝑖𝑗 increases to infinity. Param-

eter 𝛽2 is the average brain weight at birth (at time𝑖𝑗 = 0), and 𝛽3 is a scale parameter that determines

the rate at which the average brain weight of unicorns approaches the asymptotic weight 𝛽1 (decay rate).

This model can be fit with the nl command; see [R] nl.

We will start with a simple two-level model in which we allow the asymptote parameter 𝛽1 to vary

between unicorns by replacing 𝛽1 in the above equation with 𝛽1 + 𝑢0𝑗,

weight𝑖𝑗 = 𝛽1 + 𝑢0𝑗 + (𝛽2 − 𝛽1 − 𝑢0𝑗) exp (−𝛽3time𝑖𝑗) + 𝜖𝑖𝑗 (4)

where 𝛽1, 𝛽2, and 𝛽3 are fixed-effects parameters to be estimated and 𝑢0𝑗 is a random intercept at the

unicorn, id, level that follows a normal distribution with mean 0 and variance 𝜎2
𝑢.

Equivalently, the model defined by (4) can be written as a two-stage model,

weight𝑖𝑗 = 𝜙1𝑗 + (𝜙2𝑗 − 𝜙1𝑗) exp (−𝜙3𝑗time𝑖𝑗) + 𝜖𝑖𝑗 (5)

with the following stage 2 specification:

𝜙1𝑗 = 𝛽1 + 𝑢0𝑗

𝜙2𝑗 = 𝛽2

𝜙3𝑗 = 𝛽3

(6)

Parameters 𝜙1𝑗, 𝜙2𝑗, and 𝜙3𝑗 now describe the behavior of the 𝑗th unicorn. For example, 𝜙1𝑗 represents

the brain weight of the 𝑗th unicorn as time𝑖𝑗 increases to infinity.
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Example 1: Simple two-level model
Let’s use menl to first fit a single-equation model defined by (4), described above.

. use https://www.stata-press.com/data/r19/unicorn
(Brain shrinkage of unicorns in the land of Zootopia)
. menl weight = {b1}+{U0[id]}+({b2}-{b1}-{U0[id]})*exp(-{b3}*time)
Obtaining starting values by EM:
Alternating PNLS/LME algorithm:
Iteration 1: Linearization log likelihood = -56.97576
Computing standard errors:
Mixed-effects ML nonlinear regression Number of obs = 780
Group variable: id Number of groups = 60

Obs per group:
min = 13
avg = 13.0
max = 13

Linearization log likelihood = -56.97576

weight Coefficient Std. err. z P>|z| [95% conf. interval]

/b1 4.707954 .1414511 33.28 0.000 4.430715 4.985193
/b2 8.089432 .0260845 310.12 0.000 8.038307 8.140556
/b3 4.13201 .0697547 59.24 0.000 3.995293 4.268726

Random-effects parameters Estimate Std. err. [95% conf. interval]

id: Identity
var(U0) 1.189809 .2180036 .8308359 1.703881

var(Residual) .0439199 .0023148 .0396095 .0486995

Notes:

1. The response variable weight is specified on the left-hand side of the equality sign, and parameters
to be estimated are enclosed in curly braces {b1}, {b2}, and {b3} on the right-hand side.

2. By typing {U0[id]}, we specified a random intercept at the level identified by the group variable id,
that is, the unicorn level (level two).

3. The estimation log consists of three parts:

a. A set of EM iterations used to refine starting values. By default, the iterations themselves are not

displayed, but you can display them by using the emlog option. NLME models may often have

multiple solutions and converge to a local maximum. It is thus important to try different initial

values to investigate the existence of multiple solutions and the convergence to a global maximum;

see Obtaining initial values.

b. Aset of iterations displaying the value of the linearization log likelihood from the Lindstrom–Bates

algorithm or alternating algorithm. The term “linearization” reflects the fact that the reported

log likelihood corresponds to the linear mixed-effects model obtained after linearization of the

specified nonlinear mean function with respect to fixed and random effects. See Inference based

on linearization and Stopping rules for details about the algorithm.
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c. The message “Computing standard errors”. This is just to inform you that menl has finished its
iterative maximization and is now reparameterizing the variance components (see Methods and

formulas) to their natural metric and computing their standard errors. If you are interested only in

the fixed-effects estimates, you can use the nostderr option to bypass this step.

4. The output title, “Mixed-effects ML nonlinear regression”, informs us that our model was fit using

ML, the default. For REML estimates, use the reml option.

5. The header information is similar to that of the mixed command, but unlike mixed, menl in general
does not report a model 𝜒2 statistic in the header because a test of the joint significance of all fixed-

effects parameters (except the constant term) may not be relevant in a nonlinear model.

6. The first estimation table reports the fixed effects. We estimate 𝛽1 = 4.71, 𝛽2 = 8.09, and 𝛽3 = 4.13.

Although 𝑧 tests against zeros are reported automatically for all fixed-effects parameters, as part of
standard estimation output, they may not always be of interest or even appropriate for parameters

of nonlinear models. You can use the test command ([R] test) to test hypotheses of interest or

reparameterize your model so that the tests of parameters against zeros are meaningful.

7. The second estimation table shows the estimated variance components. The first section of the table

is labeled id: Identity. In general, this means that our model includes random effects at the id
(unicorn) level and that their variance–covariance matrix, 𝚺, is the identity matrix (all random effects

have the same variance). In our example, because we have only one random effect, 𝑢0𝑗, the random-

effect covariance structure is irrelevant, and the variance of the random intercept, 𝜎2
𝑢, labeled as

var(U0) in the output, is estimated as 1.19 with standard error 0.22.

8. The row labeled var(Residual) displays the estimated overall error variance or variance of the error
term; that is, V̂ar (𝜖𝑖𝑗) = 𝜎̂2

𝜖 = 0.044.

Example 2: Two-level model as a two-stage model, using the define() option
The model from example 1 can also be specified as a two-stage model, as defined by (5) and (6), by

using the define() option. The define() option is particularly useful when you have a complicated
nonlinear expression, and you would like to break it down into smaller pieces. Parameters of interest that

are functions of other parameters can be defined using the define() option. This will make it easier to
predict them for each subject after estimation; see [ME] menl postestimation.

Below we specify the asymptote parameter, 𝜙1𝑗, by using define(). The colon (:) in {phi1:} in-

structs menl that phi1will be specified as a substitutable expressionwithin the define() option. Param-
eters {phi2} and {phi3} are simple free parameters and thus do not need to be specified in define().
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. menl weight = {phi1:}+({phi2}-{phi1:})*exp(-{phi3}*time),
> define(phi1: {b1}+{U0[id]})
Obtaining starting values by EM:
Alternating PNLS/LME algorithm:
Iteration 1: Linearization log likelihood = -56.97576
Computing standard errors:
Mixed-effects ML nonlinear regression Number of obs = 780
Group variable: id Number of groups = 60

Obs per group:
min = 13
avg = 13.0
max = 13

Linearization log likelihood = -56.97576
phi1: {b1}+{U0[id]}

weight Coefficient Std. err. z P>|z| [95% conf. interval]

/b1 4.707954 .1414511 33.28 0.000 4.430715 4.985193
/phi2 8.089432 .0260845 310.12 0.000 8.038307 8.140556
/phi3 4.13201 .0697547 59.24 0.000 3.995293 4.268726

Random-effects parameters Estimate Std. err. [95% conf. interval]

id: Identity
var(U0) 1.189809 .2179903 .830854 1.703844

var(Residual) .0439199 .0023148 .0396095 .0486995

The results are identical to those obtained in example 1, but the estimation table now has a legend that

lists the expression phi1 defined in the model. We can suppress this legend by specifying the nolegend
option.

We could have defined phi1 directly in the main expression instead of in the define() option,

. menl weight = {phi1:{b1}+{U0[id]}}+({phi2}-{phi1:})*exp(-{phi3}*time)
(output omitted )

but by using the define() option, we simplified the main expression.

Example 3: Two-level model containing covariates
Reducing brain weight loss has been an active research area in Zootopia for the past two decades, and

scientists believe that consuming rainbow cupcakes right after birth may help slow down brain shrinkage.

Recall that the scale parameter 𝜙3𝑗 determines the rate at which the brain weight of the 𝑗th unicorn de-
creases to its asymptotic value 𝜙1𝑗. Hence, covariate cupcake, which represents the number of rainbow
cupcakes consumed right after birth, is added to the equation of 𝜙3𝑗. Also, we would like to investigate

whether the asymptote, 𝜙1𝑗, is gender specific, so we include the factor variable female in the equation
for 𝜙1𝑗. female𝑗 is 1 if the 𝑗th unicorn is a female and 0 otherwise.
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The stage 2 specification of the model defined by (5) becomes

𝜙1𝑗 = 𝛽10 + 𝛽11female𝑗 + 𝑢0𝑗

𝜙2𝑗 = 𝛽2

𝜙3𝑗 = 𝛽30 + 𝛽31cupcake𝑗

(7)

The define() option can be repeated, so we specify a separate define() option for 𝜙1𝑗, 𝜙2𝑗, and

𝜙3𝑗. We could have left 𝜙2𝑗 as a free parameter {phi2} in our specification, but we wanted to closely
match the stage 2 specification (7).

. menl weight = {phi1:}+({phi2:}-{phi1:})*exp(-{phi3:}*time),
> define(phi1: {b10}+{b11}*1.female+{U0[id]})
> define(phi2: {b2})
> define(phi3: {b30}+{b31}*cupcake)
Obtaining starting values by EM:
Alternating PNLS/LME algorithm:
Iteration 1: Linearization log likelihood = -29.014988
Computing standard errors:
Mixed-effects ML nonlinear regression Number of obs = 780
Group variable: id Number of groups = 60

Obs per group:
min = 13
avg = 13.0
max = 13

Linearization log likelihood = -29.014988
phi1: {b10}+{b11}*1.female+{U0[id]}
phi2: {b2}
phi3: {b30}+{b31}*cupcake

weight Coefficient Std. err. z P>|z| [95% conf. interval]

/b10 4.072752 .1627414 25.03 0.000 3.753785 4.39172
/b11 1.264407 .2299723 5.50 0.000 .8136694 1.715144
/b2 8.088102 .0255465 316.60 0.000 8.038032 8.138172

/b30 4.706926 .1325714 35.50 0.000 4.44709 4.966761
/b31 -.2007309 .0356814 -5.63 0.000 -.2706651 -.1307966

Random-effects parameters Estimate Std. err. [95% conf. interval]

id: Identity
var(U0) .7840578 .1438924 .5471838 1.123474

var(Residual) .0420763 .0022176 .0379468 .0466551

In the table legend, /b10 and /b11 correspond, respectively, to the constant term and coefficient of

1.female in the equation for 𝜙1𝑗. /b2 is 𝜙2𝑗, and /b30 and /b31 correspond, respectively, to the

constant term and coefficient for cupcake in the equation for 𝜙3𝑗.

Based on our results, consuming rainbow cupcakes after birth indeed slows down brain shrinkage:

/b31 is roughly −0.2 with a 95% CI of [−0.271, −0.131].
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Example 4: Specifying linear combinations
Amore convenient way to specify the model in example 3 is to use linear-combination specifications;

see Random-effects substitutable expressions.

For example, define(phi1: {b10}+{b11}*1.female+{U0[id]}) can be replaced with

define(phi1: i.female U0[id]). menl knows that we are defining 𝜙1𝑗 as a linear combina-

tion of i.female and U0[id] and thus will create a constant term and a coefficient for each level of

factor variable female and will use a coefficient of 1 for any random effect. Because female has

only two levels, menl will create two coefficients for 0b.female and 1.female, respectively, but will
constrain the coefficient of the base level, level 0, to be 0.

We now fit our model by using linear-combination specifications within the define() options. We

explain the use of the second and third define() specifications following estimation.

. menl weight = {phi1:}+({phi2:}-{phi1:})*exp(-{phi3:}*time),
> define(phi1: i.female U0[id])
> define(phi2: _cons, xb)
> define(phi3: cupcake, xb)
Obtaining starting values by EM:
Alternating PNLS/LME algorithm:
Iteration 1: Linearization log likelihood = -29.014988
Computing standard errors:
Mixed-effects ML nonlinear regression Number of obs = 780
Group variable: id Number of groups = 60

Obs per group:
min = 13
avg = 13.0
max = 13

Wald chi2(2) = 61.78
Linearization log likelihood = -29.014988 Prob > chi2 = 0.0000

phi1: i.female U0[id]
phi3: cupcake, xb

weight Coefficient Std. err. z P>|z| [95% conf. interval]

phi1
female

female 1.264407 .2299723 5.50 0.000 .8136695 1.715144
_cons 4.072752 .1627414 25.03 0.000 3.753785 4.39172

phi2
_cons 8.088102 .0255465 316.60 0.000 8.038032 8.138172

phi3
cupcake -.2007309 .0356814 -5.63 0.000 -.2706651 -.1307966
_cons 4.706926 .1325714 35.50 0.000 4.44709 4.966761

Random-effects parameters Estimate Std. err. [95% conf. interval]

id: Identity
var(U0) .7840578 .1438918 .5471847 1.123472

var(Residual) .0420763 .0022176 .0379468 .0466551
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By using linear-combination specifications within the define() options, we improved the readability of
the coefficient table. For example, it is now clear that cons in the equation labeled phi3 corresponds
to the constant term in the equation for 𝜙3𝑗. This term was labeled /b30 previously.

Notes:

1. The define() option interprets its specification as a random-effects substitutable expression, so you
do not need to specify the curly braces ({}) around the specification.

2. All rules for random-effects substitutable expressions apply to the specifications within define().

3. Following one of the rules for random-effects substitutable expressions, we used the xb option within
define()s for phi2 and phi3, because their linear combinations contained only one term: cons
for phi2 and cupcake for phi3.

4. Specification define(phi2: cons, xb) is the same as define(phi2:, xb). In other words,

cons is implied with any linear combination, unless the noconstant option is specified. We chose

to include cons directly for clarity.

5. We could have used a free parameter {phi2} instead of the linear combination {phi2: cons, xb},
but we wanted to preserve the order in which phi1, phi2, and phi3 appear in the estimation table.
See example 5, where we specify 𝜙2𝑗 as a free parameter {phi2}.

6. In the presence of linear combinations, menl reports a joint test of significance of all coefficients

(except the constant term) across all linear combinations.

7. Linear combinations containing only a constant such as {phi2:} are not listed in the table expression
legend for brevity.

Example 5: Including random coefficients
In previous examples, we only illustrated how to specify random intercepts such as {U0[id]}, and

it is bad karma to end a unicorn story without showing how to specify random coefficients or random

slopes.

Continuing with our model as defined by (5) and (7), let’s suppose that the equation for the brain-

weight scale parameter, 𝜙3𝑗, is as follows:

𝜙3𝑗 = 𝛽30 + (𝛽31 + 𝑢1𝑗)cupcake𝑗

We incorporated a unicorn-specific random slope for variable cupcake. The random slope, 𝑢1𝑗, for

a continuous variable cupcake can be specified in menl as c.cupcake#U1[id], and by default, menl
assumes that it is independent of the random intercept, 𝑢0𝑗. (See example 9 for specifying other random-

effects covariance structures.)



menl — Nonlinear mixed-effects regression 247

. menl weight = {phi1:}+({phi2}-{phi1:})*exp(-{phi3:}*time),
> define(phi1: i.female U0[id])
> define(phi3: cupcake c.cupcake#U1[id])
Obtaining starting values by EM:
Alternating PNLS/LME algorithm:
Iteration 1: Linearization log likelihood = 165.41751
Iteration 2: Linearization log likelihood = 165.42008
Iteration 3: Linearization log likelihood = 165.42011
Iteration 4: Linearization log likelihood = 165.4201
Computing standard errors:
Mixed-effects ML nonlinear regression Number of obs = 780
Group variable: id Number of groups = 60

Obs per group:
min = 13
avg = 13.0
max = 13

Wald chi2(2) = 46.70
Linearization log likelihood = 165.4201 Prob > chi2 = 0.0000

phi1: i.female U0[id]
phi3: cupcake c.cupcake#U1[id]

weight Coefficient Std. err. z P>|z| [95% conf. interval]

phi1
female

female 1.320623 .2215707 5.96 0.000 .8863522 1.754894
_cons 4.006823 .1568268 25.55 0.000 3.699448 4.314198

phi3
cupcake -.219661 .0659984 -3.33 0.001 -.3490155 -.0903066
_cons 4.771466 .1128421 42.28 0.000 4.5503 4.992633

/phi2 8.087655 .0179406 450.80 0.000 8.052492 8.122818

Random-effects parameters Estimate Std. err. [95% conf. interval]

id: Independent
var(U0) .727464 .1337152 .507402 1.042968
var(U1) .1258914 .0309569 .0777471 .2038487

var(Residual) .0208202 .0011403 .018701 .0231795

In addition to the overall error variance and the random-intercept variance, we now have a random-slope

variance, which is labeled var(U1) in the output. In this example, we also specified parameter 𝜙2𝑗 as a

free parameter {phi2} instead of a linear combination as in example 4. As we mentioned in Summary,
free parameters are displayed after linear combinations, so phi2 is listed last in the estimation table.

Previous studies of unicorns considered a model that also incorporated gender-specific variation be-

tween unicorns in asymptotic weight 𝜙1𝑗,

𝜙1𝑗 = 𝛽10 + 𝑢0𝑗 + (𝛽11 + 𝑢2𝑗)female𝑗

but found no statistical evidence of such variation.
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If we wanted to verify this for our data, we could have fit the following model:

. menl weight = {phi1:}+({phi2}-{phi1:})*exp(-{phi3:}*time), ///
define(phi1: i.female U0[id] 1.female#U2[id]) ///
define(phi3: cupcake c.cupcake#U1[id])

Compared with our previous specification, we included a new term in the define() option for phi1—a

random slope for level 1 of the factor variable female, 1.female#U2[id]. To include random slopes

for a factor variable, we must specify random effects for each level, except the base level, of the factor

variable. The specification i.fvvarname for referring to all levels of a factor variable is not allowed in

the context of random effects, because a different set of random effects must be defined for each level.

For example, if we specified i.female#U2[id] in our example, we would have received an error.

To summarize:

1. Use {name} to define free parameters such as {b1}.

2. Use, for example, {U0[id]} to define random intercepts at the id level, {c.varname#U1[id]} to
define random slopes for continuous variable varname at the id level, and {#.fvvarname#U1[id]}
for each level #, except the base level, of variable fvvarname to include random slopes for factor

variable fvvarname. The specification {i.fvvarname#U1[id]} is not allowed.

3. Use linear-combination specifications whenever possible. Do not use {} around random effects when

they are specified within a linear combination.

4. Usemultiple define() options to specify parameters of interest that are functions of other parameters,
and use linear-combination specifications within define() whenever possible.

5. Use the xb option within a linear combination or within define() whenever you specify one vari-
able such as define(phi1: cupcake, xb), one random effect such as {phi2: U0[id], xb}, or a
constant-only linear combination such as {phi2: cons, xb} or {phi2: , xb}. When you specify

the xb option, the above specifications are interpreted by menl, respectively, as a linear combination
{phi1: cons}+{phi1:cupcake}*cupcake, a linear combination {phi: cons}+{U0[id]}, and a
constant term {phi2: cons}.

6. Unicorns do exist in our world, they are just gray, fat, and called rhinos.

Testing variance components
Consider data on the intensity of 23 large earthquakes in western North America between 1940 and

1980 analyzed originally by Joyner and Boore (1981) and then also by Davidian and Giltinan (1995,

sec. 11.4). The objective of the study was to model the maximum horizontal acceleration (in g units),

accel, taken at the 𝑖th measuring station for the 𝑗th earthquake, as a function of the magnitude of the
quake on the Richter scale, richter, and the distance (in km) of the measuring station from the quake

epicenter, distance. We are also interested in the possible effect of the soil type soil, soil versus rock,
at a given measuring station on acceleration. The results of this study are useful to understand the nature

of the damage caused by a particular earthquake and to determine the location for sensitive installations

such as nuclear facilities.

Let’s consider one of the models studied by Davidian and Giltinan (1995) for these data,

log10(accel𝑖𝑗) = 𝜙1𝑗− log10
√distance2

𝑖𝑗 + exp (𝜙2𝑗)−𝜙3𝑖𝑗√distance2
𝑖𝑗 + exp (𝜙2𝑗)+𝜖𝑖𝑗 (8)
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where

𝜙1𝑗 = 𝛽0 + 𝛽1richter𝑗 + 𝑢1𝑗

𝜙2𝑗 = 𝛽2

𝜙3𝑖 = 𝛽3 + 𝑢3𝑗

(9)

and

u𝑗 = [𝑢1𝑗
𝑢3𝑗

] ∼ 𝑁(0, 𝚺), diagonal 𝚺 = [𝜎2
𝑢1

0

0 𝜎2
𝑢3

], and 𝜖𝑖𝑗 ∼ 𝑁(0, 𝜎2
𝜖 ) (10)

Example 6: Fitting an NLME model for the earthquake data
Let’s fit the model defined by (8), (9), and (10) by using menl.

. use https://www.stata-press.com/data/r19/earthquake
(Earthquake intensity (Joyner and Boore, 1981))
. menl laccel = {phi1:}-log10(sqrt(c.distance#c.distance+exp({phi2})))
> -{phi3:}*sqrt(c.distance#c.distance+exp({phi2})),
> define(phi1: richter U1[quake]) define(phi3: U3[quake], xb)
Obtaining starting values by EM:
Alternating PNLS/LME algorithm:
Iteration 1: Linearization log likelihood = 2.4115811
Iteration 2: Linearization log likelihood = 2.4075141
Iteration 3: Linearization log likelihood = 2.407347
Iteration 4: Linearization log likelihood = 2.4073424
Iteration 5: Linearization log likelihood = 2.4073412
Iteration 6: Linearization log likelihood = 2.4073411
Computing standard errors:
Mixed-effects ML nonlinear regression Number of obs = 182
Group variable: quake Number of groups = 23

Obs per group:
min = 1
avg = 7.9
max = 38

Wald chi2(1) = 26.26
Linearization log likelihood = 2.4073411 Prob > chi2 = 0.0000

phi1: richter U1[quake]
phi3: U3[quake], xb

laccel Coefficient Std. err. z P>|z| [95% conf. interval]

phi1
richter .231002 .0450804 5.12 0.000 .1426461 .319358
_cons -.8836537 .2826255 -3.13 0.002 -1.437589 -.329718

phi3
_cons .004575 .0014192 3.22 0.001 .0017935 .0073566

/phi2 4.063075 .4023386 10.10 0.000 3.274506 4.851644
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Random-effects parameters Estimate Std. err. [95% conf. interval]

quake: Independent
var(U1) .0056676 .0073404 .0004477 .0717519
var(U3) .000013 8.42e-06 3.66e-06 .0000463

var(Residual) .0461647 .0054421 .0366409 .0581639

We also store our estimates for later use:

. estimates store E1

By default, menl assumes that the random effects 𝑢1𝑗 and 𝑢3𝑗 are independent, so there is no need to

specify the covariance() option in this case. In other words, omitting the covariance() option is

equivalent to specifying covariance(U1 U3, independent).

Example 7: Likelihood-ratio test for variance components
Davidian and Giltinan (1995) did not include any random effects in the model for the 𝜙2𝑗 parameters.

Let’s check whether the random effects are needed in the equations for 𝜙1𝑗 and 𝜙3𝑗 parameters in (9).

One simple way to assess whether a random effect associated with a certain 𝜙𝑗 can be omitted, is to

examine its coefficient of variation (CV), the ratio of the standard deviation to the mean. Let’s compute

the CV for 𝜙3𝑗. For convenience, let’s redisplay the results from example 6 as standard deviations for

variance components.



menl — Nonlinear mixed-effects regression 251

. menl, stddeviations
Mixed-effects ML nonlinear regression Number of obs = 182
Group variable: quake Number of groups = 23

Obs per group:
min = 1
avg = 7.9
max = 38

Wald chi2(1) = 26.26
Linearization log likelihood = 2.4073411 Prob > chi2 = 0.0000

phi1: richter U1[quake]
phi3: U3[quake], xb

laccel Coefficient Std. err. z P>|z| [95% conf. interval]

phi1
richter .231002 .0450804 5.12 0.000 .1426461 .319358
_cons -.8836537 .2826255 -3.13 0.002 -1.437589 -.329718

phi3
_cons .004575 .0014192 3.22 0.001 .0017935 .0073566

/phi2 4.063075 .4023386 10.10 0.000 3.274506 4.851644

Random-effects parameters Estimate Std. err. [95% conf. interval]

quake: Independent
sd(U1) .0752832 .0487517 .0211582 .2678655
sd(U3) .0036085 .0011673 .0019142 .0068026

sd(Residual) .2148596 .0126644 .1914181 .241172

The stddeviations option specifies that menl display random-effects and error standard deviations

instead of variances. It will also display correlations instead of covariances whenever they are in the

model. Because random-effects variances for these data are very small, we will use this option in all

subsequent examples to display results in the standard deviation metric.

The interquake random variation in the 𝜙3𝑗 values about their mean is CV = sd(U3)/{phi3: cons}
= 0.0036/0.0046 ≈ 78%, and it appears reasonable to keep it in the model. You can perform a formal

likelihood-ratio (LR) test of 𝐻0∶ 𝜎2
𝑢3

= 0 to verify this, as we show below for the test of 𝐻0∶ 𝜎2
𝑢1

= 0.

Let’s check whether we need random intercept 𝑢1𝑗 to model 𝜙1𝑗. Computing CV in this case to get

an initial assessment is not simple because the mean of 𝜙1𝑗 depends on the 𝑗th quake through variable
richter. Given the same main equation (8), we will use the LR test to compare the restricted model,

with 𝑢1𝑗 excluded, which is defined by (11) and (12) below, with the full model defined by (9) and (10).

The stage 2 specification of the restricted model is

𝜙1𝑗 = 𝛽0 + 𝛽1richter𝑗

𝜙2𝑗 = 𝛽2

𝜙3𝑖𝑗 = 𝛽3 + 𝑢3𝑗

(11)

where

𝑢3𝑗 ∼ 𝑁(0, 𝜎2
𝑢3

) and 𝜖𝑖𝑗 ∼ 𝑁(0, 𝜎2
𝜖 ) (12)
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We now fit the restricted model:

. menl laccel = {phi1:}-log10(sqrt(c.distance#c.distance+exp({phi2})))
> -{phi3:}*sqrt(c.distance#c.distance+exp({phi2})),
> define(phi1: richter, xb) define(phi3: U3[quake], xb)
> stddeviations
Obtaining starting values by EM:
Alternating PNLS/LME algorithm:
Iteration 1: Linearization log likelihood = 2.1262862
Iteration 2: Linearization log likelihood = 2.126043
Iteration 3: Linearization log likelihood = 2.1260328
Iteration 4: Linearization log likelihood = 2.12603
Iteration 5: Linearization log likelihood = 2.1260297
Computing standard errors:
Mixed-effects ML nonlinear regression Number of obs = 182
Group variable: quake Number of groups = 23

Obs per group:
min = 1
avg = 7.9
max = 38

Wald chi2(1) = 32.22
Linearization log likelihood = 2.1260297 Prob > chi2 = 0.0000

phi1: richter, xb
phi3: U3[quake], xb

laccel Coefficient Std. err. z P>|z| [95% conf. interval]

phi1
richter .2208878 .0389144 5.68 0.000 .1446169 .2971586
_cons -.7863293 .2503442 -3.14 0.002 -1.276995 -.2956637

phi3
_cons .0054348 .0015661 3.47 0.001 .0023653 .0085044

/phi2 4.228431 .3702251 11.42 0.000 3.502803 4.954059

Random-effects parameters Estimate Std. err. [95% conf. interval]

quake: Identity
sd(U3) .0042144 .0011309 .0024907 .0071309

sd(Residual) .2170084 .0122821 .1942231 .2424668

. estimates store E2

Next, we use lrtest to perform an LR test of the hypothesis:

𝐻0∶ 𝜎2
𝑢1

= 0 versus 𝐻1∶ 𝜎2
𝑢1

≠ 0
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. lrtest E1 E2, stats
Likelihood-ratio test
Assumption: E2 nested within E1
LR chi2(1) = 0.56
Prob > chi2 = 0.4532
Note: The reported degrees of freedom assumes the null hypothesis is not on

the boundary of the parameter space. If this is not true, then the
reported test is conservative.

Akaike’s information criterion and Bayesian information criterion

Model N ll(null) ll(model) df AIC BIC

E2 182 . 2.12603 6 7.747941 26.97198
E1 182 . 2.407341 7 9.185318 31.61336

Note: BIC uses N = number of observations. See [R] IC note.

Because testing of 𝐻0∶ 𝜎2
𝑢1

= 0 is on the boundary of the parameter space, lrtest reports a note that
the provided LR test is conservative; that is, the actual 𝑝-value is smaller than the one reported. For a test
of 𝐻0∶ 𝜎2

𝑢1
= 0 in a two-level model, the true asymptotic distribution is not 𝜒2(1) but a mixture of 𝜒2(0)

and 𝜒2(1) with equal weights, 0.5𝜒2(0) + 0.5𝜒2(1); thus the 𝑝-value is actually 0.4532/2 = 0.2266

(see Rabe-Hesketh and Skrondal 2022, sec 8.8). We do not have sufficient evidence to reject the null

hypothesis, so we can omit random effect 𝑢1𝑗 from the full model. AIC and BIC also favor a simpler,

reduced model.

Example 8: Including within-subject covariates
One of the questions of interest in the earthquake study was the potential effect of the soil type on

acceleration. Variable soil is a within-subject covariate because the values soil𝑖𝑗 may vary within a

subject (earthquake). We include variable soil in the equation for 𝜙3𝑖𝑗 in (11),

𝜙1𝑗 = 𝛽0 + 𝛽1richter𝑗

𝜙2𝑗 = 𝛽2

𝜙3𝑖𝑗 = 𝛽3 + 𝛽4soil𝑖𝑗 + 𝑢3𝑗



menl — Nonlinear mixed-effects regression 254

and fit the corresponding model:

. menl laccel = {phi1:}-log10(sqrt(c.distance#c.distance+exp({phi2})))
> -{phi3:}*sqrt(c.distance#c.distance+exp({phi2})),
> define(phi1: richter, xb) define(phi3: i.soil U3[quake]) stddeviations
Obtaining starting values by EM:
Alternating PNLS/LME algorithm:
Iteration 1: Linearization log likelihood = 3.5634779
Iteration 2: Linearization log likelihood = 3.5632472
Iteration 3: Linearization log likelihood = 3.5632339
Iteration 4: Linearization log likelihood = 3.5632304
Iteration 5: Linearization log likelihood = 3.5632298
Computing standard errors:
Mixed-effects ML nonlinear regression Number of obs = 182
Group variable: quake Number of groups = 23

Obs per group:
min = 1
avg = 7.9
max = 38

Wald chi2(2) = 34.20
Linearization log likelihood = 3.5632298 Prob > chi2 = 0.0000

phi1: richter, xb
phi3: i.soil U3[quake]

laccel Coefficient Std. err. z P>|z| [95% conf. interval]

phi1
richter .2275944 .0395549 5.75 0.000 .1500683 .3051206
_cons -.8079826 .2548833 -3.17 0.002 -1.307545 -.3084205

phi3
soil
soil -.0011041 .0006441 -1.71 0.087 -.0023665 .0001583
_cons .0067347 .0017416 3.87 0.000 .0033213 .0101481

/phi2 4.3212 .3653809 11.83 0.000 3.605067 5.037334

Random-effects parameters Estimate Std. err. [95% conf. interval]

quake: Identity
sd(U3) .0043088 .0011285 .0025788 .0071992

sd(Residual) .2147101 .0121424 .1921829 .2398779

The estimated coefficient for the soil type is−0.0011with a 95% CI of [−0.0024, 0.0002]. The knowledge
of the soil type at a particular site does not appear to add explanatory power to our model.

Random-effects covariance structures
menl supports various covariance structures to model the random-effects covariance matrix. They

are specified using the covariance() option. The covariance() option may be repeated. This is

necessary to accommodate multilevel NLMEmodels, where you may need to specify different covariance

matrices for the random effects at different levels. Repeating this option may also be useful if you want

to specify a block-diagonal covariance structure. See example 23 for details.
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Example 9: Two-level model with correlated random effects
Davidian and Giltinan (1995, sec. 1.1.3 and 11.2) discuss a study of soybean plants that started in 1988

and spanned over three growing seasons, year. The central objective of the study was to compare the
growth patterns of two genotypes of soybean plants, variety: a commercial variety of soybean, denoted
by F, and an experimental variety, denoted by P. In each season, eight plots were planted using F variety

and eight using P variety. To assess growth, researchers sampled each plot 8 to 10 times (8 ≤ 𝑛𝑗 ≤ 10
) at approximately weekly intervals, time. At each sampling time, six plants were taken from each plot

at random. Leaves from the plants were weighed, and the resulting total weight was divided by six to

yield a measure of the average leaf weight per plant (in g) for the plot for that week, weight. Plots are
identified by the plot variable.

Let’s plot the data first.

. use https://www.stata-press.com/data/r19/soybean
(Growth of soybean plants (Davidian and Giltinan, 1995))
. twoway connected weight time if year==2, connect(L) by(variety)
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The graph shows the average leaf weights per plant over time for the eight plots with plants of each

genotype in the 1989 growing season. Longitudinal growth measures for each plot are connected with

solid lines. Apart from some intraplot variation, the growth profile of each plot follows roughly an

S shape, according to which growth begins slowly, then shows a linear trend during the middle of the

growing season, and then “levels off” at the end. Such pattern is typical for many growth studies.

The main goal of the study was to compare growth patterns over the growing season for the two soy-

bean genotypes. Because the three growing seasons differed markedly in terms of precipitation—1988

was unusually dry, 1989 was wet, and 1990 was normal—contrasting these growth patterns across years

was also of interest. The results of this study are useful, for example, for harvesting purposes.

A popular model for individual profiles that resemble an S shape is the logistic growth model:

weight𝑖𝑗 =
𝜙1𝑗

1 + exp{− (time𝑖𝑗 − 𝜙2𝑗) /𝜙3𝑗}
+ 𝜖𝑖𝑗 (13)

𝜙1𝑗 is the asymptotic average leaf weight per soybean plant in plot 𝑗 as time𝑖𝑗 → ∞. 𝜙2𝑗 is the time

at which half of 𝜙1𝑗 is reached; that is, if time𝑖𝑗 = 𝜙2𝑗, then 𝐸(weight𝑖𝑗) = 0.5𝜙1𝑗. 𝜙1𝑗 and 𝜙2𝑗 will

henceforth be referred to as “the limiting growth” and “half-life”, respectively. 𝜙3𝑗 is a scale parameter,
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and it represents the number of days it takes for average leaf weight to grow from 50% (half-life) to about

73% of its limiting growth. That is, if we set time𝑖𝑗 = 𝑡0.73 = 𝜙2𝑗 + 𝜙3𝑗, the right-hand side of (13),

ignoring the error term, reduces to 𝜙1𝑗/{1 + exp(−1)} = 0.73𝜙1𝑗, and then 𝜙3𝑗 = 𝑡0.73 − 𝜙2𝑗.

We will start with a simple stage 2 specification that does not contain any covariates. Also, because

the number of soybean plots, 48, is large compared with the number of random effects, 3, we consider a

general positive-definite, unstructured, random-effects covariance matrix:

φ𝑗 = ⎡⎢
⎣

𝜙1𝑗
𝜙2𝑗
𝜙3𝑗

⎤⎥
⎦

= ⎡⎢
⎣

𝛽1
𝛽2
𝛽3

⎤⎥
⎦

+ ⎡⎢
⎣

𝑢1𝑗
𝑢2𝑗
𝑢3𝑗

⎤⎥
⎦

(14)

u𝑗 = ⎡⎢
⎣

𝑢1𝑗
𝑢2𝑗
𝑢3𝑗

⎤⎥
⎦

∼ 𝑁 (0, 𝚺) , 𝚺 = ⎡⎢
⎣

𝜎11 𝜎12 𝜎13
𝜎12 𝜎22 𝜎23
𝜎13 𝜎23 𝜎33

⎤⎥
⎦
, 𝜖𝑖𝑗 ∼ 𝑁(0, 𝜎2

𝜖 )

To specify this covariance structure in menl, we specify unstructured in the covariance() option.
The covariance() option also requires that we list the names of random effects to be correlated.

. menl weight = {phi1:}/(1+exp(-(time-{phi2:})/{phi3:})),
> define(phi1: U1[plot], xb) define(phi2: U2[plot], xb) define(phi3: U3[plot], xb)
> covariance(U1 U2 U3, unstructured)
Obtaining starting values by EM:
Alternating PNLS/LME algorithm:
Iteration 1: Linearization log likelihood = -739.90142
Iteration 2: Linearization log likelihood = -739.84929
(iteration log omitted)

Iteration 39: Linearization log likelihood = -739.83452
Iteration 40: Linearization log likelihood = -739.83445
Computing standard errors:
Mixed-effects ML nonlinear regression Number of obs = 412
Group variable: plot Number of groups = 48

Obs per group:
min = 8
avg = 8.6
max = 10

Linearization log likelihood = -739.83445
phi1: U1[plot], xb
phi2: U2[plot], xb
phi3: U3[plot], xb

weight Coefficient Std. err. z P>|z| [95% conf. interval]

phi1
_cons 19.25314 .8031811 23.97 0.000 17.67893 20.82734

phi2
_cons 55.01999 .7272491 75.65 0.000 53.59461 56.44537

phi3
_cons 8.403468 .3152551 26.66 0.000 7.78558 9.021357
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Random-effects parameters Estimate Std. err. [95% conf. interval]

plot: Unstructured
var(U1) 27.05081 6.776514 16.55561 44.19929
var(U2) 17.61605 5.317897 9.748768 31.83227
var(U3) 1.972036 .9849817 .7409027 5.2489

cov(U1,U2) 15.73304 5.413362 5.123046 26.34304
cov(U1,U3) 5.193819 2.165585 .9493497 9.438288
cov(U2,U3) 5.649306 2.049458 1.632442 9.66617

var(Residual) 1.262237 .1111685 1.062119 1.500059

The expected limiting growth or expectedmaximum averageweight, 𝛽1 = 𝐸 (𝜙1𝑗), of soybean leaves
is estimated to be around 19.25 grams. The expected half-life or the time at which the leaves reach half of

their expected maximum average weight, 𝛽2 = 𝐸 (𝜙2𝑗), is estimated to be around 55 days after planting.
The expected time needed for the average leaf weight per plant to grow from 50% to 73% of the limiting

growth, 𝛽3 = 𝐸 (𝜙3𝑗), is about 8.4 days.
The estimates of the six random-effects variance–covariance parameters 𝜎11, 𝜎22, 𝜎33, 𝜎12, 𝜎13,

and 𝜎23 are displayed in the upper part of the random-effects parameters table. There is a plot-to-plot

variation in the estimates of all three parameters of interest: 𝛽1, 𝛽2, and 𝛽3. Also, the plot-specific effects

associated with the parameters of interest are positively correlated. For example, based on the estimate

of 5.19 of cov(U1,U3), plants with larger maximum weights tend to grow faster.

We store our estimates for later use:

. estimates store S1

Example 10: Residuals-vs-fitted plot to check for heteroskedasticity
A popular tool for investigating within-cluster heteroskedasticity is the plot of residuals against the

predicted values and other candidate variance covariates. For growth models, variance is often a function

of the mean (predicted values). Below we construct the plot of residuals versus predicted values to

evaluate the assumption of homoskedastic errors in example 9.
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. predict fitweight, yhat

. predict res, residuals

. scatter res fitweight
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The plot reveals increasing variability with the predicted average leaf weights, which indicates that our

within-cluster variance model is misspecified. In Heteroskedastic within-group errors, we will show how

to account for within-cluster heteroskedasticity by using the resvariance() option.

Heteroskedastic within-group errors
Until now, we assumed that the within-group errors—the 𝜖’s in the considered models—are i.i.d.

Gaussian with common variance 𝜎2
𝜖 , labeled as var(Residual) by menl in the output.

To relax the assumptions of homoskedasticity and the independence of errors, menl provides two

alternatives. You can model the within-group error variance–covariance matrix, 𝜎2𝚲𝑗, directly by using

the rescovariance() option. If you used the mixed command and its residuals() option before,

you should be familiar with this approach. Alternatively, you can model the error variance–covariance

matrix indirectly by modeling the heteroskedasticity structure with the resvariance() option and the
correlation structure with the rescorrelation() option; see Variance-components parameters. The

latter approach offers more flexibility, particularly in modeling the heteroskedasticity structure. For

example, many NLME models exhibit within-subject heterogeneity that is a power function of the mean.

The rescovariance() option cannot model this, but resvariance(power yhat) can.

If your error structure is simple and is similar to those encountered in mixed, you can use the

rescovariance() option. Otherwise, use resvariance(), rescorrelation(), or both to model

more flexible within-group error covariance structures.

Example 11: Heteroskedastic power structure
Continuing with example 9, for these types of growth data, we find it is common for the intraplot

variance to increase systematically with the average leaf weight, as we saw in example 10 from the

residuals-versus-fitted plot. Davidian and Giltinan (1995) proposed a variance structure that models

the within-group error variance as a power function of the mean to account for the intraplot variability.

To reduce the number of parameters to be estimated, the authors assume that the random effects are

independent.
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Stage 2 specification of the model defined by (13) becomes

φ𝑗 = ⎡⎢
⎣

𝜙1𝑗
𝜙2𝑗
𝜙3𝑗

⎤⎥
⎦

= ⎡⎢
⎣

𝛽1
𝛽2
𝛽3

⎤⎥
⎦

+ ⎡⎢
⎣

𝑢1𝑗
𝑢2𝑗
𝑢3𝑗

⎤⎥
⎦

(15)

where

u𝑗 = ⎡⎢
⎣

𝑢1𝑗
𝑢2𝑗
𝑢3𝑗

⎤⎥
⎦

∼ 𝑁 (0, 𝚺) , diagonal 𝚺 = ⎡
⎢
⎣

𝜎2
𝑢1

0 0
0 𝜎2

𝑢2
0

0 0 𝜎2
𝑢3

⎤
⎥
⎦

and

Var (𝜖𝑖𝑗) = 𝜎2( ̂weight𝑖𝑗)
2𝛿

Parameter 𝜎2 in the above is no longer an overall error variance 𝜎2
𝜖 but a common multiplier or a

(squared) scale parameter.

In menl, this type of heteroskedasticity is modeled by specifying resvariance(power yhat,
noconstant). yhat designates that the variance should be modeled as a function of predicted values,

̂weight𝑖𝑗. By default, variance function power includes a constant, which we suppress by specifying
the noconstant option.

. menl weight = {phi1:}/(1+exp(-(time-{phi2:})/{phi3:})),
> define(phi1: U1[plot], xb) define(phi2: U2[plot], xb) define(phi3: U3[plot], xb)
> resvariance(power _yhat, noconstant)
Obtaining starting values by EM:
Alternating PNLS/LME algorithm:
Iteration 1: Linearization log likelihood = -364.02249
Iteration 2: Linearization log likelihood = -364.22838
Iteration 3: Linearization log likelihood = -364.43168
Iteration 4: Linearization log likelihood = -364.38319
Iteration 5: Linearization log likelihood = -364.38964
Iteration 6: Linearization log likelihood = -364.38915
Iteration 7: Linearization log likelihood = -364.3892
Computing standard errors:
Mixed-effects ML nonlinear regression Number of obs = 412
Group variable: plot Number of groups = 48

Obs per group:
min = 8
avg = 8.6
max = 10
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Linearization log likelihood = -364.3892
phi1: U1[plot], xb
phi2: U2[plot], xb
phi3: U3[plot], xb

weight Coefficient Std. err. z P>|z| [95% conf. interval]

phi1
_cons 16.82289 .6030531 27.90 0.000 15.64093 18.00485

phi2
_cons 51.74669 .4579632 112.99 0.000 50.8491 52.64429

phi3
_cons 7.545371 .0856321 88.11 0.000 7.377535 7.713206

Random-effects parameters Estimate Std. err. [95% conf. interval]

plot: Independent
var(U1) 11.32134 2.831139 6.934849 18.48241
var(U2) 2.68911 .9344022 1.360932 5.313504
var(U3) 1.48e-11 1.34e-07 0 .

Residual variance:
Power _yhat

sigma2 .0509223 .004422 .0429527 .0603706
delta .9339856 .0244477 .886069 .9819023

The near-zero estimate of the variance component of 𝑢3𝑗, var(U3), suggests that the random-effects
model is overparameterized. The within-group heteroskedasticity structure appears to explain enough

variability in our data, and we no longer need random effects specific to 𝜙3𝑗. This is quite common in

mixed-effects models: the random-effects covariance structure and the within-group error covariance

structure compete with each other, in the sense that fewer random effects are needed when the within-

group error covariance structure is present, and vice versa.

Let’s omit 𝑢3𝑗 from (15) but now assume an unstructured covariance matrix for 𝑢1𝑗 and 𝑢2𝑗. The EM

algorithm used by menl to obtain initial values produces the starting values for variance components that
are, in general, close to the final estimates upon convergence. Thus it can be used as a tool to help us detect

potential convergence problems because of an overparameterized random-effects structure at an earlier

stage. For example, we can check whether an unstructured covariance matrix is a reasonable choice for

the random effects 𝑢1𝑗 and 𝑢2𝑗 for these data by displaying estimates after a few iterations. This can be

done by specifying the iterate(#) option, where # is a small number of iterations, say, between 1 and 4.
Below we specify iterate(3) to perform only three iterations and the stddeviations option to obtain
standard deviations and correlations instead of variances and covariances for easier interpretability:
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. menl weight = {phi1:}/(1+exp(-(time-{phi2:})/{phi3})),
> define(phi1: U1[plot], xb) define(phi2: U2[plot], xb)
> covariance(U*, unstructured) resvariance(power _yhat, noconstant)
> iterate(3) stddeviations
Obtaining starting values by EM:
Alternating PNLS/LME algorithm:
Iteration 1: Linearization log likelihood = -379.66343
Iteration 2: Linearization log likelihood = -362.90921
Iteration 3: Linearization log likelihood = -361.92284
Computing standard errors:
Mixed-effects ML nonlinear regression Number of obs = 412
Group variable: plot Number of groups = 48

Obs per group:
min = 8
avg = 8.6
max = 10

Linearization log likelihood = -361.93956
phi1: U1[plot], xb
phi2: U2[plot], xb

weight Coefficient Std. err. z P>|z| [95% conf. interval]

phi1
_cons 16.92772 .567749 29.82 0.000 15.81495 18.04049

phi2
_cons 51.81715 .4484621 115.54 0.000 50.93818 52.69612

/phi3 7.54089 .0869112 86.77 0.000 7.370547 7.711233

Random-effects parameters Estimate Std. err. [95% conf. interval]

plot: Unstructured
sd(U1) 2.904731 .4070473 2.207115 3.822848
sd(U2) 1.28232 .2555136 .8677347 1.894985

corr(U1,U2) -.99999 .003294 -1 1

Residual variance:
Power _yhat

sigma .2255165 .0095107 .2076254 .2449493
delta .955248 .0230662 .910039 1.000457

Warning: Convergence not achieved.

The U* in covariance(U*, unstructured) is a shorthand notation to reference all random effects

starting with U, that is, U1 and U2 in this example. The correlation between 𝑢1𝑗 and 𝑢2𝑗 is near −1 with a

95% CI of [−1, 1], which indicates that the random-effects model may still be overparameterized. If you
try to fit this model without the iteration(3) option, it would keep iterating without convergence.

Therefore, we further simplify the random-effects covariance structure by assuming independence

between 𝑢1𝑗 and 𝑢2𝑗. Stage 2 specification of the model defined by (13) is now

φ𝑗 = ⎡⎢
⎣

𝜙1𝑗
𝜙2𝑗
𝜙3𝑗

⎤⎥
⎦

= ⎡⎢
⎣

𝛽1 + 𝑢1𝑗
𝛽2 + 𝑢2𝑗

𝛽3

⎤⎥
⎦

(16)
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where

u𝑗 = [𝑢1𝑗
𝑢2𝑗

] ∼ 𝑁 (0, 𝚺) , diagonal 𝚺 = [𝜎2
𝑢1

0
0 𝜎2

𝑢2

]

and

Var (𝜖𝑖𝑗) = 𝜎2( ̂weight𝑖𝑗)
2𝛿

We fit this model and store its results as S2:

. menl weight = {phi1:}/(1+exp(-(time-{phi2:})/{phi3})),
> define(phi1: U1[plot], xb) define(phi2: U2[plot], xb)
> resvariance(power _yhat, noconstant)
Obtaining starting values by EM:
Alternating PNLS/LME algorithm:
Iteration 1: Linearization log likelihood = -402.76182
Iteration 2: Linearization log likelihood = -372.4091
Iteration 3: Linearization log likelihood = -363.83194
Iteration 4: Linearization log likelihood = -364.37747
Iteration 5: Linearization log likelihood = -364.38661
Iteration 6: Linearization log likelihood = -364.38917
Iteration 7: Linearization log likelihood = -364.38918
Computing standard errors:
Mixed-effects ML nonlinear regression Number of obs = 412
Group variable: plot Number of groups = 48

Obs per group:
min = 8
avg = 8.6
max = 10

Linearization log likelihood = -364.38918
phi1: U1[plot], xb
phi2: U2[plot], xb

weight Coefficient Std. err. z P>|z| [95% conf. interval]

phi1
_cons 16.8229 .6030458 27.90 0.000 15.64095 18.00485

phi2
_cons 51.74669 .4579586 112.99 0.000 50.84911 52.64427

/phi3 7.545367 .0856312 88.11 0.000 7.377533 7.713202

Random-effects parameters Estimate Std. err. [95% conf. interval]

plot: Independent
var(U1) 11.32133 2.831137 6.934841 18.4824
var(U2) 2.689113 .9344039 1.360932 5.313512

Residual variance:
Power _yhat

sigma2 .0509223 .004422 .0429527 .0603706
delta .9339853 .0244477 .8860686 .9819019

. estimates store S2

Because (16) is not nested in (14), we assess the adequacy of the heteroskedastic model by using

information criteria. We use estimates stats to display the AIC and BIC values for the three models.
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. estimates stats S1 S2
Akaike’s information criterion and Bayesian information criterion

Model N ll(null) ll(model) df AIC BIC

S1 412 . -739.8344 10 1499.669 1539.879
S2 412 . -364.3892 7 742.7784 770.9255

Note: BIC uses N = number of observations. See [R] IC note.

The heteroskedastic model defined by (16) has smaller AIC and BIC values and thus provides a much

better representation of the data than (14).

Example 12: Heteroskedastic model with interactions
The main goal of the soybean study was to compare growth patterns of the two genotypes of soybean

over the three growing seasons, represented by calendar years 1988 through 1990. More specifically, we

would like to compare the limiting growth, the half-life, and the growth rate of soybeans across growing

seasons and genotypes.

Let 𝑃𝑗 = 𝐼 (variety𝑗 = P) be the indicator for genotype variety P, 𝑆89,𝑗 = 𝐼 (year𝑗 = 1989)

be the indicator for growing season 1989, and 𝑆90,𝑗 = 𝐼 (year𝑗 = 1990) be the indicator for growing

season 1990. Genotype variety F and growing season 1988 are baselines.

Consider an extension of the model defined by (13) and (16), where, in addition to random effects,

𝜙1𝑗 includes main and interaction effects of growing seasons and genotype variety, 𝜙2𝑗 includes main

effects of growing seasons and genotype variety, and 𝜙3𝑗 contains main effects of growing seasons only.

φ𝑗 = ⎡⎢
⎣

𝜙1𝑗
𝜙2𝑗
𝜙3𝑗

⎤⎥
⎦

= ⎡⎢
⎣

𝛽11 + 𝛽12𝑆89,𝑗 + 𝛽13𝑆90,𝑗 + 𝛽14𝑃𝑗 + 𝛽15𝑆89,𝑗 × 𝑃𝑗 + 𝛽16𝑆90,𝑗 × 𝑃𝑗 + 𝑢1𝑗
𝛽21 + 𝛽22𝑆89,𝑗 + 𝛽23𝑆90,𝑗 + 𝛽24𝑃𝑗 + 𝑢2𝑗

𝛽31 + 𝛽32𝑆89,𝑗 + 𝛽33𝑆90,𝑗

⎤⎥
⎦
(17)

To fit the model defined by (13) and (17) by using menl, we extend menl’s specification from exam-

ple 11 by including the full-factorial interaction i.year##i.variety in the expression {phi1:}, main
effects i.year and i.variety in the expression {phi2:}, and main effects i.year in the expression
{phi3:}.

. menl weight = {phi1:}/(1+exp(-(time-{phi2:})/{phi3:})),
> define(phi1: i.year##i.variety U1[plot])
> define(phi2: i.year i.variety U2[plot])
> define(phi3: i.year, xb) resvariance(power _yhat, noconstant)
Obtaining starting values by EM:
Alternating PNLS/LME algorithm:
Iteration 1: Linearization log likelihood = -292.62615
Iteration 2: Linearization log likelihood = -290.24389
(iteration log omitted)

Iteration 10: Linearization log likelihood = -290.90729
Iteration 11: Linearization log likelihood = -290.9073
Computing standard errors:
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Mixed-effects ML nonlinear regression Number of obs = 412
Group variable: plot Number of groups = 48

Obs per group:
min = 8
avg = 8.6
max = 10

Wald chi2(10) = 413.88
Linearization log likelihood = -290.9073 Prob > chi2 = 0.0000

phi1: i.year i.variety i.year#i.variety U1[plot]
phi2: i.year i.variety U2[plot]
phi3: i.year

weight Coefficient Std. err. z P>|z| [95% conf. interval]

phi1
year
1989 -8.837933 1.056113 -8.37 0.000 -10.90788 -6.76799
1990 -3.666206 1.165969 -3.14 0.002 -5.951463 -1.38095

variety
P 1.648139 1.033433 1.59 0.111 -.3773532 3.673631

year#variety
1989#P 5.563008 1.167782 4.76 0.000 3.274196 7.851819
1990#P .0974815 1.178054 0.08 0.934 -2.211462 2.406425

_cons 19.42734 .9445749 20.57 0.000 17.57601 21.27867

phi2
year
1989 -2.253227 .9746495 -2.31 0.021 -4.163505 -.3429494
1990 -4.970736 .9778317 -5.08 0.000 -6.887251 -3.054221

variety
P -1.294058 .4255317 -3.04 0.002 -2.128085 -.4600314

_cons 54.81257 .7587239 72.24 0.000 53.3255 56.29964

phi3
year
1989 -.9023768 .1992358 -4.53 0.000 -1.292872 -.5118818
1990 -.6805314 .2100799 -3.24 0.001 -1.09228 -.2687823

_cons 8.060677 .1459662 55.22 0.000 7.774588 8.346765

Random-effects parameters Estimate Std. err. [95% conf. interval]

plot: Independent
var(U1) .8643052 .5271131 .2615445 2.8562
var(U2) .1341755 .230691 .0046151 3.900891

Residual variance:
Power _yhat

sigma2 .0467091 .0039176 .0396286 .0550546
delta .9451193 .0227608 .9005089 .9897297

. estimates store S3
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By including more fixed effects in the model, which explain some of the variability in the average leaf

weight, we substantially reduced the estimates of variance components. Compared with example 11,

var(U1) decreased from 11.32 to 0.86, and var(U2) decreased from 2.69 to 0.13. It often happens that

specifying a better-fitting model for the fixed effects reduces the need for random effects in the model.

We can compare model S3 or the model defined by (17) with model S2 or the one defined by (16) by
using, for example, information criteria.

. estimates stats S2 S3
Akaike’s information criterion and Bayesian information criterion

Model N ll(null) ll(model) df AIC BIC

S2 412 . -364.3892 7 742.7784 770.9255
S3 412 . -290.9073 17 615.8146 684.172

Note: BIC uses N = number of observations. See [R] IC note.

Even though S3 has many more parameters, it fits the soybean data better than S2.

By inspecting the fixed-effects estimates from the output of model S3, we see that both the type of
year and genotype variety affect all three parameters: the expected maximum leaf weight, half-life, and

scale. For example, all three parameters achieve their highest values in the dry year, baseline year 1988,

because coefficient estimates for the other years are negative. Also, the genotype variety F reaches its

half-life roughly a day later (𝛽24 = −1.29) than genotype variety P.

Example 13: Obtaining predictions
After estimation, we may want to obtain predicted values for the outcome or for the parameters of

interest. Continuing with example 12, we want to predict the asymptotic average leaf weight per soybean

plant in each plot, 𝜙1𝑗. The 𝜙1𝑗 parameter is not constant but varies for each plot, growing season, and

genotype variety. We can use predict after menl to obtain predicted values for 𝜙1𝑗; see [ME] menl

postestimation.

First, we create a new grouping variable for growing seasons, genotype variety, and plot types. We

also create the tolist variable to mark the first observation in each group.

. egen group = group(year variety plot)

. by group, sort: generate byte tolist=(_n==1)

Next, we use predict to compute predicted values for the expression {phi1:} and store them in the

new variable phi1. We store only unique values in phi1, one for each group; the remaining observations
are replaced with missing values.

. predict double (phi1 = {phi1:})

. quietly replace phi1 = . if tolist!=1
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We now list the five smallest and the five largest values of the asymptotic average leaf weight.

. sort phi1

. list plot year variety phi1 if (_n<=5 | _n>43) & phi1<., sep(5)

plot year variety phi1

1. 1989F6 1989 F 8.8421451
2. 1989F4 1989 F 10.449521
3. 1989F5 1989 F 10.473849
4. 1989F1 1989 F 10.721364
5. 1989F7 1989 F 10.810197

44. 1988P8 1988 P 20.86739
45. 1988P2 1988 P 21.237692
46. 1988P4 1988 P 21.310512
47. 1988P3 1988 P 21.506007
48. 1988P6 1988 P 21.581873

Soybean plants with genotype variety P have substantially larger asymptotic average leaf weight in the

dry year, 1988, than soybean plants with genotype variety F in the wet year, 1989.

Example 14: Within-group error correlation structure
Pinheiro and Bates (2000, chap. 8) analyzed data from a study of the estrus cycles of mares. Originally

analyzed in Pierson and Ginther (1987), the data contain daily records of the number of ovarian follicles

larger than 10 mm over a period ranging from 3 days before ovulation to 3 days after the subsequent

ovulation. The measurement times for each mare are scaled so that the ovulations for each mare occur

at times 0 and 1 and are recorded in stime.

The considered model is

follicles𝑖𝑗 = 𝜙1𝑗 + 𝜙2𝑗 sin (2𝜋𝜙3𝑗stime𝑖𝑗) + 𝜙4𝑗 cos (2𝜋𝜙3𝑗stime𝑖𝑗) + 𝜖𝑖𝑗

where 𝜙1𝑗 is an intercept, 𝜙3𝑗 is the frequency of the sine wave for the 𝑗th mare, and 𝜙2𝑗 and 𝜙4𝑗 are terms

determining the amplitude and phase of the sine wave for the 𝑗th mare. If 𝑎𝑗 and 𝑝𝑗 are the amplitude

and phase for mare 𝑗, then 𝜙2𝑗 = 𝑎𝑗 cos(𝑝𝑗) and 𝜙4𝑗 = 𝑎𝑗 sin(𝑝𝑗).
This model was fit in example 8 of [ME]mixed in the context of a linear mixed-effects model, where

the number of ovarian follicles was a periodic function of time with known frequency 𝜙3𝑗 equal to 1.

If we want to estimate frequency, we cannot use the mixed command, because 𝜙3𝑗 enters the model

nonlinearly.

Pinheiro and Bates (2000) suggested an AR(1) correlation structure for modeling the within-

group error correlation. This structure can be specified by using the rescorrelation() option as

rescorrelation(ar 1, t(time)), where time is an integer-valued time variable used to order the

observations within mares and to determine the lags between successive observations.

We also considered several random-effects structures and found that we need only one random inter-

cept to model 𝜙1𝑗.
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The full specification for the stage 2 model is

φ𝑗 =
⎡
⎢
⎢
⎣

𝜙1𝑗
𝜙2𝑗
𝜙3𝑗
𝜙4𝑗

⎤
⎥
⎥
⎦

=
⎡
⎢⎢
⎣

𝛽1 + 𝑢1𝑗
𝛽2
𝛽3
𝛽4

⎤
⎥⎥
⎦

where

u𝑗 = 𝑢1𝑗 ∼ 𝑁 (0, 𝜎2
𝑢) , ε𝑗 ∼ 𝑁(0, 𝜎2

𝜖 𝚲𝑗)

and

𝜎2
𝜖 𝚲𝑗 = 𝜎2

𝜖

⎡
⎢
⎢
⎢
⎣

1 𝜌 𝜌2 . . . 𝜌𝑛𝑗−1

𝜌 1 𝜌 . . . 𝜌𝑛𝑗−2

𝜌2 𝜌 1 . . . 𝜌𝑛𝑗−3

⋮ ⋮ ⋮ ⋱ ⋮
𝜌𝑛𝑗−1 𝜌𝑛𝑗−2 𝜌𝑛𝑗−3 . . . 1

⎤
⎥
⎥
⎥
⎦

We fit this model by using menl as follows:

. use https://www.stata-press.com/data/r19/ovary, clear
(Ovarian follicles in mares)
. menl follicles = {phi1: U1[mare], xb} + {phi2}*sin(2*_pi*stime*{phi3}) +
> {phi4}*cos(2*_pi*stime*{phi3}), rescorrelation(ar 1, t(time))
Obtaining starting values by EM:
Alternating PNLS/LME algorithm:
Iteration 1: Linearization log likelihood = -789.43415
Iteration 2: Linearization log likelihood = -789.43439
Iteration 3: Linearization log likelihood = -789.43439
Computing standard errors:
Mixed-effects ML nonlinear regression Number of obs = 308
Group variable: mare Number of groups = 11

Obs per group:
min = 25
avg = 28.0
max = 31

Linearization log likelihood = -789.43439
phi1: U1[mare], xb

follicles Coefficient Std. err. z P>|z| [95% conf. interval]

phi1
_cons 11.98929 .9055946 13.24 0.000 10.21436 13.76422

/phi2 .2226033 .3290159 0.68 0.499 -.4222559 .8674626
/phi3 4.18747 .2746499 15.25 0.000 3.649166 4.725774
/phi4 .279653 .3223277 0.87 0.386 -.3520977 .9114036



menl — Nonlinear mixed-effects regression 268

Random-effects parameters Estimate Std. err. [95% conf. interval]

mare: Identity
var(U1) 4.935352 3.967836 1.020903 23.85899

Residual: AR(1),
time time

var(e) 20.14587 3.492937 14.34177 28.29888
corr .7332304 .0463231 .6287332 .8117157

By using estimates of 𝜙2𝑗 and 𝜙4𝑗, we can compute the amplitude and phase for the sine wave for mare

𝑗. The amplitude and the phase are the same for all the mares because 𝜙2𝑗 and 𝜙4𝑗 are constant and not

mare specific.

For example, the amplitude 𝑎𝑗 can be computed as √𝜙2
2𝑗 + 𝜙2

4𝑗 by using the relationship 𝜙2
2𝑗 +𝜙2

4𝑗 =
𝑎2

𝑗 {sin2(𝑝𝑗) + cos2(𝑝𝑗)} = 𝑎2
𝑗 . The phase 𝑝𝑗 can be computed as 𝑝𝑗 = atan(𝜙4𝑗/𝜙2𝑗) by using the

relationship 𝜙4𝑗/𝜙2𝑗 = {𝑎𝑗 sin(𝑝𝑗)} / {𝑎𝑗 cos(𝑝𝑗)} = tan(𝑝𝑗).
We can use nlcom to compute the amplitude and the phase.

. nlcom (amplitude: sqrt(_b[/phi2]^2 + _b[/phi4]^2))
> (phase: atan(_b[/phi4]/_b[/phi2]))

amplitude: sqrt(_b[/phi2]^2 + _b[/phi4]^2)
phase: atan(_b[/phi4]/_b[/phi2])

follicles Coefficient Std. err. z P>|z| [95% conf. interval]

amplitude .3574325 .2451183 1.46 0.145 -.1229904 .8378555
phase .8985001 1.090985 0.82 0.410 -1.23979 3.03679

As we mentioned in example 1, it is important to try different initial values when fitting NLME mod-

els to investigate potential convergence to a local maximum, especially for models containing periodic

functions, as in our example. We explore different initial values for this model in Linearization approach

to finding initial values by considering the functional form of the mean function and arrive at a different

solution with a larger log likelihood.

Restricted maximum likelihood
Like mixed, menl provides estimation by using ML or REML. The difference between the two ap-

proaches is described in detail in Likelihood versus restricted likelihood in [ME] mixed. Briefly, REML

is preferable when you have a small number of groups because it produces unbiased, at least for bal-

anced data, estimates of variance components. In large samples, there is little difference between ML

and REML. One disadvantage of REML, however, is that LR tests based on REML are inappropriate for

comparing models with different fixed-effects specifications. See example 15 for an example of REML

estimation.
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Pharmacokinetic modeling
Pharmacokinetics (PKs) is the study of drug absorption, distribution, metabolism, and excretion. It

is often referred to as the study of “what the body does with a drug”. The goal of PK modeling is to

summarize the concentration-time measurements using a model that relates drug input to drug response,

to relate the parameters of this model to patient characteristics, and to provide individual dose–response

predictions to optimize individual doses. In other words, by understanding between-subject variation

in drug disposition, we can individualize the dosage regimen for a particular patient based on relevant

physiological information identified by our PK model.

Single-dose pharmacokinetic modeling

Example 15: Single-oral-dose model
Consider a PK study of the antiasthmatic agent theophylline that was reported by Boeckmann, Sheiner,

and Beal (2011) and analyzed by Davidian and Giltinan (1995). The drug was administered orally to 12

subjects, where dosage dose (mg/kg) was given on a per weight basis. Serum concentrations (in mg/L)

were obtained at 11 time points per subject over 25 hours following administration. The graph below

shows the resulting concentration-time profiles for four subjects.

. use https://www.stata-press.com/data/r19/theoph
(Theophylline kinetics (Boeckmann et al., [1994] 2011))
. twoway connected conc time if subject<=4, connect(L) by(subject)
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In PKs, the pattern of rapid rise to a peak concentration followed by an apparent exponential decaymay

be described by a so-called one-compartment open model with first-order absorption and elimination.

The model corresponds roughly to viewing the body as one “blood compartment” and is particularly

useful for the PK analysis of drugs that distribute relatively rapidly throughout the body, which makes

it a reasonable model for the kinetics of theophylline after oral administration. Further details about

compartmental modeling may be found in Gibaldi and Perrier (1982). The one-compartment open model

for theophylline kinetics may be expressed as

conc𝑖𝑗 =
dose𝑗𝑘𝑒𝑗

𝑘𝑎𝑗

Cl𝑗 (𝑘𝑎𝑗
− 𝑘𝑒𝑗

)
{ exp (−𝑘𝑒𝑗

time𝑖𝑗) − exp (−𝑘𝑎𝑗
time𝑖𝑗)} + 𝜖𝑖𝑗 (18)
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for 𝑖 = 1, . . . , 11 and 𝑗 = 1, . . . , 12. Model parameters are the elimination rate constant 𝑘𝑒𝑗
, the absorp-

tion rate constant 𝑘𝑎𝑗
, and the clearance Cl𝑗 for each subject 𝑗.

Because each of the model parameters must be positive to be meaningful, we write

Cl𝑗 = exp (𝛽0 + 𝑢0𝑗)
𝑘𝑎𝑗

= exp (𝛽1 + 𝑢1𝑗)

𝑘𝑒𝑗
= exp (𝛽2)

where 𝑢0𝑗 and 𝑢1𝑗 are assumed independent and normally distributed with means zero and variance 𝜎2
𝑢0

and 𝜎2
𝑢1
, respectively.

The model defined by (18) implies that the predicted value for the concentration at time time𝑖𝑗 = 0

is ĉonc𝑖𝑗 = 0. Therefore, a power variance function, a natural candidate for this type of heteroskedastic

pattern, cannot be used in this example because error variance will be 0 at time𝑖𝑗 = 0. So the constant

plus power variance function, which adds a constant to the power term, is used instead to model the

within-group error variance:

Var (𝜖𝑖𝑗) = 𝜎2{(ĉonc𝑖𝑗)𝛿 + 𝑐}2
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In menl, we use the resvariance(power yhat) option to specify the constant plus power variance
function and the following model specification:

. menl conc = (dose*{ke:}*{ka:}/({cl:}*({ka:}-{ke:})))*
> (exp(-{ke:}*time)-exp(-{ka:}*time)), define(cl: exp({b0}+{U0[subject]}))
> define(ka: exp({b1}+{U1[subject]})) define(ke: exp({b2}))
> resvariance(power _yhat)
Obtaining starting values by EM:
Alternating PNLS/LME algorithm:
Iteration 1: Linearization log likelihood = -167.51953
Iteration 2: Linearization log likelihood = -167.65729
(iteration log omitted)

Iteration 26: Linearization log likelihood = -167.67966
Iteration 27: Linearization log likelihood = -167.67964
Computing standard errors:
Mixed-effects ML nonlinear regression Number of obs = 132
Group variable: subject Number of groups = 12

Obs per group:
min = 11
avg = 11.0
max = 11

Linearization log likelihood = -167.67964
cl: exp({b0}+{U0[subject]})
ka: exp({b1}+{U1[subject]})
ke: exp({b2})

conc Coefficient Std. err. z P>|z| [95% conf. interval]

/b0 -3.227479 .0598389 -53.94 0.000 -3.344761 -3.110197
/b1 .432931 .1980835 2.19 0.029 .0446945 .8211674
/b2 -2.453742 .0514567 -47.69 0.000 -2.554595 -2.352889

Random-effects parameters Estimate Std. err. [95% conf. interval]

subject: Independent
var(U0) .0288787 .0127763 .0121337 .0687323
var(U1) .4075667 .1948712 .1596655 1.040367

Residual variance:
Power _yhat

sigma2 .0976905 .0833025 .0183661 .5196222
delta .3187133 .2469503 -.1653005 .8027271
_cons .7288982 .3822949 .2607509 2.037548
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The number of groups, 12, is fairly small in these data, so we now refit the model by using REML

estimation.

. menl conc = (dose*{ke:}*{ka:}/({cl:}*({ka:}-{ke:})))*
> (exp(-{ke:}*time)-exp(-{ka:}*time)), define(cl: exp({b0}+{U0[subject]}))
> define(ka: exp({b1}+{U1[subject]})) define(ke: exp({b2}))
> resvariance(power _yhat) reml
Obtaining starting values by EM:
Alternating PNLS/LME algorithm:
Iteration 1: Linearization log restricted-likelihood = -172.31734
Iteration 2: Linearization log restricted-likelihood = -172.42325
(iteration log omitted)

Iteration 23: Linearization log restricted-likelihood = -172.44383
Iteration 24: Linearization log restricted-likelihood = -172.44384
Computing standard errors:
Mixed-effects REML nonlinear regression Number of obs = 132
Group variable: subject Number of groups = 12

Obs per group:
min = 11
avg = 11.0
max = 11

Linear. log restricted-likelihood = -172.44384
cl: exp({b0}+{U0[subject]})
ka: exp({b1}+{U1[subject]})
ke: exp({b2})

conc Coefficient Std. err. z P>|z| [95% conf. interval]

/b0 -3.227295 .0619113 -52.13 0.000 -3.348639 -3.105951
/b1 .4354519 .2072387 2.10 0.036 .0292716 .8416322
/b2 -2.453743 .0517991 -47.37 0.000 -2.555267 -2.352218

Random-effects parameters Estimate Std. err. [95% conf. interval]

subject: Independent
var(U0) .0316416 .014531 .0128634 .0778326
var(U1) .4500585 .2228203 .1705478 1.187659

Residual variance:
Power _yhat

sigma2 .1015759 .0865354 .0191261 .5394529
delta .3106636 .2466553 -.1727719 .7940991
_cons .7150935 .3745276 .2561823 1.996073

As expected, the estimates of the random-effects variances are slightly larger than the corresponding ML

estimates, but we arrive at similar inferential conclusions based on our REML estimates.

Example 16: Nonlinear functions of parameters
A distinctive feature of example 15 is that parameters of interest are nonlinear functions of the esti-

mated parameters and random effects. To interpret parameters that depend on random effects, we can

either integrate random effects out of the parameter expression or condition on them. The former pa-

rameter estimates are often referred to as population-based estimates. The latter parameter estimates are
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referred to as conditional estimates and, when conditioning on zero random effects, u𝑗 = 0, as estimates

for an “average” or typical subject. For linear functions, the population-based estimates coincide with

the conditional estimates. This is no longer true for nonlinear functions.

In PK modeling, the parameters of interest are clearance, elimination rate, and absorption rate. These

are nonlinear functions of the estimated parameters 𝛽0, 𝛽1, 𝛽2, and subject-specific random effects.

Depending on the context, wemay be interested in their population-based estimates or in their conditional

estimates.

In general, obtaining population-based estimates would require numerical integration to integrate the

subject-specific random effects out of the expression. In our example, we can compute population-based

estimates directly by using the fact that exp(𝑢0𝑗)’s and exp(𝑢1𝑗)’s are lognormally distributed.

Thus the population-based clearance Cl𝑃 can be computed as 𝐸 (Cl𝑗) = 𝐸 { exp (𝛽0 + 𝑢0𝑗)} =
exp (𝛽0 + 𝜎2

𝑢0
/2) and the population-based absorption rate 𝑘𝑃

𝑎 as 𝐸 { exp (𝛽1 + 𝑢1𝑗)} =
exp (𝛽1 + 𝜎2

𝑢1
/2). The elimination rate 𝑘𝑒 does not depend on subject-specific effects and can thus

be computed simply as 𝑘𝑃
𝑒 = 𝑘𝑒 = exp (𝛽2).

Alternatively, if we want parameters to represent a typical subject, we can simply set 𝑢0𝑗 = 0 and

𝑢1𝑗 = 0 in their expressions. Thuswe can compute clearance and absorption rate for a typical subject sim-

ply as Cl = exp (𝛽0) and 𝑘𝑎 = exp (𝛽1). These formulas can also be viewed as a result of exponentiating
population-based log-clearance and log-absorption rate; that is, Cl = exp [𝐸 { log(Cl𝑗)}] = exp (𝛽0)
and 𝑘𝑎 = exp [𝐸 { log(𝑘𝑎𝑗

)}] = exp (𝛽1).

If we compare the formulas for, say, Cl𝑃 and Cl, the former considers variation in clearances across

subjects, whereas the latter ignores such variation and instead reflects what the clearance would be for a

typical subject with 𝑢0𝑗 = 0.

Both approaches have merit, and here we will compute, for example, Cl𝑃 = exp( ̂𝛽0 + 𝜎̂2
𝑢0

/2) =
exp(−3.23+0.032/2) = 0.04. That is, 0.04 liters of serum concentration are cleared of the theophylline

drug per hour per kg body weight in the considered population. In other words, for the population of

subjects that weigh 75 kg, an average of 75 × 0.04 ≈ 3 liters of serum concentration are cleared of

theophylline every hour.

We can also use nlcom to compute the estimates of Cl𝑃 and Cl. To use nlcom, we need to know how

parameters are labeled by menl for postestimation. We can use menl’s option coeflegend to display
parameter names. We also specify noheader to suppress the table header.

. menl, coeflegend noheader

conc Coefficient Legend

/b0 -3.227295 _b[/b0]
/b1 .4354519 _b[/b1]
/b2 -2.453743 _b[/b2]

/subject
lnsd(U0) -1.726641 _b[/subject:lnsd(U0)]
lnsd(U1) -.3991888 _b[/subject:lnsd(U1)]

/Residual
lnsigma -1.143475 _b[/Residual:lnsigma]
delta .3106636 _b[/Residual:delta]

ln_cons -.335342 _b[/Residual:ln_cons]
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If we examine the output carefully, we will notice that menl, coeflegend displayed results in the es-
timation metric—as log standard-deviations instead of variances. Although by default menl displays

parameters in their original metric, it stores them in the estimation metric, the metric that was used dur-

ing optimization; see Examples of specifying initial values and Methods and formulas for more details

about the estimation metric.

The parameters we need to compute Cl𝑃 and Cl are coefficient b[/b0] and the variance of U0,
which can be obtained as exp(2* b[/subject:lnsd(U0)]) based on the stored estimate of the log

standard-deviation of U0. We now use nlcom to compute our nonlinear estimates.

. nlcom (Cl_P: exp(_b[/b0]+0.5*exp(2*_b[/subject:lnsd(U0)]))) (Cl: exp(_b[/b0]))
Cl_P: exp(_b[/b0]+0.5*exp(2*_b[/subject:lnsd(U0)]))

Cl: exp(_b[/b0])

conc Coefficient Std. err. z P>|z| [95% conf. interval]

Cl_P .0402972 .002512 16.04 0.000 .0353738 .0452205
Cl .0396646 .0024557 16.15 0.000 .0348516 .0444777

Working with parameters in the estimation metric can be tedious, especially when nonlinear expres-

sions contain multiple variance components. In that case, youmay consider using estat sd after menl to
obtain results in the standard deviation metric or, if you also specify the variance option, in the variance
metric; see [ME] menl postestimation. If you specify the post option with estat sd, the results will
also be stored in the standard deviation or variance metrics, which you can use for further postestimation

analysis.

. estat sd, post variance coeflegend

conc Coefficient Legend

/b0 -3.227295 _b[/b0]
/b1 .4354519 _b[/b1]
/b2 -2.453743 _b[/b2]

Random-effects parameters Estimate Legend

subject: Independent
var(U0) .0316416 _b[/subject:var(U0)]
var(U1) .4500585 _b[/subject:var(U1)]

Residual variance:
Power _yhat

sigma2 .1015759 _b[/Residual:sigma2]
delta .3106636 _b[/Residual:delta]
_cons .7150935 _b[/Residual:_cons]

In addition to results being displayed in the variance metric, because of the post option, they are stored in
that metric. We also specified the coeflegend option with estat sd to see how parameters are labeled

so that we could refer to them in other postestimation commands such as nlcom.

Now, we can simply refer to the variance of U0 as b[/subject:var(U0)] in our nlcom command.
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. nlcom (Cl_P: exp(_b[/b0]+0.5*_b[/subject:var(U0)]))
Cl_P: exp(_b[/b0]+0.5*_b[/subject:var(U0)])

Coefficient Std. err. z P>|z| [95% conf. interval]

Cl_P .0402972 .002512 16.04 0.000 .0353738 .0452205

estat sd’s post option should be used with caution because it clears all estimation results except
the parameter estimates in e(b) and their VCE in e(V). Thus the only postestimation features that will
work after estat sd, post are those that need only e(b) and e(V), such as lincom and nlcom. Other
postestimation features will not be available, and you will need to refit your model to run them. To avoid

refitting your model, you may consider storing your estimation results in memory (see [R] estimates

store) or saving them on disk (see [R] estimates save) before using estat sd, post. We no longer

needed the estimation results from menl, so we did not mind clearing them.

Multiple-dose pharmacokinetic modeling

In example 15, a single dose of the analgesic theophylline was administered to each subject followed

by multiple serum concentration measurements per subject. For long-duration illnesses, multiple doses

are often given to each subject, with multiple serum concentration measurements interspersed. After a

single-dose drug administration, the plasma drug level rises above and then falls below the minimum

effective concentration, resulting in a decline in therapeutic effect. To treat chronic diseases, multiple-

dosage or intravenous infusion regimens are used to maintain the plasma drug levels within the narrow

limits of the therapeutic window to achieve optimal clinical effectiveness.

Example 17: Multiple-intravenous-doses model
Grasela and Donn (1985) report a study of the neonatal PKs of phenobarbital. Data were collected

on 59 preterm infants given phenobarbital for prevention of seizures during the first 16 days after birth.

Each infant received one or more intravenous doses, dose (mg/kg). One to six blood serum phenobarbital

concentration measurements, conc (mg/L), were obtained from each infant, subject, for a total of 155
measurements. The birthweight, in kilograms, and a five-minute Apgar score, a measure of the physical

condition, were also obtained on each infant. The Apgar score is obtained by adding points (2, 1, or 0)

for heart rate, respiratory effort, muscle tone, response to stimulation, and skin coloration; a score of 10

represents the best possible condition. time is measured in hours. Davidian and Giltinan (1995) and

Pinheiro and Bates (2000) also analyze this dataset.

A one-compartment open model with intravenous administration and first-order elimination was used

to model the PKs of this phenobarbital study

conc𝑖𝑗 = ∑
𝑡≤𝑖

dose𝑖𝑘
𝑉𝑗

exp{−
Cl𝑗

𝑉𝑗
(time𝑖𝑗 − time𝑡𝑗)} + 𝜖𝑖𝑗 (19)

for 𝑖 = 1, . . . , 𝑛𝑗 and 𝑗 = 1, . . . , 59. Model parameters are the clearance Cl𝑗 (L/h) and volume of

distribution 𝑉𝑗 (L) for each subject 𝑗. Clearance is the volume of blood or plasma that is totally cleared
of its content of drug per unit time. It is the proportionality factor between the rate of elimination and

concentration, 𝑑𝐶/𝑑𝑡 = −𝑘𝑒𝐶 = − (Cl/𝑉) 𝐶, where 𝐶 is the plasma concentration and 𝑘𝑒 is the

elimination rate (ℎ−1). The volume of distribution, 𝑉, is defined as the apparent space or volume into
which a drug distributes.
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To fit this model using menl, we consider an alternative recursive formulation of model (19)

conc𝑖𝑗 = 𝜇 (x′
𝑖𝑗, β, u𝑗) =

dose𝑖𝑗

𝑉𝑗
+ 𝜇 (x′

𝑖−1,𝑗, β, u𝑗) exp{−
Cl𝑗

𝑉𝑗
(time𝑖𝑗 − time𝑖−1,𝑗)} + 𝜖𝑖𝑗

Here, x′
𝑖𝑗 = (time𝑖𝑗, dose𝑖𝑗, fapgar𝑗, weight𝑗) is the vector of covariates corresponding to subject 𝑗

at time𝑖𝑗. Notice that concentration conc𝑖𝑗 = 𝜇 (x′
𝑖𝑗, β, u𝑗) depends on its previous expected value,

𝜇 (x′
𝑖−1,𝑗, β, u𝑗), and on the time difference, time𝑖𝑗 − time𝑖−1,𝑗. In Stata, we can use the lag operator,

L., to refer to previous values and the difference operator, D., to refer to the difference between the
two successive values. menl supports time-series operators in the model specification; see Time-series
operators. We can use D.time to include the time difference in the model. However, we cannot simply
use L.conc, because this would include the previous observed value of conc in the model, and we need
the previous (predicted) value of the mean function. menl provides a special syntax L. yhat to include
lagged predicted values or, equivalently, a special syntax L.{conc:} to include the lagged predicted

mean function. {conc:} refers to the nonlinear expression for the mean function of the conc variable.
Thus, our menl main specification of the recursive model would be

. menl conc = dose/{V:} + L.{conc:}*exp(-{Cl:}/{V:}*D.time), ...

where expressions for {V:} and {Cl:} will be defined later.

Because we are using time-series operators in the expression, we need to declare our data to be time-

series data. There are two ways to do this: you can specify tsset prior to calling menl or you can specify
the time variable in menl’s option tsorder(); see Time-series operators for details. In this example, we
will use the tsorder() option; see the technical note below for an example using tsset.

. menl conc = dose/{V:} + L.{conc:}*exp(-{Cl:}/{V:}*D.time), ... tsorder(time)

Let’s take a quick look at our data by listing the observations for the first subject.

. use https://www.stata-press.com/data/r19/phenobarb
(Pharmacokinetics study of phenobarbital in neonatal infants)
. list if subject==1, sepby(subject)

subject weight apgar time dose conc fapgar

1. 1 1.4 7 0 25 . >= 5
2. 1 1.4 7 2 0 17.3 >= 5
3. 1 1.4 7 12.5 3.5 . >= 5
4. 1 1.4 7 24.5 3.5 . >= 5
5. 1 1.4 7 37 3.5 . >= 5
6. 1 1.4 7 48 3.5 . >= 5
7. 1 1.4 7 60.5 3.5 . >= 5
8. 1 1.4 7 72.5 3.5 . >= 5
9. 1 1.4 7 85.3 3.5 . >= 5

10. 1 1.4 7 96.5 3.5 . >= 5
11. 1 1.4 7 108.5 3.5 . >= 5
12. 1 1.4 7 112.5 0 31 >= 5

The most noticeable feature of our PK data is the presence of many missing values for the concentration.

In fact, this is a common structure of PK data in the presence of multiple doses. Notice that the conc
variable contains missing values for each nonzero dose. It is typical to measure concentration only after
a dose or multiple doses are administered, which gives rise to missing concentration at some time points.

By default, Stata commands omit all observations containing missing values in variables used with the

command. In this example, we need to retain missing conc observations. We can use menl’s option
tsmissing to do so.
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. menl conc = dose/{V:} + L.{conc:}*exp(-{Cl:}/{V:}*D.time), ... tsmissing tsorder(time)

When you specify the tsmissing option, menl uses predicted values in place of system missing conc
values in the computation. (Observations with extended missing values .a, .b, and so on in conc, if
there were any, would have been omitted from the computation.) These predicted values are used to

compute predicted values for the observed concentrations but are not used to compute the log likelihood.

Only observed concentrations contribute to the log-likelihood calculation.

Another aspect of our data is that they are time-series data. Thus, the first observation in each panel

provides starting values for the time-series operators. For example, from the data, the initial time value

used by D.time for the first subject is time𝑖−1,𝑗 = time0,1 = 0. But how do we initialize L.{conc:}
given that {conc:} does not exist as a variable in our dataset? We use menl’s option tsinit().

. menl conc = dose/{V:} + L.{conc:}*exp(-{Cl:}/{V:}*D.time), ...
> tsinit({conc:}=dose/{V:}) tsmissing tsorder(time)

The tsinit() option allows us to specify initial conditions for the lagged predicted mean functions as
expressions. In our example, the initial condition for the mean concentration for each subject 𝑗 at time 0
is dose0,𝑗/𝑉𝑗, which we specified in tsinit().

Let’s now return to our nonlinear model specification and provide expressions for {V:} and {Cl:}.
One of the model parameterizations that Davidian and Giltinan (1995) consider for these data use weight
as a covariate for clearance and volume. They also include a dichotomized Apgar score, factor variable

fapgar in our dataset, to model volume. They express clearance and volume as

Cl𝑗 = 𝛽1weight𝑗 × exp (𝑢1𝑗)

𝑉𝑗 = 𝛽2weight𝑗(1 + 𝛽3fapgar𝑗) exp (𝑢2𝑗)

where 𝑢1𝑗’s and 𝑢2𝑗’s are two independent sets of random effects that follow 𝑁 (0, 𝜎2
𝑢1) and 𝑁 (0, 𝜎2

𝑢2),
respectively.
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We specify the above expressions for subject-specific volume and clearance in menl using the

define() options and fit the model:

. menl conc = dose/{V:} + L.{conc:}*exp(-{Cl:}/{V:}*D.time),
> define(Cl: {cl:weight}*weight*exp({U1[subject]}))
> define(V: {v:weight}*weight*(1+{v:apgar}*1.fapgar)*exp({U2[subject]}))
> tsinit({conc:} = dose/{V:})
> tsmissing tsorder(time)

Panel variable: subject (unbalanced)
Time variable: <time>, 1 to 20

Delta: 1 unit
Obtaining starting values by EM:
Alternating PNLS/LME algorithm:
Iteration 1: Linearization log likelihood = -432.58887
Iteration 2: Linearization log likelihood = -436.35525
Iteration 3: Linearization log likelihood = -436.36735
Iteration 4: Linearization log likelihood = -436.36894
Iteration 5: Linearization log likelihood = -436.369
Iteration 6: Linearization log likelihood = -436.36896
Computing standard errors:
Mixed-effects ML nonlinear regression Number of obs = 685

Nonmissing = 155
Missing = 530

Grouping information

No. of Observations per group
Path groups Minimum Average Maximum

subject 59 1 11.6 19
conc 59 1 2.6 6

Linearization log likelihood = -436.36896
Cl: {cl:weight}*weight*exp({U1[subject]})
V: {v:weight}*weight*(1+{v:apgar}*1.fapgar)*exp({U2[subject]})

conc Coefficient Std. err. z P>|z| [95% conf. interval]

/cl
weight .004705 .0002219 21.20 0.000 .0042701 .00514

/v
weight .9657032 .0294438 32.80 0.000 .9079945 1.023412
apgar .1749755 .0845767 2.07 0.039 .0092082 .3407429

Random-effects parameters Estimate Std. err. [95% conf. interval]

subject: Independent
var(U1) .0404098 .0187133 .0163044 .1001537
var(U2) .030259 .0078857 .0181562 .0504295

var(Residual) 7.469354 1.280411 5.337875 10.45196

Note: Lagged predicted mean function L.{conc:} is used in the model.
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From the coefficient table, we see that heavier babies have a higher clearance and volume of distribution.

There is a positive association between the volume of distribution and the Apgar score: healthier babies

have a better ability to eliminate the drug.

Because we specified the tsmissing option, the header reported the number of missing and non-

missing concentration values used in the computation. Also, the table containing the information about

the number of groups has an additional entry for conc providing the group information for nonmissing
observations of conc.

When we specified the time variable in the tsorder() option, menl generated the corresponding

consecutive integer-valued time variable and used it with tsset. From the output of tsset, as displayed
by menl, we see that menl also identified the panel variable, subject, from our model specification and

used it with tsset. The generated time variable used with tsset is labeled as <time> in the output.

Technical note
In example 17, we used the tsorder() option to specify the ordering for time-series operators. We

could have used tsset instead, but we would need to create the appropriate time variable first. Here,
we demonstrate how to do this.

We must specify the panel and time variables with tsset. Intuitively, we would want to type

. tsset subject time

but that would not produce the intended results. First, tsset requires an integer time variable, which
the time variable is not. Second, even if time contained integers, it is not equally spaced, which would
lead to gaps in the time series and thus missing values for time-series operators.

In our example, we are concerned only with the ordering of observations within a subject with respect

to the time variable for the purpose of time-series operators. So, we create a new variable, tsorder, to
contain consecutive integers based on time and use it with tsset.

. sort subject time

. by subject (time): generate long tsorder = _n

. tsset subject tsorder
Panel variable: subject (unbalanced)
Time variable: tsorder, 1 to 20

Delta: 1 unit

You can verify that the following specification of menlwill produce the same results as in example 17.

. menl conc = dose/{V:} + L.{conc:}*exp(-{Cl:}/{V:}*D.time),
> define(Cl: {cl:weight}*weight*exp({U1[subject]}))
> define(V: {v:weight}*weight*(1+{v:apgar}*1.fapgar)*exp({U2[subject]}))
> tsinit({conc:} = dose/{V:})
> tsmissing
(output omitted )

Note that we still use the time variable with the difference operator, D., in the model specification.
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Example 18: Multiple-oral-doses model
Verme et al. (1992) evaluated the PK behavior of quinidine, a pharmaceutical agent used to prevent

cardiac arrhythmias, in a study of 136 subjects receiving oral quinidine therapy. A total of 361 serum

quinidine concentrations (variable conc, mg/L) were measured over time (variable time, hours), ranging
from 1 to 11 observations per subject. Multiple doses (variable dose, mg) of quinidine, in two different
forms, were administrated to each subject. The doses were adjusted for differences in salt content by

conversion into milligrams of quinidine base. These data are also presented as examples in Davidian and

Giltinan (1995) and Pinheiro and Bates (2000).

A one-compartment open model with first-order absorption and elimination is assumed for serum

quinidine concentrations. This model, expressed in a compact recursive form, is

conc𝑖𝑗 = 𝜇1 (x′
𝑖𝑗, β, u𝑗) = 𝜇1 (x′

𝑖−1,𝑗, β, u𝑗) 𝑄𝑒𝑖𝑗
+ Ca𝑖−1,𝑗

𝑘𝑎𝑗

𝑘𝑎𝑗
− 𝑘𝑒𝑗

(𝑄𝑒𝑖𝑗
− 𝑄𝑎𝑖𝑗

) + 𝜖𝑖𝑗 (20)

where

Ca𝑖𝑗 =𝜇2 (z′
𝑖𝑗, β, u𝑗) = 𝜇2 (z′

𝑖−1,𝑗, β, u𝑗) 𝑄𝑎𝑖𝑗
+

dose𝑖𝑗

𝑉𝑗

𝑄𝑒𝑖𝑗
= exp{−𝑘𝑒𝑗

(time𝑖𝑗 − time𝑖−1,𝑗)}

𝑄𝑎𝑖𝑗
= exp{−𝑘𝑎𝑗

(time𝑖𝑗 − time𝑖−1,𝑗)}

for subject 𝑗 = 1, . . . , 136 and subject observation 𝑖 = 1, . . . , 𝑛𝑗, 𝑛𝑗 ∈ [1, 11]. The quantities 𝑄𝑎𝑖𝑗
and

𝑄𝑒𝑖𝑗
are defined for notational convenience to simplify the model expression. z′

𝑖𝑗 = (time𝑖𝑗, dose𝑖𝑗)

and x′
𝑖𝑗 = (z′

𝑖𝑗, glyco𝑖𝑗, creatinine𝑗, weight𝑗) are vectors of covariates, which we describe later,

corresponding to subject 𝑗 at time𝑖𝑗. Because the drug administration is extravascular, the quinidine

concentration in the body over time is a function of both the absorption rate, 𝑘𝑎𝑗
, and the elimination

rate, 𝑘𝑒𝑗
, for subject 𝑗. The function Ca𝑖𝑗 is the apparent concentration of quinidine in the absorption

depot over time (indexed by 𝑖) for subject 𝑗.
From example 17, we know that 𝑘𝑒𝑗

= Cl𝑗/𝑉𝑗, where Cl𝑗 is the clearance, defined as the volume

of plasma or blood that is totally cleared from its content of drug per unit time, and 𝑉𝑗 is the apparent

volume of distribution, defined as theoretical volume that would be necessary to contain the total amount

of an administered drug at the same concentration that is observed in the blood plasma.

The menl specification corresponding to model (20) is

. menl conc = L.{conc:}*{Qe:}+L.{Ca:}*({ka:}/({ka:}-{ke:}))*({Qe:}-{Qa:}),
> define(Ca: L.{Ca:}*{Qa:}+dose/{V:})
> define(Qe: exp(-{ke:}*D.time))
> define(Qa: exp(-{ka:}*D.time))
> define(ke: {Cl:}/{V:})
> define(ka: exp({lka}))
> ...

where expressions for {Cl:} and {V:} will be defined later. Similarly to example 17, we use D.time to
specify differences between two successive time values and L.{conc:} to specify the lagged predicted

mean function; also see Time-series operators. New in this specification is the inclusion of the lagged

function of model parameters or lagged named expression L.{Ca:}. Expression Ca is defined in the

define() option and is a function of its own lag, L.{Ca:}. Finally, parameter {ka} is reparameterized
as exp({lka}) to ensure that it is positive.
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When a patient receives the same dosage at regular time intervals (variable interval), model (20)
simplifies to the steady-state model

conc𝑠𝑠
𝑖𝑗 =

dose𝑖𝑗𝑘𝑎𝑗

𝑉𝑗 (𝑘𝑎𝑗
− 𝑘𝑒𝑗

)
(𝑄𝑠𝑠

𝑒𝑖𝑗
− 𝑄𝑠𝑠

𝑎𝑖𝑗
) (21)

and

Ca𝑠𝑠
𝑖𝑗 =

dose𝑖𝑗

𝑉𝑗
𝑄𝑠𝑠

𝑎𝑖𝑗

where

𝑄𝑠𝑠
𝑒𝑖𝑗

= 1
1 − exp (−𝑘𝑒𝑗

interval𝑖𝑗)

𝑄𝑠𝑠
𝑎𝑖𝑗

= 1
1 − exp (−𝑘𝑎𝑗

interval𝑖𝑗)

The quantities 𝑄𝑠𝑠
𝑒𝑖𝑗

and 𝑄𝑠𝑠
𝑎𝑖𝑗

are also defined for notational convenience.

The menl specification corresponding to model (21) is

. menl conc = dose*{ka:}/({V:}*({ka:}-{ke:}))*({Qe_ss:} - {Qa_ss:}),
> define(Qe_ss: 1/(1-exp(-{ke:}*interval))
> define(Qa_ss: 1/(1-exp(-{ka:}*interval))
> define(ke: {Cl:}/{V:})
> define(ka: exp({lka}))
> ...

For the quinidine model, the steady-state model (21) is assumed whenever interval𝑖𝑗 is nonzero

and the nonsteady-state model (20) is assumed otherwise. Thus, we need to switch back and forth

between these two models in our menl specification. We can use the Stata function cond(condi-
tion,expr if condition true,expr if condition false).

For example, the menl specification becomes

. menl conc = cond(interval==0,
> L.{conc:}*{Qe:}+L.{Ca:}*({ka:}/({ka:}-{ke:}))*({Qe:}-{Qa:}),
> dose*{ka:}/({V:}*({ka:}-{ke:}))*({Qe_ss:} - {Qa_ss:})),
> define(Ca: cond(interval==0, L.{Ca:}*{Qa:}+dose/{V:}, dose/{V:}*{Qa_ss:})
> ...

where other expressions such as {Qe:} and {Qa ss:} are as defined earlier. We used cond() for the
main menl specification and for the definition of the {Ca:} function.

Recall from example 17 that when we specify the lagged predicted mean function, we need to specify

an initial condition for it in the tsinit() option. Just like the main nonlinear specification, the initial
condition for L.{conc:} will depend on the value of interval. The mean concentration at time 0 will
be 0 for observations with zero interval values and will be equal to the expression for the steady-

state model otherwise: tsinit({conc:}=cond(interval==0,0,dose*{ka:}/({V:}*({ka:}-
{ke:}))*({Qe ss:}-{Qa ss:}))). Similarly, we need to provide an initial condition for the

lagged function of model parameters L.{Ca:}. It also depends on interval: tsinit({Ca:} =
cond(interval==0,dose/{V:},dose/{V:}*{Qa ss:})). Because we are using the same expres-
sions in the function definitions and the initial conditions, we can define additional functions to minimize

typing:
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. menl conc = cond(interval==0,
> L.{conc:}*{Qe:}+L.{Ca:}*({ka:}/({ka:}-{ke:}))*({Qe:}-{Qa:}),
> {Css:}),
> define(Ca: cond(interval==0,L.{Ca:}*{Qa:}+dose/{V:}, {Ca_ss:})
> define(Css: cond(interval==0,0,dose*{ka:}/({V:}*({ka:}-{ke:}))*({Qe_ss:}-{Qa_ss:})))
> define(Ca_ss: dose/{V:}*{Qa_ss:})
> ...
> tsinit({conc:} = cond(interval==0, 0, {Css:})
> tsinit({Ca:} = cond(interval==0, dose/{V:}, {Ca_ss:})

{Css:} contains the expression for the steady-state model (or 0 for observations in a nonsteady state),

and {Ca ss:} contains the expression for the Ca function in the steady state.

Let’s now finalize our menl specification by defining expressions for {Cl:} and {V:}. The goal of the
study from Verme et al. (1992) was to examine the relationship between quinidine PKs and several poten-

tial covariates: body weight (kg); age (years); height (in); glyco, 𝛼1-acid glycoprotein concentration

(mg/dL); creatinine, creatinine clearance (≥ 50 or < 50 ml/min ); race (Caucasian, Latin, black);
smoke, smoking status (yes, no); ethanol, alcohol abuse (former, none, current); and heart, congestive
heart failure (no or mild, moderate, severe). We provide more details about covariates creatinine and
glyco below.

Creatinine is a waste product from the normal breakdown of muscle tissue. As creatinine is produced,

it is filtered through the kidneys and excreted in urine. Doctors use creatinine and creatinine clearance

tests to check renal function (kidney function). Testing the rate of creatinine clearance shows the kidneys’

ability to filter the blood. As renal function declines, creatinine clearance also goes down. Creatinine

clearance in a healthy young person is about 95 ml/min for women and 120 ml/min for men.

𝛼1-acid glycoprotein (also known asAAG) is an important plasma protein involved in the binding and

transport of many drugs, including quinidine. Ahealthy range is 50–120 mg/dl. Changes inAAG concen-

tration could potentially alter the free fraction of drugs in plasma or at their target sites and eventually

affect their PK disposition and pharmacological action. Because AGG levels are increased in response

to stress, serum levels of total quinidine may be greatly increased in settings such as acute myocardial

infarction. Protein binding is also increased in chronic renal failure. There tends to be a small increase

in AAG with age.

For the purpose of illustration, we fit a modified version of model 2 from pages 248–249 of Davidian

and Giltinan (1995). The clearance, Cl𝑗, is modeled on the log scale as a linear combination {lCl:}
of glyco, ib1.creatinine, weight, and a random intercept, U1, at the subject level. The apparent
volume, 𝑉𝑗, is modeled on the log scale using a fixed-effect intercept and weight. The absorption rate,
𝑘𝑎, is modeled on the log scale as a free parameter {lka}, and is assumed fixed for all subjects. The full
second-stage specification is as follows:

Cl𝑖𝑗 = exp(𝛽1 + 𝛽2glyco𝑖𝑗 + 𝛽3creatinine𝑗 + 𝛽4weight𝑗 + 𝑢1𝑗)

𝑉𝑗 = exp(𝛽5 + 𝛽6weight𝑗)

𝑘𝑎𝑗
= exp (𝛽7)

𝑘𝑒𝑖𝑗
=

Cl𝑖𝑗

𝑉𝑗

where 𝑢1𝑗’s are random effects that follow 𝑁 (0, 𝜎2
𝑢1).
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Similarly to the phenobarbital data from example 17, the quinidine data also contain missing concen-

tration values, so we specify the tsmissing option to retain them in the computation. Again, we will

specify the time variable in the tsorder() option and let menl tsset the data for us.

. use https://www.stata-press.com/data/r19/quinidine

. menl conc = cond(interval==0,
> L.{conc:}*{Qe:}+L.{Ca:}*({ka:}/({ka:}-{ke:}))*({Qe:}-{Qa:}),
> {Css:}),
> define(Ca: cond(interval==0, L.{Ca:}*{Qa:}+dose/{V:}, {Ca_ss:}))
> define(Qe: exp(-{ke:}*D.time))
> define(Qa: exp(-{ka:}*D.time))
> define(Css: cond(interval==0,0,{ka:}*dose/({V:}*({ka:}-{ke:}))*({Qe_ss:}-{Qa_ss:})))
> define(Ca_ss: cond(interval==0,0,dose/{V:}*{Qa_ss:}))
> define(Qe_ss: 1/(1-exp(-{ke:}*interval)))
> define(Qa_ss: 1/(1-exp(-{ka:}*interval)))
> define(ke: {Cl:}/{V:})
> define(ka: exp({lka}))
> define(Cl: exp({lCl:glyco ib1.creatinine weight U1[subject], xb}))
> define(V: exp({lV: weight, xb}))
> tsinit({conc:} = cond(interval==0, 0, {Css:}))
> tsinit({Ca:} = cond(interval==0, dose/{V:}, {Ca_ss:}))
> tsorder(time) tsmissing

Panel variable: subject (unbalanced)
Time variable: <time>, 1 to 47

Delta: 1 unit
Obtaining starting values by EM:
Alternating PNLS/LME algorithm:
Iteration 1: Linearization log likelihood = -423.26688
Iteration 2: Linearization log likelihood = -425.82312
Iteration 3: Linearization log likelihood = -425.81124
Iteration 4: Linearization log likelihood = -425.8119
Iteration 5: Linearization log likelihood = -425.81241
Iteration 6: Linearization log likelihood = -425.81223
Iteration 7: Linearization log likelihood = -425.81233
Iteration 8: Linearization log likelihood = -425.81228
Iteration 9: Linearization log likelihood = -425.81231
Computing standard errors:
Mixed-effects ML nonlinear regression Number of obs = 1,335

Nonmissing = 361
Missing = 974

Grouping information

No. of Observations per group
Path groups Minimum Average Maximum

subject 136 1 9.8 46
conc 136 1 2.7 11
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Wald chi2(4) = 169.94
Linearization log likelihood = -425.81231 Prob > chi2 = 0.0000

Ca: cond(interval==0,L.{Ca:}*{Qa:}+dose/{V:},{Ca_ss:})
Ca_ss: cond(interval==0,0,dose/{V:}*{Qa_ss:})

Cl: exp({lCl:})
Css: cond(interval==0,0,{ka:}*dose/({V:}*({ka:}-{ke:}))*({Qe_ss:}-{

Qa_ss:}))
Qa: exp(-{ka:}*D.time)

Qa_ss: 1/(1-exp(-{ka:}*interval))
Qe: exp(-{ke:}*D.time)

Qe_ss: 1/(1-exp(-{ke:}*interval))
V: exp({lV:})

ka: exp({lka})
ke: {Cl:}/{V:}
lCl: glyco ib1.creatinine weight U1[subject], xb
lV: weight, xb

conc Coefficient Std. err. z P>|z| [95% conf. interval]

lCl
glyco -.4689097 .0416876 -11.25 0.000 -.5506159 -.3872035

creatinine
>= 50 .1851334 .0464825 3.98 0.000 .0940294 .2762373
weight .0036181 .0018213 1.99 0.047 .0000485 .0071877
_cons 2.668191 .1524726 17.50 0.000 2.36935 2.967031

lV
weight .0087346 .0058603 1.49 0.136 -.0027514 .0202206
_cons 4.572762 .47765 9.57 0.000 3.636585 5.508939

/lka -.8956278 .301 -2.98 0.003 -1.485577 -.3056787

Random-effects parameters Estimate Std. err. [95% conf. interval]

subject: Identity
var(U1) .0589024 .0108271 .0410838 .0844492

var(Residual) .4122599 .0364831 .346612 .4903413

Note: Lagged predicted mean function L.{conc:} is used in the model.
Note: Lagged named expression L.{Ca:} is used in the model.

From the coefficient table, we see that the clearance decreases with increase ofAAG (glyco) as would
be expected with the greater protein binding. The clearance is greater for creatinine clearance ≥ 50 as

would be expected with better renal function. Both clearance and volume increase with weight; although,

the effect of weight on volume is not statistically significant at the 5% level. The subject variability for

clearance contributes to the model as seen by the confidence interval for the random-effects variance

var(U1).

Nonlinear marginal models

The variance–covariance matrix of the response vector y𝑗 = (𝑦1𝑗, . . . , 𝑦𝑛𝑗𝑗) involves two compo-

nents to model heteroskedasticity and correlation: A random-effects component 𝚺 and a within-group

error component 𝚲𝑗. In some applications, one may wish to directly model the covariance structure of
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the response by choosing the appropriate within-group error component 𝚲𝑗 without introducing random

effects. This results in the so-called nonlinear marginal model (for example, Pinheiro and Bates [2000,

sec. 7.5.1]):

Stage 1: Individual-level model y𝑗 = 𝑚 (x𝑤
𝑗 , φ𝑗) + ε𝑗 ε𝑗 ∼ 𝑁 (0, 𝜎2𝚲𝑗)

Stage 2: Group-level model φ𝑗 = 𝑑 (x𝑏
𝑗, β) 𝑗 = 1, . . . , 𝑀

The above is essentially a vector representation of (2) after excluding the random effects u𝑗. Random

effects are used in NLMEmodels to explain the between-subject or between-group variation, but they are

not used in the specification of nonlinear marginal models. This key difference implies that mixed-effects

models allow for subject-specific inference, whereas marginal models do not. For this reason, mixed-

effects models are often called subject-specific models, while marginal models are called population-

averaged models.

menl provides the group() suboption within the rescovariance() and rescorrelation() op-

tions to model the dependence between within-group observations without introducing random effects.

Below, we show an example of fitting a nonlinear marginal model, without random effects, using the

group() suboption. See example 22 for the usage of the group() suboption in the presence of random
effects.

Example 19: Nonlinear marginal model
Vonesh and Carter (1992) analyzed data on 20 high-flux hemodialyzers to assess their in-vitro ultrafil-

tration performance. Dialyzers are used in hemodialysis, a treatment that replaces the work of kidneys, to

filter harmful wastes out of blood for patients with kidney failure. High-flux dialyzers do this more effi-

ciently than conventional dialyzers—they are composed of membranes with larger pores, which allows

them to remove larger molecules and water during blood filtration. A dialyzer’s ultrafiltration perfor-

mance, or ability to filter blood, is controlled by so-called transmembrane pressure and also depends on

the blood flow rate used during hemodialysis. In these data, the response variable, rate, is the dialyzer’s
ultrafiltration rate in mL/hr measured at 7 different transmembrane pressures, pressure, in dmHg. Ten
dialyzers were evaluated using bovine blood at a blood flow rate, qb, of 200 mL/min, whereas the other
10 dialyzers were evaluated at 300 mL/min.

The ultrafiltration rate, rate𝑖𝑗, at the 𝑖th transmembrane pressure, pressure𝑖𝑗, for the 𝑗th subject is
represented by the nonlinear model

rate𝑖𝑗 = 𝜙1𝑗 [1 − exp{− exp(𝜙2𝑗) (pressure𝑖𝑗 − 𝜙3)}] + 𝜖𝑖𝑗

The parameters 𝜙1, 𝜙2, and 𝜙3 have physiological interpretation: 𝜙1 is the maximum attainable ultra-

filtration rate, 𝜙2 is the logarithm of the hydraulic permeability transport rate of the membrane (rate at

which water and molecules pass through the dialyzer membrane), and 𝜙3 is the transmembrane pressure

required to offset the oncotic pressure (the transmembrane pressure at which the ultrafiltration rate is 0).

One of the models proposed in Vonesh and Carter (1992) included no random effects and used an

exchangeable (also known as compound symmetry) covariance structure to model the within-dialyzer

error covariance structure. The full description of the second stage of the model is

𝜙1𝑗 = 𝛽10 + 𝛽11qb𝑗

𝜙2𝑗 = 𝛽20 + 𝛽21qb𝑗

𝜙3𝑗 = 𝛽3
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and

ε𝑗 ∼ 𝑁(0, 𝜎2
𝜖 𝚲𝑗), 𝚲𝑗 =

⎡
⎢⎢
⎣

1 𝜌 . . . 𝜌
1 . . . 𝜌

⋱ ⋮
1

⎤
⎥⎥
⎦

Below, we use rescovariance(exchangeable, group(dialyzer)) to request an exchangeable
within-group error covariance structure where groups are identified by the dialyzer variable.

. use https://www.stata-press.com/data/r19/dialyzer
(High-flux hemodialyzers (Vonesh and Carter, 1992))
. menl rate = {phi1:}*(1-exp(-exp({phi2:})*(pressure - {phi3}))),
> define(phi1: i.qb, xb) define(phi2: i.qb, xb)
> rescovariance(exchangeable, group(dialyzer)) stddev
Obtaining starting values:
Alternating GNLS/ML algorithm:
Iteration 1: Log likelihood = -365.34244
Iteration 2: Log likelihood = -365.32697
Iteration 3: Log likelihood = -365.32697
Iteration 4: Log likelihood = -365.32697
Iteration 5: Log likelihood = -365.32697
Iteration 6: Log likelihood = -365.32697
Computing standard errors:
Mixed-effects ML nonlinear regression Number of obs = 140
Group variable: dialyzer Number of groups = 20

Obs per group:
min = 7
avg = 7.0
max = 7

Wald chi2(2) = 194.77
Log likelihood = -365.32697 Prob > chi2 = 0.0000

phi1: i.qb
phi2: i.qb

rate Coefficient Std. err. z P>|z| [95% conf. interval]

phi1
qb

300 17.23062 1.24589 13.83 0.000 14.78872 19.67252
_cons 44.95795 .8841506 50.85 0.000 43.22505 46.69086

phi2
qb

300 -.5034708 .0763513 -6.59 0.000 -.6531166 -.353825
_cons .7626986 .0630914 12.09 0.000 .6390417 .8863555

/phi3 .2249104 .0102113 22.03 0.000 .2048965 .2449243
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Random-effects parameters Estimate Std. err. [95% conf. interval]

Residual: Exchangeable
sd 3.722521 .3064517 3.167839 4.374327

corr .3867847 .0993617 .1771206 .5628662

The estimated values of 𝜌 and 𝜎𝜖 are ̂𝜌 = 0.39 and 𝜎̂𝑒 = 3.72, respectively. The 95% confidence

interval [0.18, 0.56] for 𝜌 suggests a positive correlation within dialyzer measurements. The maximum

ultrafiltration rate, 𝜙1, and the logarithm of the hydraulic permeability transport rate, 𝜙2, appear to be

affected by the blood flow rate.

Three-level models
Representation of (1) can be extended to, for example, two-nested levels of clustering, to form the

following three-level model, with observations composing the first level,

y𝑗𝑘 = µ (X𝑗𝑘,β,u(3)
𝑘 ,u(2)

𝑗𝑘 ) + ε𝑗𝑘

where the first-level observations 𝑖 = 1, . . . , 𝑛𝑗𝑘 are nested within the second-level groups 𝑗 =
1, . . . , 𝑀𝑘, which are nested within the third-level groups 𝑘 = 1, . . . , 𝑀. Group 𝑗 nested within group
𝑘 consists of 𝑛𝑗𝑘 observations, so y𝑗𝑘, X𝑗𝑘, and ε𝑗𝑘 each have row dimension 𝑛𝑗𝑘.

Also, assume that

u
(3)
𝑘 ∼ 𝑁(0, 𝚺3) u

(2)
𝑗𝑘 ∼ 𝑁(0, 𝚺2) ε𝑗𝑘 ∼ 𝑁(0, 𝜎2𝚲𝑗𝑘)

and that u
(3)
𝑘 , u

(2)
𝑗𝑘 , and ε𝑗𝑘 are independent.

Example 20: Three-level model
Hand and Crowder (1996, 118–120) analyzed a study where the blood glucose levels glucose of 7

volunteers, subject, who took alcohol at time 0 were measured 14 times, time, over a period of 5 hours
after alcohol consumption. The same experiment was repeated at a later date with the same subjects

but with a dietary additive, guar, used for all subjects. Variable guar is a binary variable that identifies
whether a subject received a dietary additive. It also identifies each experiment, with 0 corresponding

to the experiment without guar and 1 corresponding to the experiment with guar. Thus we will use the

guar variable both as the level indicator and, later, as a fixed-effects variable.
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Here is a plot of the whole dataset.

. use https://www.stata-press.com/data/r19/glucose
(Glucose levels following alcohol ingestion (Hand and Crowder, 1996))
. twoway connected glucose time if guar==0 ||
> connected glucose time if guar==1 ||, by(subject, rows(2))
> legend(order(1 ”Without guar” 2 ”With guar”))
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Our preliminary assessment based on the above graph is that, except for subject 6, the effect of the

dietary additive guar on the temporal trajectory of the blood glucose levels does not seem to be important.

The effect of guar will be formally tested in example 21.

Hand and Crowder (1996) proposed the following empirical model relating the expected glucose level

to time,

glucose𝑖𝑗𝑘 = 𝜙1𝑗𝑘 + 𝜙2𝑗𝑘time3 exp (−𝜙3𝑗𝑘time) + 𝜖𝑖𝑗𝑘 (22)

where 𝑘 = 1, . . . , 7, 𝑗 = 1, 2, and 𝑖 = 1, . . . , 14. The blood glucose level is 𝜙1 at time = 0 and as

time → ∞. This is intentional, so that 𝜙1 can be interpreted as both the blood glucose level before

ingesting alcohol and the blood glucose level after the effect of alcohol ingestion has washed out.

Pinheiro and Bates (2000, exercise 3, 412) analyzed this dataset in the context of a three-level NLME

model. They initially proposed the following stage 2 specification,

𝜙1𝑗𝑘 = 𝛽1 + 𝑢(3)
1𝑘 + 𝑢(2)

1𝑗,𝑘

𝜙2𝑗𝑘 = 𝛽2 + 𝑢(3)
2𝑘 + 𝑢(2)

2𝑗,𝑘

𝜙3𝑗𝑘 = 𝛽3

(23)

u
(3)
𝑘 = [𝑢(3)

1𝑘
𝑢(3)

2𝑘
] ∼ 𝑁 (0, 𝚺3) u

(2)
𝑗,𝑘 = [

𝑢(2)
1𝑗,𝑘

𝑢(2)
2𝑗,𝑘

] ∼ 𝑁 (0, 𝚺2) 𝜖𝑖𝑗𝑘 ∼ 𝑁 (0, 𝜎2
𝜖 )

where 𝚺2 and 𝚺3 are general symmetric covariance matrices. 𝑢(2)
1𝑗,𝑘 and 𝑢(2)

2𝑗,𝑘 are random inter-

cepts at the guar-within-subject level and can be specified in menl as UU1[subject>guar] and

UU2[subject>guar].

The full model defined by (22) and (23) contains many parameters. We will follow our own advice

from example 11 and specify the iterate() option to check how reasonable our model is for the data

we have.
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. menl glucose = {phi1:} + {phi2:}*c.time#c.time#c.time*exp(-{phi3}*time),
> define(phi1: U1[subject] UU1[subject>guar])
> define(phi2: U2[subject] UU2[subject>guar])
> covariance(U1 U2, unstructured) covariance(UU*, unstructured)
> stddeviations iterate(3)
Obtaining starting values by EM:
Alternating PNLS/LME algorithm:
Iteration 1: Linearization log likelihood = -189.44711
Iteration 2: Linearization log likelihood = -189.44117
Iteration 3: Linearization log likelihood = -189.44112
Computing standard errors:
Mixed-effects ML nonlinear regression Number of obs = 196

Grouping information

No. of Observations per group
Path groups Minimum Average Maximum

subject 7 28 28.0 28
subject>guar 14 14 14.0 14

Linearization log likelihood = -189.44112
phi1: U1[subject] UU1[subject>guar]
phi2: U2[subject] UU2[subject>guar]

glucose Coefficient Std. err. z P>|z| [95% conf. interval]

phi1
_cons 3.661565 .1160345 31.56 0.000 3.434142 3.888989

phi2
_cons .4283298 .0530029 8.08 0.000 .3244461 .5322136

/phi3 .5896813 .013861 42.54 0.000 .5625144 .6168483

Random-effects parameters Estimate Std. err. [95% conf. interval]

subject: Unstructured
sd(U1) .2624562 .0926845 .1313594 .5243876
sd(U2) .0598433 .0724562 .0055771 .6421277

corr(U1,U2) -.1489335 .9201199 -.963627 .9346878

subject>guar: Unstructured
sd(UU1) .0919525 .076423 .0180351 .4688234
sd(UU2) .122707 .041287 .0634552 .2372856

corr(UU1,UU2) .99999 .0044417 -1 1

sd(Residual) .5712261 .0305339 .514409 .6343187

Warning: Convergence not achieved.

The estimated correlation corr(UU1,UU2) is near one with the confidence interval spanning the entire
range for the correlation parameter, which indicates that the random-effects structure is overparame-

terized. The confidence interval for corr(U1,U2) contains zero, which suggests that this term does

not contribute much to explaining between-subject variability. If we try to fit this model without the

iterate() option, it will continue iterating without convergence.



menl — Nonlinear mixed-effects regression 290

We simplify our model by assuming independence between random effects; that is, we assume that

random-effects covariance matrices 𝚺2 and 𝚺3 are diagonal.

Recall that covariance(, independent) is assumed by default, so we do not need to explicitly

specify the covariance() option:

. menl glucose = {phi1:} + {phi2:}*c.time#c.time#c.time*exp(-{phi3}*time),
> define(phi1: U1[subject] UU1[subject>guar])
> define(phi2: U2[subject] UU2[subject>guar]) stddeviations
Obtaining starting values by EM:
Alternating PNLS/LME algorithm:
Iteration 1: Linearization log likelihood = -190.35529
Iteration 2: Linearization log likelihood = -190.36034
Iteration 3: Linearization log likelihood = -190.3633
Iteration 4: Linearization log likelihood = -190.36418
Iteration 5: Linearization log likelihood = -190.36375
Iteration 6: Linearization log likelihood = -190.36397
Iteration 7: Linearization log likelihood = -190.36386
Iteration 8: Linearization log likelihood = -190.36391
Iteration 9: Linearization log likelihood = -190.36389
Computing standard errors:
Mixed-effects ML nonlinear regression Number of obs = 196

Grouping information

No. of Observations per group
Path groups Minimum Average Maximum

subject 7 28 28.0 28
subject>guar 14 14 14.0 14

Linearization log likelihood = -190.36389
phi1: U1[subject] UU1[subject>guar]
phi2: U2[subject] UU2[subject>guar]

glucose Coefficient Std. err. z P>|z| [95% conf. interval]

phi1
_cons 3.658712 .1168642 31.31 0.000 3.429662 3.887762

phi2
_cons .4239173 .0526333 8.05 0.000 .320758 .5270766

/phi3 .5876636 .0137214 42.83 0.000 .5607701 .6145571
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Random-effects parameters Estimate Std. err. [95% conf. interval]

subject: Independent
sd(U1) .2685609 .092104 .137126 .5259757
sd(U2) .0422075 .1078502 .0002821 6.315575

subject>guar: Independent
sd(UU1) .0666034 .1527523 .0007435 5.966157
sd(UU2) .1362263 .0433548 .0730065 .2541912

sd(Residual) .5732488 .0309928 .5156118 .6373288

The random-effects structure may still be overparameterized, given small estimates for sd(U2) and

sd(UU1). If we were to perform an LR test of the corresponding variance components being zero, we

would have no statistical evidence to reject this null hypothesis; see example 7 for an instance of per-

forming an LR test.

Example 21: Three-level model with continuous-time AR(1) error structure
The main objective of the study from example 20 was to determine whether the use of the dietary

additive guar significantly affected time profiles of the blood glucose levels of subjects.

We continue with the model without random effects U2[subject] and UU1[subject>guar] and

include covariate guar for all 𝜙𝑗𝑘’s. Hand and Crowder (1996) also suggested to use a continuous-

time AR(1) correlation structure for the guar-within-subject errors, which is specified in menl as

rescorrelation(ctar1, t(time)):

. menl glucose = {phi1:} + {phi2:}*c.time#c.time#c.time*exp(-{phi3:}*time),
> define(phi1: i.guar U1[subject]) define(phi2: i.guar UU2[subject>guar])
> define(phi3: i.guar, xb) rescorrelation(ctar1, t(time)) stddeviations
Obtaining starting values by EM:
Alternating PNLS/LME algorithm:
Iteration 1: Linearization log likelihood = -180.62304
(iteration log omitted)

Iteration 25: Linearization log likelihood = -181.18699
Computing standard errors:
Mixed-effects ML nonlinear regression Number of obs = 196

Grouping information

No. of Observations per group
Path groups Minimum Average Maximum

subject 7 28 28.0 28
subject>guar 14 14 14.0 14
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Wald chi2(3) = 0.66
Linearization log likelihood = -181.18699 Prob > chi2 = 0.8814

phi1: i.guar U1[subject]
phi2: i.guar UU2[subject>guar]
phi3: i.guar

glucose Coefficient Std. err. z P>|z| [95% conf. interval]

phi1
guar

with guar -.0814355 .1532735 -0.53 0.595 -.381846 .218975
_cons 3.685365 .1433368 25.71 0.000 3.40443 3.9663

phi2
guar

with guar .0109469 .0883807 0.12 0.901 -.162276 .1841698
_cons .344372 .0606914 5.67 0.000 .2254191 .4633248

phi3
guar

with guar .0103743 .0330196 0.31 0.753 -.054343 .0750916
_cons .5514012 .022009 25.05 0.000 .5082642 .5945381

Random-effects parameters Estimate Std. err. [95% conf. interval]

subject: Identity
sd(U1) .2453634 .1013233 .1092206 .5512074

subject>guar: Identity
sd(UU2) .1011852 .0276419 .0592358 .1728421

Residual: CTAR1,
time time

sd(e) .6208598 .0412948 .544977 .7073086
corr .6547722 .0564848 .544064 .7654804

The dietary additive guar does not seem to affect the blood-glucose-level profiles over time. This actually

conforms with the plot of the data from example 20, where, except for subject 6, the profiles with and

without guar are similar.

Example 22: Using group() in the presence of random effects
The actualNLMEmodel presented inHand andCrowder (1996) for these glucose data included random

effects for 𝜙1 and 𝜙2 only at the subject level and used a continuous-time AR(1) correlation structure
on time for the guar-within-subject errors, with errors from different guar-within-subject clusters
assumed to be independent. This model can be specified in menl using rescorrelation()’s group()
suboption:

. menl glucose = {phi1:} + {phi2:}*c.time#c.time#c.time*exp(-{phi3:}*time),
> define(phi1: i.guar U1[subject])
> define(phi2: i.guar U2[subject])
> define(phi3: i.guar, xb)
> rescorrelation(ctar1, t(time) group(guar)) stddeviations
note: group variable guar nested in subject assumed.
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Obtaining starting values by EM:
Alternating PNLS/LME algorithm:
Iteration 1: Linearization log likelihood = -183.7208
Iteration 2: Linearization log likelihood = -183.91698
(iteration log omitted)

Iteration 13: Linearization log likelihood = -183.90513
Iteration 14: Linearization log likelihood = -183.90511
Computing standard errors:
Mixed-effects ML nonlinear regression Number of obs = 196

Grouping information

No. of Observations per group
Path groups Minimum Average Maximum

subject 7 28 28.0 28
guar 14 14 14.0 14

Wald chi2(3) = 1.01
Linearization log likelihood = -183.90511 Prob > chi2 = 0.7978

phi1: i.guar U1[subject]
phi2: i.guar U2[subject]
phi3: i.guar

glucose Coefficient Std. err. z P>|z| [95% conf. interval]

phi1
guar

with guar -.0557508 .1714288 -0.33 0.745 -.391745 .2802434
_cons 3.682235 .1503694 24.49 0.000 3.387517 3.976954

phi2
guar

with guar .032163 .0721232 0.45 0.656 -.1091958 .1735219
_cons .3349061 .0577129 5.80 0.000 .2217908 .4480214

phi3
guar

with guar .0232717 .0346187 0.67 0.501 -.0445798 .0911232
_cons .5464887 .0243374 22.45 0.000 .4987883 .5941891

Random-effects parameters Estimate Std. err. [95% conf. interval]

subject: Independent
sd(U1) .2288441 .1103909 .0889065 .589042
sd(U2) .0774363 .0306965 .0356058 .1684103

Residual: CTAR1,
time time

sd(e) .6663828 .0439279 .5856156 .7582893
corr .7018854 .0468263 .6101075 .7936633

The fixed-effects estimates are similar to those in example 21, and the same conclusion is reached re-

garding the effect of the dietary additive guar on the blood-glucose-levels profiles over time. AIC and

BIC may be used to decide on which model is better.
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Notice the note displayed by menl following the command specification about the group vari-

able guar being nested within variable subject. When you specify group(grpvar) within the

rescorrelation() (or rescovariance()) option in the presence of random effects, grpvar is assumed

to represent the lowest level of hierarchy and is thus assumed to be nested within other hierarchical levels.

Example 23: Three-level model with block-diagonal covariance matrix
Pinheiro and Bates (2000) report the data from the experiment conducted by Microelectronics Divi-

sion of Lucent Technologies to study the variability in the manufacturing of analog MOS circuits. The

intensities of the current (in mA) were collected on 𝑛-channel devices at five ascending voltages: 0.8,
1.2, 1.6, 2.0, and 2.4 V. Measurements were made on 8 sites of each of 10 wafers. The main objective
of the study was to build an empirical model to simulate the behavior of similar circuits.

The intensity of the current at the 𝑖th level of voltage in the 𝑗th site within the 𝑘th wafer is ex-
pressed as

current𝑖𝑗𝑘 = 𝜙1𝑗𝑘 + 𝜙2𝑗𝑘 cos (𝜙3𝑗𝑘voltage𝑖 + 𝜋/4) + 𝜖𝑖𝑗𝑘

where

𝜙1𝑗𝑘 = 𝛽0 + 𝑢(3)
0𝑘 + 𝑢(2)

0𝑗,𝑘 + (𝛽1 + 𝑢(3)
1𝑘 + 𝑢(2)

1𝑗,𝑘) voltage𝑖 + (𝛽2 + 𝑢(3)
2𝑘 + 𝑢(2)

2𝑗,𝑘) voltage2
𝑖

𝜙2𝑗𝑘 = 𝛽3 + 𝑢(3)
3𝑘 + 𝑢(2)

3𝑗,𝑘

𝜙3𝑗𝑘 = 𝛽4 + 𝑢(3)
4𝑘

u
(3)
𝑘 =

⎡
⎢
⎢
⎢
⎢
⎣

𝑢(3)
0𝑘

𝑢(3)
1𝑘

𝑢(3)
2𝑘

𝑢(3)
3𝑘

𝑢(3)
4𝑘

⎤
⎥
⎥
⎥
⎥
⎦

∼ 𝑁 (0, 𝚺3) u
(2)
𝑗,𝑘 =

⎡
⎢
⎢
⎢
⎣

𝑢(2)
0𝑗,𝑘

𝑢(2)
1𝑗,𝑘

𝑢(2)
2𝑗,𝑘

𝑢(2)
3𝑗,𝑘

⎤
⎥
⎥
⎥
⎦

∼ 𝑁 (0, 𝚺2) 𝜖𝑖𝑗𝑘 ∼ 𝑁 (0, 𝜎2
𝜖 )

Parameters 𝛽0, 𝛽1, and 𝛽2 characterize the quadratic component of the model, and amplitude 𝛽3 and

frequency 𝛽4 characterize the periodic component represented by the cosine wave.

For illustration, consider the following random-effects covariance structures:

𝚺3 =

⎡
⎢
⎢
⎢
⎢
⎣

𝜎(3)
11

𝜎(3)
22

𝜎(3)
33

𝜎(3)
44

𝜎(3)
55

⎤
⎥
⎥
⎥
⎥
⎦

𝚺2 =
⎡
⎢
⎢
⎢
⎣

𝜎(2)
11 𝜎(2)

12 0 0
𝜎(2)

12 𝜎(2)
22 0 0

0 0 𝜎(2)
33 𝜎(2)

34
0 0 𝜎(2)

34 𝜎(2)
44

⎤
⎥
⎥
⎥
⎦

If we were to fit this model by using menl, we would type

. use https://www.stata-press.com/data/r19/wafer
(Modeling of analog MOS circuits)
. menl current = {phi1:}+{phi2:}*cos({phi3:}*voltage + _pi/4),
> define(phi1: voltage c.voltage#c.voltage W0[wafer] S0[wafer>site]
> c.voltage#(W1[wafer] S1[wafer>site])
> c.voltage#c.voltage#(W2[wafer] S2[wafer>site]))
> define(phi2: W3[wafer] S3[wafer>site]) define(phi3: W4[wafer], xb)
> covariance(S0 S1, unstructured) covariance(S2 S3, unstructured)
> covariance(W*, independent) stddeviations
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In the specification above, 𝚺3 is specified as covariance(W*, independent), although this spec-
ification could have been omitted because independent is menl’s default random-effects covari-

ance structure. The block-diagonal matrix 𝚺2 is specified by using repeated covariance() options:

covariance(S0 S1, unstructured) and covariance(S2 S3, unstructured). If we tried to run

this model, we would find out that it is overparameterized.

Because of the large number of random effects at each grouping level, to avoid numerically unstable

estimates, we will further simplify our model by assuming independence between 𝑢(2)
2𝑗,𝑘 and 𝑢(2)

3𝑗,𝑘, which

implies that 𝜎(2)
34 = 0:

𝚺3 =

⎡
⎢
⎢
⎢
⎢
⎣

𝜎(3)
11

𝜎(3)
22

𝜎(3)
33

𝜎(3)
44

𝜎(3)
55

⎤
⎥
⎥
⎥
⎥
⎦

𝚺2 =
⎡
⎢
⎢
⎢
⎣

𝜎(2)
11 𝜎(2)

12 0 0
𝜎(2)

12 𝜎(2)
22 0 0

0 0 𝜎(2)
33 0

0 0 0 𝜎(2)
44

⎤
⎥
⎥
⎥
⎦

We now try to fit the above simpler model. Note that given the complexity of this model, it takes

some time to execute.

. use https://www.stata-press.com/data/r19/wafer
(Modeling of analog MOS circuits)
. menl current = {phi1:}+{phi2:}*cos({phi3:}*voltage + _pi/4),
> define(phi1: voltage c.voltage#c.voltage W0[wafer] S0[wafer>site]
> c.voltage#(W1[wafer] S1[wafer>site])
> c.voltage#c.voltage#(W2[wafer] S2[wafer>site]))
> define(phi2: W3[wafer] S3[wafer>site]) define(phi3: W4[wafer], xb)
> covariance(S0 S1, unstructured) covariance(S2 S3, independent)
> covariance(W*, independent) stddeviations
Obtaining starting values by EM:
Alternating PNLS/LME algorithm:
Iteration 1: Linearization log likelihood = 735.58995
Iteration 2: Linearization log likelihood = 766.83552
Iteration 3: Linearization log likelihood = 825.9155
Iteration 4: Linearization log likelihood = 825.9171
Iteration 5: Linearization log likelihood = 825.9171
Computing standard errors:
Mixed-effects ML nonlinear regression Number of obs = 400

Grouping information

No. of Observations per group
Path groups Minimum Average Maximum

wafer 10 40 40.0 40
wafer>site 80 5 5.0 5
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Wald chi2(2) = 8763.94
Linearization log likelihood = 825.9171 Prob > chi2 = 0.0000

phi1: voltage c.voltage#c.voltage W0[wafer] S0[wafer>site]
c.voltage#W1[wafer] c.voltage#S1[wafer>site]
c.voltage#c.voltage#W2[wafer]
c.voltage#c.voltage#S2[wafer>site]

phi2: W3[wafer] S3[wafer>site]
phi3: W4[wafer], xb

current Coefficient Std. err. z P>|z| [95% conf. interval]

phi1
voltage 6.046937 .1022632 59.13 0.000 5.846504 6.247369

c.voltage#
c.voltage 1.158782 .0159669 72.57 0.000 1.127487 1.190076

_cons -4.658034 .0361763 -128.76 0.000 -4.728938 -4.58713

phi2
_cons .1684428 .002054 82.01 0.000 .1644171 .1724686

phi3
_cons 6.449391 .0019631 3285.32 0.000 6.445543 6.453238

Random-effects parameters Estimate Std. err. [95% conf. interval]

wafer: Independent
sd(W0) .1107108 .0262518 .0695588 .1762088
sd(W1) .3041975 .0764653 .1858623 .4978746
sd(W2) .0449994 .0125441 .026057 .0777122
sd(W3) .0057862 .0016144 .0033489 .0099974
sd(W4) .0061349 .0013878 .0039377 .0095579

wafer>site: Unstructured
sd(S0) .0729495 .0062969 .0615953 .0863968
sd(S1) .2930062 .0252423 .2474835 .3469024

corr(S0,S1) -.8113227 .0413358 -.8782237 -.7132787

wafer>site: Independent
sd(S2) .0627587 .0053067 .0531738 .0740712
sd(S3) .0080611 .0006861 .0068227 .0095244

sd(Residual) .0008407 .0000711 .0007122 .0009922



menl — Nonlinear mixed-effects regression 297

In this example, our primary focus was to demonstrate how to use menl to fit a block-diagonal random-
effects covariance structure. But if wewere to interpret our fixed-effects estimates, the average frequency

of the cosine wave, 𝛽4 = 𝐸 (𝜙3𝑗𝑘), for example, is estimated to be 6.45𝑉 −1, with a corresponding

estimated period of 2𝜋/ ̂𝛽4 ≈ 0.97𝑉. Also, some of the estimates of standard deviations such as sd(W2),
sd(W3), and sd(W4) are very small, which suggests that this model may still be too rich for the observed
data. If we proceeded to further analyze these data, we would consider simpler models. For example, at

the very least, we would have omitted the term W3[wafer] from this model.

Obtaining initial values
Obtaining good starting or initial values is important for the estimation of many statistical models,

but it is often crucial for the estimation of NLME models. NLME models are known to be sensitive to

the initial values and to have difficulty converging. Highly nonlinear mean specification or complicated

variance–covariance structures for random effects and errors can often lead to multiple solutions, which

requires considering different sets of initial values.

By default, menl uses the EM algorithm to obtain initial values. This default routine works well in

many cases but cannot be guaranteed to provide good initial values in all situations. Sometimes, you may

need to specify your own initial values. Trying different initial values can also be useful to investigate

the existence of multiple solutions and to verify convergence to a global maximum.

So far we have been “lucky” that all the examples worked without us having to specify initial es-

timates. You may not be that lucky with your data and model. So, in this section, we provide some

guidance on how to find good initial values when the default initial values do not work well.

We present three approaches that you may choose to explore to find good initial estimates for the

fixed effects. In some cases, you may also be able to obtain initial estimates for covariance parameters;

see Linearization approach to finding initial values.

Linearization approach to finding initial values

Sometimes, we can use an LME model to obtain initial values of the NLME model by holding some

of the parameters fixed at specific values. We can then fit the resulting LME model by using the mixed
command and use the corresponding estimates as initial values for the NLME model. We refer to this

initialization method as the linearization method.

We could have used this method in example 14 and example 23, if the default EM method did not

provide reasonable initial estimates. In any case, it is good practice to specify different initial values to

investigate potential convergence of the algorithm to a local maximum.

For instance, in example 14, we fit

follicles𝑖𝑗 = 𝜙1𝑗 + 𝜙2𝑗 sin (2𝜋𝜙3𝑗stime𝑖𝑗) + 𝜙4𝑗 cos (2𝜋𝜙3𝑗stime𝑖𝑗) + 𝜖𝑖𝑗

where

φ𝑗 =
⎡
⎢
⎢
⎣

𝜙1𝑗
𝜙2𝑗
𝜙3𝑗
𝜙4𝑗

⎤
⎥
⎥
⎦

=
⎡
⎢⎢
⎣

𝛽1 + 𝑢1𝑗
𝛽2
𝛽3
𝛽4

⎤
⎥⎥
⎦
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This model is nonlinear because of the parameter 𝜙3𝑗. To obtain initial values, we can hold 𝜙3𝑗 (or

𝛽3) fixed at a specific value, say, 𝛽3 = 1, thus making the above model linear,

follicles𝑖𝑗 = 𝜙1𝑗 + 𝜙2𝑗 sin (2𝜋𝜙3𝑗stime𝑖𝑗) + 𝜙4𝑗 cos (2𝜋𝜙3𝑗stime𝑖𝑗) + 𝜖𝑖𝑗

where

φ𝑗 =
⎡
⎢
⎢
⎣

𝜙1𝑗
𝜙2𝑗
𝜙3𝑗
𝜙4𝑗

⎤
⎥
⎥
⎦

=
⎡
⎢⎢
⎣

𝛽1 + 𝑢1𝑗
𝛽2
1
𝛽4

⎤
⎥⎥
⎦

Or, more compactly,

follicles𝑖𝑗 = 𝛽1 + 𝑢1𝑗 + 𝛽2 sin (2𝜋stime𝑖𝑗) + 𝛽4 cos (2𝜋stime𝑖𝑗) + 𝜖𝑖𝑗

Now that the model is linear, we can use the mixed command to obtain initial values for 𝛽1,

𝛽2, and 𝛽4 to be used in menl. In the code below, variables sin1 and cos1 are sin (2𝜋stime𝑖𝑗)
and cos (2𝜋stime𝑖𝑗), respectively, and || mare: specifies a random intercept at the mare level (see

[ME]mixed). Also, for consistency with example 13, we assume anAR(1) within-group error correlation

structure:

. mixed follicles sin1 cos1 || mare:, residuals(ar 1, t(time)) nolog
Mixed-effects ML regression Number of obs = 308
Group variable: mare Number of groups = 11

Obs per group:
min = 25
avg = 28.0
max = 31

Wald chi2(2) = 39.00
Log likelihood = -776.51731 Prob > chi2 = 0.0000

follicles Coefficient Std. err. z P>|z| [95% conf. interval]

sin1 -2.958619 .4935054 -6.00 0.000 -3.925872 -1.991366
cos1 -.8798847 .5031763 -1.75 0.080 -1.866092 .1063228
_cons 12.18963 .9017441 13.52 0.000 10.42224 13.95701

Random-effects parameters Estimate Std. err. [95% conf. interval]

mare: Identity
var(_cons) 7.095514 3.76488 2.508051 20.07388

Residual: AR(1)
rho .5974664 .0547217 .4795551 .6941854

var(e) 13.08097 1.765325 10.04078 17.0417

LR test vs. linear model: chi2(2) = 242.63 Prob > chi2 = 0.0000
Note: LR test is conservative and provided only for reference.
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We will now use the estimates of the fixed effects shown in the output table as initial values for menl
by specifying the initial() option. We use 1 as the initial value for /phi3. There are three ways
to specify initial values in the initial() option; see Specifying initial values. Here we will use the

specification where we repeatedly list a parameter name followed by its initial value; also see Examples

of specifying initial values.

. local xb phi1:_cons 12.2 /phi2 -3.0 /phi3 1 /phi4 -.88

. menl follicles = {phi1: U1[mare], xb} + {phi2}*sin(2*_pi*stime*{phi3}) +
> {phi4}*cos(2*_pi*stime*{phi3}), rescorrelation(ar 1, t(time)) init(‘xb’)
Alternating PNLS/LME algorithm:
Iteration 1: Linearization log likelihood = -775.62937
Iteration 2: Linearization log likelihood = -775.62433
Iteration 3: Linearization log likelihood = -775.62433
Computing standard errors:
Mixed-effects ML nonlinear regression Number of obs = 308
Group variable: mare Number of groups = 11

Obs per group:
min = 25
avg = 28.0
max = 31

Linearization log likelihood = -775.62433
phi1: U1[mare], xb

follicles Coefficient Std. err. z P>|z| [95% conf. interval]

phi1
_cons 12.18125 .9055128 13.45 0.000 10.40647 13.95602

/phi2 -2.874413 .5389583 -5.33 0.000 -3.930751 -1.818074
/phi3 .919114 .0512333 17.94 0.000 .8186986 1.019529
/phi4 -1.675314 .6766091 -2.48 0.013 -3.001444 -.3491848

Random-effects parameters Estimate Std. err. [95% conf. interval]

mare: Identity
var(U1) 7.207072 3.755603 2.595363 20.01334

Residual: AR(1),
time time

var(e) 12.63377 1.646897 9.785277 16.31146
corr .5823733 .0544508 .4656903 .679153

In the above, we initialized only fixed-effects parameters and used naïve initial estimates of 1 for

random-intercept and error variances and 0 for the correlation. We could have specified initial()’s
fixed suboption to use the EM algorithm to compute initial estimates for the random-effects parameters;

see Examples of specifying initial values for details.

With the linearization approach, we can also use estimates of the random-effects parameters from

the mixed command to initialize the corresponding parameters of menl. This is an advantage of the
linearization approach over the other two approaches we discuss in subsequent sections. One compli-

cation with the initialization of random-effects parameters is that the initial values must be supplied in

the estimation metric, the metric used during estimation, instead of the parameter original metric. For

example, instead of variances, we must supply estimates of log standard-deviations, and instead of co-
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variances or correlations, we must supply inverse hyperbolic tangents of correlation parameters. Luckily

for us, mixed stores results using the same metric as menl and provides the estmetric option to display
parameters in that metric.

In our example, the random-effects parameters are the random-intercept variance, the within-group

error variance, and the correlation between error terms. We refit the earlier mixed command but now
with the estmetric option to obtain the estimates of the random-effects parameters as they are stored
in e(b).

. mixed follicles sin1 cos1 || mare:, residuals(ar 1, t(time)) nolog estmetric
Mixed-effects ML regression Number of obs = 308
Group variable: mare Number of groups = 11

Obs per group:
min = 25
avg = 28.0
max = 31

Wald chi2(2) = 39.00
Log likelihood = -776.51731 Prob > chi2 = 0.0000

follicles Coefficient Std. err. z P>|z| [95% conf. interval]

follicles
sin1 -2.958619 .4935054 -6.00 0.000 -3.925872 -1.991366
cos1 -.8798847 .5031763 -1.75 0.080 -1.866092 .1063228
_cons 12.18963 .9017441 13.52 0.000 10.42224 13.95701

lns1_1_1
_cons .9797314 .2653 .5762507 1.665722

lnsig_e
_cons 1.285579 .0674768 19.05 0.000 1.153327 1.417832

r_atr1
_cons .6891978 .0850992 8.10 0.000 .5224064 .8559891

menl uses the same ordering of the parameters as mixed does, so we can simply list all the estimates
directly in the initial() option. When we list the values without parameter names, we must specify

initial()’s copy suboption and specify the values for all parameters. In our example, we specify four
fixed-effects coefficients and three random-effects parameters.
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. menl follicles = {phi1: U1[mare], xb} + {phi2}*sin(2*_pi*stime*{phi3}) +
> {phi4}*cos(2*_pi*stime*{phi3}), rescorrelation(ar 1, t(time))
> initial(12.2 -3.0 1 -.88 .98 1.29 .69, copy)
Alternating PNLS/LME algorithm:
Iteration 1: Linearization log likelihood = -775.62433
Iteration 2: Linearization log likelihood = -775.62433
Computing standard errors:
Mixed-effects ML nonlinear regression Number of obs = 308
Group variable: mare Number of groups = 11

Obs per group:
min = 25
avg = 28.0
max = 31

Linearization log likelihood = -775.62433
phi1: U1[mare], xb

follicles Coefficient Std. err. z P>|z| [95% conf. interval]

phi1
_cons 12.18125 .9055135 13.45 0.000 10.40647 13.95602

/phi2 -2.874434 .5389241 -5.33 0.000 -3.930706 -1.818162
/phi3 .919119 .0512356 17.94 0.000 .818699 1.019539
/phi4 -1.675261 .6766409 -2.48 0.013 -3.001452 -.3490689

Random-effects parameters Estimate Std. err. [95% conf. interval]

mare: Identity
var(U1) 7.207072 3.755605 2.595361 20.01336

Residual: AR(1),
time time

var(e) 12.63377 1.646897 9.785276 16.31146
corr .5823733 .0544508 .4656903 .679153

The results are different from those in example 14. The value of the linearization log likelihood in this

example, −775.62, is larger than that from example 14, −789.43. So it appears that we have converged

to a local maximum of the linearization log likelihood in example 14.

Our initial values based on mixed turned out to be better than those computed by default by menl.
This is not surprising. In general, menl’s EM algorithm should produce reasonable initial values for many

nonlinear models, but the initial values may not necessarily be optimal for all of those models. In this

example, our initial values were tailored to the ovary data and the model.

In general, sensitivity to initial values is one of the key issues in NLME models, especially for models

that involve periodic functions. Therefore, it is important to try different sets of initial values to verify

global convergence before reporting your final results. Sometimes, you may even have to rely on your

knowledge of the science behind the problem to decide which set of results is more reasonable.

Graphical approach to finding initial values

If your model has parameters that have natural physical interpretations, you may be able to obtain

starting values from a graph of the data.
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Draper and Smith (1998) presented a dataset in which the trunk circumference circumf (in mm) of
five different orange trees was measured over seven different time points, stored in age. Pinheiro and
Bates (2000) suggested the following model for these data:

circumf𝑖𝑗 =
𝜙1𝑗

1 + exp{− (age𝑖𝑗 − 𝜙2𝑗) /𝜙3𝑗}
+ 𝜖𝑖𝑗 (24)

In this model, 𝜙1𝑗 is the asymptotic trunk circumference for the 𝑗th tree as age𝑖𝑗 → ∞, 𝜙2𝑗 is the age

at which the 𝑗th tree attains half of its asymptotic trunk circumference 𝜙1𝑗, and 𝜙3𝑗 is a scale parameter;

see the graph below.

The stage 2 specification of this model is

φ𝑗 = ⎡⎢
⎣

𝜙1𝑗
𝜙2𝑗
𝜙3𝑗

⎤⎥
⎦

= ⎡⎢
⎣

𝛽1 + 𝑢1𝑗
𝛽2
𝛽3

⎤⎥
⎦

where

𝑢1𝑗 ∼ 𝑁 (0, 𝜎2
𝑢1

) , 𝜖𝑖𝑗 ∼ 𝑁 (0, 𝜎2
𝜖 )

Because the model parameters have graphical interpretations, we can plot our data and obtain initial

values from the graph.

. use https://www.stata-press.com/data/r19/orange
(Growth of orange trees (Draper and Smith, 1998))
. twoway connected circumf age, connect(L) yline(175) xline(1582)
> yline(87.5, lpattern(dash)) xline(700, lpattern(dash))
> yline(131.25, lpattern(”-...”)) xline(1000, lpattern(”-...”))
> xlabel(0 118 484 700 1000 1372 1582) ylabel(#5 87.5 131.25 175)
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From the above graph, the mean asymptotic trunk circumference can be estimated as 175 mm, which

is roughly the mean of the circumference values at age 1,582 (in days). The trees attain half of their

asymptotic trunk circumference, 175/2 = 87.5, at about age 700 (in days). Therefore, we use the initial

estimates 𝛽1 = 175 for the asymptotic trunk circumference and 𝛽2 = 700 for the location of the inflection

point. To obtain an initial estimate for 𝛽3, we note that when age = 𝛽2 + 𝛽3 in (24), 𝐸(circumf𝑖𝑗) =
𝛽1/{1 + exp(−1)} = 0.73𝛽1, which we will approximate as 0.75𝛽1 for the purpose of the graph.
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That is, the logistic curve reaches approximately 3/4 of its asymptotic value, 0.75 × 175 = 131.25, at

age = 𝛽2 + 𝛽3. The above graph suggests that the trees attain 3/4 of their final trunk circumference at

about 1,000 days (= 𝛽2 + 𝛽3), giving an initial estimate of 𝛽3 = 1000−700 = 300. We can now supply

these values to menl in the initial() option.

Unfortunately, the graph does not provide us with the estimates for variance components. In this

case, we can use initial()’s fixed suboption to specify that the EM algorithm still be used to initialize

variance components, while the supplied values be used to initialize fixed effects. If we do not specify

fixed, menl will use naïve initial estimates for variance components such as ones for variances and

zeros for covariances.

We now fit the model using our own initial estimates for fixed effects:

. menl circumf = {phi1: U1[tree], xb}/(1+exp(-(age-{phi2})/{phi3})),
> initial(phi1:_cons 175 /phi2 700 /phi3 300, fixed)
Obtaining starting values by EM:
Alternating PNLS/LME algorithm:
Iteration 1: Linearization log likelihood = -131.58494
Iteration 2: Linearization log likelihood = -131.58458
Iteration 3: Linearization log likelihood = -131.58458
Computing standard errors:
Mixed-effects ML nonlinear regression Number of obs = 35
Group variable: tree Number of groups = 5

Obs per group:
min = 7
avg = 7.0
max = 7

Linearization log likelihood = -131.58458
phi1: U1[tree], xb

circumf Coefficient Std. err. z P>|z| [95% conf. interval]

phi1
_cons 191.049 16.15403 11.83 0.000 159.3877 222.7103

/phi2 722.556 35.15082 20.56 0.000 653.6616 791.4503
/phi3 344.1624 27.14739 12.68 0.000 290.9545 397.3703

Random-effects parameters Estimate Std. err. [95% conf. interval]

tree: Identity
var(U1) 991.1514 639.4637 279.8776 3510.038

var(Residual) 61.56371 15.89568 37.11466 102.1184
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For comparison, we fit the same model but now using the default initial values for fixed effects:

. menl circumf = {phi1: U1[tree], xb}/(1+exp(-(age-{phi2})/{phi3}))
Obtaining starting values by EM:
Alternating PNLS/LME algorithm:
Iteration 1: Linearization log likelihood = -131.58458
Computing standard errors:
Mixed-effects ML nonlinear regression Number of obs = 35
Group variable: tree Number of groups = 5

Obs per group:
min = 7
avg = 7.0
max = 7

Linearization log likelihood = -131.58458
phi1: U1[tree], xb

circumf Coefficient Std. err. z P>|z| [95% conf. interval]

phi1
_cons 191.049 16.15403 11.83 0.000 159.3877 222.7103

/phi2 722.556 35.15082 20.56 0.000 653.6616 791.4503
/phi3 344.1624 27.14739 12.68 0.000 290.9545 397.3703

Random-effects parameters Estimate Std. err. [95% conf. interval]

tree: Identity
var(U1) 991.1514 639.4637 279.8776 3510.038

var(Residual) 61.56371 15.89568 37.11466 102.1184

The results are identical except for the iteration log.

Smart regressions approach to finding initial values

Consider the following NLME model,

y𝑖𝑗 = 𝜙1𝑗 + (𝜙2𝑗 − 𝜙1𝑗) exp{− exp (𝜙3𝑗) x𝑖𝑗} + 𝜖𝑖𝑗

where

φ𝑗 = ⎡⎢
⎣

𝜙1𝑗
𝜙2𝑗
𝜙3𝑗

⎤⎥
⎦

= ⎡⎢
⎣

𝛽1
𝛽2 + 𝑢1𝑗

𝛽3

⎤⎥
⎦

Here 𝜙1𝑗 is the asymptote as x𝑖𝑗 → ∞ and 𝜙2𝑗 is the value of y𝑖𝑗 at x𝑖𝑗 = 0. Thus initial estimates,

𝛽(0)
1 and 𝛽(0)

2 , may be obtained by using the graphical approach as described in Graphical approach to

finding initial values. To obtain an initial estimate for 𝛽3, notice that, ignoring the error term 𝜖𝑖𝑗 and

setting 𝑢1𝑗 = 0,

log (|y𝑖𝑗 − 𝛽1|) = log (𝛽2 − 𝛽1) + {− exp (𝛽3)} x𝑖𝑗
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Therefore, we can regress log(|y − 𝛽(0)
1 |) on x and use the estimated slope, ̂𝛽𝑥 = − exp(𝛽(0)

3 ), to obtain
the initial value for 𝛽(0)

3 = log(− ̂𝛽𝑥).

Examples of specifying initial values

When you want to assign initial values for a subset of the model parameters, for example, fixed effects

or random-effects covariance parameters, you will often need to know their estimation names or, in other

words, how menl labels them in e(b). To learn the names, you can fit the model with the iterate(0)
and coeflegend options first.

. menl ..., ... iterate(0) coeflegend

The iterate(0) option specifies to bypass maximization and only report the initial values and the like-
lihood evaluated at those values. The coeflegend option specifies that the legend of the parameters and
how to specify them in an expression be displayed rather than displaying the statistics for the parameters.

Keep in mind, however, that menl does not perform estimation in the original parameter metric. For

computational stability, the estimation is performed, loosely speaking, in a metric that transforms all

parameters to be defined on a real line. For example, a log transformation is used for standard deviations,

and an inverse hyperbolic tangent transformation is used for correlations. When you specify initial values,

you must specify them for parameters in the estimation metric and not the original metric.

coeflegend displays parameter names as they are stored in e(b), which, for menl, are the names
of estimation parameters. If you also want to see parameters in the original metric, you can specify

coeflegend on replay.

. menl ..., ... iterate(0)

. menl, coeflegend

For example, recall the NLME model for the soybean data from example 9. Suppose that we want to

supply our own initial values.
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We fit the model with iterate(0) and coeflegend:

. menl weight = {phi1:}/(1+exp(-(time-{phi2:})/{phi3:})),
> define(phi1: U1[plot], xb)
> define(phi2: U2[plot], xb)
> define(phi3: U3[plot], xb)
> covariance(U*, unstructured) iterate(0) coeflegend
Obtaining starting values by EM:
Computing standard errors:
Mixed-effects ML nonlinear regression Number of obs = 412
Group variable: plot Number of groups = 48

Obs per group:
min = 8
avg = 8.6
max = 10

Linearization log likelihood = -740.06177
phi1: U1[plot], xb
phi2: U2[plot], xb
phi3: U3[plot], xb

weight Coefficient Legend

phi1
_cons 19.26527 _b[phi1:_cons]

phi2
_cons 55.05299 _b[phi2:_cons]

phi3
_cons 8.385531 _b[phi3:_cons]

/plot
lnsd(U1) 1.650846 _b[/plot:lnsd(U1)]
lnsd(U2) 1.436634 _b[/plot:lnsd(U2)]
lnsd(U3) .4081525 _b[/plot:lnsd(U3)]

athcorr(U2,
U1) .9055785 _b[/plot:athcorr(U2,U1)]

athcorr(U3,
U1) .8482105 _b[/plot:athcorr(U3,U1)]

athcorr(U3,
U2) 1.537798 _b[/plot:athcorr(U3,U2)]

/Residual
lnsigma .1069986 _b[/Residual:lnsigma]

Warning: Convergence not achieved.

Parameter names are listed within the b[] specifier.

In what follows, we will outline only the syntax of the specifications. If you actually want to run all

the examples to see the initialization in action, we suggest that you specify iterate(0) for speed.

Let’s first specify initial values for fixed effects only. The fixed-effects parameters are phi1: cons,
phi2: cons, and phi3: cons. Suppose that we want to initialize them with 19, 55, and 8.

We can type

. menl ..., ... initial(phi1:_cons 19 phi2:_cons 55 phi3:_cons 8)
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Or, more compactly, we can type

. local fe phi1:_cons 19 phi2:_cons 55 phi3:_cons 8

. menl ..., ... initial(‘fe’)

When you specify the initial() option, menl does not perform the EM algorithm to initialize the

parameters but instead uses the values you supplied. If you specify values for only a subset of parameters,

the remaining parameters will be initialized with naïve initial values such as zeros for fixed effects and

correlations and ones for variances. Often, you may have good initial values for fixed effects but not

for variance components. In this situation, menl provides initial()’s fixed suboption. This option
specifies that the supplied values be used for fixed effects but that the EM algorithm still be used to

obtain initial values for variance components. If you specify only a subset of values for fixed effects, the

remaining fixed effects will still be initialized with zeros even if fixed is specified. We recommend that

you specify fixed when you intend to supply initial values only for the fixed effects.

. local fe phi1:_cons 19 phi2:_cons 55 phi3:_cons 8

. menl ..., ... initial(‘fe’, fixed)

Now suppose that we also want to assign initial values for random-effects parameters. As we men-

tioned earlier, remember that we assign initial values for standard deviations in the log metric and for

correlation in the inverse hyperbolic tangent or atanh metric. For example, if you want to assign an ini-

tial value of 2 to 𝜎𝜖, then you should supply log(2) to the initial() option. Similarly, if you want to
assign a value of 0.7 to the correlation of two random effects, then you should provide atanh(0.7) to the
initial() option.

Continuing with example 9, suppose that we want to specify the following initial values for the

random-effects covariance parameters:

⎛⎜
⎝

U1[plot] U2[plot] U3[plot]
𝜎1 = 5
𝜌21 = 0.72 𝜎2 = 4
𝜌31 = 0.71 𝜌32 = 0.94 𝜎3 = 1.4

⎞⎟
⎠

The names of the parameters in the estimation metric that correspond to 𝜎1, 𝜎2, and 𝜎3 are

/plot:lnsd(U1), /plot:lnsd(U2), and /plot:lnsd(U3) and that correspond to 𝜌21, 𝜌31, and 𝜌32
are /plot:athcorr(U2,U1), /plot:athcorr(U3,U1), and /plot:athcorr(U3,U2).

When specifying initial values for free parameters such as random-effects covariance parameters, you

can omit the forward slash (/) at the beginning of their names. Keeping in mind that initial values for
covariance parameters are supplied in the log and atanh metrics, we can type

. local re_cov plot:lnsd(U1) log(5) // log(5)

. local re_cov ‘re_cov’ plot:lnsd(U2) 1.4 // log(4)

. local re_cov ‘re_cov’ plot:lnsd(U3) 0.34 // log(1.4)

. local re_cov ‘re_cov’ plot:athcorr(U2,U1) atanh(0.72) // atanh(0.72)

. local re_cov ‘re_cov’ plot:athcorr(U3,U1) 0.89 // atanh(0.71)

. local re_cov ‘re_cov’ plot:athcorr(U3,U2) 1.7 // atanh(0.94)

. menl ..., ... initial(‘fe’ ‘re_cov’ Residual:lnsigma 0.5)

In the above, we also specified an initial value of 0.5 for the log of the error standard deviation. For

parameters /plot:lnsd(U1) and /plot:athcorr(U2,U1), instead of specifying the values, we spec-
ified the corresponding expression. This is allowed, as long as your expression is simple and does not

contain spaces.
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Instead of using parameter names, we can specify a list of values directly in the initial() option,
in which case we must also specify initial()’s copy suboption.

. menl ..., ... initial(19 55 8 1.6 1.4 0.34 0.9 0.89 1.7 0.5, copy)

Or we can provide these values as a matrix:

. matrix initvals = (19, 55, 8, 1.6, 1.4, 0.34, 0.9, 0.89, 1.7, 0.5)

. matrix list initvals
initvals[1,10]

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10
r1 19 55 8 1.6 1.4 .34 .9 .89 1.7 .5

. menl ..., ... initial(initvals, copy)

If we label the columns of the initvals matrix properly, we do not need to specify copy:

. local fullcolnames : colfullnames e(b)

. matrix colnames initvals = ‘fullcolnames’

. matrix list initvals
initvals[1,10]

phi1: phi2: phi3: /plot: /plot:

_cons _cons _cons lnsd(U1) lnsd(U2)
r1 19 55 8 1.6 1.4

/plot: /plot: /plot: /plot: /Residual:
athcorr(U2, athcorr(U3, athcorr(U3,

lnsd(U3) U1) U1) U2) lnsigma
r1 .34 .9 .89 1.7 .5

. menl ..., ... initial(initvals)

Using a properly labeled initial-value matrix, we can also specify initial values for a subset of param-

eters. For example, we can specify initial values for fixed effects only as follows:

. matrix initvals = initvals[1,1..3]

. matrix list initvals
initvals[1,3]

phi1: phi2: phi3:
_cons _cons _cons

r1 19 55 8

. menl ... ... initial(initvals)

Stored results
menl stores the following in e():
Scalars

e(N) number of observations

e(N nonmiss) number of nonmissing depvar observations, if tsmissing is specified
e(N miss) number of missing depvar observations, if tsmissing is specified
e(N ic) number of nonmissing depvar observations to be used for BIC computation when

tsmissing is specified
e(k) number of parameters

e(k f) number of fixed-effects parameters

e(k r) number of random-effects parameters

e(k rs) number of variances
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e(k rc) number of covariances

e(k res) number of within-group error parameters

e(k eq) number of equations

e(k feq) number of fixed-effects equations

e(k req) number of random-effects equations

e(k reseq) number of within-group error equations

e(df m) model degrees of freedom

e(df c) degrees of freedom for comparison test

e(ll) linearization log (restricted) likelihood

e(ll c) log likelihood, comparison model

e(chi2) 𝜒2

e(chi2 c) 𝜒2 for comparison test

e(p) 𝑝-value for model test
e(p c) 𝑝-value for comparison test
e(rank) rank of e(V)
e(rc) return code

e(converged) 1 if converged, 0 otherwise

Macros

e(cmd) menl
e(cmdline) command as typed

e(depvar) name of dependent variable

e(ivars) grouping variables

e(title) title in estimation output

e(varlist) variables used in the specified equation

e(key N ic) nonmissing obs, if tsmissing is specified
e(tsmissing) tsmissing, if specified
e(tsorder) tsorder() specification
e(eq depvar) user-specified equation

e(tsinit depvar) tsinit() specification for L.{depvar:}
e(expressions) names of defined expressions, expr 1, expr 2, . . . , expr k

e(expr expr i) defined expression expr i, 𝑖 = 1, . . . , 𝑘
e(tsinit expr) tsinit() specification for L.{expr:}
e(hierarchy) random-effects hierarchy structure, (path:covtype:REs) (...)
e(revars) names of random effects

e(rstructlab) within-group error covariance output label

e(timevar) within-group error covariance t() variable, if specified
e(indexvar) within-group error covariance index() variable, if specified
e(covbyvar) within-group error covariance by() variable, if specified
e(stratavar) within-group error variance strata() variable, if specified
e(corrbyvar) within-group error correlation by() variable, if specified
e(rescovopt) within-group error covariance option, if rescovariance() specified
e(resvaropt) within-group error variance option, if resvariance() specified
e(rescorropt) within-group error correlation option, if rescorrelation() specified
e(groupvar) lowest-level group() variable, if specified
e(chi2type) Wald; type of model 𝜒2 test

e(vce) conventional
e(method) MLE or REML
e(opt) type of optimization, lbates
e(crittype) optimization criterion

e(properties) b V
e(estat cmd) program used to implement estat
e(predict) program used to implement predict
e(marginsok) predictions allowed by margins
e(marginsnotok) predictions disallowed by margins
e(marginsdefault) default predict() specification for margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved
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Matrices

e(b) coefficient vector

e(Cns) factor-variable constraint matrix

e(V) variance–covariance matrix of the estimators

e(V modelbased) model-based variance

e(b sd) random-effects and within-group error estimates in the standard deviation metric

e(V sd) VCE for parameters in the standard deviation metric

e(b var) random-effects and within-group error estimates in the variance metric

e(V var) VCE for parameters in the variance metric

e(cov #) random-effects covariance structure at the hierarchical level 𝑘 − # + 1 in a 𝑘-level
model

e(hierstats) group-size statistics for each hierarchy

Functions

e(sample) marks estimation sample

In addition to the above, the following is stored in r():

Matrices

r(table) matrix containing the coefficients with their standard errors, test statistics, 𝑝-values, and
confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when any
r-class command is run after the estimation command.

Methods and formulas
Methods and formulas are presented under the following headings:

Introduction
Variance-components parameters
Inference based on linearization
Initial values

Introduction
Recall (1), a two-level NLME model, from the Introduction,

𝑦𝑖𝑗 = 𝜇 (x′
𝑖𝑗, β, u𝑗) + 𝜖𝑖𝑗 𝑖 = 1, . . . , 𝑛𝑗; 𝑗 = 1, . . . , 𝑀

where𝑀 is the number of clusters and, for each cluster 𝑗, 𝑛𝑗 is the number of observations in that cluster;

y𝑗 = (𝑦1𝑗, 𝑦2𝑗, . . . , 𝑦𝑛𝑗𝑗)′ is the 𝑛𝑗 ×1 response vector; X𝑗 = (x1𝑗, x2𝑗, . . . , x𝑛𝑗𝑗)′ is the 𝑛𝑗 ×𝑙matrix of
covariates, including within-subject and between-subjects covariates; β is the 𝑝 × 1 vector of unknown

parameters; u𝑗 is the 𝑞 × 1 vector of random effects; and ε𝑗 = (𝜖1𝑗, 𝜖2𝑗, . . . , 𝜖𝑛𝑗𝑗)′ is the 𝑛𝑗 × 1 vector

of within-group or within-cluster errors. u𝑗’s follow a multivariate normal distribution with mean 0 and

𝑞 × 𝑞 variance–covariance matrix 𝚺, and ε𝑗’s follow a multivariate normal distribution with mean 0 and

𝑛𝑗 ×𝑛𝑗 variance–covariance matrix 𝜎2𝚲𝑗; u𝑗’s are assumed to be independent of ε𝑗’s. Depending on the

form of 𝚲𝑗, 𝜎2 is either a within-group error variance 𝜎2
𝜖 or a squared scale parameter 𝜎2. For example,

when errors are i.i.d., that is, when 𝚲𝑗 is the identity matrix, 𝜎2 = 𝜎2
𝜖 is the within-group error variance.

When 𝚲𝑗 corresponds to the heteroskedastic power structure, 𝜎2 is a multiplier or a scale parameter.
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Positive-definite matrices𝚺/𝜎2 and𝚲𝑗 are expressed as functions of unconstrained parameter vectors

α𝑢 and α𝑤, respectively, to recast a constrained optimization problem into an unconstrained one. Thus

α𝑢 contains unconstrained random-effects covariance parameters andα𝑤 contains unconstrainedwithin-

group error covariance parameters. 𝚲𝑗 may also depend on the random effects u𝑗 and the fixed effects

β. For more details about 𝚺 and 𝚲𝑗 and about functional forms of parameter vectors α𝑢 and α𝑤 given

different covariance structures, see Variance-components parameters.

Based on (1), the marginal, with respect to u𝑗’s, log likelihood for (β,α, 𝜎2) is

𝐿(β,α, 𝜎2) = log{
𝑀
∏
𝑗=1

∫ 𝑓 (y𝑗|X𝑗,u𝑗;β,α𝑤, 𝜎2) 𝑓 (u𝑗;α𝑢) 𝑑u𝑗} (25)

where α = (α′
𝑢,α′

𝑤)′, 𝑓 (y𝑗|X𝑗,u𝑗;β,α𝑤, 𝜎2) is the conditional density of y𝑗 given X𝑗 and u𝑗, and

𝑓 (u𝑗;α𝑢) is the density of u𝑗.

In general, there are no closed-form expressions for (25) or the marginal moments of an NLMEmodel.

This is because the random effects u𝑗 enter the model nonlinearly, making the 𝑞-dimensional integral in
(25) analytically intractable in all but simpler cases. Several estimation techniques have been proposed

for estimating parameters β, α, and 𝜎2, including numerical integration of the integral in (25) by using

an adaptive Gaussian quadrature and a linearization of the mean function in (1) by using a Taylor-series

expansion.

menl implements the linearization method of Lindstrom and Bates (1990), with extensions from Pin-

heiro and Bates (1995), which is described in Inference based on linearization.

Variance-components parameters
For numerical stability, maximization of (25) is performed with respect to the unique elements of the

matrix 𝐺 = 𝚺/𝜎2 expressed as logarithms of standard deviations for the diagonal elements and hyper-

bolic arctangents of the correlations for off-diagonal elements. Let α𝑢 be the vector containing these

elements. For example, if we assume that the elements of the random-effects vector u𝑗 are independent,

then 𝚺 is diagonal and α𝑢 will contain 𝑞 distinct parameters—𝑞 logarithms of standard deviations. Ta-
ble 1 lists the vectors of parameters α𝑢 for all random-effects covariance structures supported by menl
in the covariance(vartype) option.

Table 1. Variance-components parameters

vartype α′
𝑢

independent (𝑔1, 𝑔2, . . . , 𝑔𝑞)
exchangeable (𝑔1, 𝑔12)
identity 𝑔1

unstructured (𝑔1, 𝑔2, . . . , 𝑔𝑞, 𝑔12, 𝑔13, . . . , 𝑔𝑞−1𝑞)

Notes: 𝑔𝑢 = log(√[G]𝑢𝑢), 𝑔𝑢𝑣 = atanh([G]𝑢𝑣).
unstructured has 𝑞(𝑞 + 1)/2 parameters.

The within-group error covariance matrix is parameterized as follows,

Var (ε𝑗|u𝑗) = 𝜎2𝚲𝑗 (X𝑗,β,u𝑗,α𝑤) = 𝜎2S𝑗 (δ,υ𝑗)C𝑗(ρ)S𝑗 (δ,υ𝑗)
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where α𝑤 = (δ∗′,ρ∗′)′
and δ∗ and ρ∗ are unconstrained versions of δ and ρ defined in table 2 and

table 3, respectively. For example, for a positive 𝛿1, 𝛿∗
1 = log (𝛿1). S𝑗 = S𝑗 (δ,υ𝑗) is an𝑛𝑗×𝑛𝑗 diagonal

matrix with nonnegative diagonal elements 𝑔 (δ, 𝜐1𝑗) , 𝑔 (δ, 𝜐2𝑗) , . . . , 𝑔 (δ, 𝜐𝑛𝑗𝑗) such that Var (𝜖𝑖𝑗) =
𝜎2[S𝑗]2𝑖𝑖 = 𝜎2𝑔2 (δ, 𝜐𝑖𝑗), where 𝜐𝑖𝑗’s are the values of a variance covariate or the values of a mean

function 𝜇 (x′
𝑖𝑗,β,u𝑗), in which case 𝚲𝑗 will depend on X𝑗, β, and u𝑗. C𝑗 = C𝑗(ρ) is a correlation

matrix such that corr (𝜖𝑖𝑗, 𝜖𝑘𝑗) = [C𝑗]𝑖𝑘
= ℎ (|𝑡𝑖𝑗 − 𝑡𝑙𝑗|,ρ), where 𝑡𝑖𝑗 is a value of a time variable

for time-dependent correlation structures such as AR, MA, and Toeplitz structures or an index variable

for banded and unstructured correlation structures. A list of the supported 𝑔(⋅) and ℎ(⋅) functions is
given in table 2 and table 3, respectively.

Carroll and Ruppert (1988) introduced various variance functions 𝑔 (δ, 𝜐𝑖𝑗) to model heteroskedastic-
ity, which were further studied in the context of NLME models by Davidian and Giltinan (1995). Table 2

lists variance functions supported by the resvariance(resvarfunc ...) option.

Table 2. Supported variance functions 𝑔(⋅)

resvarfunc 𝑔 (δ, 𝜐𝑖𝑗) δ′

identity 1 –

linear √𝜐𝑖𝑗 –

power 𝑐 + |𝜐𝑖𝑗|𝛿 (𝑐, 𝛿), 𝑐 ≥ 0
power, noconstant |𝜐𝑖𝑗|𝛿 𝛿
exponential exp (𝛿𝜐𝑖𝑗) 𝛿

distinct ∑𝐿
𝑙=1 𝛿𝑙𝐼(𝑣𝑖𝑗 = 𝑙) (𝛿1 = 1, 𝛿2, . . . , 𝛿𝐿)

In table 2, the variance function distinct models a distinct parameter 𝛿𝑙 for each level 𝑙 (𝑙 =
1, 2, . . . , 𝐿) of the index variable 𝑣𝑖𝑗 ∈ {1, 2, . . . , 𝐿} such that for 𝑣𝑖𝑗 = 𝑙, Var (𝜖𝑖𝑗) = 𝜎2

𝑙 = 𝜎2𝛿2
𝑙 ,

where 𝛿1 = 1 for identifiability purposes and 𝛿𝑙 = 𝜎𝑙/𝜎. menl estimates and stores results as 𝛿’s but
displays results as variances 𝜎2

𝑙 , 𝑙 = 1, . . . , 𝐿.
The variance function 𝑔(⋅) and thus thewithin-group error covariancemay depend onβ and u𝑗 through

𝜇(⋅), when 𝜐𝑖𝑗 = 𝜇𝑖𝑗 = 𝜇 (x′
𝑖𝑗,u𝑗,β) in table 2. This is particularly appealing in PK applications, where

there is often considerable intraindividual heterogeneity that is modeled, for example, as a power function

of the mean.

The within-group error correlation structure is governed by the ℎ(⋅) function. Table 3 lists correlation
structures that are supported by the rescorrelation(rescorr ...) option and also have a closed-form
expression. In addition, the AR and MA correlation structures are defined below.

The ar 𝑝 structure assumes that the errors have an AR structure of order 𝑝. That is,

𝜖𝑖𝑗 = 𝜙1𝜖𝑖−1,𝑗 + · · · + 𝜙𝑝𝜖𝑖−𝑝,𝑗 + 𝑧𝑖𝑗

where 𝑧𝑖𝑗 are i.i.d. Gaussian with mean 0 and variance 𝜎2
𝑧 . menl reports estimates of 𝜙1, . . . , 𝜙𝑝 and

the overall error variance 𝜎2
𝜖 , which can be derived from the above expression. This structure has a

closed-form expression only for 𝑝 = 1, in which case 𝜙1 = 𝜌 is the correlation between error terms.



menl — Nonlinear mixed-effects regression 313

The ma 𝑞 structure assumes that the errors are an MA process of order 𝑞. That is,

𝜖𝑖𝑗 = 𝑍𝑖 + 𝜃1𝑍𝑖−1 + · · · + 𝜃𝑞𝑍𝑖−𝑞

where 𝑍𝑙 are i.i.d. Gaussian with mean 0 and variance 𝜎2
𝑍. menl reports estimates of 𝜃1, . . . , 𝜃𝑞 and the

overall error variance 𝜎2
𝜖 , which can be derived from the above expression.

Table 3. Within-group error correlation functions ℎ(⋅)

rescorr ℎ(|𝑡𝑖𝑗 − 𝑡𝑙𝑗|,ρ) Expression ρ

identity ℎ(𝑘) 𝐼(𝑘 = 0) –

exchangeable ℎ(𝑘, 𝜌) 𝜌, 𝑘 = 1, 2, . . . 𝜌, |𝜌| < 1
ar 1 ℎ(𝑘, 𝜌) 𝜌𝑘, 𝑘 = 0, 1, . . . 𝜌, |𝜌| < 1
ar 𝑝, 𝑝 > 1 ℎ(𝑘,φ) no closed form (𝜙1, 𝜙2, . . . , 𝜙𝑝)
ctar1 ℎ(𝑠, 𝜌) 𝜌𝑠, 𝑠 ≥ 0 𝜌, |𝜌| < 1

ma q ℎ(𝑘,θ)
⎧{
⎨{⎩

∑𝑞−|𝑘|
𝑗=0 𝜃𝑗𝜃𝑗+|𝑘|

∑𝑞
𝑗=0 𝜃2

𝑗
𝑘 ≤ 𝑞

0 𝑘 > 𝑞
(𝜃0 = 1, 𝜃1, . . . , 𝜃𝑞)

toeplitz ℎ(𝑘,ρ) 𝜌𝑘𝐼(𝑘 ≤ 𝑞), 𝑘 = 1, 2, . . . , 𝑞 (𝜌1, 𝜌2, . . . , 𝜌𝑞)

banded ℎ(|𝑖 − 𝑙|,ρ) 𝜌𝑖𝑙𝐼(|𝑖 − 𝑙| ≤ 𝑞), 1 ≤ 𝑖 < 𝑙 ≤ 𝑛𝑗 {𝜌𝑖𝑙∶ 0 < 𝑙 − 𝑖 ≤ 𝑞}

unstructured ℎ(|𝑖 − 𝑙|,ρ) 𝜌𝑖𝑙, 1 ≤ 𝑖 < 𝑙 ≤ 𝑛𝑗 (𝜌12, . . . , 𝜌(𝑛𝑗−1)𝑛𝑗
)

You can build many flexible within-group error covariance structures by combining different func-

tions 𝑔(⋅) and ℎ(⋅), that is, by combining the resvariance() and rescorrelation() options. For

example, you can combine an AR(1) correlation structure with a heteroskedastic structure that is ex-

pressed as a power function of the mean by specifying rescorrelation(ar 1, t(timevar)) and

resvariance(power yhat).

Inference based on linearization
Let’s write (1), equivalently, in matrix form as

y𝑗 = µ (X𝑗,β,u𝑗) + 𝚲
1
2
𝑗 (X𝑗,β,u𝑗,α𝑤) 𝑒𝑗

Hereµ (X𝑗,β,u𝑗) depends on β and u𝑗 through the function 𝑑(⋅) in (2), and 𝑒𝑗’s∼ 𝑁 (0, 𝜎2𝐼𝑛𝑗
), where

𝐼𝑛𝑗
is the identity matrix of dimension 𝑛𝑗. In what follows, for brevity, we suppress the dependence of

µ and 𝚲𝑗 on X𝑗.

Following Lindstrom and Bates (1990), wewill initially assume that𝚲𝑗 does not depend onX𝑗,β, and
u𝑗 or, equivalently, on φ𝑗 but rather on 𝑗 only through its dimension; that is, 𝚲𝑗 = 𝚲𝑗(α𝑤). Therefore,
heteroskedastic structures that depend on the mean are not yet allowed in this context. Toward the end

of this section, we will present a modified version of the algorithm that accounts for the dependence of

𝚲𝑗 on φ𝑗.
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Lindstrom and Bates discuss a natural extension of the methods for the LMEmodels to NLMEmodels.

For a known α (and thus known 𝚺 and 𝚲𝑗) and 𝜎2, the estimates of β and u𝑗 jointly minimize

𝑀
∑
𝑗=1

[ log|𝚺 (α𝑢) | + u′
𝑗 {𝚺 (α𝑢)}−1

u𝑗 + log∣𝜎2𝚲𝑗 (α𝑤) ∣

+ 𝜎−2 {y𝑗 − µ (β,u𝑗)}′ 𝚲−1
𝑗 (α𝑤) {y𝑗 − µ (β,u𝑗)} ]

which is twice the negative log likelihood for βwhen u𝑗 is fixed or twice the negative log of the posterior

density of u𝑗 when β is fixed. Consequently, one strategy for estimating β and (predicting) u𝑗 is to

minimize the above objective function with respect to β and u𝑗 given suitable estimates of α and 𝜎2.

Estimation of α and 𝜎2 can be accomplished by using MLE with respect to the marginal density of y𝑗,

in which u𝑗’s are integrated out. But because no closed-form expression for this density is available,

we approximate the conditional distribution of y𝑗 given u𝑗 by a multivariate normal distribution with an

expectation that is linear in u𝑗 and β. This is illustrated in step 2 of the algorithm below.

Lindstrom and Bates (1990) propose the following two-step estimation method or alternating algo-

rithm.

Step 1 (PNLS step). Given current estimates α̂ (and thus α̂𝑢 and α̂𝑤) of α and 𝜎̂2 of 𝜎2, minimize

with respect to β and u𝑗

𝑀
∑
𝑗=1

[ log|𝚺 (α̂𝑢) | + u′
𝑗 {𝚺 (α̂𝑢)}−1

u𝑗 + log∣𝜎̂2𝚲𝑗 (α̂𝑤) ∣

+ 𝜎̂−2 {y𝑗 − µ (β,u𝑗)}′ 𝚲−1
𝑗 (α̂𝑤) {y𝑗 − µ (β,u𝑗)} ]

(26)

Define 𝚫 such that 𝜎2𝚺−1 = 𝚫′𝚫. Note that 𝚫 = 𝚫(α𝑢), but for notational convenience, this
dependency is suppressed throughout the rest of this section. Equation (26) is equivalent to minimizing

the penalized least-squares objective function

PNLS step:

𝑀
∑
𝑗=1

[∣∣ {𝚲′
𝑗(α𝑤)}−1/2 {y𝑗 − µ (β,u𝑗)} ∣∣

2

+ ||𝚫u𝑗||2]

with respect to β and u𝑗 while holding the current estimates of α (and, consequently, of 𝚫 and of 𝚲𝑗)

fixed. pnlsopts(iterate(#)) iterations are performed at this step, unless the convergence criterion
(CC) is met. The CC for PNLS optimization is controlled by pnlsopts(nrtolerance(#)) and one of
pnlsopts(ltolerance(#)) or pnlsopts(tolerance(#)); see menlmaxopts for details.

Denote the resulting estimates as û𝑗 and β̂.

In the absence of random effects in the model (see example 19), the previous formulas no longer

include the random effects and related components. In particular, u𝑗 and 𝚫 are set to 0, andα = α𝑤. In

this case, the PNLS step reduces to what we call a GNLS estimation step. Furthermore, if no within-group

error covariance structure is specified, that is, when all observations are assumed i.i.d., 𝚲𝑗 (α𝑤) is set to
the identity matrix 𝐼, and the PNLS step reduces to the classical NLS estimation.
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Step 2 (LME step). Perform a first-order Taylor-series expansion of the model mean function around

the current estimates of β and of the conditional modes of the random effects u𝑗, yielding

y𝑗 = µ (β̂, û𝑗) + X̂𝑗 (β − β̂) + Ẑ𝑗 (u𝑗 − û𝑗) + 𝚲
1
2
𝑗 (α𝑤) 𝑒𝑗 (27)

where

X̂𝑗 =
𝜕µ (β,u𝑗)

𝜕β′ ∣
β=β̂,u𝑗=û𝑗

Ẑ𝑗 =
𝜕µ (β,u𝑗)

𝜕u′
𝑗

∣
β=β̂,u𝑗=û𝑗

Model (27) is essentially an LMEmodel, and we use notations X̂𝑗 and Ẑ𝑗 for the derivatives to emphasize

this. That is, X̂𝑗 and Ẑ𝑗 represent the corresponding fixed-effects and random-effects design matrices of

an LME model.

Thus the approximate conditional distribution of y𝑗 is

y𝑗|u𝑗 ∼ 𝑁 {µ (β̂, û𝑗) + X̂𝑗 (β − β̂) + Ẑ𝑗(u𝑗 − û𝑗), 𝜎2𝚲𝑗}

Because the expectation is now linear in random effects u𝑗, the approximate conditional distribution of

y𝑗, along with distribution of u𝑗, allows us to approximate the marginal distribution of y𝑗 as

y𝑗 ∼ 𝑁 {µ (β̂, û𝑗) + X̂𝑗 (β − β̂) − Ẑ𝑗û𝑗, 𝜎2V𝑗(α)} (28)

where V𝑗(α) = Ẑ𝑗𝚫
−1 (𝚫−1)

′
Ẑ𝑗

′ + 𝚲𝑗 (α𝑤).

Let ŵ𝑗 = y𝑗 − µ (β̂, û𝑗) + X̂𝑗β̂ + Ẑ𝑗û𝑗. Estimation of α and 𝜎2 can now be accomplished by

maximizing the log likelihood corresponding to the approximate marginal distribution in (28),

LME step:

𝑙LB(α,β, 𝜎2) = −𝑛
2
log (2𝜋𝜎2) − 1

2

𝑀
∑
𝑗=1

{ log|V𝑗(α)|

+ 𝜎−2 (ŵ𝑗 − X̂𝑗β)
′
V𝑗

−1(α) (ŵ𝑗 − X̂𝑗β) }
(29)

where 𝑛 = ∑𝑀
𝑗=1 𝑛𝑗.

Alternatively, when the reml option is specified, we take an REML approach and maximize

𝑙LB,𝑅(α, 𝜎2) = 𝑙LB(α, β̂(α), 𝜎2) − 1
2

𝑀
∑
𝑗=1

log∣𝜎−2X̂𝑗
′V𝑗

−1(α)X̂𝑗∣ (30)

The LME step (step 2) of the alternating algorithm consists of optimizing an LME log likelihood, in

which the response vector is given by ŵ𝑗 and the fixed- and random-effects design matrices are given

by X̂𝑗 and Ẑ𝑗, respectively. lmeopts(iterate(#)) iterations are performed at this step, unless the

CC is met. The CC for LME optimization is controlled by lmeopts(nrtolerance(#)) and one of

lmeopts(ltolerance(#)) or lmeopts(tolerance(#)); see menlmaxopts for details.
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The LME step produces estimates α̂ and 𝜎̂2. (The estimates β̂ can also be obtained at this step, but it

is generally more computationally efficient to compute them at the PNLS step.) These estimates will now

be used in step 1, the PNLS step.

In the absence of random effects in the model (see example 19), u𝑗, û𝑗, 𝚫, and Ẑ𝑗 are all set to 0,

and α = α𝑤. In this case, the LME step is referred to as the ML step or, if the reml option is specified,
the REML step in the menl output. Furthermore, if all observations are assumed i.i.d., then step 2 of the
alternating algorithm is not needed, and only step 1 (NLS) is performed.

Stopping rules. One PNLS step and one LME step correspond to one iteration of the alternating al-

gorithm. The log likelihood reported by menl at each iteration is the log likelihood (29) or, if the reml
option is specified, (30) from the last iteration of the LME step. menl refers to this log likelihood as “lin-
earization log likelihood” because it corresponds to the log likelihood of the LME model, which was the

result of the linearization of theNLMEmodel. The algorithm stopswhen the linearization likelihoods from

successive iterations satisfy ltolerance(#), when the parameter estimates from successive iterations

satisfy tolerance(#), or if the model does not converge, when the maximum number of iterations in

iterate() is reached; see menlmaxopts for details about maximization options. Because the alternating
algorithm does not provide a joint Hessian matrix for all parameters, there is no check for the tolerance

of the scaled gradient; thus the convergence cannot be established in its strict sense. The convergence is

declared based on the stopping rules described above.

When 𝚲𝑗 = 𝚲𝑗 (β,u𝑗,α𝑤) depends on u𝑗 and β, which is the case, for example, with

resvariance(power yhat) and resvariance(exponential yhat)), an intermediate step be-

tween the PNLS and the LME step is performed to replace the fixed effects and random effects in 𝚲𝑗,

or more precisely in the variance function 𝑔(⋅), by their current estimates from the PNLS step. After that,

𝚲𝑗 (α𝑤; β̂, û𝑗) = 𝚲𝑗(α𝑤) depends only on α𝑤 because both u𝑗 and β are held fixed at their current

estimates throughout the LME step.

Efficient methods for computing (29) or (30) are given in chapters 2 and 5 of Pinheiro and Bates

(2000). Namely, to simplify the optimization problem, one can express the optimal values of β and 𝜎2

as functions of α (and thus of 𝚫 and α𝑤) and work with the profiled log likelihood of α.

For the PNLS step, the objective function to be minimized is the penalized sum of squares

𝑀
∑
𝑗=1

[||(𝚲′
𝑗)−1/2 {y𝑗 − µ (β,u𝑗)} ||2 + ||𝚫u𝑗||2]

By adding “pseudo”-observations to the data, the PNLS problem can be reexpressed as a standard non-

linear least-squares problem. Thus step 1 of the alternating algorithm is sometimes called the “pseudodata

step”. Define pseudo-observations ỹ𝑗 as follows:

ỹ𝑗 = [(𝚲′
𝑗)−1/2y𝑗
0

] µ̃ (β,u𝑗) = [(𝚲′
𝑗)−1/2µ (β,u𝑗)

𝚫u𝑗
]

Then, the PNLS step can be rewritten as

𝑀
∑
𝑗=1

∣∣ỹ𝑗 − µ̃ (β,u𝑗) ∣∣2

Hence, for values ofα and 𝜎2 fixed at the current estimates, the estimation ofβ and u𝑗 in the PNLS step

can be regarded as a standard nonlinear least-squares problem. A popular iterative estimation technique

for standard nonlinear least-squares is the Gauss–Newton method (see Pinheiro and Bates [2000, chap. 7]

for more details).
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After the completion of the alternating algorithm, an extra LME iteration is performed, with fixed

effects profiled-out of the likelihood, to reparameterize [α, log(𝜎)] to their natural metric and to compute
their standard errors with the delta method. This step is labeled Computing standard errors: in the

output of menl. If you are interested only in standard errors for fixed effects, you can skip this step by
specifying the nostderr option, in which case standard errors for the random-effects and within-group
error covariance parameters will not be computed and will be shown as missing in the output table. The

standard errors for the fixed effects are obtained from the PNLS step, and the standard errors for random-

effects parameters are obtained from the LME step.

Inference on the parameters of the NLME model is based on the approximating LME model with log

likelihood and restricted log likelihood functions defined in (29) and (30). Therefore, all the inferen-

tial machinery available within the context of LME models can be used. For example, under the LME

approximation, the distribution of the (restricted) MLE β̂ of the fixed effects is

β̂ ∼ 𝑁
⎧{
⎨{⎩
β, 𝜎2 (

𝑀
∑
𝑗=1

X̂𝑗
′V𝑗

−1(α)X̂𝑗)
−1⎫}

⎬}⎭

and for random-effects and within-group error parameters is

[ α̂
log𝜎̂] ∼ 𝑁 {[ α

log𝜎] , 𝐼−1(α, 𝜎)}

where

𝐼(α, 𝜎) = − [
𝜕2𝑙LB𝑝

/𝜕α𝜕α′ 𝜕2𝑙LB𝑝
/𝜕 log𝜎𝜕α′

𝜕2𝑙LB𝑝
/𝜕α𝜕 log𝜎 𝜕2𝑙LB𝑝

/𝜕2 log𝜎 ]

and 𝑙LB𝑝
= 𝑙LB𝑝

(α, 𝜎) is the approximated log likelihood from the LME step with fixed effects profiled

out. Because inference is based on the LME approximation of the originalNLMEmodel, asymptotic results

are technically “approximately asymptotic” and are thus less accurate than the asymptotic inferential

results for LME models as described in [ME] mixed.

Initial values
The PNLS step requires starting values forβ and u𝑗. These are obtained from the EM algorithm; see, for

example, Bates and Pinheiro (1998) for details. You can control optimization within the EM algorithm by

specifying the emtolerance() and emiterate() options. You can also supply your own initial values;
see Examples of specifying initial values. NLMEmodels are often sensitive to initial values, so it is good

practice to try different sets of initial values to verify that your results are robust to them.
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Postestimation commands predict margins Remarks and examples
Methods and formulas Reference Also see

Postestimation commands
The following postestimation commands are of special interest after menl:

Command Description

estat group summarize the composition of the nested groups

estat recovariance display the estimated random-effects covariance matrices

estat sd display variance components as standard deviations and correlations

estat wcorrelation display within-cluster correlations and standard deviations

The following standard postestimation commands are also available:

Command Description

contrast contrasts and ANOVA-style joint tests of parameters

estat ic Akaike’s, consistent Akaike’s, corrected Akaike’s, and Schwarz’s Bayesian
information criteria (AIC, CAIC, AICc, and BIC, respectively)

estat summarize summary statistics for the estimation sample

estat vce variance–covariance matrix of the estimators (VCE)

estimates cataloging estimation results

etable table of estimation results

lincom point estimates, standard errors, testing, and inference for linear combinations
of parameters

lrtest likelihood-ratio test

margins marginal means, predictive margins, marginal effects, and average marginal
effects

marginsplot graph the results from margins (profile plots, interaction plots, etc.)

nlcom point estimates, standard errors, testing, and inference for nonlinear combi-
nations of parameters

predict predictions and their SEs, residuals, etc.

predictnl point estimates, standard errors, testing, and inference for generalized predic-
tions

pwcompare pairwise comparisons of parameters

test Wald tests of simple and composite linear hypotheses

testnl Wald tests of nonlinear hypotheses
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predict

Description for predict
predict creates a new variable containing predictions of mean values, residuals, or standardized

residuals. It can also create multiple new variables containing estimates of random effects and their

standard errors or containing predicted named substitutable expressions.

Menu for predict
Statistics > Postestimation

Syntax for predict

Syntax for obtaining predictions of the outcome and other statistics

predict [ type ] newvar [ if ] [ in ] [ , statistic fixedonly relevel(levelvar) options ]

Syntax for predicting named substitutable expressions (parameters)

Predict all parameters

predict [ type ] { stub* | newvarlist } [ if ] [ in ], parameters

[ fixedonly relevel(levelvar) options ]

Predict specific parameters

predict [ type ] (newvar = {param:}) [ (newvar = {param:}) ] [ . . . ] [ if ] [ in ]
[ , fixedonly relevel(levelvar) options ]

predict [ type ] { stub* | newvarlist } [ if ] [ in ], parameters(paramnames)

[ fixedonly relevel(levelvar) options ]

Syntax for obtaining predictions of random effects and their standard errors

predict [ type ] { stub* | newvarlist } [ if ] [ in ], reffects [ relevel(levelvar)
reses(stub* | newvarlist) options ]

paramnames is param [ param [ ... ] ] and param is a name of a substitutable expression as specified in

one of menl’s define() options.
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statistic Description

Main

yhat prediction for the expected response conditional on the random effects

mu synonym for yhat
residuals residuals, response minus predicted values

∗ rstandard standardized residuals

Unstarred statistics are available both in and out of sample; type predict ... if e(sample) ... if wanted
only for the estimation sample. Starred statistics are calculated only for the estimation sample, even when

if e(sample) is not specified.

options Description

Options

iterate(#) maximum number of iterations when computing random effects;
default is iterate(10)

tolerance(#) convergence tolerance when computing random effects;
default is tolerance(1e-6)

nrtolerance(#) scaled gradient tolerance when computing random effects; default is
nrtolerance(1e-5)

nonrtolerance ignore the nrtolerance() option

Options for predict

� � �
Main �

yhat calculates the predicted values, which are the mean-response values conditional on the random

effects, 𝜇(x′
𝑖𝑗, β̂, ̂u𝑗). By default, the predicted values account for random effects from all levels in

the model; however, if the relevel(levelvar) option is specified, then the predicted values are fit
beginning with the topmost level down to and including level levelvar. For example, if classes are
nested within schools, then typing

. predict yhat_school, yhat relevel(school)

would produce school-level predictions. That is, the predictions would incorporate school-specific

random effects but not those for each class nested within each school. If the fixedonly option

is specified, predicted values conditional on zero random effects, 𝜇(x′
𝑖𝑗, β̂, 0), are calculated based

on the estimated fixed effects (coefficients) in the model when the random effects are fixed at their

theoretical mean value of 0.

mu is a synonym for yhat.

residuals calculates residuals, equal to the responses minus the predicted values yhat. By default, the
predicted values account for random effects from all levels in themodel; however, if the relevel(lev-
elvar) option is specified, then the predicted values are fit beginning at the topmost level down to and
including level levelvar.

rstandard calculates standardized residuals, equal to the residuals multiplied by the inverse square root
of the estimated error covariance matrix.
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parameters and parameters(paramnames) calculate predictions for all or a subset of the named sub-
stitutable expressions in the model. By default, the predictions account for random effects from all

levels in the model; however, if the relevel(levelvar) option is specified, then the predictions would
incorporate random effects from the topmost level down to and including level levelvar. Option

parameters(param) is useful with margins. parameters() does not appear in the dialog box.

reffects calculates predictions of the random effects. For the Lindstrom–Bates estimation method

of menl, these are essentially the best linear unbiased predictions (BLUPs) of the random effects in

the LME approximated log likelihood; see Inference based on linearization in [ME]menl. By default,

estimates of all random effects in the model are calculated. However, if the relevel(levelvar) option
is specified, then estimates of random effects for only level levelvar in the model are calculated. For

example, if classes are nested within schools, then typing

. predict b*, reffects relevel(school)

would produce estimates at the school level. You must specify 𝑞 new variables, where 𝑞 is the number
of random-effects terms in the model (or level). However, it is much easier to just specify stub* and
let Stata name the variables stub1, stub2, . . . , stub𝑞 for you.

fixedonly specifies that all random effects be set to zero, equivalent to using only the fixed portion of

the model.

relevel(levelvar) specifies the level in the model at which predictions involving random effects are to

be obtained; see the options above for the specifics. levelvar is the name of the model level; it is the

name of the variable describing the grouping at that level.

reses(stub* | newvarlist) calculates the standard errors of the estimates of the random effects. By de-

fault, standard errors for all random effects in the model are calculated. However, if the relevel(lev-
elvar) option is specified, then standard errors of the estimates of the random effects for only level

levelvar in the model are calculated; see the reffects option.

You must specify 𝑞 new variables, where 𝑞 is the number of random-effects terms in the model (or
level). However, it is much easier to just specify stub* and let Stata name the variables stub1, stub2,
. . . , stub𝑞 for you. The new variables will have the same storage type as the corresponding random-

effects variables.

The reffects and reses() options often generate multiple new variables at once. When this occurs,

the random effects (or standard errors) contained in the generated variables correspond to the order in

which the variance components are listed in the output of menl. Still, examining the variable labels
of the generated variables (with the describe command, for instance) can be useful in deciphering
which variables correspond to which terms in the model.

� � �
Options �

iterate(#) specifies the maximum number of iterations when computing estimates of the random ef-

fects. The default is iterate(10). This option is relevant only to predictions that depend on random
effects. This option is not allowed if the fixedonly option is specified.

tolerance(#) specifies a convergence tolerance when computing estimates of the random effects. The

default is tolerance(1e-6). This option is relevant only to predictions that depend on random

effects. This option is not allowed if the fixedonly option is specified.

nrtolerance(#) and nonrtolerance control the tolerance for the scaled gradient when computing

estimates of the random effects.
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nrtolerance(#) specifies the tolerance for the scaled gradient. Convergence is declared when

𝑔(−𝐻−1)𝑔′ is less than nrtolerance(#), where 𝑔 is the gradient row vector and 𝐻 is the ap-

proximated Hessian matrix from the current iteration. The default is nrtolerance(1e-5).

nonrtolerance specifies that the default nrtolerance() criterion be turned off.

margins

Description for margins
margins estimates margins of response for predictedmean values or named substitutable expressions.

Menu for margins
Statistics > Postestimation

Syntax for margins
margins [marginlist ] [ , options ]
margins [marginlist ] , predict(statistic ...) [ options ]

statistic Description

yhat predicted values conditional on zero random effects; the default

mu synonym for yhat
residuals not allowed with margins
rstandard not allowed with margins
parameters predicted parameters

parameters(param) predicted named substitutable expression param conditional
on zero random effects

reffects not allowed with margins

The fixedonly option is assumed for the predictions used with margins.

Statistics not allowed with margins are functions of stochastic quantities other than e(b).

For the full syntax, see [R] margins.

Remarks and examples
Various predictions, statistics, and diagnostic measures are available after fitting anNLMEmodel using

menl. For themost part, calculation centers on obtaining estimates of the random effects. Random effects

are not estimated when the model is fit but instead need to be predicted after estimation. The estimates

of the random effects are in turn used to obtain predicted values and residuals at different nesting levels.

These are useful for checking model assumptions and may be used in general as model-building tools.
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Example 1: Testing variance components
In example 9 and example 12 of [ME]menl, we modeled the average leaf weight of two genotypes of

soybean plants over three growing seasons as

weight𝑖𝑗 =
𝜙1𝑗

1 + exp{− (time𝑖𝑗 − 𝜙2𝑗) /𝜙3𝑗}
+ 𝜖𝑖𝑗

for 𝑗 = 1, . . . , 48 and 𝑖 = 1, . . . , 𝑛𝑗, with 8 ≤ 𝑛𝑗 ≤ 10. Here we consider a simplified version of the

stage 2 model specification from example 12,

φ𝑗 = ⎡⎢
⎣

𝜙1𝑗
𝜙2𝑗
𝜙3𝑗

⎤⎥
⎦

= ⎡⎢
⎣

𝛽11 + 𝛽12𝑆89,𝑗 + 𝛽13𝑆90,𝑗 + 𝑢1𝑗
𝛽21 + 𝛽22𝑆89,𝑗 + 𝛽23𝑆90,𝑗 + 𝛽24𝑃𝑗

𝛽31 + 𝛽32𝑆89,𝑗 + 𝛽33𝑆90,𝑗

⎤⎥
⎦

where 𝑃𝑗 = 𝐼(variety𝑗 = P), 𝑆89,𝑗 = 𝐼(year𝑗 = 1989), and 𝑆90,𝑗 = 𝐼(year𝑗 = 1990). The

random effects 𝑢1𝑗’s are normally distributed with mean 0 and variance 𝜎2
𝑢1 and errors 𝜖𝑖𝑗’s are normally

distributed with mean 0 and error variance

Var (𝜖𝑖𝑗) = 𝜎2( ̂weight𝑖𝑗)
2𝛿

Let’s fit this model using menl.

. use https://www.stata-press.com/data/r19/soybean
(Growth of soybean plants (Davidian and Giltinan, 1995))
. menl weight = {phi1:}/(1+exp(-(time-{phi2:})/{phi3:})),
> define(phi1: i.year U1[plot])
> define(phi2: i.year i.variety)
> define(phi3: i.year, xb) resvariance(power _yhat, noconstant)
Obtaining starting values by EM:
Alternating PNLS/LME algorithm:
Iteration 1: Linearization log likelihood = -324.21579
Iteration 2: Linearization log likelihood = -313.89733
Iteration 3: Linearization log likelihood = -314.76287
Iteration 4: Linearization log likelihood = -314.4317
Iteration 5: Linearization log likelihood = -314.5131
Iteration 6: Linearization log likelihood = -314.49399
Iteration 7: Linearization log likelihood = -314.49922
Iteration 8: Linearization log likelihood = -314.49838
Iteration 9: Linearization log likelihood = -314.49853
Iteration 10: Linearization log likelihood = -314.49851
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Computing standard errors:
Mixed-effects ML nonlinear regression Number of obs = 412
Group variable: plot Number of groups = 48

Obs per group:
min = 8
avg = 8.6
max = 10

Wald chi2(7) = 193.98
Linearization log likelihood = -314.49851 Prob > chi2 = 0.0000

phi1: i.year U1[plot]
phi2: i.year i.variety
phi3: i.year

weight Coefficient Std. err. z P>|z| [95% conf. interval]

phi1
year
1989 -6.614797 1.195633 -5.53 0.000 -8.958195 -4.271399
1990 -3.749016 1.264716 -2.96 0.003 -6.227814 -1.270218

_cons 20.28009 .953959 21.26 0.000 18.41036 22.14981

phi2
year
1989 -2.623514 .9752055 -2.69 0.007 -4.534882 -.7121468
1990 -5.142726 .9879783 -5.21 0.000 -7.079128 -3.206324

variety
P -2.265482 .3274228 -6.92 0.000 -2.907219 -1.623745

_cons 55.25935 .7554917 73.14 0.000 53.77861 56.74008

phi3
year
1989 -.9538782 .1963606 -4.86 0.000 -1.338738 -.5690186
1990 -.7220007 .2081227 -3.47 0.001 -1.129914 -.3140877

_cons 8.042677 .1452638 55.37 0.000 7.757965 8.327389

Random-effects parameters Estimate Std. err. [95% conf. interval]

plot: Identity
var(U1) 4.260962 1.114483 2.551939 7.11451

Residual variance:
Power _yhat

sigma2 .046573 .0038271 .0396449 .0547118
delta .9667451 .0229472 .9217694 1.011721

menl does not report tests against zeros for parameters in the random-effects table because they are
not appropriate for all types of parameters such as variances. For some parameters such as power pa-

rameter 𝛿 in our example, labeled as delta in the output, the test of 𝐻0 ∶ 𝛿 = 0 is sensible. In fact, it

corresponds to the test of homoskedastic within-plot errors because under the null hypothesis the error

variance Var(𝜖𝑖𝑗) = 𝜎2( ̂weight𝑖𝑗)
2𝛿 reduces to 𝜎2.
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We can use the test command to perform this test.

. test _b[/Residual:delta] = 0
( 1) [/Residual]delta = 0

chi2( 1) = 1774.87
Prob > chi2 = 0.0000

The Wald test strongly rejects the null hypothesis of homoskedastic errors.

Example 2: Obtaining predictions
Continuing with example 1, we can also obtain the estimates of the plot-level random effects 𝑢1𝑗’s.

Because menl used the Lindstrom–Bates linearization method, the estimated random effects are essen-

tially BLUPs; see Inference based on linearization in [ME] menl.

We need to specify the name of the variable to be created and then use predict, reffects. For
example, below we obtain the predictions of random effects for the first 10 plots.

. predict u1, reffects

. by plot, sort: generate tolist = (_n==1)

. list plot u1 if plot <=10 & tolist

plot u1

1. 1988F4 -1.716238
11. 1988F2 -.1668753
20. 1988F1 -.2153712
30. 1988F7 -.3337681
39. 1988F5 1.331566

47. 1988F8 -.7153563
57. 1988F6 .0699629
67. 1988F3 1.353845
77. 1988P1 -.6681811
87. 1988P5 -.9152615
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Next, we obtain the predicted mean values and plot them. By default, the mean response conditional on

the estimated random effects is computed. Predicted values based on the fixed-effects estimates alone,

that is, conditional on zero random effects, may be obtained by specifying the fixedonly option.

. predict fitweight, yhat

. twoway connected weight fitweight time if plot<=9, sort by(plot)
> ytitle(”Average leaf weight per plant (g)”)
> legend(order(1 ”observed” 2 ”predicted”))

0
5

10
15
20

0
5

10
15
20

0
5

10
15
20

20 40 60 80 20 40 60 80 20 40 60 80

1988F4 1988F2 1988F1

1988F7 1988F5 1988F8

1988F6 1988F3 1988P1

observed
predicted

A
ve

ra
ge

 le
af

 w
ei

gh
t p

er
 p

la
nt

 (
g)

Time the sample was taken (days after planting)
Graphs by Plot ID

The predicted values closely match the observed average leaf weights, confirming the adequacy of the

model.

Also see example 13 in [ME]menl for how to predict parameters defined as functions of other param-

eters with substitutable expressions.

Example 3: Checking model assumptions based on residuals
The raw residuals are useful to check for heterogeneity of the within-group error variance; see exam-

ple 10 in [ME]menl. They are less recommended, however, for checking normality assumptions and for

detecting outlying observations. This is because raw residuals are usually correlated and have different

variances. Instead, we can use standardized residuals to check for normality and outlying observations.

If the normality assumption is reasonable and the model fits data well, standardized residuals should

follow a standard normal distribution.
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Let’s checkwhether the standardized residuals from ourmodel are approximately normally distributed

with mean zero and variance one.

. predict rs, rstandard

. summarize rs
Variable Obs Mean Std. dev. Min Max

rs 412 .0150192 .9564895 -2.547287 3.661603
. qnorm rs
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The plot does not indicate serious departures from normality, and the estimated mean and standard

deviation are close to zero and one, respectively. It appears that the power of the mean function is a

reasonable choice for modeling heteroskedasticity of the within-group errors in this example.

Example 4: estat group and level-specific predictions
In example 23 of [ME] menl, we modeled the intensity of current at the 𝑖th level of voltage in the

𝑗th site within the 𝑘th wafer as

current𝑖𝑗𝑘 = 𝜙1𝑗𝑘 + 𝜙2𝑗𝑘 cos (𝜙3𝑗𝑘voltage𝑖 + 𝜋/4) + 𝜖𝑖𝑗𝑘

for 𝑘 = 1, . . . , 10, 𝑗 = 1, . . . , 8, and 𝑖 = 1, . . . , 5. In that example, we considered fairly complicated
specifications for 𝜙𝑗’s in stage 2 with many random effects at different levels, which lead to slow exe-

cution of the command. To illustrate some of the commands available after menl, we will substantially
simplify the stage 2 specification to speed up the estimation of the model.

𝜙1𝑗𝑘 = 𝛽0 + 𝑢(3)
0𝑘 + 𝑢(2)

0𝑗,𝑘 + (𝛽1 + 𝑢(3)
1𝑘 + 𝑢(2)

1𝑗,𝑘) voltage𝑖

𝜙2𝑗𝑘 = 𝛽3

𝜙3𝑗𝑘 = 𝛽4

u
(3)
𝑘 = [𝑢(3)

0𝑘
𝑢(3)

1𝑘
] ∼ 𝑁 (0, 𝚺3) u

(2)
𝑗,𝑘 = [

𝑢(2)
0𝑗,𝑘

𝑢(2)
1𝑗,𝑘

] ∼ 𝑁 (0, 𝚺2) 𝜖𝑖𝑗𝑘 ∼ 𝑁 (0, 𝜎2
𝜖 )

where

𝚺3 = [𝜎(3)
11 0

0 𝜎(3)
22

] 𝚺2 = [𝜎(2)
11 0

0 𝜎(2)
22

]
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We fit this model by using menl.

. use https://www.stata-press.com/data/r19/wafer, clear
(Modeling of analog MOS circuits)
. menl current = {phi1:}+{phi2}*cos({phi3}*voltage + _pi/4),
> define(phi1: voltage W0[wafer] S0[wafer>site]
> c.voltage#(W1[wafer] S1[wafer>site]))
Obtaining starting values by EM:
Alternating PNLS/LME algorithm:
Iteration 1: Linearization log likelihood = 503.60719
Iteration 2: Linearization log likelihood = 503.60719
Computing standard errors:
Mixed-effects ML nonlinear regression Number of obs = 400

Grouping information

No. of Observations per group
Path groups Minimum Average Maximum

wafer 10 40 40.0 40
wafer>site 80 5 5.0 5

Wald chi2(1) = 4860.30
Linearization log likelihood = 503.60719 Prob > chi2 = 0.0000

phi1: voltage W0[wafer] S0[wafer>site] c.voltage#W1[wafer]
c.voltage#S1[wafer>site]

current Coefficient Std. err. z P>|z| [95% conf. interval]

phi1
voltage -25.20026 .3614709 -69.72 0.000 -25.90873 -24.49179
_cons 64.41187 .4984303 129.23 0.000 63.43497 65.38878

/phi2 -93.6509 .6367582 -147.07 0.000 -94.89892 -92.40287
/phi3 .3828109 .001525 251.02 0.000 .379822 .3857999

Random-effects parameters Estimate Std. err. [95% conf. interval]

wafer: Independent
var(W0) .0048116 .0027516 .0015686 .014759
var(W1) .0396212 .0184213 .0159284 .0985558

wafer>site: Independent
var(S0) .0086449 .0017812 .0057726 .0129463
var(S1) .0118703 .0021115 .0083763 .0168217

var(Residual) .001069 .0000952 .0008978 .0012729
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We can use estat group to see how the data are broken down by wafer and site:

. estat group
Grouping information

No. of Observations per group
Path groups Minimum Average Maximum

wafer 10 40 40.0 40
wafer>site 80 5 5.0 5

We are reminded that we have balanced data for each site (all sites were measured at 5 ascending volt-

ages).

Suppose that we want to predict random effects at the wafer level only; that is, we want to compute

û
(3)
𝑘 . This can be done by specifying the relevel(wafer) option:

. predict u_wafer*, reffects relevel(wafer)

Notice how predict labels the generated variables for you to avoid confusion.

. describe u_wafer*
Variable Storage Display Value

name type format label Variable label

u_wafer1 float %9.0g BLUP r.e. for W0[wafer]
u_wafer2 float %9.0g BLUP r.e. for W1[wafer]

We can use predict, yhat to get the predicted values 𝜇(voltage𝑖, β̂, û(3)
𝑘 , û(2)

𝑗,𝑘). If instead we want
to predict values at the wafer level, 𝜇(voltage𝑖, β̂, û(3)

𝑘 , 0), we again need to specify the relevel()
option:

. predict curr_wafer, yhat relevel(wafer)

. list wafer site current curr_wafer in 1/10

wafer site current curr_w~r

1. 1 1 .90088 .8898317
2. 1 1 3.8682 3.920231
3. 1 1 7.6406 7.65254
4. 1 1 11.736 11.76189
5. 1 1 15.934 15.91457

6. 1 2 1.032 .8898317
7. 1 2 4.1022 3.920231
8. 1 2 7.9316 7.65254
9. 1 2 12.064 11.76189

10. 1 2 16.294 15.91457

The predicted values curr wafer do not vary across sites, because 𝜇(voltage𝑖, β̂, û(3)
𝑘 , 0) does not

depend on 𝑗.
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Methods and formulas
Following the notation defined throughout [ME]menl, estimates of random effects u𝑗 are obtained by

using PNLS iterations with parameters β, α, and 𝜎2 held fixed at their values obtained at convergence.

Starting with ̂u(0)
𝑗 = 0, at the 𝑘th iteration, we have

û
(𝑘)
𝑗 = 𝚺̂Ẑ

′(𝑘−1)
𝑗 (Ẑ(𝑘−1)

𝑗 𝚺̂Ẑ
′(𝑘−1)
𝑗 + 𝜎̂2𝚲̂𝑗)

−1
(ŵ(𝑘−1)

𝑗 − X̂
(𝑘−1)
𝑗 β̂)

where 𝚺̂ and 𝚲̂ are 𝚺 and 𝚲 with maximum likelihood (ML) or restricted maximum likelihood (REML)

estimates of the variance components plugged in and X̂
(𝑘−1)
𝑗 = X̂𝑗(û

(𝑘−1)
𝑗 ), Ẑ(𝑘−1)

𝑗 = Ẑ𝑗(û
(𝑘−1)
𝑗 ), and

ŵ
(𝑘−1)
𝑗 = ŵ𝑗(û

(𝑘−1)
𝑗 ) are defined in the LME step of Inference based on linearization in Methods and for-

mulas of [ME]menl. When the variance structure depends on u𝑗, such as when the resvariance(power
yhat) option is specified during estimation, 𝚲̂𝑗 will also be updated at each iteration; that is, 𝚲̂𝑗 =

𝚲̂𝑗(û
(𝑘−1)
𝑗 ). The iterative process stops when the relative difference between û

(𝑘−1)
𝑗 and û

(𝑘)
𝑗 is less

than tolerance(#) or, if the stopping rule is not met, when the maximum number of iterations in

iterate(#) is reached.

Standard errors for the estimates of the random effects are calculated based on Bates and Pinheiro

(1998, sec. 3.3). If estimation is done by REML, these standard errors account for uncertainty in the

estimate of β, whereas for ML, the standard errors treat β as known. As such, standard errors of REML-

based estimates will usually be larger.

Predicted mean values are computed as µ𝑗(X𝑗, β̂, û𝑗), predicted parameters as φ̂𝑗 = [d](x𝑏
𝑗, β̂, û𝑗),

residuals as ̂ε𝑗 = y𝑗 − µ𝑗(X𝑗, β̂, û𝑗), and standardized residuals as

̂ε∗
𝑗 = 𝜎̂−1𝚲̂

−1/2
𝑗 ̂ε𝑗

If the relevel(levelvar) option is specified, predicted values, residuals, and standardized residu-

als consider only those random-effects terms up to and including level levelvar in the model. If the

fixedonly option is specified, all statistics and named substitutable expressions are computed condi-
tional on zero random effects; that is, their computation is based on the estimated fixed effects only.

Reference
Bates, D. M., and J. C. Pinheiro. 1998. “Computational methods for multilevel modelling”. In Technical Memorandum

BL0112140-980226-01TM. Murray Hill, NJ: Bell Labs, Lucent Technologies.

Also see
[ME] menl — Nonlinear mixed-effects regression

[U] 20 Estimation and postestimation commands
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Description Quick start Menu Syntax Options
Remarks and examples Stored results Methods and formulas References Also see

Description
meologit fits mixed-effects logistic models for ordered responses. The actual values taken on by

the response are irrelevant except that larger values are assumed to correspond to “higher” outcomes.

The conditional distribution of the response given the random effects is assumed to be multinomial, with

success probability determined by the logistic cumulative distribution function.

Quick start
Two-level ordered logit regression of y on indicators for levels of a and random intercepts by lev2

meologit y i.a || lev2:

Two-level model including fixed and random coefficients for x
meologit y i.a x || lev2: x

Same as above, but report odds ratios instead of coefficients

meologit y i.a x || lev2: x, or

Three-level model of y on a, x, and their interaction using factor variable notation and random intercepts

by lev2 and lev3 with lev2 nested within lev3
meologit y a##c.x || lev3: || lev2:

Menu
Statistics > Multilevel mixed-effects models > Ordered logistic regression

333
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Syntax
meologit depvar fe equation [ || re equation ] [ || re equation ... ] [ , options ]

where the syntax of fe equation is

[ indepvars ] [ if ] [ in ] [weight ] [ , fe options ]

and the syntax of re equation is one of the following:

for random coefficients and intercepts

levelvar: [ varlist ] [ , re options ]

for random effects among the values of a factor variable in a crossed-effects model

levelvar: R.varname

levelvar is a variable identifying the group structure for the random effects at that level or is all repre-
senting one group comprising all observations.

fe options Description

Model

offset(varname) include varname in model with coefficient constrained to 1

re options Description

Model

covariance(vartype) variance–covariance structure of the random effects

noconstant suppress constant term from the random-effects equation

fweight(varname) frequency weights at higher levels

iweight(varname) importance weights at higher levels

pweight(varname) sampling weights at higher levels
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options Description

Model

constraints(constraints) apply specified linear constraints

SE/Robust

vce(vcetype) vcetype may be oim, opg, robust, or cluster clustvar

Reporting

level(#) set confidence level; default is level(95)
or report fixed-effects coefficients as odds ratios

nocnsreport do not display constraints

notable suppress coefficient table

noheader suppress output header

nogroup suppress table summarizing groups

display options control columns and column formats, row spacing, line width,
display of omitted variables and base and empty cells, and
factor-variable labeling

Integration

intmethod(intmethod) integration method

intpoints(#) set the number of integration (quadrature) points for all levels;
default is intpoints(7)

Maximization

maximize options control the maximization process; seldom used

startvalues(svmethod) method for obtaining starting values

startgrid[ (gridspec) ] perform a grid search to improve starting values

noestimate do not fit the model; show starting values instead

dnumerical use numerical derivative techniques

collinear keep collinear variables

coeflegend display legend instead of statistics

vartype Description

independent one unique variance parameter per random effect and all covariances
0; the default unless the R. notation is used

exchangeable equal variances for random effects and one common pairwise
covariance

identity equal variances for random effects and all covariances 0; the
default if the R. notation is used

unstructured all variances and covariances to be distinctly estimated

fixed(matname) user-selected variances and covariances constrained to specified
values; the remaining variances and covariances unrestricted

pattern(matname) user-selected variances and covariances constrained to be equal;
the remaining variances and covariances unrestricted
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intmethod Description

mvaghermite mean–variance adaptive Gauss–Hermite quadrature; the default
unless a crossed random-effects model is fit

mcaghermite mode-curvature adaptive Gauss–Hermite quadrature

ghermite nonadaptive Gauss–Hermite quadrature

laplace Laplacian approximation; the default for crossed random-effects
models

indepvars and varlist may contain factor variables; see [U] 11.4.3 Factor variables.

depvar, indepvars, and varlist may contain time-series operators; see [U] 11.4.4 Time-series varlists.

bayes, by, collect, and svy are allowed; see [U] 11.1.10 Prefix commands. For more details, see [BAYES] bayes: me-

ologit.

vce() and weights are not allowed with the svy prefix; see [SVY] svy.
fweights, iweights, and pweights are allowed; see [U] 11.1.6 weight. Only one type of weight may be specified. Weights

are not supported under the Laplacian approximation or for crossed models.

startvalues(), startgrid, noestimate, dnumerical, collinear, and coeflegend do not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options

� � �
Model �

offset(varname) specifies that varname be included in the fixed-effects portion of the model with the

coefficient constrained to be 1.

covariance(vartype) specifies the structure of the covariance matrix for the random effects and may

be specified for each random-effects equation. vartype is one of the following: independent,
exchangeable, identity, unstructured, fixed(matname), or pattern(matname).

covariance(independent) covariance structure allows for a distinct variance for each random

effect within a random-effects equation and assumes that all covariances are 0. The default is

covariance(independent) unless a crossed random-effects model is fit, in which case the de-
fault is covariance(identity).

covariance(exchangeable) structure specifies one common variance for all random effects and

one common pairwise covariance.

covariance(identity) is short for “multiple of the identity”; that is, all variances are equal and all
covariances are 0.

covariance(unstructured) allows for all variances and covariances to be distinct. If an equation
consists of 𝑝 random-effects terms, the unstructured covariance matrix will have 𝑝(𝑝+1)/2 unique
parameters.

covariance(fixed(matname)) and covariance(pattern(matname)) covariance structures

provide a convenient way to impose constraints on variances and covariances of random effects.

Each specification requires amatname that defines the restrictions placed on variances and covari-

ances. Only elements in the lower triangle of matname are used, and row and column names of

matname are ignored. Amissing value inmatnamemeans that a given element is unrestricted. In a

fixed(matname) covariance structure, (co)variance (𝑖, 𝑗) is constrained to equal the value spec-
ified in the 𝑖, 𝑗th entry of matname. In a pattern(matname) covariance structure, (co)variances
(𝑖, 𝑗) and (𝑘, 𝑙) are constrained to be equal if matname[𝑖, 𝑗] = matname[𝑘, 𝑙].



meologit — Multilevel mixed-effects ordered logistic regression 337

noconstant suppresses the constant (intercept) term; may be specified for any of or all the random-

effects equations.

fweight(varname) specifies frequency weights at higher levels in a multilevel model, whereas fre-

quency weights at the first level (the observation level) are specified in the usual manner, for exam-

ple, [fw=fwtvar1]. varname can be any valid Stata variable name, and you can specify fweight()
at levels two and higher of a multilevel model. For example, in the two-level model

. mecmd fixed_portion [fw = wt1] || school: ... , fweight(wt2) ...

the variable wt1 would hold the first-level (the observation-level) frequency weights, and wt2 would
hold the second-level (the school-level) frequency weights.

iweight(varname) specifies importance weights at higher levels in a multilevel model, whereas impor-
tance weights at the first level (the observation level) are specified in the usual manner, for example,

[iw=iwtvar1]. varname can be any valid Stata variable name, and you can specify iweight() at

levels two and higher of a multilevel model. For example, in the two-level model

. mecmd fixed_portion [iw = wt1] || school: ... , iweight(wt2) ...

the variable wt1would hold the first-level (the observation-level) importance weights, and wt2would
hold the second-level (the school-level) importance weights.

pweight(varname) specifies sampling weights at higher levels in a multilevel model, whereas sam-

pling weights at the first level (the observation level) are specified in the usual manner, for example,

[pw=pwtvar1]. varname can be any valid Stata variable name, and you can specify pweight() at
levels two and higher of a multilevel model. For example, in the two-level model

. mecmd fixed_portion [pw = wt1] || school: ... , pweight(wt2) ...

variable wt1 would hold the first-level (the observation-level) sampling weights, and wt2 would hold
the second-level (the school-level) sampling weights.

constraints(constraints); see [R] Estimation options.

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived from
asymptotic theory (oim, opg), that are robust to some kinds of misspecification (robust), and that
allow for intragroup correlation (cluster clustvar); see [R] vce option. If vce(robust) is specified,
robust variances are clustered at the highest level in the multilevel model.

� � �
Reporting �

level(#); see [R] Estimation options.

or reports estimated fixed-effects coefficients transformed to odds ratios, that is, exp(𝛽) rather than 𝛽.
Standard errors and confidence intervals are similarly transformed. This option affects how results

are displayed, not how they are estimated. or may be specified either at estimation or upon replay.

nocnsreport; see [R] Estimation options.

notable suppresses the estimation table, either at estimation or upon replay.

noheader suppresses the output header, either at estimation or upon replay.

nogroup suppresses the display of group summary information (number of groups, average group size,
minimum, and maximum) from the output header.
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display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] Estimation options.

� � �
Integration �

intmethod(intmethod) specifies the integration method to be used for the random-effects model.

mvaghermite performs mean–variance adaptive Gauss–Hermite quadrature; mcaghermite per-

forms mode-curvature adaptive Gauss–Hermite quadrature; ghermite performs nonadaptive

Gauss–Hermite quadrature; and laplace performs the Laplacian approximation, equivalent to mode-
curvature adaptive Gaussian quadrature with one integration point.

The default integration method is mvaghermite unless a crossed random-effects model is fit, in which
case the default integration method is laplace. The Laplacian approximation has been known to
produce biased parameter estimates; however, the bias tends to be more prominent in the estimates of

the variance components rather than in the estimates of the fixed effects.

For crossed random-effects models, estimation with more than one quadrature point may be pro-

hibitively intensive even for a small number of levels. For this reason, the integration method defaults

to the Laplacian approximation. You may override this behavior by specifying a different integration

method.

intpoints(#) sets the number of integration points for quadrature. The default is intpoints(7),
which means that seven quadrature points are used for each level of random effects. This option is

not allowed with intmethod(laplace).

The more integration points, the more accurate the approximation to the log likelihood. However,

computation time increases as a function of the number of quadrature points raised to a power equaling

the dimension of the random-effects specification. In crossed random-effects models and in models

with many levels or many random coefficients, this increase can be substantial.

� � �
Maximization �

maximize options: difficult, technique(algorithm spec), iterate(#), [no]log, trace,
gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(init specs); see [R] Maximize. Those that require

special mention for meologit are listed below.

from() accepts a properly labeled vector of initial values or a list of coefficient names with values.
A list of values is not allowed.

The following options are available with meologit but are not shown in the dialog box:

startvalues(svmethod), startgrid[ (gridspec) ], noestimate, and dnumerical; see [ME]meglm.

collinear, coeflegend; see [R] Estimation options.

Remarks and examples
Mixed-effects ordered logistic regression is ordered logistic regression containing both fixed effects

and random effects. An ordered response is a variable that is categorical and ordered, for instance, “poor”,

“good”, and “excellent”, which might indicate a person’s current health status or the repair record of a

car.
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meologit allows for many levels of random effects. However, for simplicity, for nowwe consider the

two-level model, where for a series of 𝑀 independent clusters, and conditional on a set of fixed effects

x𝑖𝑗, a set of cutpoints κ, and a set of random effects u𝑗, the cumulative probability of the response being

in a category higher than 𝑘 is

Pr(𝑦𝑖𝑗 > 𝑘|x𝑖𝑗,κ,u𝑗) = 𝐻(x𝑖𝑗β + z𝑖𝑗u𝑗 − 𝜅𝑘) (1)

for 𝑗 = 1, . . . , 𝑀 clusters, with cluster 𝑗 consisting of 𝑖 = 1, . . . , 𝑛𝑗 observations. The cutpoints κ are

labeled 𝜅1, 𝜅2, . . . , 𝜅𝐾−1, where 𝐾 is the number of possible outcomes. 𝐻(⋅) is the logistic cumulative
distribution function that represents cumulative probability.

The 1 × 𝑝 row vector x𝑖𝑗 are the covariates for the fixed effects, analogous to the covariates you

would find in a standard logistic regression model, with regression coefficients (fixed effects) β. In our
parameterization, x𝑖𝑗 does not contain a constant term because its effect is absorbed into the cutpoints.

For notational convenience here and throughout this manual entry, we suppress the dependence of 𝑦𝑖𝑗 on

x𝑖𝑗.

The 1×𝑞 vector z𝑖𝑗 are the covariates corresponding to the random effects and can be used to represent

both random intercepts and random coefficients. For example, in a random-intercept model, z𝑖𝑗 is simply

the scalar 1. The random effects u𝑗 are 𝑀 realizations from a multivariate normal distribution with mean

0 and 𝑞 × 𝑞 variance matrix 𝚺. The random effects are not directly estimated as model parameters but

are instead summarized according to the unique elements of 𝚺, known as variance components. One

special case of (1) places z𝑖𝑗 = x𝑖𝑗, so that all covariate effects are essentially random and distributed as

multivariate normal with mean β and variance 𝚺.

From (1), we can derive the probability of observing outcome 𝑘 as

Pr(𝑦𝑖𝑗 = 𝑘|κ,u𝑗) = Pr(𝜅𝑘−1 < x𝑖𝑗β + z𝑖𝑗u𝑗 + 𝜖𝑖𝑗 ≤ 𝜅𝑘)
= Pr(𝜅𝑘−1 − x𝑖𝑗β − z𝑖𝑗u𝑗 < 𝜖𝑖𝑗 ≤ 𝜅𝑘 − x𝑖𝑗β − z𝑖𝑗u𝑗)
= 𝐻(𝜅𝑘 − x𝑖𝑗β − z𝑖𝑗u𝑗) − 𝐻(𝜅𝑘−1 − x𝑖𝑗β − z𝑖𝑗u𝑗)

where 𝜅0 is taken as −∞ and 𝜅𝐾 is taken as +∞.

From the above, we may also write the model in terms of a latent linear response, where observed

ordinal responses 𝑦𝑖𝑗 are generated from the latent continuous responses, such that

𝑦∗
𝑖𝑗 = x𝑖𝑗β + z𝑖𝑗u𝑗 + 𝜖𝑖𝑗

and

𝑦𝑖𝑗 =

⎧{{
⎨{{⎩

1 if 𝑦∗
𝑖𝑗 ≤ 𝜅1

2 if 𝜅1 < 𝑦∗
𝑖𝑗 ≤ 𝜅2

⋮
𝐾 if 𝜅𝐾−1 < 𝑦∗

𝑖𝑗

The errors 𝜖𝑖𝑗 are distributed as logistic with mean 0 and variance 𝜋2/3 and are independent of u𝑗.

Below we present two short examples of mixed-effects ordered logistic regression; refer to [ME] me

and [ME] meglm for examples of other random-effects models. A two-level ordered logistic model can

also be fit using xtologit with the re option; see [XT] xtologit. In the absence of random effects,

mixed-effects ordered logistic regression reduces to standard ordered logistic regression; see [R] ologit.
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Example 1: Two-level random-intercept model
We use the data from the Television, School, and Family Smoking Prevention and Cessation Project

(Flay et al. 1988; Rabe-Hesketh and Skrondal 2022, chap. 11), where schools were randomly assigned

into one of four groups defined by two treatment variables. Students within each school are nested in

classes, and classes are nested in schools. In this example, we ignore the variability of classes within

schools and fit a two-level model; we incorporate classes in a three-level model in example 2. The

dependent variable is the tobacco and health knowledge (THK) scale score collapsed into four ordered

categories. We regress the outcome on the treatment variables and their interaction and control for the

pretreatment score.

. use https://www.stata-press.com/data/r19/tvsfpors
(Television, School, and Family Project)
. meologit thk prethk cc##tv || school:
Fitting fixed-effects model:
Iteration 0: Log likelihood = -2212.775
Iteration 1: Log likelihood = -2125.509
Iteration 2: Log likelihood = -2125.1034
Iteration 3: Log likelihood = -2125.1032
Refining starting values:
Grid node 0: Log likelihood = -2136.2426
Fitting full model:
Iteration 0: Log likelihood = -2136.2426 (not concave)
Iteration 1: Log likelihood = -2120.2577
Iteration 2: Log likelihood = -2119.7574
Iteration 3: Log likelihood = -2119.7428
Iteration 4: Log likelihood = -2119.7428
Mixed-effects ologit regression Number of obs = 1,600
Group variable: school Number of groups = 28

Obs per group:
min = 18
avg = 57.1
max = 137

Integration method: mvaghermite Integration pts. = 7
Wald chi2(4) = 128.06

Log likelihood = -2119.7428 Prob > chi2 = 0.0000

thk Coefficient Std. err. z P>|z| [95% conf. interval]

prethk .4032892 .03886 10.38 0.000 .327125 .4794534
1.cc .9237904 .204074 4.53 0.000 .5238127 1.323768
1.tv .2749937 .1977424 1.39 0.164 -.1125744 .6625618

cc#tv
1 1 -.4659256 .2845963 -1.64 0.102 -1.023724 .0918728

/cut1 -.0884493 .1641062 -.4100916 .233193
/cut2 1.153364 .165616 .8287625 1.477965
/cut3 2.33195 .1734199 1.992053 2.671846

school
var(_cons) .0735112 .0383106 .0264695 .2041551

LR test vs. ologit model: chibar2(01) = 10.72 Prob >= chibar2 = 0.0005
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The estimation table reports the fixed effects, the estimated cutpoints (𝜅1, 𝜅2, 𝜅3), and the estimated
variance components. The fixed effects can be interpreted just as you would the output from ologit. We

find that students with higher preintervention scores tend to have higher postintervention scores. Because

of their interaction, the impact of the treatment variables on the knowledge score is not straightforward;

we defer this discussion to example 1 of [ME] meologit postestimation.

Underneath the fixed effects and the cutpoints, the table shows the estimated variance components.

The random-effects equation is labeled school, meaning that these are random effects at the school
level. Because we have only one random effect at this level, the table shows only one variance com-

ponent. The estimate of 𝜎2
𝑢 is 0.07 with standard error 0.04. The reported likelihood-ratio test shows

that there is enough variability between schools to favor a mixed-effects ordered logistic regression over

a standard ordered logistic regression; see Distribution theory for likelihood-ratio test in [ME] me for a

discussion of likelihood-ratio testing of variance components.

We now store our estimates for later use.

. estimates store r_2

Two-level models extend naturally to models with three or more levels with nested random effects.

Below we continue with example 1.

Example 2: Three-level random-intercept model
In this example, we fit a three-level model incorporating classes nested within schools. The fixed-

effects part remains the same. Our model now has two random-effects equations, separated by ||. The
first is a random intercept (constant only) at the school level (level three), and the second is a random
intercept at the class level (level two). The order in which these are specified (from left to right) is

significant—meologit assumes that class is nested within school.

. meologit thk prethk cc##tv || school: || class:
Fitting fixed-effects model:
Iteration 0: Log likelihood = -2212.775
Iteration 1: Log likelihood = -2125.509
Iteration 2: Log likelihood = -2125.1034
Iteration 3: Log likelihood = -2125.1032
Refining starting values:
Grid node 0: Log likelihood = -2152.1514
Fitting full model:
Iteration 0: Log likelihood = -2152.1514 (not concave)
Iteration 1: Log likelihood = -2125.9213 (not concave)
Iteration 2: Log likelihood = -2120.1861
Iteration 3: Log likelihood = -2115.6177
Iteration 4: Log likelihood = -2114.5896
Iteration 5: Log likelihood = -2114.5881
Iteration 6: Log likelihood = -2114.5881
Mixed-effects ologit regression Number of obs = 1,600

Grouping information

No. of Observations per group
Group variable groups Minimum Average Maximum

school 28 18 57.1 137
class 135 1 11.9 28
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Integration method: mvaghermite Integration pts. = 7
Wald chi2(4) = 124.39

Log likelihood = -2114.5881 Prob > chi2 = 0.0000

thk Coefficient Std. err. z P>|z| [95% conf. interval]

prethk .4085273 .039616 10.31 0.000 .3308814 .4861731
1.cc .8844369 .2099124 4.21 0.000 .4730161 1.295858
1.tv .236448 .2049065 1.15 0.249 -.1651614 .6380575

cc#tv
1 1 -.3717699 .2958887 -1.26 0.209 -.951701 .2081612

/cut1 -.0959459 .1688988 -.4269815 .2350896
/cut2 1.177478 .1704946 .8433151 1.511642
/cut3 2.383672 .1786736 2.033478 2.733865

school
var(_cons) .0448735 .0425387 .0069997 .2876749

school>class
var(_cons) .1482157 .0637521 .063792 .3443674

LR test vs. ologit model: chi2(2) = 21.03 Prob > chi2 = 0.0000
Note: LR test is conservative and provided only for reference.

We see that we have 135 classes from 28 schools. The variance-component estimates are now orga-

nized and labeled according to level. The variance component for class is labeled school>class to
emphasize that classes are nested within schools.

Compared with the two-level model from example 1, the estimate of the variance of the random

intercept at the school level dropped from 0.07 to 0.04. This is not surprising because we now use

two random components versus one random component to account for unobserved heterogeneity among

students. We can use lrtest and our stored estimation result from example 1 to see which model

provides a better fit:

. lrtest r_2 .
Likelihood-ratio test
Assumption: r_2 nested within .
LR chi2(1) = 10.31
Prob > chi2 = 0.0013
Note: The reported degrees of freedom assumes the null hypothesis is not on

the boundary of the parameter space. If this is not true, then the
reported test is conservative.

The likelihood-ratio test favors the three-level model. For more information about the likelihood-ratio

test in the context of mixed-effects models, see Distribution theory for likelihood-ratio test in [ME] me.

The above extends to models with more than two levels of nesting by adding more random-effects

equations, each separated by ||.
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Stored results
meologit stores the following in e():

Scalars

e(N) number of observations

e(k) number of parameters

e(k dv) number of dependent variables

e(k cat) number of categories

e(k eq) number of equations in e(b)
e(k eq model) number of equations in overall model test

e(k f) number of fixed-effects parameters

e(k r) number of random-effects parameters

e(k rs) number of variances

e(k rc) number of covariances

e(df m) model degrees of freedom

e(ll) log likelihood

e(N clust) number of clusters

e(chi2) 𝜒2

e(p) 𝑝-value for model test
e(ll c) log likelihood, comparison model

e(chi2 c) 𝜒2, comparison test
e(df c) degrees of freedom, comparison test

e(p c) 𝑝-value for comparison test
e(rank) rank of e(V)
e(ic) number of iterations

e(rc) return code

e(converged) 1 if converged, 0 otherwise

Macros

e(cmd) meglm
e(cmd2) meologit
e(cmdline) command as typed

e(depvar) name of dependent variable

e(wtype) weight type

e(wexp) weight expression (first-level weights)

e(fweightk) fweight variable for kth highest level, if specified
e(iweightk) iweight variable for kth highest level, if specified
e(pweightk) pweight variable for kth highest level, if specified
e(covariates) list of covariates

e(ivars) grouping variables

e(model) ologit
e(title) title in estimation output

e(link) logit
e(family) ordinal
e(clustvar) name of cluster variable

e(offset) offset

e(intmethod) integration method

e(n quad) number of integration points

e(chi2type) Wald; type of model 𝜒2

e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.

e(opt) type of optimization

e(which) max or min; whether optimizer is to perform maximization or minimization

e(ml method) type of ml method
e(user) name of likelihood-evaluator program

e(technique) maximization technique

e(datasignature) the checksum

e(datasignaturevars) variables used in calculation of checksum

e(properties) b V
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e(estat cmd) program used to implement estat
e(predict) program used to implement predict
e(marginsnotok) predictions disallowed by margins
e(marginswtype) weight type for margins
e(marginswexp) weight expression for margins
e(marginsdefault) default predict() specification for margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices

e(b) coefficient vector

e(Cns) constraints matrix

e(ilog) iteration log (up to 20 iterations)

e(gradient) gradient vector

e(N g) group counts

e(g min) group-size minimums

e(g avg) group-size averages

e(g max) group-size maximums

e(cat) category values

e(V) variance–covariance matrix of the estimators

e(V modelbased) model-based variance

Functions

e(sample) marks estimation sample

In addition to the above, the following is stored in r():
Matrices

r(table) matrix containing the coefficients with their standard errors, test statistics, 𝑝-values, and
confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when any
r-class command is run after the estimation command.

Methods and formulas
meologit is a convenience command for meglm with a logit link and an ordinal family; see

[ME] meglm.

Without a loss of generality, consider a two-level ordered logistic model. The probability of observing

outcome 𝑘 for response 𝑦𝑖𝑗 is then

𝑝𝑖𝑗 = Pr(𝑦𝑖𝑗 = 𝑘|κ,u𝑗) = Pr(𝜅𝑘−1 < η𝑖𝑗 + 𝜖𝑖𝑡 ≤ 𝜅𝑘)

= 1
1 + exp(−𝜅𝑘 + η𝑖𝑗)

− 1
1 + exp(−𝜅𝑘−1 + η𝑖𝑗)

where η𝑖𝑗 = x𝑖𝑗β + z𝑖𝑗u𝑗 + offset𝑖𝑗, 𝜅0 is taken as −∞, and 𝜅𝐾 is taken as +∞. Here x𝑖𝑗 does not

contain a constant term because its effect is absorbed into the cutpoints.

For cluster 𝑗, 𝑗 = 1, . . . , 𝑀, the conditional distribution of y𝑗 = (𝑦𝑗1, . . . , 𝑦𝑗𝑛𝑗
)′ given a set of

cluster-level random effects u𝑗 is

𝑓(y𝑗|κ,u𝑗) =
𝑛𝑗

∏
𝑖=1

𝑝𝐼𝑘(𝑦𝑖𝑗)
𝑖𝑗

= exp

𝑛𝑗

∑
𝑖=1

{𝐼𝑘(𝑦𝑖𝑗) log(𝑝𝑖𝑗)}
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where

𝐼𝑘(𝑦𝑖𝑗) = {1 if 𝑦𝑖𝑗 = 𝑘
0 otherwise

Because the prior distribution of u𝑗 is multivariate normal with mean 0 and 𝑞 × 𝑞 variance matrix
𝚺, the likelihood contribution for the 𝑗th cluster is obtained by integrating u𝑗 out of the joint density

𝑓(y𝑗,u𝑗),

ℒ𝑗(β,κ, 𝚺) = (2𝜋)−𝑞/2 |𝚺|−1/2 ∫ 𝑓(y𝑗|κ,u𝑗) exp (−u′
𝑗𝚺

−1u𝑗/2) 𝑑u𝑗

= (2𝜋)−𝑞/2 |𝚺|−1/2 ∫ exp{ℎ (β,κ, 𝚺, u𝑗)} 𝑑u𝑗

(2)

where

ℎ (β,κ, 𝚺, u𝑗) =
𝑛𝑗

∑
𝑖=1

{𝐼𝑘(𝑦𝑖𝑗) log(𝑝𝑖𝑗)} − u′
𝑗𝚺

−1u𝑗/2

and for convenience, in the arguments of ℎ(⋅) we suppress the dependence on the observable data

(y𝑗, r𝑗,X𝑗,Z𝑗).
The integration in (2) has no closed form and thus must be approximated; see Methods and formulas

in [ME] meglm for details.

meologit supports multilevel weights and survey data; see Methods and formulas in [ME] meglm

for details.
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Postestimation commands predict margins
Remarks and examples Methods and formulas Also see

Postestimation commands
The following postestimation command is of special interest after meologit:

Command Description

estat group summarize the composition of the nested groups

estat icc estimate intraclass correlations

estat sd display variance components as standard deviations and correlations

The following standard postestimation commands are also available:

Command Description

contrast contrasts and ANOVA-style joint tests of parameters

estat ic Akaike’s, consistent Akaike’s, corrected Akaike’s, and Schwarz’s Bayesian in-
formation criteria (AIC, CAIC, AICc, and BIC, respectively)

estat summarize summary statistics for the estimation sample

estat vce variance–covariance matrix of the estimators (VCE)

estat (svy) postestimation statistics for survey data

estimates cataloging estimation results

etable table of estimation results
∗ hausman Hausman’s specification test

lincom point estimates, standard errors, testing, and inference for linear combinations
of parameters

∗ lrtest likelihood-ratio test

margins marginal means, predictive margins, marginal effects, and average marginal
effects

marginsplot graph the results from margins (profile plots, interaction plots, etc.)

nlcom point estimates, standard errors, testing, and inference for nonlinear combina-
tions of parameters

predict
predictnl point estimates, standard errors, testing, and inference for generalized predic-

tions
pwcompare pairwise comparisons of parameters

test Wald tests of simple and composite linear hypotheses

testnl Wald tests of nonlinear hypotheses

∗hausman and lrtest are not appropriate with svy estimation results.

346
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predict

Description for predict
predict creates a new variable containing predictions such as probabilities, linear predictions, den-

sity and distribution functions, and standard errors.

Menu for predict
Statistics > Postestimation

Syntax for predict

Syntax for obtaining predictions of the outcome and other statistics

predict [ type ] { stub* | newvarlist } [ if ] [ in ] [ , statistic options ]

Syntax for obtaining estimated random effects and their standard errors

predict [ type ] { stub* | newvarlist } [ if ] [ in ], reffects [ re options ]

Syntax for obtaining ML scores

predict [ type ] { stub* | newvarlist } [ if ] [ in ], scores

statistic Description

Main

pr predicted probabilities; the default

eta fitted linear predictor

xb linear predictor for the fixed portion of the model only

stdp standard error of the fixed-portion linear prediction

density predicted density function

distribution predicted distribution function

These statistics are available both in and out of sample; type predict ... if e(sample) ... if wanted
only for the estimation sample.
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options Description

Main

conditional(ctype) compute statistic conditional on estimated random effects; default is
conditional(ebmeans)

marginal compute statistic marginally with respect to the random effects

nooffset make calculation ignoring offset or exposure

outcome(outcome) outcome category for predicted probabilities

Integration

int options integration options

You specify one or k new variables in newvarlist with pr, where k is the number of outcomes. If you
do not specify outcome(), these options assume outcome(#1).

ctype Description

ebmeans empirical Bayes means of random effects; the default

ebmodes empirical Bayes modes of random effects

fixedonly prediction for the fixed portion of the model only

re options Description

Main

ebmeans use empirical Bayes means of random effects; the default

ebmodes use empirical Bayes modes of random effects

reses(stub* | newvarlist) calculate standard errors of empirical Bayes estimates

Integration

int options integration options

int options Description

intpoints(#) use # quadrature points to compute marginal predictions and empirical
Bayes means

iterate(#) set maximum number of iterations in computing statistics involving
empirical Bayes estimators

tolerance(#) set convergence tolerance for computing statistics involving empirical
Bayes estimators

Options for predict

� � �
Main �

pr, the default, calculates the predicted probabilities.

You specify one or 𝑘 new variables, where 𝑘 is the number of categories of the dependent variable. If
you specify the outcome() option, the probabilities will be predicted for the requested outcome only,
in which case you specify only one new variable. If you specify one new variable and do not specify

outcome(), outcome(#1) is assumed.

eta, xb, stdp, density, distribution, scores, conditional(), marginal, and nooffset; see
[ME] meglm postestimation.
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outcome(outcome) specifies the outcome for which the predicted probabilities are to be calculated.

outcome() should contain either one value of the dependent variable or one of #1, #2, . . . , with #1
meaning the first category of the dependent variable, #2 meaning the second category, etc.

reffects, ebmeans, ebmodes, and reses(), see [ME] meglm postestimation.

� � �
Integration �

intpoints(), iterate(), tolerance(); see [ME] meglm postestimation.

margins

Description for margins
margins estimates margins of response for probabilities and linear predictions.

Menu for margins
Statistics > Postestimation

Syntax for margins
margins [marginlist ] [ , options ]
margins [marginlist ] , predict(statistic ...) [ predict(statistic ...) ... ] [ options ]

statistic Description

default probabilities for each outcome

pr predicted probabilities for a specified outcome

eta fitted linear predictor

xb linear predictor for the fixed portion of the model only

stdp not allowed with margins
density not allowed with margins
distribution not allowed with margins
reffects not allowed with margins
scores not allowed with margins

pr defaults to the first outcome.
Options conditional(ebmeans) and conditional(ebmodes) are not allowed with margins.
Option marginal is assumed where applicable if conditional(fixedonly) is not specified.

Statistics not allowed with margins are functions of stochastic quantities other than e(b).

For the full syntax, see [R] margins.



meologit postestimation — Postestimation tools for meologit 350

Remarks and examples
Various predictions, statistics, and diagnostic measures are available after fitting an ordered logistic

mixed-effects model with meologit. Here we show a short example of predicted probabilities and

predicted random effects; refer to [ME] meglm postestimation for additional examples applicable to

mixed-effects generalized linear models.

Example 1: Obtaining predicted probabilities and random effects
In example 2 of [ME] meologit, we modeled the tobacco and health knowledge (thk) score—coded

1, 2, 3, 4—among students as a function of two treatments (cc and tv) by using a three-level ordered
logistic model with random effects at the school and class levels.

. use https://www.stata-press.com/data/r19/tvsfpors
(Television, School, and Family Project)
. meologit thk prethk cc##tv || school: || class:
(output omitted )

We obtain predicted probabilities for all four outcomes based on the contribution of both fixed effects

and random effects by typing

. predict pr*
(option pr assumed)
(predictions based on fixed effects and posterior means of random effects)
(using 7 quadrature points)

As the note says, the predicted values are based on the posterior means of random effects. You can use

the modes option to obtain predictions based on the posterior modes of random effects.

Because we specified a stub name, Stata saved the predicted random effects in variables pr1 through
pr4. Here we list the predicted probabilities for the first two classes for school 515:
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. list class thk pr? if school==515 & (class==515101 | class==515102),
> sepby(class)

class thk pr1 pr2 pr3 pr4

1464. 515101 2 .1485538 .2354556 .2915916 .3243991
1465. 515101 2 .372757 .3070787 .1966117 .1235526
1466. 515101 1 .372757 .3070787 .1966117 .1235526
1467. 515101 4 .2831409 .3021398 .2397316 .1749877
1468. 515101 3 .2079277 .2760683 .2740791 .2419248
1469. 515101 3 .2831409 .3021398 .2397316 .1749877

1470. 515102 1 .3251654 .3074122 .2193101 .1481123
1471. 515102 2 .4202843 .3011963 .1749344 .103585
1472. 515102 2 .4202843 .3011963 .1749344 .103585
1473. 515102 2 .4202843 .3011963 .1749344 .103585
1474. 515102 2 .3251654 .3074122 .2193101 .1481123
1475. 515102 1 .4202843 .3011963 .1749344 .103585
1476. 515102 2 .3251654 .3074122 .2193101 .1481123

For each observation, our best guess for the predicted outcome is the one with the highest predicted

probability. For example, for the very first observation in the table above, we would choose outcome 4

as the most likely to occur.

We obtain predictions of the posterior means themselves at the school and class levels by typing

. predict re_s re_c, reffects
(calculating posterior means of random effects)
(using 7 quadrature points)

Here we list the predicted random effects for the first two classes for school 515:

. list class re_s re_c if school==515 & (class==515101 | class==515102),
> sepby(class)

class re_s re_c

1464. 515101 -.0473739 .0633081
1465. 515101 -.0473739 .0633081
1466. 515101 -.0473739 .0633081
1467. 515101 -.0473739 .0633081
1468. 515101 -.0473739 .0633081
1469. 515101 -.0473739 .0633081

1470. 515102 -.0473739 -.1354929
1471. 515102 -.0473739 -.1354929
1472. 515102 -.0473739 -.1354929
1473. 515102 -.0473739 -.1354929
1474. 515102 -.0473739 -.1354929
1475. 515102 -.0473739 -.1354929
1476. 515102 -.0473739 -.1354929

We can see that the predicted random effects at the school level (re s) are the same for all classes
and that the predicted random effects at the class level (re c) are constant within each class.
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Methods and formulas
Methods and formulas for predicting random effects and other statistics are given in Methods and

formulas of [ME] meglm postestimation.

Also see
[ME] meologit — Multilevel mixed-effects ordered logistic regression

[ME] meglm postestimation — Postestimation tools for meglm

[U] 20 Estimation and postestimation commands
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Description Quick start Menu Syntax Options
Remarks and examples Stored results Methods and formulas References Also see

Description
meoprobit fits mixed-effects probit models for ordered responses. The actual values taken on by

the response are irrelevant except that larger values are assumed to correspond to “higher” outcomes.

The conditional distribution of the response given the random effects is assumed to be multinomial, with

success probability determined by the standard normal cumulative distribution function.

Quick start
Two-level ordered probit regression of y on x and random intercepts by lev2

meoprobit y x || lev2:

Add random coefficients for x
meoprobit y x || lev2: x

Nested three-level ordered probit model with random intercepts by lev2 and lev3 for lev2 nested within
lev3

meoprobit y x || lev3: || lev2:

Menu
Statistics > Multilevel mixed-effects models > Ordered probit regression

353
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Syntax
meoprobit depvar fe equation [ || re equation ] [ || re equation ... ] [ , options ]

where the syntax of fe equation is

[ indepvars ] [ if ] [ in ] [weight ] [ , fe options ]

and the syntax of re equation is one of the following:

for random coefficients and intercepts

levelvar: [ varlist ] [ , re options ]

for random effects among the values of a factor variable in a crossed-effects model

levelvar: R.varname

levelvar is a variable identifying the group structure for the random effects at that level or is all repre-
senting one group comprising all observations.

fe options Description

Model

offset(varname) include varname in model with coefficient constrained to 1

re options Description

Model

covariance(vartype) variance–covariance structure of the random effects

noconstant suppress constant term from the random-effects equation

fweight(varname) frequency weights at higher levels

iweight(varname) importance weights at higher levels

pweight(varname) sampling weights at higher levels
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options Description

Model

constraints(constraints) apply specified linear constraints

SE/Robust

vce(vcetype) vcetype may be oim, opg, robust, or cluster clustvar

Reporting

level(#) set confidence level; default is level(95)
nocnsreport do not display constraints

notable suppress coefficient table

noheader suppress output header

nogroup suppress table summarizing groups

display options control columns and column formats, row spacing, line width,
display of omitted variables and base and empty cells, and
factor-variable labeling

Integration

intmethod(intmethod) integration method

intpoints(#) set the number of integration (quadrature) points for all levels;
default is intpoints(7)

Maximization

maximize options control the maximization process; seldom used

startvalues(svmethod) method for obtaining starting values

startgrid[ (gridspec) ] perform a grid search to improve starting values

noestimate do not fit the model; show starting values instead

dnumerical use numerical derivative techniques

collinear keep collinear variables

coeflegend display legend instead of statistics

vartype Description

independent one unique variance parameter per random effect and all covariances
0; the default unless the R. notation is used

exchangeable equal variances for random effects and one common pairwise
covariance

identity equal variances for random effects and all covariances 0; the
default if the R. notation is used

unstructured all variances and covariances to be distinctly estimated

fixed(matname) user-selected variances and covariances constrained to specified
values; the remaining variances and covariances unrestricted

pattern(matname) user-selected variances and covariances constrained to be equal;
the remaining variances and covariances unrestricted
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intmethod Description

mvaghermite mean–variance adaptive Gauss–Hermite quadrature; the default
unless a crossed random-effects model is fit

mcaghermite mode-curvature adaptive Gauss–Hermite quadrature

ghermite nonadaptive Gauss–Hermite quadrature

laplace Laplacian approximation; the default for crossed random-effects
models

indepvars and varlist may contain factor variables; see [U] 11.4.3 Factor variables.

depvar, indepvars, and varlist may contain time-series operators; see [U] 11.4.4 Time-series varlists.

bayes, by, collect, and svy are allowed; see [U] 11.1.10 Prefix commands. For more details, see [BAYES] bayes: meo-

probit.

vce() and weights are not allowed with the svy prefix; see [SVY] svy.
fweights, iweights, and pweights are allowed; see [U] 11.1.6 weight. Only one type of weight may be specified. Weights

are not supported under the Laplacian approximation or for crossed models.

startvalues(), startgrid, noestimate, dnumerical, collinear, and coeflegend do not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options

� � �
Model �

offset(varname) specifies that varname be included in the fixed-effects portion of the model with the

coefficient constrained to be 1.

covariance(vartype) specifies the structure of the covariance matrix for the random effects and may

be specified for each random-effects equation. vartype is one of the following: independent,
exchangeable, identity, unstructured, fixed(matname), or pattern(matname).

covariance(independent) covariance structure allows for a distinct variance for each random

effect within a random-effects equation and assumes that all covariances are 0. The default is

covariance(independent) unless a crossed random-effects model is fit, in which case the de-
fault is covariance(identity).

covariance(exchangeable) structure specifies one common variance for all random effects and

one common pairwise covariance.

covariance(identity) is short for “multiple of the identity”; that is, all variances are equal and all
covariances are 0.

covariance(unstructured) allows for all variances and covariances to be distinct. If an equation
consists of 𝑝 random-effects terms, the unstructured covariance matrix will have 𝑝(𝑝+1)/2 unique
parameters.

covariance(fixed(matname)) and covariance(pattern(matname)) covariance structures

provide a convenient way to impose constraints on variances and covariances of random effects.

Each specification requires amatname that defines the restrictions placed on variances and covari-

ances. Only elements in the lower triangle of matname are used, and row and column names of

matname are ignored. Amissing value inmatnamemeans that a given element is unrestricted. In a

fixed(matname) covariance structure, (co)variance (𝑖, 𝑗) is constrained to equal the value spec-
ified in the 𝑖, 𝑗th entry of matname. In a pattern(matname) covariance structure, (co)variances
(𝑖, 𝑗) and (𝑘, 𝑙) are constrained to be equal if matname[𝑖, 𝑗] = matname[𝑘, 𝑙].
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noconstant suppresses the constant (intercept) term; may be specified for any of or all the random-

effects equations.

fweight(varname) specifies frequency weights at higher levels in a multilevel model, whereas fre-

quency weights at the first level (the observation level) are specified in the usual manner, for exam-

ple, [fw=fwtvar1]. varname can be any valid Stata variable name, and you can specify fweight()
at levels two and higher of a multilevel model. For example, in the two-level model

. mecmd fixed_portion [fw = wt1] || school: ... , fweight(wt2) ...

the variable wt1 would hold the first-level (the observation-level) frequency weights, and wt2 would
hold the second-level (the school-level) frequency weights.

iweight(varname) specifies importance weights at higher levels in a multilevel model, whereas impor-
tance weights at the first level (the observation level) are specified in the usual manner, for example,

[iw=iwtvar1]. varname can be any valid Stata variable name, and you can specify iweight() at

levels two and higher of a multilevel model. For example, in the two-level model

. mecmd fixed_portion [iw = wt1] || school: ... , iweight(wt2) ...

the variable wt1would hold the first-level (the observation-level) importance weights, and wt2would
hold the second-level (the school-level) importance weights.

pweight(varname) specifies sampling weights at higher levels in a multilevel model, whereas sam-

pling weights at the first level (the observation level) are specified in the usual manner, for example,

[pw=pwtvar1]. varname can be any valid Stata variable name, and you can specify pweight() at
levels two and higher of a multilevel model. For example, in the two-level model

. mecmd fixed_portion [pw = wt1] || school: ... , pweight(wt2) ...

variable wt1 would hold the first-level (the observation-level) sampling weights, and wt2 would hold
the second-level (the school-level) sampling weights.

constraints(constraints); see [R] Estimation options.

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived from
asymptotic theory (oim, opg), that are robust to some kinds of misspecification (robust), and that
allow for intragroup correlation (cluster clustvar); see [R] vce option. If vce(robust) is specified,
robust variances are clustered at the highest level in the multilevel model.

� � �
Reporting �

level(#), nocnsreport; see [R] Estimation options.

notable suppresses the estimation table, either at estimation or upon replay.

noheader suppresses the output header, either at estimation or upon replay.

nogroup suppresses the display of group summary information (number of groups, average group size,
minimum, and maximum) from the output header.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] Estimation options.
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� � �
Integration �

intmethod(intmethod) specifies the integration method to be used for the random-effects model.

mvaghermite performs mean–variance adaptive Gauss–Hermite quadrature; mcaghermite per-

forms mode-curvature adaptive Gauss–Hermite quadrature; ghermite performs nonadaptive

Gauss–Hermite quadrature; and laplace performs the Laplacian approximation, equivalent to mode-
curvature adaptive Gaussian quadrature with one integration point.

The default integration method is mvaghermite unless a crossed random-effects model is fit, in which
case the default integration method is laplace. The Laplacian approximation has been known to
produce biased parameter estimates; however, the bias tends to be more prominent in the estimates of

the variance components rather than in the estimates of the fixed effects.

For crossed random-effects models, estimation with more than one quadrature point may be pro-

hibitively intensive even for a small number of levels. For this reason, the integration method defaults

to the Laplacian approximation. You may override this behavior by specifying a different integration

method.

intpoints(#) sets the number of integration points for quadrature. The default is intpoints(7),
which means that seven quadrature points are used for each level of random effects. This option is

not allowed with intmethod(laplace).

The more integration points, the more accurate the approximation to the log likelihood. However,

computation time increases as a function of the number of quadrature points raised to a power equaling

the dimension of the random-effects specification. In crossed random-effects models and in models

with many levels or many random coefficients, this increase can be substantial.

� � �
Maximization �

maximize options: difficult, technique(algorithm spec), iterate(#), [no]log, trace,
gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(init specs); see [R] Maximize. Those that require

special mention for meoprobit are listed below.

from() accepts a properly labeled vector of initial values or a list of coefficient names with values.
A list of values is not allowed.

The following options are available with meoprobit but are not shown in the dialog box:

startvalues(svmethod), startgrid[ (gridspec) ], noestimate, and dnumerical; see [ME]meglm.

collinear, coeflegend; see [R] Estimation options.

Remarks and examples
Mixed-effects ordered probit regression is ordered probit regression containing both fixed effects and

random effects. An ordered response is a variable that is categorical and ordered, for instance, “poor”,

“good”, and “excellent”, which might indicate a person’s current health status or the repair record of a

car.

meoprobit allows for many levels of random effects. However, for simplicity, for now we consider

the two-level model, where for a series of 𝑀 independent clusters, and conditional on a set of fixed

effects x𝑖𝑗, a set of cutpoints κ, and a set of random effects u𝑗, the cumulative probability of the response

being in a category higher than 𝑘 is



meoprobit — Multilevel mixed-effects ordered probit regression 359

Pr(𝑦𝑖𝑗 > 𝑘|x𝑖𝑗,κ,u𝑗) = Φ(x𝑖𝑗β + z𝑖𝑗u𝑗 − 𝜅𝑘) (1)

for 𝑗 = 1, . . . , 𝑀 clusters, with cluster 𝑗 consisting of 𝑖 = 1, . . . , 𝑛𝑗 observations. The cutpoints are

labeled 𝜅1, 𝜅2, . . . , 𝜅𝐾−1, where 𝐾 is the number of possible outcomes. Φ(⋅) is the standard normal
cumulative distribution function that represents cumulative probability.

The 1 × 𝑝 row vector x𝑖𝑗 are the covariates for the fixed effects, analogous to the covariates you

would find in a standard probit regression model, with regression coefficients (fixed effects) β. In our
parameterization, x𝑖𝑗 does not contain a constant term because its effect is absorbed into the cutpoints.

For notational convenience here and throughout this manual entry, we suppress the dependence of 𝑦𝑖𝑗 on

x𝑖𝑗.

The 1×𝑞 vector z𝑖𝑗 are the covariates corresponding to the random effects and can be used to represent

both random intercepts and random coefficients. For example, in a random-intercept model, z𝑖𝑗 is simply

the scalar 1. The random effects u𝑗 are 𝑀 realizations from a multivariate normal distribution with mean

0 and 𝑞 × 𝑞 variance matrix 𝚺. The random effects are not directly estimated as model parameters but

are instead summarized according to the unique elements of 𝚺, known as variance components. One

special case of (1) places z𝑖𝑗 = x𝑖𝑗 so that all covariate effects are essentially random and distributed as

multivariate normal with mean β and variance 𝚺.

From (1), we can derive the probability of observing outcome 𝑘 as

Pr(𝑦𝑖𝑗 = 𝑘|κ,u𝑗) = Pr(𝜅𝑘−1 < x𝑖𝑗β + z𝑖𝑗u𝑗 + 𝜖𝑖𝑗 ≤ 𝜅𝑘)
= Pr(𝜅𝑘−1 − x𝑖𝑗β − z𝑖𝑗u𝑗 < 𝜖𝑖𝑗 ≤ 𝜅𝑘 − x𝑖𝑗β − z𝑖𝑗u𝑗)
= Φ(𝜅𝑘 − x𝑖𝑗β − z𝑖𝑗u𝑗) − Φ(𝜅𝑘−1 − x𝑖𝑗β − z𝑖𝑗u𝑗)

where 𝜅0 is taken as −∞ and 𝜅𝐾 is taken as +∞.

From the above, we may also write the model in terms of a latent linear response, where observed

ordinal responses 𝑦𝑖𝑗 are generated from the latent continuous responses, such that

𝑦∗
𝑖𝑗 = x𝑖𝑗β + z𝑖𝑗u𝑗 + 𝜖𝑖𝑗

and

𝑦𝑖𝑗 =

⎧{{
⎨{{⎩

1 if 𝑦∗
𝑖𝑗 ≤ 𝜅1

2 if 𝜅1 < 𝑦∗
𝑖𝑗 ≤ 𝜅2

⋮
𝐾 if 𝜅𝐾−1 < 𝑦∗

𝑖𝑗

The errors 𝜖𝑖𝑗 are distributed as standard normal with mean 0 and variance 1 and are independent of u𝑗.

Below we present two short examples of mixed-effects ordered probit regression; refer to [ME] me

and [ME] meglm for examples of other random-effects models. A two-level ordered probit model can

also be fit using xtoprobit with the re option; see [XT] xtoprobit. In the absence of random effects,

mixed-effects ordered probit regression reduces to standard ordered probit regression; see [R] oprobit.
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Example 1: Two-level random-intercept model
We use the data from the Television, School, and Family Smoking Prevention and Cessation Project

(Flay et al. 1988; Rabe-Hesketh and Skrondal 2022, chap. 11), where schools were randomly assigned

into one of four groups defined by two treatment variables. Students within each school are nested in

classes, and classes are nested in schools. In this example, we ignore the variability of classes within

schools and fit a two-level model; we incorporate classes in a three-level model in example 2. The

dependent variable is the tobacco and health knowledge (THK) scale score collapsed into four ordered

categories. We regress the outcome on the treatment variables and their interaction and control for the

pretreatment score.

. use https://www.stata-press.com/data/r19/tvsfpors
(Television, School, and Family Project)
. meoprobit thk prethk cc##tv || school:
Fitting fixed-effects model:
Iteration 0: Log likelihood = -2212.775
Iteration 1: Log likelihood = -2127.8111
Iteration 2: Log likelihood = -2127.7612
Iteration 3: Log likelihood = -2127.7612
Refining starting values:
Grid node 0: Log likelihood = -2149.7302
Fitting full model:
Iteration 0: Log likelihood = -2149.7302 (not concave)
Iteration 1: Log likelihood = -2129.6838 (not concave)
Iteration 2: Log likelihood = -2123.5143
Iteration 3: Log likelihood = -2122.2896
Iteration 4: Log likelihood = -2121.7949
Iteration 5: Log likelihood = -2121.7716
Iteration 6: Log likelihood = -2121.7715
Mixed-effects oprobit regression Number of obs = 1,600
Group variable: school Number of groups = 28

Obs per group:
min = 18
avg = 57.1
max = 137

Integration method: mvaghermite Integration pts. = 7
Wald chi2(4) = 128.05

Log likelihood = -2121.7715 Prob > chi2 = 0.0000

thk Coefficient Std. err. z P>|z| [95% conf. interval]

prethk .2369804 .0227739 10.41 0.000 .1923444 .2816164
1.cc .5490957 .1255108 4.37 0.000 .303099 .7950923
1.tv .1695405 .1215889 1.39 0.163 -.0687693 .4078504

cc#tv
1 1 -.2951837 .1751969 -1.68 0.092 -.6385634 .0481959

/cut1 -.0682011 .1003374 -.2648587 .1284565
/cut2 .67681 .1008836 .4790817 .8745382
/cut3 1.390649 .1037494 1.187304 1.593995

school
var(_cons) .0288527 .0146201 .0106874 .0778937

LR test vs. oprobit model: chibar2(01) = 11.98 Prob >= chibar2 = 0.0003
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The estimation table reports the fixed effects, the estimated cutpoints (𝜅1, 𝜅2, 𝜅3), and the estimated
variance components. The fixed effects can be interpreted just as you would the output from oprobit.
We find that students with higher preintervention scores tend to have higher postintervention scores.

Because of their interaction, the impact of the treatment variables on the knowledge score is not straight-

forward; we defer this discussion to example 1 of [ME] meoprobit postestimation.

Underneath the fixed effects and the cutpoints, the table shows the estimated variance components.

The random-effects equation is labeled school, meaning that these are random effects at the school
level. Because we have only one random effect at this level, the table shows only one variance com-

ponent. The estimate of 𝜎2
𝑢 is 0.03 with standard error 0.01. The reported likelihood-ratio test shows

that there is enough variability between schools to favor a mixed-effects ordered probit regression over

a standard ordered probit regression; see Distribution theory for likelihood-ratio test in [ME] me for a

discussion of likelihood-ratio testing of variance components.

We now store our estimates for later use.

. estimates store r_2

Two-level models extend naturally to models with three or more levels with nested random effects.

Below we continue with example 1.

Example 2: Three-level random-intercept model
In this example, we fit a three-level model incorporating classes nested within schools. The fixed-

effects part remains the same. Our model now has two random-effects equations, separated by ||. The
first is a random intercept (constant only) at the school level (level three), and the second is a random
intercept at the class level (level two). The order in which these are specified (from left to right) is

significant—meoprobit assumes that class is nested within school.
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. meoprobit thk prethk cc##tv || school: || class:
Fitting fixed-effects model:
Iteration 0: Log likelihood = -2212.775
Iteration 1: Log likelihood = -2127.8111
Iteration 2: Log likelihood = -2127.7612
Iteration 3: Log likelihood = -2127.7612
Refining starting values:
Grid node 0: Log likelihood = -2195.6424
Fitting full model:
Iteration 0: Log likelihood = -2195.6424 (not concave)
Iteration 1: Log likelihood = -2167.9576 (not concave)
Iteration 2: Log likelihood = -2140.2644 (not concave)
Iteration 3: Log likelihood = -2128.6948 (not concave)
Iteration 4: Log likelihood = -2119.9225
Iteration 5: Log likelihood = -2117.0947
Iteration 6: Log likelihood = -2116.7004
Iteration 7: Log likelihood = -2116.6981
Iteration 8: Log likelihood = -2116.6981
Mixed-effects oprobit regression Number of obs = 1,600

Grouping information

No. of Observations per group
Group variable groups Minimum Average Maximum

school 28 18 57.1 137
class 135 1 11.9 28

Integration method: mvaghermite Integration pts. = 7
Wald chi2(4) = 124.20

Log likelihood = -2116.6981 Prob > chi2 = 0.0000

thk Coefficient Std. err. z P>|z| [95% conf. interval]

prethk .238841 .0231446 10.32 0.000 .1934784 .2842036
1.cc .5254813 .1285816 4.09 0.000 .2734659 .7774967
1.tv .1455573 .1255827 1.16 0.246 -.1005803 .3916949

cc#tv
1 1 -.2426203 .1811999 -1.34 0.181 -.5977656 .1125251

/cut1 -.074617 .1029791 -.2764523 .1272184
/cut2 .6863046 .1034813 .4834849 .8891242
/cut3 1.413686 .1064889 1.204972 1.622401

school
var(_cons) .0186456 .0160226 .0034604 .1004695

school>class
var(_cons) .0519974 .0224014 .0223496 .1209745

LR test vs. oprobit model: chi2(2) = 22.13 Prob > chi2 = 0.0000
Note: LR test is conservative and provided only for reference.

We see that we have 135 classes from 28 schools. The variance-component estimates are now orga-

nized and labeled according to level. The variance component for class is labeled school>class to
emphasize that classes are nested within schools.
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Compared with the two-level model from example 1, the estimate of the random intercept at the school

level dropped from 0.03 to 0.02. This is not surprising because we now use two random components

versus one random component to account for unobserved heterogeneity among students. We can use

lrtest and our stored estimation result from example 1 to see which model provides a better fit:

. lrtest r_2 .
Likelihood-ratio test
Assumption: r_2 nested within .
LR chi2(1) = 10.15
Prob > chi2 = 0.0014
Note: The reported degrees of freedom assumes the null hypothesis is not on

the boundary of the parameter space. If this is not true, then the
reported test is conservative.

The likelihood-ratio test favors the three-level model. For more information about the likelihood-ratio

test in the context of mixed-effects models, see Distribution theory for likelihood-ratio test in [ME]me.

The above extends to models with more than two levels of nesting by adding more random-effects

equations, each separated by ||.

Stored results
meoprobit stores the following in e():

Scalars

e(N) number of observations

e(k) number of parameters

e(k dv) number of dependent variables

e(k cat) number of categories

e(k eq) number of equations in e(b)
e(k eq model) number of equations in overall model test

e(k f) number of fixed-effects parameters

e(k r) number of random-effects parameters

e(k rs) number of variances

e(k rc) number of covariances

e(df m) model degrees of freedom

e(ll) log likelihood

e(N clust) number of clusters

e(chi2) 𝜒2

e(p) 𝑝-value for model test
e(ll c) log likelihood, comparison model

e(chi2 c) 𝜒2, comparison test
e(df c) degrees of freedom, comparison test

e(p c) 𝑝-value for comparison test
e(rank) rank of e(V)
e(ic) number of iterations

e(rc) return code

e(converged) 1 if converged, 0 otherwise

Macros

e(cmd) meglm
e(cmd2) meoprobit
e(cmdline) command as typed

e(depvar) name of dependent variable

e(wtype) weight type

e(wexp) weight expression (first-level weights)

e(fweightk) fweight variable for kth highest level, if specified
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e(iweightk) iweight variable for kth highest level, if specified
e(pweightk) pweight variable for kth highest level, if specified
e(covariates) list of covariates

e(ivars) grouping variables

e(model) oprobit
e(title) title in estimation output

e(link) probit
e(family) ordinal
e(clustvar) name of cluster variable

e(offset) offset

e(intmethod) integration method

e(n quad) number of integration points

e(chi2type) Wald; type of model 𝜒2

e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.

e(opt) type of optimization

e(which) max or min; whether optimizer is to perform maximization or minimization

e(ml method) type of ml method
e(user) name of likelihood-evaluator program

e(technique) maximization technique

e(datasignature) the checksum

e(datasignaturevars) variables used in calculation of checksum

e(properties) b V
e(estat cmd) program used to implement estat
e(predict) program used to implement predict
e(marginsnotok) predictions disallowed by margins
e(marginswtype) weight type for margins
e(marginswexp) weight expression for margins
e(marginsdefault) default predict() specification for margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices

e(b) coefficient vector

e(Cns) constraints matrix

e(ilog) iteration log (up to 20 iterations)

e(gradient) gradient vector

e(N g) group counts

e(g min) group-size minimums

e(g avg) group-size averages

e(g max) group-size maximums

e(cat) category values

e(V) variance–covariance matrix of the estimators

e(V modelbased) model-based variance

Functions

e(sample) marks estimation sample

In addition to the above, the following is stored in r():

Matrices

r(table) matrix containing the coefficients with their standard errors, test statistics, 𝑝-values, and
confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when any
r-class command is run after the estimation command.
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Methods and formulas
meoprobit is a convenience command for meglm with a probit link and an ordinal family; see

[ME] meglm.

Without a loss of generality, consider a two-level ordered probit model. The probability of observing

outcome 𝑘 for response 𝑦𝑖𝑗 is then

𝑝𝑖𝑗 = Pr(𝑦𝑖𝑗 = 𝑘|κ,u𝑗) = Pr(𝜅𝑘−1 < η𝑖𝑗 + 𝜖𝑖𝑡 ≤ 𝜅𝑘)

= Φ(𝜅𝑘 − η𝑖𝑗) − Φ(𝜅𝑘−1 − η𝑖𝑗)

where η𝑖𝑗 = x𝑖𝑗β + z𝑖𝑗u𝑗 + offset𝑖𝑗, 𝜅0 is taken as −∞, and 𝜅𝐾 is taken as +∞. Here x𝑖𝑗 does not

contain a constant term because its effect is absorbed into the cutpoints.

For cluster 𝑗, 𝑗 = 1, . . . , 𝑀, the conditional distribution of y𝑗 = (𝑦𝑗1, . . . , 𝑦𝑗𝑛𝑗
)′ given a set of

cluster-level random effects u𝑗 is

𝑓(y𝑗|u𝑗) =
𝑛𝑗

∏
𝑖=1

𝑝𝐼𝑘(𝑦𝑖𝑗)
𝑖𝑗

= exp

𝑛𝑗

∑
𝑖=1

{𝐼𝑘(𝑦𝑖𝑗) log(𝑝𝑖𝑗)}

where

𝐼𝑘(𝑦𝑖𝑗) = {1 if 𝑦𝑖𝑗 = 𝑘
0 otherwise

Because the prior distribution of u𝑗 is multivariate normal with mean 0 and 𝑞 × 𝑞 variance matrix
𝚺, the likelihood contribution for the 𝑗th cluster is obtained by integrating u𝑗 out of the joint density

𝑓(y𝑗,u𝑗),

ℒ𝑗(β,κ, 𝚺) = (2𝜋)−𝑞/2 |𝚺|−1/2 ∫ 𝑓(y𝑗|κ,u𝑗) exp (−u′
𝑗𝚺

−1u𝑗/2) 𝑑u𝑗

= (2𝜋)−𝑞/2 |𝚺|−1/2 ∫ exp{ℎ (β,κ, 𝚺, u𝑗)} 𝑑u𝑗

(2)

where

ℎ (β,κ, 𝚺, u𝑗) =
𝑛𝑗

∑
𝑖=1

{𝐼𝑘(𝑦𝑖𝑗) log(𝑝𝑖𝑗)} − u′
𝑗𝚺

−1u𝑗/2

and for convenience, in the arguments of ℎ(⋅) we suppress the dependence on the observable data

(y𝑗, r𝑗,X𝑗,Z𝑗).
The integration in (2) has no closed form and thus must be approximated; see Methods and formulas

in [ME] meglm for details.

meoprobit supports multilevel weights and survey data; see Methods and formulas in [ME] meglm

for details.
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Postestimation commands predict margins
Remarks and examples Methods and formulas Also see

Postestimation commands
The following postestimation command is of special interest after meoprobit:

Command Description

estat group summarize the composition of the nested groups

estat icc estimate intraclass correlations

estat sd display variance components as standard deviations and correlations

The following standard postestimation commands are also available:

Command Description

contrast contrasts and ANOVA-style joint tests of parameters

estat ic Akaike’s, consistent Akaike’s, corrected Akaike’s, and Schwarz’s Bayesian in-
formation criteria (AIC, CAIC, AICc, and BIC, respectively)

estat summarize summary statistics for the estimation sample

estat vce variance–covariance matrix of the estimators (VCE)

estat (svy) postestimation statistics for survey data

estimates cataloging estimation results

etable table of estimation results
∗ hausman Hausman’s specification test

lincom point estimates, standard errors, testing, and inference for linear combinations
of parameters

∗ lrtest likelihood-ratio test

margins marginal means, predictive margins, marginal effects, and average marginal
effects

marginsplot graph the results from margins (profile plots, interaction plots, etc.)

nlcom point estimates, standard errors, testing, and inference for nonlinear combina-
tions of parameters

predict means, probabilities, densities, REs, residuals, etc.

predictnl point estimates, standard errors, testing, and inference for generalized predic-
tions

pwcompare pairwise comparisons of parameters

test Wald tests of simple and composite linear hypotheses

testnl Wald tests of nonlinear hypotheses

∗hausman and lrtest are not appropriate with svy estimation results.
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predict

Description for predict
predict creates a new variable containing predictions such as probabilities, linear predictions, den-

sity and distribution functions, and standard errors.

Menu for predict
Statistics > Postestimation

Syntax for predict

Syntax for obtaining predictions of the outcome and other statistics

predict [ type ] { stub* | newvarlist } [ if ] [ in ] [ , statistic options ]

Syntax for obtaining estimated random effects and their standard errors

predict [ type ] { stub* | newvarlist } [ if ] [ in ], reffects [ re options ]

Syntax for obtaining ML scores

predict [ type ] { stub* | newvarlist } [ if ] [ in ], scores

statistic Description

Main

pr predicted probabilities; the default

eta fitted linear predictor

xb linear predictor for the fixed portion of the model only

stdp standard error of the fixed-portion linear prediction

density predicted density function

distribution predicted distribution function

These statistics are available both in and out of sample; type predict ... if e(sample) ... if wanted
only for the estimation sample.



meoprobit postestimation — Postestimation tools for meoprobit 369

options Description

Main

conditional(ctype) compute statistic conditional on estimated random effects; default is
conditional(ebmeans)

marginal compute statistic marginally with respect to the random effects

nooffset make calculation ignoring offset or exposure

outcome(outcome) outcome category for predicted probabilities

Integration

int options integration options

You specify one or k new variables in newvarlist with pr, where k is the number of outcomes. If you
do not specify outcome(), these options assume outcome(#1).

ctype Description

ebmeans empirical Bayes means of random effects; the default

ebmodes empirical Bayes modes of random effects

fixedonly prediction for the fixed portion of the model only

re options Description

Main

ebmeans use empirical Bayes means of random effects; the default

ebmodes use empirical Bayes modes of random effects

reses(stub* | newvarlist) calculate standard errors of empirical Bayes estimates

Integration

int options integration options

int options Description

intpoints(#) use # quadrature points to compute marginal predictions and empirical
Bayes means

iterate(#) set maximum number of iterations in computing statistics involving
empirical Bayes estimators

tolerance(#) set convergence tolerance for computing statistics involving empirical
Bayes estimators

Options for predict

� � �
Main �

pr, the default, calculates the predicted probabilities.

You specify one or 𝑘 new variables, where 𝑘 is the number of categories of the dependent variable. If
you specify the outcome() option, the probabilities will be predicted for the requested outcome only,
in which case you specify only one new variable. If you specify one new variable and do not specify

outcome(), outcome(#1) is assumed.

eta, xb, stdp, density, distribution, scores, conditional(), marginal, and nooffset; see
[ME] meglm postestimation.
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outcome(outcome) specifies the outcome for which the predicted probabilities are to be calculated.

outcome() should contain either one value of the dependent variable or one of #1, #2, . . . , with #1
meaning the first category of the dependent variable, #2 meaning the second category, etc.

reffects, ebmeans, ebmodes, and reses(), see [ME] meglm postestimation.

� � �
Integration �

intpoints(), iterate(), tolerance(); see [ME] meglm postestimation.

margins

Description for margins
margins estimates margins of response for probabilities and linear predictions.

Menu for margins
Statistics > Postestimation

Syntax for margins
margins [marginlist ] [ , options ]
margins [marginlist ] , predict(statistic ...) [ predict(statistic ...) ... ] [ options ]

statistic Description

default probabilities for each outcome

pr predicted probabilities for a specified outcome

eta fitted linear predictor

xb linear predictor for the fixed portion of the model only

stdp not allowed with margins
density not allowed with margins
distribution not allowed with margins
reffects not allowed with margins
scores not allowed with margins

pr defaults to the first outcome.
Options conditional(ebmeans) and conditional(ebmodes) are not allowed with margins.
Option marginal is assumed where applicable if conditional(fixedonly) is not specified.

Statistics not allowed with margins are functions of stochastic quantities other than e(b).

For the full syntax, see [R] margins.
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Remarks and examples
Various predictions, statistics, and diagnostic measures are available after fitting an ordered probit

mixed-effects model using meoprobit. Here we show a short example of predicted probabilities and

predicted random effects; refer to [ME] meglm postestimation for additional examples applicable to

mixed-effects generalized linear models.

Example 1: Obtaining predicted probabilities and random effects
In example 2 of [ME]meoprobit, we modeled the tobacco and health knowledge (thk) score—coded

1, 2, 3, 4—among students as a function of two treatments (cc and tv) using a three-level ordered probit
model with random effects at the school and class levels.

. use https://www.stata-press.com/data/r19/tvsfpors
(Television, School, and Family Project)
. meoprobit thk prethk cc##tv || school: || class:
(output omitted )

We obtain predicted probabilities for all four outcomes based on the contribution of both fixed effects

and random effects by typing

. predict pr*
(option pr assumed)
(predictions based on fixed effects and posterior means of random effects)
(using 7 quadrature points)

As the note says, the predicted values are based on the posterior means of random effects. You can use

the modes option to obtain predictions based on the posterior modes of random effects.

Because we specified a stub name, Stata saved the predicted random effects in variables pr1 through
pr4. Here we list the predicted probabilities for the first two classes for school 515:
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. list class thk pr? if school==515 & (class==515101 | class==515102),
> sepby(class)

class thk pr1 pr2 pr3 pr4

1464. 515101 2 .1503512 .2416885 .2828209 .3251394
1465. 515101 2 .3750887 .2958534 .2080368 .121021
1466. 515101 1 .3750887 .2958534 .2080368 .121021
1467. 515101 4 .2886795 .2920168 .2433916 .1759121
1468. 515101 3 .2129906 .2729831 .2696254 .2444009
1469. 515101 3 .2886795 .2920168 .2433916 .1759121

1470. 515102 1 .3318574 .2959802 .2261095 .1460529
1471. 515102 2 .4223251 .2916287 .187929 .0981172
1472. 515102 2 .4223251 .2916287 .187929 .0981172
1473. 515102 2 .4223251 .2916287 .187929 .0981172
1474. 515102 2 .3318574 .2959802 .2261095 .1460529
1475. 515102 1 .4223251 .2916287 .187929 .0981172
1476. 515102 2 .3318574 .2959802 .2261095 .1460529

For each observation, our best guess for the predicted outcome is the one with the highest predicted

probability. For example, for the very first observation in the table above, we would choose outcome 4

as the most likely to occur.

We obtain predictions of the posterior means themselves at the school and class levels by typing

. predict re_s re_c, reffects
(calculating posterior means of random effects)
(using 7 quadrature points)

Here we list the predicted random effects for the first two classes for school 515:

. list class re_s re_c if school==515 & (class==515101 | class==515102),
> sepby(class)

class re_s re_c

1464. 515101 -.0340769 .0390243
1465. 515101 -.0340769 .0390243
1466. 515101 -.0340769 .0390243
1467. 515101 -.0340769 .0390243
1468. 515101 -.0340769 .0390243
1469. 515101 -.0340769 .0390243

1470. 515102 -.0340769 -.0834322
1471. 515102 -.0340769 -.0834322
1472. 515102 -.0340769 -.0834322
1473. 515102 -.0340769 -.0834322
1474. 515102 -.0340769 -.0834322
1475. 515102 -.0340769 -.0834322
1476. 515102 -.0340769 -.0834322

We can see that the predicted random effects at the school level (re s) are the same for all classes
and that the predicted random effects at the class level (re c) are constant within each class.
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Methods and formulas
Methods and formulas for predicting random effects and other statistics are given in Methods and

formulas of [ME] meglm postestimation.

Also see
[ME] meoprobit — Multilevel mixed-effects ordered probit regression

[ME] meglm postestimation — Postestimation tools for meglm

[U] 20 Estimation and postestimation commands



mepoisson — Multilevel mixed-effects Poisson regression

Description Quick start Menu Syntax Options
Remarks and examples Stored results Methods and formulas References Also see

Description
mepoisson fits mixed-effects models for count responses. The conditional distribution of the re-

sponse given the random effects is assumed to be Poisson.

Quick start
Without weights

Two-level Poisson regression of y on x with random intercepts by lev2
mepoisson y x || lev2:

Add evar measuring exposure
mepoisson y x, exposure(evar) || lev2:

Same as above, but report incidence-rate ratios

mepoisson y x, exposure(evar) || lev2:, irr

Add indicators for levels of categorical variable a and random coefficients on x
mepoisson y x i.a || lev2: x, irr

Three-level random-intercept model of y on x with lev2 nested within lev3
mepoisson y x || lev3: || lev2:

With weights

Two-level Poisson regression of y on x with random intercepts by lev2 and observation-level frequency
weights wvar1

mepoisson y x [fweight=wvar1] || lev2:

Two-level random-intercept model from a two-stage sampling design with PSUs identified by psu using
PSU-level and observation-level sampling weights wvar2 and wvar1, respectively

mepoisson y x [pweight=wvar1] || psu:, pweight(wvar2)

Add secondary sampling stage with units identified by ssu having weights wvar2 and PSU-level weights
wvar3 for a three-level random-intercept model

mepoisson y x [pw=wvar1] || psu:, pw(wvar3) || ssu:, pw(wvar2)

Same as above, but svyset data first
svyset psu, weight(wvar3) || ssu, weight(wvar2) || _n, weight(wvar1)
svy: mepoisson y x || psu: || ssu:

374
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Menu
Statistics > Multilevel mixed-effects models > Poisson regression

Syntax
mepoisson depvar fe equation [ || re equation ] [ || re equation ... ] [ , options ]

where the syntax of fe equation is

[ indepvars ] [ if ] [ in ] [weight ] [ , fe options ]

and the syntax of re equation is one of the following:

for random coefficients and intercepts

levelvar: [ varlist ] [ , re options ]

for random effects among the values of a factor variable in a crossed-effects model

levelvar: R.varname

levelvar is a variable identifying the group structure for the random effects at that level or is all repre-
senting one group comprising all observations.

fe options Description

Model

noconstant suppress the constant term from the fixed-effects equation

exposure(varname𝑒) include ln(varname𝑒) in model with coefficient constrained to 1
offset(varname𝑜) include varname𝑜 in model with coefficient constrained to 1

re options Description

Model

covariance(vartype) variance–covariance structure of the random effects

noconstant suppress constant term from the random-effects equation

fweight(varname) frequency weights at higher levels

iweight(varname) importance weights at higher levels

pweight(varname) sampling weights at higher levels
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options Description

Model

constraints(constraints) apply specified linear constraints

SE/Robust

vce(vcetype) vcetype may be oim, opg, robust, or cluster clustvar

Reporting

level(#) set confidence level; default is level(95)
irr report fixed-effects coefficients as incidence-rate ratios

nocnsreport do not display constraints

notable suppress coefficient table

noheader suppress output header

nogroup suppress table summarizing groups

display options control columns and column formats, row spacing, line width,
display of omitted variables and base and empty cells, and
factor-variable labeling

Integration

intmethod(intmethod) integration method

intpoints(#) set the number of integration (quadrature) points for all levels;
default is intpoints(7)

Maximization

maximize options control the maximization process; seldom used

startvalues(svmethod) method for obtaining starting values

startgrid[ (gridspec) ] perform a grid search to improve starting values

noestimate do not fit the model; show starting values instead

dnumerical use numerical derivative techniques

collinear keep collinear variables

coeflegend display legend instead of statistics

vartype Description

independent one unique variance parameter per random effect and all covariances
0; the default unless the R. notation is used

exchangeable equal variances for random effects and one common pairwise
covariance

identity equal variances for random effects and all covariances 0; the
default if the R. notation is used

unstructured all variances and covariances to be distinctly estimated

fixed(matname) user-selected variances and covariances constrained to specified
values; the remaining variances and covariances unrestricted

pattern(matname) user-selected variances and covariances constrained to be equal;
the remaining variances and covariances unrestricted
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intmethod Description

mvaghermite mean–variance adaptive Gauss–Hermite quadrature; the default
unless a crossed random-effects model is fit

mcaghermite mode-curvature adaptive Gauss–Hermite quadrature

pcaghermite Pinheiro–Chao mode-curvature adaptive Gauss–Hermite
quadrature

ghermite nonadaptive Gauss–Hermite quadrature

laplace Laplacian approximation; the default for crossed random-effects
models

pclaplace Pinheiro–Chao Laplacian approximation

indepvars and varlist may contain factor variables; see [U] 11.4.3 Factor variables.

depvar, indepvars, and varlist may contain time-series operators; see [U] 11.4.4 Time-series varlists.

bayes, by, collect, and svy are allowed; see [U] 11.1.10 Prefix commands. For more details, see [BAYES] bayes:mepois-

son.

vce() and weights are not allowed with the svy prefix; see [SVY] svy.
fweights, iweights, and pweights are allowed; see [U] 11.1.6 weight. Only one type of weight may be specified. Weights

are not supported under the Laplacian approximation or for crossed models.

startvalues(), startgrid, noestimate, dnumerical, collinear, and coeflegend do not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options

� � �
Model �

noconstant suppresses the constant (intercept) term and may be specified for the fixed-effects equation

and for any of or all the random-effects equations.

exposure(varname𝑒) specifies a variable that reflects the amount of exposure over which the depvar
events were observed for each observation; ln(varname𝑒) is included in the fixed-effects portion of
the model with the coefficient constrained to be 1.

offset(varname𝑜) specifies that varname𝑜 be included in the fixed-effects portion of the model with

the coefficient constrained to be 1.

covariance(vartype) specifies the structure of the covariance matrix for the random effects and may

be specified for each random-effects equation. vartype is one of the following: independent,
exchangeable, identity, unstructured, fixed(matname), or pattern(matname).

covariance(independent) covariance structure allows for a distinct variance for each random

effect within a random-effects equation and assumes that all covariances are 0. The default is

covariance(independent) unless a crossed random-effects model is fit, in which case the de-
fault is covariance(identity).

covariance(exchangeable) structure specifies one common variance for all random effects and

one common pairwise covariance.

covariance(identity) is short for “multiple of the identity”; that is, all variances are equal and all
covariances are 0.

covariance(unstructured) allows for all variances and covariances to be distinct. If an equation
consists of 𝑝 random-effects terms, the unstructured covariance matrix will have 𝑝(𝑝+1)/2 unique
parameters.
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covariance(fixed(matname)) and covariance(pattern(matname)) covariance structures

provide a convenient way to impose constraints on variances and covariances of random effects.

Each specification requires amatname that defines the restrictions placed on variances and covari-

ances. Only elements in the lower triangle of matname are used, and row and column names of

matname are ignored. Amissing value inmatnamemeans that a given element is unrestricted. In a

fixed(matname) covariance structure, (co)variance (𝑖, 𝑗) is constrained to equal the value spec-
ified in the 𝑖, 𝑗th entry of matname. In a pattern(matname) covariance structure, (co)variances
(𝑖, 𝑗) and (𝑘, 𝑙) are constrained to be equal if matname[𝑖, 𝑗] = matname[𝑘, 𝑙].

fweight(varname) specifies frequency weights at higher levels in a multilevel model, whereas fre-

quency weights at the first level (the observation level) are specified in the usual manner, for exam-

ple, [fw=fwtvar1]. varname can be any valid Stata variable name, and you can specify fweight()
at levels two and higher of a multilevel model. For example, in the two-level model

. mecmd fixed_portion [fw = wt1] || school: ... , fweight(wt2) ...

the variable wt1 would hold the first-level (the observation-level) frequency weights, and wt2 would
hold the second-level (the school-level) frequency weights.

iweight(varname) specifies importance weights at higher levels in a multilevel model, whereas impor-
tance weights at the first level (the observation level) are specified in the usual manner, for example,

[iw=iwtvar1]. varname can be any valid Stata variable name, and you can specify iweight() at

levels two and higher of a multilevel model. For example, in the two-level model

. mecmd fixed_portion [iw = wt1] || school: ... , iweight(wt2) ...

the variable wt1would hold the first-level (the observation-level) importance weights, and wt2would
hold the second-level (the school-level) importance weights.

pweight(varname) specifies sampling weights at higher levels in a multilevel model, whereas sam-

pling weights at the first level (the observation level) are specified in the usual manner, for example,

[pw=pwtvar1]. varname can be any valid Stata variable name, and you can specify pweight() at
levels two and higher of a multilevel model. For example, in the two-level model

. mecmd fixed_portion [pw = wt1] || school: ... , pweight(wt2) ...

variable wt1 would hold the first-level (the observation-level) sampling weights, and wt2 would hold
the second-level (the school-level) sampling weights.

constraints(constraints); see [R] Estimation options.

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived from
asymptotic theory (oim, opg), that are robust to some kinds of misspecification (robust), and that
allow for intragroup correlation (cluster clustvar); see [R] vce option. If vce(robust) is specified,
robust variances are clustered at the highest level in the multilevel model.

� � �
Reporting �

level(#); see [R] Estimation options.

irr reports estimated fixed-effects coefficients transformed to incidence-rate ratios, that is, exp(𝛽) rather
than 𝛽. Standard errors and confidence intervals are similarly transformed. This option affects how
results are displayed, not how they are estimated or stored. irr may be specified either at estimation
or upon replay.
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nocnsreport; see [R] Estimation options.

notable suppresses the estimation table, either at estimation or upon replay.

noheader suppresses the output header, either at estimation or upon replay.

nogroup suppresses the display of group summary information (number of groups, average group size,
minimum, and maximum) from the output header.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] Estimation options.

� � �
Integration �

intmethod(intmethod) specifies the integration method to be used for the random-effects model.

mvaghermite performs mean–variance adaptive Gauss–Hermite quadrature; mcaghermite and

pcaghermite perform mode-curvature adaptive Gauss–Hermite quadrature; ghermite performs

nonadaptive Gauss–Hermite quadrature; and laplace and pclaplace perform the Laplacian ap-

proximation, equivalent to mode-curvature adaptive Gaussian quadrature with one integration point.

Techniques pcaghermite and pclaplace obtain the random-effectsmode and curvature using the ef-
ficient hierarchical decomposition algorithm described in Pinheiro and Chao (2006). For hierarchical

models, this algorithm takes advantage of the design structure to minimize memory use and utilizes a

series of orthogonal triangulations to compute the factored random-effects Hessian indirectly, avoid-

ing the sparse full Hessian. Techniques mcaghermite and laplace use Cholesky factorization on the
full Hessian. For four- and higher-level hierarchical designs, there can be dramatic computation-time

differences.

The default integration method is mvaghermite unless a crossed random-effects model is fit, in which
case the default integration method is laplace. The Laplacian approximation has been known to
produce biased parameter estimates; however, the bias tends to be more prominent in the estimates of

the variance components rather than in the estimates of the fixed effects.

For crossed random-effects models, estimation with more than one quadrature point may be pro-

hibitively intensive even for a small number of levels. For this reason, the integration method defaults

to the Laplacian approximation. You may override this behavior by specifying a different integration

method.

intpoints(#) sets the number of integration points for quadrature. The default is intpoints(7),
which means that seven quadrature points are used for each level of random effects. This option is

not allowed with intmethod(laplace).

The more integration points, the more accurate the approximation to the log likelihood. However,

computation time increases as a function of the number of quadrature points raised to a power equaling

the dimension of the random-effects specification. In crossed random-effects models and in models

with many levels or many random coefficients, this increase can be substantial.

� � �
Maximization �

maximize options: difficult, technique(algorithm spec), iterate(#), [no]log, trace,
gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(init specs); see [R] Maximize. Those that require

special mention for mepoisson are listed below.

from() accepts a properly labeled vector of initial values or a list of coefficient names with values.
A list of values is not allowed.
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The following options are available with mepoisson but are not shown in the dialog box:

startvalues(svmethod), startgrid[ (gridspec) ], noestimate, and dnumerical; see [ME]meglm.

collinear, coeflegend; see [R] Estimation options.

Remarks and examples
For a general introduction to me commands, see [ME] me.

Remarks are presented under the following headings:

Introduction
Two-level models
Higher-level models

Introduction
Mixed-effects Poisson regression is Poisson regression containing both fixed effects and random ef-

fects. In longitudinal data and panel data, random effects are useful for modeling intracluster correlation;

that is, observations in the same cluster are correlated because they share common cluster-level random

effects.

mepoisson allows for many levels of random effects. However, for simplicity, for now we consider

the two-level model, where for a series of 𝑀 independent clusters, and conditional on a set of random

effects u𝑗,

Pr(𝑦𝑖𝑗 = 𝑦|x𝑖𝑗,u𝑗) = exp (−𝜇𝑖𝑗) 𝜇𝑦
𝑖𝑗/𝑦! (1)

for 𝜇𝑖𝑗 = exp(x𝑖𝑗β + z𝑖𝑗u𝑗), 𝑗 = 1, . . . , 𝑀 clusters, with cluster 𝑗 consisting of 𝑖 = 1, . . . , 𝑛𝑗 obser-

vations. The responses are counts 𝑦𝑖𝑗. The 1 × 𝑝 row vector x𝑖𝑗 are the covariates for the fixed effects,

analogous to the covariates you would find in a standard Poisson regression model, with regression coef-

ficients (fixed effects) β. For notational convenience here and throughout this manual entry, we suppress
the dependence of 𝑦𝑖𝑗 on x𝑖𝑗.

The 1×𝑞 vector z𝑖𝑗 are the covariates corresponding to the random effects and can be used to represent

both random intercepts and random coefficients. For example, in a random-intercept model, z𝑖𝑗 is simply

the scalar 1. The random effects u𝑗 are 𝑀 realizations from a multivariate normal distribution with mean

0 and 𝑞 × 𝑞 variance matrix 𝚺. The random effects are not directly estimated as model parameters but

are instead summarized according to the unique elements of 𝚺, known as variance components. One

special case of (1) places z𝑖𝑗 = x𝑖𝑗 so that all covariate effects are essentially random and distributed as

multivariate normal with mean β and variance 𝚺.

As noted in section 13.7 of Rabe-Hesketh and Skrondal (2022), the inclusion of a random intercept

causes the marginal variance of 𝑦𝑖𝑗 to be greater than the marginal mean, provided the variance of the

random intercept is not 0. Thus the random intercept in a mixed-effects Poisson model produces overdis-

persion, a measure of variability above and beyond that allowed by a Poisson process; see [R] nbreg and

[ME] menbreg.

Below we present examples of mixed-effects Poisson regression; refer to [ME] me and [ME] meglm

for additional examples including crossed random-effects models. A two-level Poisson model can also

be fit using xtpoissonwith the re option; see [XT] xtpoisson. In the absence of random effects, mixed-

effects Poisson regression reduces to standard Poisson regression; see [R] poisson.
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Two-level models

Example 1: Two-level random-intercept model
Breslow and Clayton (1993) fit a mixed-effects Poisson model to data from a randomized trial of the

drug progabide for the treatment of epilepsy.

. use https://www.stata-press.com/data/r19/epilepsy
(Epilepsy data; progabide drug treatment)
. describe
Contains data from https://www.stata-press.com/data/r19/epilepsy.dta
Observations: 236 Epilepsy data; progabide drug

treatment
Variables: 8 31 May 2024 14:09

(_dta has notes)

Variable Storage Display Value
name type format label Variable label

subject byte %9.0g Subject ID: 1-59
seizures int %9.0g No. of seizures
treat byte %9.0g treat Treatment
visit float %9.0g Doctor’s visit
lage float %9.0g log(age), mean-centered
lbas float %9.0g log(0.25*baseline seizures),

mean-centered
lbas_trt float %9.0g lbas/treat interaction
v4 byte %8.0g Fourth visit indicator

Sorted by: subject

Originally from Thall and Vail (1990), data were collected on 59 subjects (31 on progabide, 28 on

placebo). The number of epileptic seizures (seizures) was recorded during the two weeks prior to

each of four doctor visits (visit). The treatment group is identified by the indicator variable treat.
Data were also collected on the logarithm of age (lage) and the logarithm of one-quarter the number

of seizures during the eight weeks prior to the study (lbas). The variable lbas trt represents the

interaction between lbas and treatment. lage, lbas, and lbas trt are mean centered. Because the
study originally noted a substantial decrease in seizures prior to the fourth doctor visit, an indicator, v4,
for the fourth visit was also recorded.

Breslow and Clayton (1993) fit a random-effects Poisson model for the number of observed seizures

log(𝜇𝑖𝑗) = 𝛽0 + 𝛽1treat𝑖𝑗 + 𝛽2lbas𝑖𝑗 + 𝛽3lbas trt𝑖𝑗 + 𝛽4lage𝑖𝑗 + 𝛽5v4𝑖𝑗 + 𝑢𝑗

for 𝑗 = 1, . . . , 59 subjects and 𝑖 = 1, . . . , 4 visits. The random effects 𝑢𝑗 are assumed to be normally

distributed with mean 0 and variance 𝜎2
𝑢.
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. mepoisson seizures treat lbas lbas_trt lage v4 || subject:
Fitting fixed-effects model:
Iteration 0: Log likelihood = -1016.4106
Iteration 1: Log likelihood = -819.20112
Iteration 2: Log likelihood = -817.66006
Iteration 3: Log likelihood = -817.65925
Iteration 4: Log likelihood = -817.65925
Refining starting values:
Grid node 0: Log likelihood = -680.40523
Refining starting values (unscaled likelihoods):
Grid node 0: Log likelihood = -680.40523
Fitting full model:
Iteration 0: Log likelihood = -680.40523 (not concave)
Iteration 1: Log likelihood = -672.95766 (not concave)
Iteration 2: Log likelihood = -667.14039
Iteration 3: Log likelihood = -665.51823
Iteration 4: Log likelihood = -665.29165
Iteration 5: Log likelihood = -665.29067
Iteration 6: Log likelihood = -665.29067
Mixed-effects Poisson regression Number of obs = 236
Group variable: subject Number of groups = 59

Obs per group:
min = 4
avg = 4.0
max = 4

Integration method: mvaghermite Integration pts. = 7
Wald chi2(5) = 121.70

Log likelihood = -665.29067 Prob > chi2 = 0.0000

seizures Coefficient Std. err. z P>|z| [95% conf. interval]

treat -.9330306 .4007512 -2.33 0.020 -1.718489 -.1475727
lbas .8844225 .1312033 6.74 0.000 .6272689 1.141576

lbas_trt .3382561 .2033021 1.66 0.096 -.0602087 .736721
lage .4842226 .3471905 1.39 0.163 -.1962582 1.164703

v4 -.1610871 .0545758 -2.95 0.003 -.2680536 -.0541206
_cons 2.154578 .2199928 9.79 0.000 1.7234 2.585756

subject
var(_cons) .2528664 .0589844 .1600801 .399434

LR test vs. Poisson model: chibar2(01) = 304.74 Prob >= chibar2 = 0.0000

The number of seizures before the fourth visit does exhibit a significant drop, and the patients on pro-

gabide demonstrate a decrease in frequency of seizures compared with the placebo group. The subject-

specific random effects also appear significant: 𝜎̂2
𝑢 = 0.25 with standard error 0.06.

Because this is a simple random-intercept model, you can obtain equivalent results by using

xtpoisson with the re and normal options.



mepoisson — Multilevel mixed-effects Poisson regression 383

Example 2: Two-level random-slope model
In their study of PQL, Breslow and Clayton (1993) also fit a model where they dropped the fixed effect

on v4 and replaced it with a random subject-specific linear trend over the four doctor visits. The model

they fit is

log(𝜇𝑖𝑗) = 𝛽0 + 𝛽1treat𝑖𝑗 + 𝛽2lbas𝑖𝑗+𝛽3lbas trt𝑖𝑗+
𝛽4lage𝑖𝑗 + 𝛽5visit𝑖𝑗 + 𝑢𝑗 + 𝑣𝑗visit𝑖𝑗

where (𝑢𝑗, 𝑣𝑗) are bivariate normal with 0 mean and variance–covariance matrix

𝚺 = Var [𝑢𝑗
𝑣𝑗

] = [ 𝜎2
𝑢 𝜎𝑢𝑣

𝜎𝑢𝑣 𝜎2
𝑣

]

. mepoisson seizures treat lbas lbas_trt lage visit || subject: visit,
> covariance(unstructured) intpoints(9) nolog
Mixed-effects Poisson regression Number of obs = 236
Group variable: subject Number of groups = 59

Obs per group:
min = 4
avg = 4.0
max = 4

Integration method: mvaghermite Integration pts. = 9
Wald chi2(5) = 115.56

Log likelihood = -655.68103 Prob > chi2 = 0.0000

seizures Coefficient Std. err. z P>|z| [95% conf. interval]

treat -.9286592 .4021715 -2.31 0.021 -1.716901 -.1404175
lbas .8849762 .1312535 6.74 0.000 .627724 1.142228

lbas_trt .3379759 .2044471 1.65 0.098 -.062733 .7386849
lage .4767192 .3536276 1.35 0.178 -.2163781 1.169817
visit -.2664098 .1647098 -1.62 0.106 -.5892352 .0564156
_cons 2.099555 .2203749 9.53 0.000 1.667629 2.531482

subject
var(visit) .5314803 .229385 .2280928 1.238405
var(_cons) .2514923 .0587902 .1590534 .3976549

subject
cov(visit,

_cons) .0028715 .0887037 0.03 0.974 -.1709846 .1767276

LR test vs. Poisson model: chi2(3) = 324.54 Prob > chi2 = 0.0000
Note: LR test is conservative and provided only for reference.

In the above, we specified the covariance(unstructured) option to allow correlation between

𝑢𝑗 and 𝑣𝑗, although on the basis of the above output it probably was not necessary—the default

independent structure would have sufficed. In the interest of getting more accurate estimates, we

also increased the number of quadrature points to nine, although the estimates do not change much when

compared with estimates based on the default seven quadrature points.

The essence of the above-fitted model is that after adjusting for other covariates, the log trend in

seizures is modeled as a random subject-specific line, with intercept distributed as 𝑁(𝛽0, 𝜎2
𝑢) and slope

distributed as 𝑁(𝛽5, 𝜎2
𝑣). From the above output, ̂𝛽0 = 2.10, 𝜎̂2

𝑢 = 0.25, ̂𝛽5 = −0.27, and 𝜎̂2
𝑣 = 0.53.
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You can predict the random effects 𝑢𝑗 and 𝑣𝑗 by using predict after mepoisson; see [ME]mepoisson

postestimation. Better still, you can obtain a predicted number of seizures that takes these random effects

into account.

Higher-level models

Example 3: Three- and four-level random-intercept model
Rabe-Hesketh and Skrondal (2022, exercise 13.7) describe data from the Atlas of Cancer Mortality

in the European Economic Community (EEC) (Smans, Mair, and Boyle 1992). The data were analyzed

in Langford, Bentham, and McDonald (1998) and record the number of deaths among males due to

malignant melanoma during 1971–1980.

. use https://www.stata-press.com/data/r19/melanoma
(Skin cancer (melanoma) data)
. describe
Contains data from https://www.stata-press.com/data/r19/melanoma.dta
Observations: 354 Skin cancer (melanoma) data

Variables: 6 30 May 2024 17:10
(_dta has notes)

Variable Storage Display Value
name type format label Variable label

nation byte %11.0g n Nation ID
region byte %9.0g Region ID: EEC level-I areas
county int %9.0g County ID: EEC level-II/level-III

areas
deaths int %9.0g No. deaths during 1971-1980
expected float %9.0g No. expected deaths
uv float %9.0g UV dose, mean-centered

Sorted by:

Nine European nations (variable nation) are represented, and data were collected over geographical re-
gions defined by EEC statistical services as level I areas (variable region), with deaths being recorded for
each of 354 counties, which are level II or level III EEC-defined areas (variable county, which identifies
the observations). Counties are nested within regions, and regions are nested within nations.

The variable deaths records the number of deaths for each county, and expected records the ex-
pected number of deaths (the exposure) on the basis of crude rates for the combined countries. Finally,

the variable uv is a measure of exposure to ultraviolet (UV) radiation.

In modeling the number of deaths, one possibility is to include dummy variables for the nine nations as

fixed effects. Another is to treat these as random effects and fit the three-level random-intercept Poisson

model,

log(𝜇𝑖𝑗𝑘) = log(expected𝑖𝑗𝑘) + 𝛽0 + 𝛽1uv𝑖𝑗𝑘 + 𝑢𝑘 + 𝑣𝑗𝑘

for nation 𝑘, region 𝑗, and county 𝑖. The model includes an exposure term for expected deaths.



mepoisson — Multilevel mixed-effects Poisson regression 385

. mepoisson deaths uv, exposure(expected) || nation: || region:
Fitting fixed-effects model:
Iteration 0: Log likelihood = -2136.5847
Iteration 1: Log likelihood = -1723.8955
Iteration 2: Log likelihood = -1723.7727
Iteration 3: Log likelihood = -1723.7727
Refining starting values:
Grid node 0: Log likelihood = -1166.6536
Refining starting values (unscaled likelihoods):
Grid node 0: Log likelihood = -1166.6536
Fitting full model:
Iteration 0: Log likelihood = -1166.6536 (not concave)
Iteration 1: Log likelihood = -1152.2741 (not concave)
Iteration 2: Log likelihood = -1146.3094 (not concave)
Iteration 3: Log likelihood = -1119.8479 (not concave)
Iteration 4: Log likelihood = -1108.0129 (not concave)
Iteration 5: Log likelihood = -1098.8067
Iteration 6: Log likelihood = -1095.7563
Iteration 7: Log likelihood = -1095.3164
Iteration 8: Log likelihood = -1095.31
Iteration 9: Log likelihood = -1095.31
Mixed-effects Poisson regression Number of obs = 354

Grouping information

No. of Observations per group
Group variable groups Minimum Average Maximum

nation 9 3 39.3 95
region 78 1 4.5 13

Integration method: mvaghermite Integration pts. = 7
Wald chi2(1) = 6.12

Log likelihood = -1095.31 Prob > chi2 = 0.0134

deaths Coefficient Std. err. z P>|z| [95% conf. interval]

uv -.0282041 .0113998 -2.47 0.013 -.0505473 -.0058608
_cons -.0639672 .1335515 -0.48 0.632 -.3257234 .197789

ln(expected) 1 (exposure)

nation
var(_cons) .1371732 .0723303 .048802 .3855676

nation>
region

var(_cons) .0483483 .0109079 .0310699 .0752353

LR test vs. Poisson model: chi2(2) = 1256.93 Prob > chi2 = 0.0000
Note: LR test is conservative and provided only for reference.

By including an exposure variable that is an expected rate, we are in effect specifying a linear model for

the log of the standardized mortality ratio, the ratio of observed deaths to expected deaths that is based

on a reference population. Here the reference population is all nine nations.

Looking at the estimated variance components, we can see there is more unobserved variability be-

tween nations than between regions within each nation. This may be due to, for example, country-specific

informational campaigns on the risks of sun exposure.
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We now add a random intercept for counties nested within regions, making this a four-level model.

Because counties also identify the observations, the corresponding variance component can be interpreted

as a measure of overdispersion, variability above and beyond that allowed by a Poisson process; see

[R] nbreg and [ME] menbreg.

. mepoisson deaths uv, exposure(expected) || nation: || region: || county:,
> intmethod(mcaghermite)
Fitting fixed-effects model:
Iteration 0: Log likelihood = -2136.5847
Iteration 1: Log likelihood = -1723.8955
Iteration 2: Log likelihood = -1723.7727
Iteration 3: Log likelihood = -1723.7727
Refining starting values:
Grid node 0: Log likelihood = -1379.3466
Refining starting values (unscaled likelihoods):
Grid node 0: Log likelihood = -1379.3466
Fitting full model:
Iteration 0: Log likelihood = -1379.3466 (not concave)
Iteration 1: Log likelihood = -1310.4947 (not concave)
Iteration 2: Log likelihood = -1245.534 (not concave)
Iteration 3: Log likelihood = -1218.5474 (not concave)
Iteration 4: Log likelihood = -1207.881 (not concave)
Iteration 5: Log likelihood = -1122.0585 (not concave)
Iteration 6: Log likelihood = -1092.4049
Iteration 7: Log likelihood = -1088.0486
Iteration 8: Log likelihood = -1086.7175
Iteration 9: Log likelihood = -1086.6756
Iteration 10: Log likelihood = -1086.6754
Iteration 11: Log likelihood = -1086.6754
Mixed-effects Poisson regression Number of obs = 354

Grouping information

No. of Observations per group
Group variable groups Minimum Average Maximum

nation 9 3 39.3 95
region 78 1 4.5 13
county 354 1 1.0 1
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Integration method: mcaghermite Integration pts. = 7
Wald chi2(1) = 8.62

Log likelihood = -1086.6754 Prob > chi2 = 0.0033

deaths Coefficient Std. err. z P>|z| [95% conf. interval]

uv -.0334702 .0113968 -2.94 0.003 -.0558075 -.0111329
_cons -.0864583 .1299275 -0.67 0.506 -.3411115 .168195

ln(expected) 1 (exposure)

nation
var(_cons) .1288627 .0681643 .0456949 .3634011

nation>
region

var(_cons) .0406279 .0105154 .0244633 .0674735

nation>
region>
county

var(_cons) .0146672 .0050979 .0074215 .0289867

LR test vs. Poisson model: chi2(3) = 1274.19 Prob > chi2 = 0.0000
Note: LR test is conservative and provided only for reference.

In the above, we used intmethod(mcaghermite), which is not only faster but also produces estimates
that closely agree with those obtained with the default mvaghermite integration method.

Stored results
mepoisson stores the following in e():

Scalars

e(N) number of observations

e(k) number of parameters

e(k dv) number of dependent variables

e(k eq) number of equations in e(b)
e(k eq model) number of equations in overall model test

e(k f) number of fixed-effects parameters

e(k r) number of random-effects parameters

e(k rs) number of variances

e(k rc) number of covariances

e(df m) model degrees of freedom

e(ll) log likelihood

e(N clust) number of clusters

e(chi2) 𝜒2

e(p) 𝑝-value for model test
e(ll c) log likelihood, comparison model

e(chi2 c) 𝜒2, comparison test
e(df c) degrees of freedom, comparison test

e(p c) 𝑝-value for comparison test
e(rank) rank of e(V)
e(ic) number of iterations

e(rc) return code

e(converged) 1 if converged, 0 otherwise
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Macros

e(cmd) meglm
e(cmd2) mepoisson
e(cmdline) command as typed

e(depvar) name of dependent variable

e(wtype) weight type

e(wexp) weight expression (first-level weights)

e(fweightk) fweight variable for kth highest level, if specified
e(iweightk) iweight variable for kth highest level, if specified
e(pweightk) pweight variable for kth highest level, if specified
e(covariates) list of covariates

e(ivars) grouping variables

e(model) poisson
e(title) title in estimation output

e(link) log
e(family) poisson
e(clustvar) name of cluster variable

e(offset) offset

e(intmethod) integration method

e(n quad) number of integration points

e(chi2type) Wald; type of model 𝜒2

e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.

e(opt) type of optimization

e(which) max or min; whether optimizer is to perform maximization or minimization

e(ml method) type of ml method
e(user) name of likelihood-evaluator program

e(technique) maximization technique

e(datasignature) the checksum

e(datasignaturevars) variables used in calculation of checksum

e(properties) b V
e(estat cmd) program used to implement estat
e(predict) program used to implement predict
e(marginsnotok) predictions disallowed by margins
e(marginswtype) weight type for margins
e(marginswexp) weight expression for margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices

e(b) coefficient vector

e(Cns) constraints matrix

e(ilog) iteration log (up to 20 iterations)

e(gradient) gradient vector

e(N g) group counts

e(g min) group-size minimums

e(g avg) group-size averages

e(g max) group-size maximums

e(V) variance–covariance matrix of the estimators

e(V modelbased) model-based variance

Functions

e(sample) marks estimation sample

In addition to the above, the following is stored in r():

Matrices

r(table) matrix containing the coefficients with their standard errors, test statistics, 𝑝-values, and
confidence intervals
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Note that results stored in r() are updated when the command is replayed and will be replaced when any
r-class command is run after the estimation command.

Methods and formulas
mepoisson is a convenience command for meglm with a log link and an poisson family; see

[ME] meglm.

In a two-level Poisson model, for cluster 𝑗, 𝑗 = 1, . . . , 𝑀, the conditional distribution of y𝑗 =
(𝑦𝑗1, . . . , 𝑦𝑗𝑛𝑗

)′, given a set of cluster-level random effects u𝑗, is

𝑓(y𝑗|u𝑗) =
𝑛𝑗

∏
𝑖=1

[{ exp (x𝑖𝑗β + z𝑖𝑗u𝑗)}𝑦𝑖𝑗 exp{− exp (x𝑖𝑗β + z𝑖𝑗u𝑗)} /𝑦𝑖𝑗!]

= exp[
𝑛𝑗

∑
𝑖=1

{𝑦𝑖𝑗 (x𝑖𝑗β + z𝑖𝑗u𝑗) − exp (x𝑖𝑗β + z𝑖𝑗u𝑗) − log(𝑦𝑖𝑗!)}]

Defining 𝑐 (y𝑗) = ∑𝑛𝑗
𝑖=1 log(𝑦𝑖𝑗!), where 𝑐(y𝑗) does not depend on the model parameters, we can

express the above compactly in matrix notation,

𝑓(y𝑗|u𝑗) = exp{y′
𝑗 (X𝑗β + Z𝑗u𝑗) − 1′ exp (X𝑗β + Z𝑗u𝑗) − 𝑐 (y𝑗)}

whereX𝑗 is formed by stacking the row vectors x𝑖𝑗 and Z𝑗 is formed by stacking the row vectors z𝑖𝑗. We

extend the definition of exp(⋅) to be a vector function where necessary.
Because the prior distribution of u𝑗 is multivariate normal with mean 0 and 𝑞 × 𝑞 variance matrix

𝚺, the likelihood contribution for the 𝑗th cluster is obtained by integrating u𝑗 out of the joint density

𝑓(y𝑗,u𝑗),

ℒ𝑗(β, 𝚺) = (2𝜋)−𝑞/2 |𝚺|−1/2 ∫ 𝑓(y𝑗|u𝑗) exp (−u′
𝑗𝚺

−1u𝑗/2) 𝑑u𝑗

= exp{−𝑐 (y𝑗)} (2𝜋)−𝑞/2 |𝚺|−1/2 ∫ exp{ℎ (β, 𝚺, u𝑗)} 𝑑u𝑗

(2)

where

ℎ (β, 𝚺, u𝑗) = y′
𝑗 (X𝑗β + Z𝑗u𝑗) − 1′ exp (X𝑗β + Z𝑗u𝑗) − u′

𝑗𝚺
−1u𝑗/2

and for convenience, in the arguments of ℎ(⋅) we suppress the dependence on the observable data

(y𝑗,X𝑗,Z𝑗).
The integration in (2) has no closed form and thus must be approximated; see Methods and formulas

in [ME] meglm for details.

mepoisson supports multilevel weights and survey data; see Methods and formulas in [ME] meglm

for details.
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Postestimation commands predict margins
Remarks and examples Methods and formulas Also see

Postestimation commands
The following postestimation command is of special interest after mepoisson:

Command Description

estat group summarize the composition of the nested groups

estat sd display variance components as standard deviations and correlations

The following standard postestimation commands are also available:

Command Description

contrast contrasts and ANOVA-style joint tests of parameters

estat ic Akaike’s, consistent Akaike’s, corrected Akaike’s, and Schwarz’s Bayesian in-
formation criteria (AIC, CAIC, AICc, and BIC, respectively)

estat summarize summary statistics for the estimation sample

estat vce variance–covariance matrix of the estimators (VCE)

estat (svy) postestimation statistics for survey data

estimates cataloging estimation results

etable table of estimation results
∗ hausman Hausman’s specification test

lincom point estimates, standard errors, testing, and inference for linear combinations
of parameters

∗ lrtest likelihood-ratio test

margins marginal means, predictive margins, marginal effects, and average marginal
effects

marginsplot graph the results from margins (profile plots, interaction plots, etc.)

nlcom point estimates, standard errors, testing, and inference for nonlinear combina-
tions of parameters

predict means, probabilities, densities, REs, residuals, etc.

predictnl point estimates, standard errors, testing, and inference for generalized predic-
tions

pwcompare pairwise comparisons of parameters

test Wald tests of simple and composite linear hypotheses

testnl Wald tests of nonlinear hypotheses

∗hausman and lrtest are not appropriate with svy estimation results.
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predict

Description for predict
predict creates a new variable containing predictions such as mean responses; linear predictions;

density and distribution functions; standard errors; and Pearson, deviance, and Anscombe residuals.

Menu for predict
Statistics > Postestimation

Syntax for predict

Syntax for obtaining predictions of the outcome and other statistics

predict [ type ] { stub* | newvarlist } [ if ] [ in ] [ , statistic options ]

Syntax for obtaining estimated random effects and their standard errors

predict [ type ] { stub* | newvarlist } [ if ] [ in ], reffects [ re options ]

Syntax for obtaining ML scores

predict [ type ] { stub* | newvarlist } [ if ] [ in ], scores

statistic Description

Main

mu mean response; the default

eta fitted linear predictor

xb linear predictor for the fixed portion of the model only

stdp standard error of the fixed-portion linear prediction

density predicted density function

distribution predicted distribution function

pearson Pearson residuals

deviance deviance residuals

anscombe Anscombe residuals

These statistics are available both in and out of sample; type predict ... if e(sample) ... if wanted
only for the estimation sample.
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options Description

Main

conditional(ctype) compute statistic conditional on estimated random effects; default is

conditional(ebmeans)
marginal compute statistic marginally with respect to the random effects

nooffset make calculation ignoring offset or exposure

Integration

int options integration options

pearson, deviance, anscombe may not be combined with marginal.

ctype Description

ebmeans empirical Bayes means of random effects; the default

ebmodes empirical Bayes modes of random effects

fixedonly prediction for the fixed portion of the model only

re options Description

Main

ebmeans use empirical Bayes means of random effects; the default

ebmodes use empirical Bayes modes of random effects

reses(stub* | newvarlist) calculate standard errors of empirical Bayes estimates

Integration

int options integration options

int options Description

intpoints(#) use # quadrature points to compute marginal predictions and empirical
Bayes means

iterate(#) set maximum number of iterations in computing statistics involving
empirical Bayes estimators

tolerance(#) set convergence tolerance for computing statistics involving empirical
Bayes estimators

Options for predict

� � �
Main �

mu, the default, calculates the predicted mean, that is, the predicted number of events.

eta, xb, stdp, density, distribution, pearson, deviance, anscombe, scores, conditional(),
marginal, and nooffset; see [ME] meglm postestimation.

reffects, ebmeans, ebmodes, and reses(); see [ME] meglm postestimation.

� � �
Integration �

intpoints(), iterate(), and tolerance(); see [ME] meglm postestimation.
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margins

Description for margins
margins estimates margins of response for mean responses and linear predictions.

Menu for margins
Statistics > Postestimation

Syntax for margins
margins [marginlist ] [ , options ]
margins [marginlist ] , predict(statistic ...) [ predict(statistic ...) ... ] [ options ]

statistic Description

mu mean response; the default

eta fitted linear predictor

xb linear predictor for the fixed portion of the model only

stdp not allowed with margins
density not allowed with margins
distribution not allowed with margins
pearson not allowed with margins
deviance not allowed with margins
anscombe not allowed with margins
reffects not allowed with margins
scores not allowed with margins

Options conditional(ebmeans) and conditional(ebmodes) are not allowed with margins.
Option marginal is assumed where applicable if conditional(fixedonly) is not specified.

Statistics not allowed with margins are functions of stochastic quantities other than e(b).

For the full syntax, see [R] margins.

Remarks and examples
Various predictions, statistics, and diagnostic measures are available after fitting a mixed-effects Pois-

son model with mepoisson. For the most part, calculation centers around obtaining estimates of the sub-
ject/group-specific random effects. Random effects are not estimated when the model is fit but instead

need to be predicted after estimation.

Here we show a short example of predicted counts and predicted random effects; refer to [ME]meglm

postestimation for additional examples applicable to mixed-effects generalized linear models.
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Example 1: Predicting counts and random effects
In example 2 of [ME]mepoisson, we modeled the number of observed epileptic seizures as a function

of treatment with the drug progabide and other covariates,

log(𝜇𝑖𝑗) = 𝛽0 + 𝛽1treat𝑖𝑗 + 𝛽2lbas𝑖𝑗+𝛽3lbas trt𝑖𝑗+
𝛽4lage𝑖𝑗 + 𝛽5visit𝑖𝑗 + 𝑢𝑗 + 𝑣𝑗visit𝑖𝑗

where (𝑢𝑗, 𝑣𝑗) are bivariate normal with 0 mean and variance–covariance matrix

𝚺 = Var [𝑢𝑗
𝑣𝑗

] = [ 𝜎2
𝑢 𝜎𝑢𝑣

𝜎𝑢𝑣 𝜎2
𝑣

]

. use https://www.stata-press.com/data/r19/epilepsy
(Epilepsy data; progabide drug treatment)
. mepoisson seizures treat lbas lbas_trt lage visit || subject: visit,
> cov(unstructured) intpoints(9)
(iteration log omitted)

Mixed-effects Poisson regression Number of obs = 236
Group variable: subject Number of groups = 59

Obs per group:
min = 4
avg = 4.0
max = 4

Integration method: mvaghermite Integration pts. = 9
Wald chi2(5) = 115.56

Log likelihood = -655.68103 Prob > chi2 = 0.0000

seizures Coefficient Std. err. z P>|z| [95% conf. interval]

treat -.9286592 .4021715 -2.31 0.021 -1.716901 -.1404175
lbas .8849762 .1312535 6.74 0.000 .627724 1.142228

lbas_trt .3379759 .2044471 1.65 0.098 -.062733 .7386849
lage .4767192 .3536276 1.35 0.178 -.2163781 1.169817
visit -.2664098 .1647098 -1.62 0.106 -.5892352 .0564156
_cons 2.099555 .2203749 9.53 0.000 1.667629 2.531482

subject
var(visit) .5314803 .229385 .2280928 1.238405
var(_cons) .2514923 .0587902 .1590534 .3976549

subject
cov(visit,

_cons) .0028715 .0887037 0.03 0.974 -.1709846 .1767276

LR test vs. Poisson model: chi2(3) = 324.54 Prob > chi2 = 0.0000
Note: LR test is conservative and provided only for reference.

The purpose of this model was to allow subject-specific linear log trends over each subject’s four doc-

tor visits, after adjusting for the other covariates. The intercepts of these lines are distributed 𝑁(𝛽0, 𝜎2
𝑢),

and the slopes are distributed 𝑁(𝛽5, 𝜎2
𝑣), based on the fixed effects and assumed distribution of the ran-

dom effects.

We can use predict to obtain estimates of the random effects 𝑢𝑗 and 𝑣𝑗 and combine these with our

estimates of 𝛽0 and 𝛽5 to obtain the intercepts and slopes of the linear log trends.



mepoisson postestimation — Postestimation tools for mepoisson 396

. predict re_visit re_cons, reffects
(calculating posterior means of random effects)
(using 9 quadrature points)
. generate b1 = _b[visit] + re_visit
. generate b0 = _b[_cons] + re_cons
. by subject, sort: generate tolist = _n==1
. list subject treat b1 b0 if tolist & (subject <=5 | subject >=55)

subject treat b1 b0

1. 1 Placebo -.428854 2.13539
5. 2 Placebo -.2731013 2.149744
9. 3 Placebo .0022089 2.417506

13. 4 Placebo -.3197094 2.238224
17. 5 Placebo .6082718 2.110739

217. 55 Progabide -.2308834 2.282539
221. 56 Progabide .2912798 3.19678
225. 57 Progabide -.4828764 1.423153
229. 58 Progabide -.2519466 1.131373
233. 59 Progabide -.1269573 2.171541

We list these slopes (b1) and intercepts (b0) for five control subjects and five subjects on the treatment.

. count if tolist & treat
31

. count if tolist & treat & b1 < 0
25

. count if tolist & !treat
28

. count if tolist & !treat & b1 < 0
20

We also find that 25 of the 31 subjects taking progabide were estimated to have a downward trend in

seizures over their four doctor visits, compared with 20 of the 28 control subjects.

We also obtain predictions for number of seizures, and unless we specify the

conditional(fixedonly) option, these predictions will incorporate the estimated subject-specific

random effects.

. predict n
(option mu assumed)
(predictions based on fixed effects and posterior means of random effects)
(using 9 quadrature points)
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. list subject treat visit seizures n if subject <= 2 | subject >= 58, sep(0)

subject treat visit seizures n

1. 1 Placebo -.3 5 3.775774
2. 1 Placebo -.1 3 3.465422
3. 1 Placebo .1 3 3.18058
4. 1 Placebo .3 3 2.919151
5. 2 Placebo -.3 3 3.598805
6. 2 Placebo -.1 5 3.40751
7. 2 Placebo .1 3 3.226382
8. 2 Placebo .3 3 3.054883

229. 58 Progabide -.3 0 .9611137
230. 58 Progabide -.1 0 .9138838
231. 58 Progabide .1 0 .8689747
232. 58 Progabide .3 0 .8262726
233. 59 Progabide -.3 1 2.40652
234. 59 Progabide -.1 4 2.346184
235. 59 Progabide .1 3 2.287361
236. 59 Progabide .3 2 2.230013

Methods and formulas
Methods and formulas for predicting random effects and other statistics are given in Methods and

formulas of [ME] meglm postestimation.

Also see
[ME] mepoisson — Multilevel mixed-effects Poisson regression

[ME] meglm postestimation — Postestimation tools for meglm

[U] 20 Estimation and postestimation commands



meprobit — Multilevel mixed-effects probit regression

Description Quick start Menu Syntax Options
Remarks and examples Stored results Methods and formulas References Also see

Description
meprobit fits mixed-effects models for binary or binomial responses. The conditional distribution of

the response given the random effects is assumed to be Bernoulli, with success probability determined

by the standard normal cumulative distribution function.

Quick start
Two-level probit model of y and covariate x and random intercepts by lev2

meprobit y x || lev2:

Add random coefficients for x
meprobit y x || lev2: x

Same as above, but specify that y records the number of successes from 10 trials

meprobit y x || lev2: x, binomial(10)

Same as above, but with the number of trials stored in variable n
meprobit y x || lev2: x, binomial(n)

Three-level random-intercept model of y and covariate x with lev2 nested within lev3
meprobit y x || lev3: || lev2:

Two-way crossed random effects by factors a and b
meprobit y x || _all:R.a || b:

Menu
Statistics > Multilevel mixed-effects models > Probit regression

398
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Syntax
meprobit depvar fe equation [ || re equation ] [ || re equation ... ] [ , options ]

where the syntax of fe equation is

[ indepvars ] [ if ] [ in ] [weight ] [ , fe options ]

and the syntax of re equation is one of the following:

for random coefficients and intercepts

levelvar: [ varlist ] [ , re options ]

for random effects among the values of a factor variable in a crossed-effects model

levelvar: R.varname

levelvar is a variable identifying the group structure for the random effects at that level or is all repre-
senting one group comprising all observations.

fe options Description

Model

noconstant suppress constant term from the fixed-effects equation

offset(varname) include varname in model with coefficient constrained to 1

asis retain perfect predictor variables

re options Description

Model

covariance(vartype) variance–covariance structure of the random effects

noconstant suppress constant term from the random-effects equation

fweight(varname) frequency weights at higher levels

iweight(varname) importance weights at higher levels

pweight(varname) sampling weights at higher levels
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options Description

Model

binomial(varname | #) set binomial trials if data are in binomial form

constraints(constraints) apply specified linear constraints

SE/Robust

vce(vcetype) vcetype may be oim, opg, robust, or cluster clustvar

Reporting

level(#) set confidence level; default is level(95)
nocnsreport do not display constraints

notable suppress coefficient table

noheader suppress output header

nogroup suppress table summarizing groups

display options control columns and column formats, row spacing, line width,
display of omitted variables and base and empty cells, and
factor-variable labeling

Integration

intmethod(intmethod) integration method

intpoints(#) set the number of integration (quadrature) points for all levels;
default is intpoints(7)

Maximization

maximize options control the maximization process; seldom used

startvalues(svmethod) method for obtaining starting values

startgrid[ (gridspec) ] perform a grid search to improve starting values

noestimate do not fit the model; show starting values instead

dnumerical use numerical derivative techniques

collinear keep collinear variables

coeflegend display legend instead of statistics

vartype Description

independent one unique variance parameter per random effect and all covariances
0; the default unless the R. notation is used

exchangeable equal variances for random effects and one common pairwise
covariance

identity equal variances for random effects and all covariances 0; the
default if the R. notation is used

unstructured all variances and covariances to be distinctly estimated

fixed(matname) user-selected variances and covariances constrained to specified
values; the remaining variances and covariances unrestricted

pattern(matname) user-selected variances and covariances constrained to be equal;
the remaining variances and covariances unrestricted
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intmethod Description

mvaghermite mean–variance adaptive Gauss–Hermite quadrature; the default
unless a crossed random-effects model is fit

mcaghermite mode-curvature adaptive Gauss–Hermite quadrature

ghermite nonadaptive Gauss–Hermite quadrature

laplace Laplacian approximation; the default for crossed random-effects
models

indepvars and varlist may contain factor variables; see [U] 11.4.3 Factor variables.

depvar, indepvars, and varlist may contain time-series operators; see [U] 11.4.4 Time-series varlists.

bayes, by, collect, and svy are allowed; see [U] 11.1.10 Prefix commands. For more details, see [BAYES] bayes: mepro-

bit.

vce() and weights are not allowed with the svy prefix; see [SVY] svy.
fweights, iweights, and pweights are allowed; see [U] 11.1.6 weight. Only one type of weight may be specified. Weights

are not supported under the Laplacian approximation or for crossed models.

startvalues(), startgrid, noestimate, dnumerical, collinear, and coeflegend do not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options

� � �
Model �

noconstant suppresses the constant (intercept) term and may be specified for the fixed-effects equation

and for any of or all the random-effects equations.

offset(varname) specifies that varname be included in the fixed-effects portion of the model with the

coefficient constrained to be 1.

asis forces retention of perfect predictor variables and their associated, perfectly predicted observations
and may produce instabilities in maximization; see [R] probit.

covariance(vartype) specifies the structure of the covariance matrix for the random effects and may

be specified for each random-effects equation. vartype is one of the following: independent,
exchangeable, identity, unstructured, fixed(matname), or pattern(matname).

covariance(independent) covariance structure allows for a distinct variance for each random

effect within a random-effects equation and assumes that all covariances are 0. The default is

covariance(independent) unless a crossed random-effects model is fit, in which case the de-
fault is covariance(identity).

covariance(exchangeable) structure specifies one common variance for all random effects and

one common pairwise covariance.

covariance(identity) is short for “multiple of the identity”; that is, all variances are equal and all
covariances are 0.

covariance(unstructured) allows for all variances and covariances to be distinct. If an equation
consists of 𝑝 random-effects terms, the unstructured covariance matrix will have 𝑝(𝑝+1)/2 unique
parameters.

covariance(fixed(matname)) and covariance(pattern(matname)) covariance structures

provide a convenient way to impose constraints on variances and covariances of random effects.

Each specification requires amatname that defines the restrictions placed on variances and covari-

ances. Only elements in the lower triangle of matname are used, and row and column names of
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matname are ignored. Amissing value inmatnamemeans that a given element is unrestricted. In a

fixed(matname) covariance structure, (co)variance (𝑖, 𝑗) is constrained to equal the value spec-
ified in the 𝑖, 𝑗th entry of matname. In a pattern(matname) covariance structure, (co)variances
(𝑖, 𝑗) and (𝑘, 𝑙) are constrained to be equal if matname[𝑖, 𝑗] = matname[𝑘, 𝑙].

fweight(varname) specifies frequency weights at higher levels in a multilevel model, whereas fre-

quency weights at the first level (the observation level) are specified in the usual manner, for exam-

ple, [fw=fwtvar1]. varname can be any valid Stata variable name, and you can specify fweight()
at levels two and higher of a multilevel model. For example, in the two-level model

. mecmd fixed_portion [fw = wt1] || school: ... , fweight(wt2) ...

the variable wt1 would hold the first-level (the observation-level) frequency weights, and wt2 would
hold the second-level (the school-level) frequency weights.

iweight(varname) specifies importance weights at higher levels in a multilevel model, whereas impor-
tance weights at the first level (the observation level) are specified in the usual manner, for example,

[iw=iwtvar1]. varname can be any valid Stata variable name, and you can specify iweight() at

levels two and higher of a multilevel model. For example, in the two-level model

. mecmd fixed_portion [iw = wt1] || school: ... , iweight(wt2) ...

the variable wt1would hold the first-level (the observation-level) importance weights, and wt2would
hold the second-level (the school-level) importance weights.

pweight(varname) specifies sampling weights at higher levels in a multilevel model, whereas sam-

pling weights at the first level (the observation level) are specified in the usual manner, for example,

[pw=pwtvar1]. varname can be any valid Stata variable name, and you can specify pweight() at
levels two and higher of a multilevel model. For example, in the two-level model

. mecmd fixed_portion [pw = wt1] || school: ... , pweight(wt2) ...

variable wt1 would hold the first-level (the observation-level) sampling weights, and wt2 would hold
the second-level (the school-level) sampling weights.

binomial(varname | #) specifies that the data are in binomial form; that is, depvar records the number
of successes from a series of binomial trials. This number of trials is given either as varname, which

allows this number to vary over the observations, or as the constant #. If binomial() is not specified
(the default), depvar is treated as Bernoulli, with any nonzero, nonmissing values indicating positive

responses.

constraints(constraints); see [R] Estimation options.

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived from
asymptotic theory (oim, opg), that are robust to some kinds of misspecification (robust), and that
allow for intragroup correlation (cluster clustvar); see [R] vce option. If vce(robust) is specified,
robust variances are clustered at the highest level in the multilevel model.

� � �
Reporting �

level(#), nocnsreport; see [R] Estimation options.

notable suppresses the estimation table, either at estimation or upon replay.

noheader suppresses the output header, either at estimation or upon replay.
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nogroup suppresses the display of group summary information (number of groups, average group size,
minimum, and maximum) from the output header.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] Estimation options.

� � �
Integration �

intmethod(intmethod) specifies the integration method to be used for the random-effects model.

mvaghermite performs mean–variance adaptive Gauss–Hermite quadrature; mcaghermite per-

forms mode-curvature adaptive Gauss–Hermite quadrature; ghermite performs nonadaptive

Gauss–Hermite quadrature; and laplace performs the Laplacian approximation, equivalent to mode-
curvature adaptive Gaussian quadrature with one integration point.

The default integration method is mvaghermite unless a crossed random-effects model is fit, in which
case the default integration method is laplace. The Laplacian approximation has been known to
produce biased parameter estimates; however, the bias tends to be more prominent in the estimates of

the variance components rather than in the estimates of the fixed effects.

For crossed random-effects models, estimation with more than one quadrature point may be pro-

hibitively intensive even for a small number of levels. For this reason, the integration method defaults

to the Laplacian approximation. You may override this behavior by specifying a different integration

method.

intpoints(#) sets the number of integration points for quadrature. The default is intpoints(7),
which means that seven quadrature points are used for each level of random effects. This option is

not allowed with intmethod(laplace).

The more integration points, the more accurate the approximation to the log likelihood. However,

computation time increases as a function of the number of quadrature points raised to a power equaling

the dimension of the random-effects specification. In crossed random-effects models and in models

with many levels or many random coefficients, this increase can be substantial.

� � �
Maximization �

maximize options: difficult, technique(algorithm spec), iterate(#), [no]log, trace,
gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(init specs); see [R] Maximize. Those that require

special mention for meprobit are listed below.

from() accepts a properly labeled vector of initial values or a list of coefficient names with values.
A list of values is not allowed.

The following options are available with meprobit but are not shown in the dialog box:

startvalues(svmethod), startgrid[ (gridspec) ], noestimate, and dnumerical; see [ME]meglm.

collinear, coeflegend; see [R] Estimation options.
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Remarks and examples
Mixed-effects probit regression is probit regression containing both fixed effects and random effects.

In longitudinal data and panel data, random effects are useful for modeling intracluster correlation; that is,

observations in the same cluster are correlated because they share common cluster-level random effects.

meprobit allows for many levels of random effects. However, for simplicity, we here consider the

two-level model, where for a series of 𝑀 independent clusters, and conditional on a set of fixed effects

x𝑖𝑗 and a set of random effects u𝑗,

Pr(𝑦𝑖𝑗 = 1|x𝑖𝑗,u𝑗) = 𝐻(x𝑖𝑗β + z𝑖𝑗u𝑗) (1)

for 𝑗 = 1, . . . , 𝑀 clusters, with cluster 𝑗 consisting of 𝑖 = 1, . . . , 𝑛𝑗 observations. The responses are

the binary-valued 𝑦𝑖𝑗, and we follow the standard Stata convention of treating 𝑦𝑖𝑗 = 1 if depvar𝑖𝑗 ≠ 0

and treating 𝑦𝑖𝑗 = 0 otherwise. The 1 × 𝑝 row vector x𝑖𝑗 are the covariates for the fixed effects, analo-

gous to the covariates you would find in a standard probit regression model, with regression coefficients

(fixed effects) β. For notational convenience here and throughout this manual entry, we suppress the
dependence of 𝑦𝑖𝑗 on x𝑖𝑗.

The 1×𝑞 vector z𝑖𝑗 are the covariates corresponding to the random effects and can be used to represent

both random intercepts and random coefficients. For example, in a random-intercept model, z𝑖𝑗 is simply

the scalar 1. The random effects u𝑗 are 𝑀 realizations from a multivariate normal distribution with mean

0 and 𝑞 × 𝑞 variance matrix 𝚺. The random effects are not directly estimated as model parameters but

are instead summarized according to the unique elements of 𝚺, known as variance components. One

special case of (1) places z𝑖𝑗 = x𝑖𝑗, so that all covariate effects are essentially random and distributed as

multivariate normal with mean β and variance 𝚺.

Finally, because this is probit regression,𝐻(⋅) is the standard normal cumulative distribution function,
which maps the linear predictor to the probability of a success (𝑦𝑖𝑗 = 1) with 𝐻(𝑣) = Φ(𝑣).

Model (1) may also be stated in terms of a latent linear response, where only 𝑦𝑖𝑗 = 𝐼(𝑦∗
𝑖𝑗 > 0) is

observed for the latent

𝑦∗
𝑖𝑗 = x𝑖𝑗β + z𝑖𝑗u𝑗 + 𝜖𝑖𝑗

The errors 𝜖𝑖𝑗 are distributed as a standard normal with mean 0 and variance 1 and are independent of u𝑗.

Below we present two short examples of mixed-effects probit regression; refer to [ME] me and

[ME] meglm for examples of other random-effects models. A two-level probit model can also be fit

using xtprobit with the re option; see [XT] xtprobit. In the absence of random effects, mixed-effects

probit regression reduces to standard probit regression; see [R] probit.

Example 1: Two-level random-intercept model
Ng et al. (2006) analyzed a subsample of data from the 1989 Bangladesh fertility survey (Huq and

Cleland 1990), which polled 1,934 Bangladeshi women on their use of contraception. The women sam-

pled were from 60 districts, identified by the variable district. Each district contained either urban
or rural areas (variable urban) or both. The variable c use is the binary response, with a value of 1

indicating contraceptive use. Other covariates include mean-centered age and three indicator variables
recording number of children.
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. use https://www.stata-press.com/data/r19/bangladesh
(Bangladesh Fertility Survey, 1989)
. meprobit c_use i.urban age i.children || district:
Fitting fixed-effects model:
Iteration 0: Log likelihood = -1228.8313
Iteration 1: Log likelihood = -1228.2466
Iteration 2: Log likelihood = -1228.2466
Refining starting values:
Grid node 0: Log likelihood = -1237.3973
Fitting full model:
Iteration 0: Log likelihood = -1237.3973 (not concave)
Iteration 1: Log likelihood = -1221.2111 (not concave)
Iteration 2: Log likelihood = -1207.4451
Iteration 3: Log likelihood = -1206.7002
Iteration 4: Log likelihood = -1206.5346
Iteration 5: Log likelihood = -1206.5336
Iteration 6: Log likelihood = -1206.5336
Mixed-effects probit regression Number of obs = 1,934
Group variable: district Number of groups = 60

Obs per group:
min = 2
avg = 32.2
max = 118

Integration method: mvaghermite Integration pts. = 7
Wald chi2(5) = 115.36

Log likelihood = -1206.5336 Prob > chi2 = 0.0000

c_use Coefficient Std. err. z P>|z| [95% conf. interval]

urban
Urban .4490191 .0727176 6.17 0.000 .3064953 .5915429

age -.0162203 .0048005 -3.38 0.001 -.0256291 -.0068114

children
1 child .674377 .0947829 7.11 0.000 .488606 .8601481

2 children .8281581 .1048136 7.90 0.000 .6227272 1.033589
3 or more.. .8137876 .1073951 7.58 0.000 .6032972 1.024278

_cons -1.02799 .0870307 -11.81 0.000 -1.198567 -.8574132

district
var(_cons) .0798719 .026886 .0412921 .1544972

LR test vs. probit model: chibar2(01) = 43.43 Prob >= chibar2 = 0.0000

Probit regression coefficients are most commonly interpreted in terms of partial effects, as we demon-

strate in example 1 of [ME] meprobit postestimation. For now, we only note that urban women and

women with more children are more likely to use contraceptives and that contraceptive use decreases

with age. The estimated variance of the random intercept at the district level, 𝛔̂2
, is 0.08 with standard

error 0.03. The reported likelihood-ratio test shows that there is enough variability between districts to

favor a mixed-effects probit regression over an ordinary probit regression; see Distribution theory for

likelihood-ratio test in [ME] me for a discussion of likelihood-ratio testing of variance components.
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Example 2: Three-level random-intercept model
Rabe-Hesketh, Toulopoulou, and Murray (2001) analyzed data from a study that measured the cogni-

tive ability of patients with schizophrenia compared with their relatives and control subjects. Cognitive

ability was measured as the successful completion of the “Tower of London”, a computerized task, mea-

sured at three levels of difficulty. For all but one of the 226 subjects, there were three measurements (one

for each difficulty level). Because patients’ relatives were also tested, a family identifier, family, was
also recorded.

We fit a probit model with response dtlm, the indicator of cognitive function, and with covariates
difficulty and a set of indicator variables for group, with the controls (group==1) being the base
category. We also allow for random effects due to families and due to subjects within families. The

first is a random intercept (constant only) at the family level, and the second is a random intercept at

the subject level. The order in which these are specified (from left to right) is significant—meprobit
assumes that subject is nested within family. The equations are separated by ||.
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. use https://www.stata-press.com/data/r19/towerlondon
(Tower of London data)
. meprobit dtlm difficulty i.group || family: || subject:
Fitting fixed-effects model:
Iteration 0: Log likelihood = -317.11238
Iteration 1: Log likelihood = -314.50535
Iteration 2: Log likelihood = -314.50121
Iteration 3: Log likelihood = -314.50121
Refining starting values:
Grid node 0: Log likelihood = -326.18533
Fitting full model:
Iteration 0: Log likelihood = -326.18533 (not concave)
Iteration 1: Log likelihood = -313.16256 (not concave)
Iteration 2: Log likelihood = -308.47528
Iteration 3: Log likelihood = -305.02228
Iteration 4: Log likelihood = -304.88972
Iteration 5: Log likelihood = -304.88845
Iteration 6: Log likelihood = -304.88845
Mixed-effects probit regression Number of obs = 677

Grouping information

No. of Observations per group
Group variable groups Minimum Average Maximum

family 118 2 5.7 27
subject 226 2 3.0 3

Integration method: mvaghermite Integration pts. = 7
Wald chi2(3) = 83.28

Log likelihood = -304.88845 Prob > chi2 = 0.0000

dtlm Coefficient Std. err. z P>|z| [95% conf. interval]

difficulty -.9329891 .1037376 -8.99 0.000 -1.136311 -.7296672

group
2 -.1632243 .204265 -0.80 0.424 -.5635763 .2371276
3 -.6220196 .228063 -2.73 0.006 -1.069015 -.1750244

_cons -.8405154 .1597223 -5.26 0.000 -1.153565 -.5274654

family
var(_cons) .2120948 .1736281 .0426292 1.055244

family>
subject

var(_cons) .3559141 .219331 .106364 1.190956

LR test vs. probit model: chi2(2) = 19.23 Prob > chi2 = 0.0001
Note: LR test is conservative and provided only for reference.

We see that we have 226 subjects from 118 families. After adjusting for the random-effects structure,

the probability of successful completion of the Tower of London decreases dramatically as the level of

difficulty increases. Also, people with schizophrenia (group==3) tended not to perform as well as the

control subjects.
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The above extends to models with more than two levels of nesting by adding more random-effects

equations, each separated by ||.

Stored results
meprobit stores the following in e():

Scalars

e(N) number of observations

e(k) number of parameters

e(k dv) number of dependent variables

e(k eq) number of equations in e(b)
e(k eq model) number of equations in overall model test

e(k f) number of fixed-effects parameters

e(k r) number of random-effects parameters

e(k rs) number of variances

e(k rc) number of covariances

e(df m) model degrees of freedom

e(ll) log likelihood

e(N clust) number of clusters

e(chi2) 𝜒2

e(p) 𝑝-value for model test
e(ll c) log likelihood, comparison model

e(chi2 c) 𝜒2, comparison test
e(df c) degrees of freedom, comparison test

e(p c) 𝑝-value for comparison test
e(rank) rank of e(V)
e(ic) number of iterations

e(rc) return code

e(converged) 1 if converged, 0 otherwise

Macros

e(cmd) meglm
e(cmd2) meprobit
e(cmdline) command as typed

e(depvar) name of dependent variable

e(wtype) weight type

e(wexp) weight expression (first-level weights)

e(fweightk) fweight variable for kth highest level, if specified
e(iweightk) iweight variable for kth highest level, if specified
e(pweightk) pweight variable for kth highest level, if specified
e(covariates) list of covariates

e(ivars) grouping variables

e(model) probit
e(title) title in estimation output

e(link) probit
e(family) bernoulli or binomial
e(clustvar) name of cluster variable

e(offset) offset

e(binomial) binomial number of trials

e(intmethod) integration method

e(n quad) number of integration points

e(chi2type) Wald; type of model 𝜒2

e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.

e(opt) type of optimization

e(which) max or min; whether optimizer is to perform maximization or minimization

e(ml method) type of ml method
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e(user) name of likelihood-evaluator program

e(technique) maximization technique

e(datasignature) the checksum

e(datasignaturevars) variables used in calculation of checksum

e(properties) b V
e(estat cmd) program used to implement estat
e(predict) program used to implement predict
e(marginsnotok) predictions disallowed by margins
e(marginswtype) weight type for margins
e(marginswexp) weight expression for margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices

e(b) coefficient vector

e(Cns) constraints matrix

e(ilog) iteration log (up to 20 iterations)

e(gradient) gradient vector

e(N g) group counts

e(g min) group-size minimums

e(g avg) group-size averages

e(g max) group-size maximums

e(V) variance–covariance matrix of the estimators

e(V modelbased) model-based variance

Functions

e(sample) marks estimation sample

In addition to the above, the following is stored in r():

Matrices

r(table) matrix containing the coefficients with their standard errors, test statistics, 𝑝-values, and
confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when any
r-class command is run after the estimation command.

Methods and formulas
meprobit is a convenience command for meglm with a probit link and a bernoulli or binomial

family; see [ME] meglm.

Model (1) assumes Bernoulli data, a special case of the binomial. Because binomial data are also

supported by meprobit (option binomial()), the methods presented below are in terms of the more

general binomial mixed-effects model.

For a two-level binomial model, consider the response 𝑦𝑖𝑗 as the number of successes from a series

of 𝑟𝑖𝑗 Bernoulli trials (replications). For cluster 𝑗, 𝑗 = 1, . . . , 𝑀, the conditional distribution of y𝑗 =
(𝑦𝑗1, . . . , 𝑦𝑗𝑛𝑗

)′, given a set of cluster-level random effects u𝑗, is

𝑓(y𝑗|u𝑗) =
𝑛𝑗

∏
𝑖=1

[(𝑟𝑖𝑗
𝑦𝑖𝑗

) {Φ(η𝑖𝑗)}
𝑦𝑖𝑗 {1 − Φ(η𝑖𝑗)}

𝑟𝑖𝑗−𝑦𝑖𝑗]

= exp(
𝑛𝑗

∑
𝑖=1

[𝑦𝑖𝑗 log{Φ(η𝑖𝑗)} − (𝑟𝑖𝑗 − 𝑦𝑖𝑗) log{Φ(−η𝑖𝑗)} + log(𝑟𝑖𝑗
𝑦𝑖𝑗

)])

for η𝑖𝑗 = x𝑖𝑗β + z𝑖𝑗u𝑗 + offset𝑖𝑗.
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Defining r𝑗 = (𝑟𝑗1, . . . , 𝑟𝑗𝑛𝑗
)′ and

𝑐 (y𝑗, r𝑗) =
𝑛𝑗

∑
𝑖=1

log(𝑟𝑖𝑗
𝑦𝑖𝑗

)

where 𝑐(y𝑗, r𝑗) does not depend on the model parameters, we can express the above compactly in matrix
notation,

𝑓(y𝑗|u𝑗) = exp [y′
𝑗 log{Φ(η𝑗)} − (r𝑗 − y𝑗)′ log{Φ(−η𝑗)} + 𝑐 (y𝑗, r𝑗)]

where η𝑗 is formed by stacking the row vectors η𝑖𝑗. We extend the definitions ofΦ(⋅), log(⋅), and exp(⋅)
to be vector functions where necessary.

Because the prior distribution of u𝑗 is multivariate normal with mean 0 and 𝑞 × 𝑞 variance matrix
𝚺, the likelihood contribution for the 𝑗th cluster is obtained by integrating u𝑗 out of the joint density

𝑓(y𝑗,u𝑗),

ℒ𝑗(β, 𝚺) = (2𝜋)−𝑞/2 |𝚺|−1/2 ∫ 𝑓(y𝑗|u𝑗) exp (−u′
𝑗𝚺

−1u𝑗/2) 𝑑u𝑗

= exp{𝑐 (y𝑗, r𝑗)} (2𝜋)−𝑞/2 |𝚺|−1/2 ∫ exp{ℎ (β, 𝚺, u𝑗)} 𝑑u𝑗

(2)

where

ℎ (β, 𝚺, u𝑗) = y′
𝑗 log{Φ(η𝑗)} − (r𝑗 − y𝑗)′ log{Φ(−η𝑗)} − u′

𝑗𝚺
−1u𝑗/2

and for convenience, in the arguments of ℎ(⋅) we suppress the dependence on the observable data

(y𝑗, r𝑗,X𝑗,Z𝑗).
The integration in (2) has no closed form and thus must be approximated; see Methods and formulas

in [ME] meglm for details.

meprobit supports multilevel weights and survey data; see Methods and formulas in [ME] meglm

for details.
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Also see
[ME] meprobit postestimation — Postestimation tools for meprobit

[ME] mecloglog — Multilevel mixed-effects complementary log–log regression

[ME] melogit — Multilevel mixed-effects logistic regression

[ME] me — Introduction to multilevel mixed-effects models

[BAYES] bayes: meprobit — Bayesian multilevel probit regression

[SEM] Intro 5 — Tour of models (Multilevel mixed-effects models)

[SVY] svy estimation — Estimation commands for survey data

[XT] xtprobit — Random-effects and population-averaged probit models

[U] 20 Estimation and postestimation commands
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Postestimation commands predict margins
Remarks and examples Methods and formulas Also see

Postestimation commands
The following postestimation commands are of special interest after meprobit:

Command Description

estat group summarize the composition of the nested groups

estat icc estimate intraclass correlations

estat sd display variance components as standard deviations and correlations

The following standard postestimation commands are also available:

Command Description

contrast contrasts and ANOVA-style joint tests of parameters

estat ic Akaike’s, consistent Akaike’s, corrected Akaike’s, and Schwarz’s Bayesian in-
formation criteria (AIC, CAIC, AICc, and BIC, respectively)

estat summarize summary statistics for the estimation sample

estat vce variance–covariance matrix of the estimators (VCE)

estat (svy) postestimation statistics for survey data

estimates cataloging estimation results

etable table of estimation results
∗ hausman Hausman’s specification test

lincom point estimates, standard errors, testing, and inference for linear combinations
of parameters

∗ lrtest likelihood-ratio test

margins marginal means, predictive margins, marginal effects, and average marginal
effects

marginsplot graph the results from margins (profile plots, interaction plots, etc.)

nlcom point estimates, standard errors, testing, and inference for nonlinear combina-
tions of parameters

predict means, probabilities, densities, REs, residuals, etc.

predictnl point estimates, standard errors, testing, and inference for generalized predic-
tions

pwcompare pairwise comparisons of parameters

test Wald tests of simple and composite linear hypotheses

testnl Wald tests of nonlinear hypotheses

∗hausman and lrtest are not appropriate with svy estimation results.

412
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predict

Description for predict
predict creates a new variable containing predictions such as mean responses; linear predictions;

density and distribution functions; standard errors; and Pearson, deviance, and Anscombe residuals.

Menu for predict
Statistics > Postestimation

Syntax for predict

Syntax for obtaining predictions of the outcome and other statistics

predict [ type ] { stub* | newvarlist } [ if ] [ in ] [ , statistic options ]

Syntax for obtaining estimated random effects and their standard errors

predict [ type ] { stub* | newvarlist } [ if ] [ in ], reffects [ re options ]

Syntax for obtaining ML scores

predict [ type ] { stub* | newvarlist } [ if ] [ in ], scores

statistic Description

Main

mu mean response; the default

eta fitted linear predictor

xb linear predictor for the fixed portion of the model only

stdp standard error of the fixed-portion linear prediction

density predicted density function

distribution predicted distribution function

pearson Pearson residuals

deviance deviance residuals

anscombe Anscombe residuals

These statistics are available both in and out of sample; type predict ... if e(sample) ... if wanted
only for the estimation sample.
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options Description

Main

conditional(ctype) compute statistic conditional on estimated random effects; default is

conditional(ebmeans)
marginal compute statistic marginally with respect to the random effects

nooffset make calculation ignoring offset or exposure

Integration

int options integration options

pearson, deviance, anscombe may not be combined with marginal.

ctype Description

ebmeans empirical Bayes means of random effects; the default

ebmodes empirical Bayes modes of random effects

fixedonly prediction for the fixed portion of the model only

re options Description

Main

ebmeans use empirical Bayes means of random effects; the default

ebmodes use empirical Bayes modes of random effects

reses(stub* | newvarlist) calculate standard errors of empirical Bayes estimates

Integration

int options integration options

int options Description

intpoints(#) use # quadrature points to compute marginal predictions and empirical
Bayes means

iterate(#) set maximum number of iterations in computing statistics involving
empirical Bayes estimators

tolerance(#) set convergence tolerance for computing statistics involving empirical
Bayes estimators

Options for predict

� � �
Main �

mu, the default, calculates the predicted mean, that is, the probability of a positive outcome.

eta, xb, stdp, density, distribution, pearson, deviance, anscombe, scores, conditional(),
marginal, and nooffset; see [ME] meglm postestimation.

reffects, ebmeans, ebmodes, and reses(); see [ME] meglm postestimation.

� � �
Integration �

intpoints(), iterate(), and tolerance(); see [ME] meglm postestimation.
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margins

Description for margins
margins estimates margins of response for mean responses and linear predictions.

Menu for margins
Statistics > Postestimation

Syntax for margins
margins [marginlist ] [ , options ]
margins [marginlist ] , predict(statistic ...) [ predict(statistic ...) ... ] [ options ]

statistic Description

mu mean response; the default

eta fitted linear predictor

xb linear predictor for the fixed portion of the model only

stdp not allowed with margins
density not allowed with margins
distribution not allowed with margins
pearson not allowed with margins
deviance not allowed with margins
anscombe not allowed with margins
reffects not allowed with margins
scores not allowed with margins

Options conditional(ebmeans) and conditional(ebmodes) are not allowed with margins.
Option marginal is assumed where applicable if conditional(fixedonly) is not specified.

Statistics not allowed with margins are functions of stochastic quantities other than e(b).

For the full syntax, see [R] margins.
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Remarks and examples
Various predictions, statistics, and diagnostic measures are available after fitting a mixed-effects pro-

bit model using meprobit. Here we show a short example of predicted probabilities and predicted

random effects; refer to [ME] meglm postestimation for additional examples.

Example 1: Predicting random effects and estimating intraclass correlations
In example 2 of [ME]meprobit, we analyzed the cognitive ability (dtlm) of patients with schizophre-

nia compared with their relatives and control subjects, by using a three-level probit model with random

effects at the family and subject levels. Cognitive ability was measured as the successful completion of

the “Tower of London”, a computerized task, measured at three levels of difficulty.

. use https://www.stata-press.com/data/r19/towerlondon
(Tower of London data)
. meprobit dtlm difficulty i.group || family: || subject:
(output omitted )

We obtain predicted probabilities based on the contribution of both fixed effects and random effects

by typing

. predict pr
(option mu assumed)
(predictions based on fixed effects and posterior means of random effects)
(using 7 quadrature points)

As the note says, the predicted values are based on the posterior means of random effects. You can use

the modes option to obtain predictions based on the posterior modes of random effects.

We obtain predictions of the posterior means themselves by typing

. predict re*, reffects
(calculating posterior means of random effects)
(using 7 quadrature points)

Because we have one random effect at the family level and another random effect at the subject level,

Stata saved the predicted posterior means in the variables re1 and re2, respectively. If you are not sure
which prediction corresponds to which level, you can use the describe command to show the variable

labels.

Here we list the data for family 16:

. list family subject dtlm pr re1 re2 if family==16, sepby(subject)

family subject dtlm pr re1 re2

208. 16 5 1 .5301687 .5051272 .1001124
209. 16 5 0 .1956408 .5051272 .1001124
210. 16 5 0 .0367041 .5051272 .1001124

211. 16 34 1 .8876646 .5051272 .7798247
212. 16 34 1 .6107262 .5051272 .7798247
213. 16 34 1 .2572725 .5051272 .7798247

214. 16 35 0 .6561904 .5051272 -.0322885
215. 16 35 1 .2977437 .5051272 -.0322885
216. 16 35 0 .071612 .5051272 -.0322885
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The predicted random effects at the family level (re1) are the same for all members of the family.
Similarly, the predicted random effects at the individual level (re2) are constant within each individual.
The predicted probabilities (pr) for this family seem to be in fair agreement with the response (dtlm)
based on a cutoff of 0.5.

We can use estat icc to estimate the residual intraclass correlation (conditional on the difficulty

level and the individual’s category) between the latent responses of subjects within the same family or

between the latent responses of the same subject and family:

. estat icc
Residual intraclass correlation

Level ICC Std. err. [95% conf. interval]

family .1352637 .1050492 .0261998 .4762821
subject|family .3622485 .0877459 .2124808 .5445812

estat icc reports two intraclass correlations for this three-level nested model. The first is the level-3
intraclass correlation at the family level, the correlation between latent measurements of the cognitive

ability in the same family. The second is the level-2 intraclass correlation at the subject-within-family

level, the correlation between the latent measurements of cognitive ability in the same subject and family.

There is not a strong correlation between individual realizations of the latent response, even within

the same subject.

Methods and formulas
Methods and formulas for predicting random effects and other statistics are given in Methods and

formulas of [ME] meglm postestimation.

Also see
[ME] meprobit — Multilevel mixed-effects probit regression

[ME] meglm postestimation — Postestimation tools for meglm

[U] 20 Estimation and postestimation commands
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Description Quick start Menu Syntax Options
Remarks and examples Stored results Methods and formulas References Also see

Description
mestreg fits a mixed-effects parametric survival-time model. The conditional distribution of the

response given the random effects is assumed to be an exponential, Weibull, lognormal, loglogistic, or

gamma distribution. mestreg can be used with single- or multiple-record st data.

Quick start
Without weights

Two-levelWeibull survival model with covariates x1 and x2 and random intercepts by lev2 using stset
data

mestreg x1 x2 || lev2:, distribution(weibull)

Mixed-effects model adding random coefficients for x1
mestreg x1 x2 || lev2:x1, distribution(weibull)

Three-level random-intercept model with lev2 nested within lev3
mestreg x1 x2 || lev3: || lev2:, distribution(weibull)

With weights

Two-level Weibull survival model with covariates x1 and x2, random intercepts by lev2, and

observation-level frequency weights wvar1 using stset data
mestreg x1 x2 [fweight=wvar1] || lev2:, distribution(weibull)

Two-level random-intercept model from a two-stage sampling design with PSUs identified by psu using
PSU-level and observation-level sampling weights wvar2 and wvar1

mestreg x1 x2 [pweight=wvar1] || psu:, pweight(wvar2)

Same as above, but svyset the data first
svyset psu, weight(wvar2) || _n, weight(wvar1)
svy: mestreg x1 x2 || psu:, distribution(weibull)

Note: Any supported parametric survival distribution may be specified in place of weibull above.

Menu
Statistics > Multilevel mixed-effects models > Parametric survival regression

418
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Syntax
mestreg fe equation [ || re equation ] [ || re equation ... ],

distribution(distname) [ options ]

where the syntax of fe equation is

[ indepvars ] [ if ] [ in ] [weight ] [ , fe options ]

and the syntax of re equation is one of the following:

for random coefficients and intercepts

levelvar: [ varlist ] [ , re options ]

for random effects among the values of a factor variable in a crossed-effects model

levelvar: R.varname

levelvar is a variable identifying the group structure for the random effects at that level or is all repre-
senting one group comprising all observations.

fe options Description

Model

noconstant suppress constant term from the fixed-effects equation

offset(varname) include varname in model with coefficient constrained to 1

re options Description

Model

covariance(vartype) variance–covariance structure of the random effects

noconstant suppress constant term from the random-effects equation

fweight(varname) frequency weights at higher levels

iweight(varname) importance weights at higher levels

pweight(varname) sampling weights at higher levels
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options Description

Model
∗ distribution(distname) specify survival distribution

time use accelerated failure-time metric

constraints(constraints) apply specified linear constraints

SE/Robust

vce(vcetype) vcetype may be oim, opg, robust, or cluster clustvar

Reporting

level(#) set confidence level; default is level(95)
nohr do not report hazard ratios

tratio report time ratios

noshow do not show st setting information

nocnsreport do not display constraints

notable suppress coefficient table

noheader suppress output header

nogroup suppress table summarizing groups

display options control columns and column formats, row spacing, line width,
display of omitted variables and base and empty cells, and
factor-variable labeling

Integration

intmethod(intmethod) integration method

intpoints(#) set the number of integration (quadrature) points for all levels;
default is intpoints(7)

Maximization

maximize options control the maximization process; seldom used

startvalues(svmethod) method for obtaining starting values

startgrid[ (gridspec) ] perform a grid search to improve starting values

noestimate do not fit the model; show starting values instead

dnumerical use numerical derivative techniques

collinear keep collinear variables

coeflegend display legend instead of statistics

∗distribution(distname) is required.

vartype Description

independent one unique variance parameter per random effect and all covariances
0; the default unless the R. notation is used

exchangeable equal variances for random effects and one common pairwise
covariance

identity equal variances for random effects and all covariances 0; the
default if the R. notation is used

unstructured all variances and covariances to be distinctly estimated

fixed(matname) user-selected variances and covariances constrained to specified
values; the remaining variances and covariances unrestricted

pattern(matname) user-selected variances and covariances constrained to be equal;
the remaining variances and covariances unrestricted
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distname Description

exponential exponential survival distribution

loglogistic loglogistic survival distribution

llogistic synonym for loglogistic
weibull Weibull survival distribution

lognormal lognormal survival distribution

lnormal synonym for lognormal
gamma gamma survival distribution

intmethod Description

mvaghermite mean–variance adaptive Gauss–Hermite quadrature; the default
unless a crossed random-effects model is fit

mcaghermite mode-curvature adaptive Gauss–Hermite quadrature

ghermite nonadaptive Gauss–Hermite quadrature

laplace Laplacian approximation; the default for crossed random-effects
models

You must stset your data before using mestreg; see [ST] stset.
indepvars and varlist may contain factor variables; see [U] 11.4.3 Factor variables.

bayes, by, collect, and svy are allowed; see [U] 11.1.10 Prefix commands. For more details, see
[BAYES] bayes: mestreg.

vce() and weights are not allowed with the svy prefix; see [SVY] svy.
fweights, iweights, and pweights are allowed; see [U] 11.1.6 weight. Only one type of weight may be specified. Weights

are not supported under the Laplacian approximation or for crossed models.

startvalues(), startgrid, noestimate, dnumerical, collinear, and coeflegend do not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options

� � �
Model �

noconstant suppresses the constant (intercept) term and may be specified for the fixed-effects equation

and for any of or all the random-effects equations.

offset(varname) specifies that varname be included in the fixed-effects portion of the model with the

coefficient constrained to be 1.

covariance(vartype) specifies the structure of the covariance matrix for the random effects and may

be specified for each random-effects equation. vartype is one of the following: independent,
exchangeable, identity, unstructured, fixed(matname), or pattern(matname).

covariance(independent) covariance structure allows for a distinct variance for each random

effect within a random-effects equation and assumes that all covariances are 0. The default is

covariance(independent) unless a crossed random-effects model is fit, in which case the de-
fault is covariance(identity).

covariance(exchangeable) structure specifies one common variance for all random effects and

one common pairwise covariance.

covariance(identity) is short for “multiple of the identity”; that is, all variances are equal and all
covariances are 0.
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covariance(unstructured) allows for all variances and covariances to be distinct. If an equation
consists of 𝑝 random-effects terms, the unstructured covariance matrix will have 𝑝(𝑝+1)/2 unique
parameters.

covariance(fixed(matname)) and covariance(pattern(matname)) covariance structures

provide a convenient way to impose constraints on variances and covariances of random effects.

Each specification requires amatname that defines the restrictions placed on variances and covari-

ances. Only elements in the lower triangle of matname are used, and row and column names of

matname are ignored. Amissing value inmatnamemeans that a given element is unrestricted. In a

fixed(matname) covariance structure, (co)variance (𝑖, 𝑗) is constrained to equal the value spec-
ified in the 𝑖, 𝑗th entry of matname. In a pattern(matname) covariance structure, (co)variances
(𝑖, 𝑗) and (𝑘, 𝑙) are constrained to be equal if matname[𝑖, 𝑗] = matname[𝑘, 𝑙].

fweight(varname) specifies frequency weights at higher levels in a multilevel model, whereas fre-

quency weights at the first level (the observation level) are specified in the usual manner, for exam-

ple, [fw=fwtvar1]. varname can be any valid Stata variable name, and you can specify fweight()
at levels two and higher of a multilevel model. For example, in the two-level model

. mecmd fixed_portion [fw = wt1] || school: ... , fweight(wt2) ...

the variable wt1 would hold the first-level (the observation-level) frequency weights, and wt2 would
hold the second-level (the school-level) frequency weights.

iweight(varname) specifies importance weights at higher levels in a multilevel model, whereas impor-
tance weights at the first level (the observation level) are specified in the usual manner, for example,

[iw=iwtvar1]. varname can be any valid Stata variable name, and you can specify iweight() at

levels two and higher of a multilevel model. For example, in the two-level model

. mecmd fixed_portion [iw = wt1] || school: ... , iweight(wt2) ...

the variable wt1would hold the first-level (the observation-level) importance weights, and wt2would
hold the second-level (the school-level) importance weights.

pweight(varname) specifies sampling weights at higher levels in a multilevel model, whereas sam-

pling weights at the first level (the observation level) are specified in the usual manner, for example,

[pw=pwtvar1]. varname can be any valid Stata variable name, and you can specify pweight() at
levels two and higher of a multilevel model. For example, in the two-level model

. mecmd fixed_portion [pw = wt1] || school: ... , pweight(wt2) ...

variable wt1 would hold the first-level (the observation-level) sampling weights, and wt2 would hold
the second-level (the school-level) sampling weights.

distribution(distname) specifies the survival model to be fit. distname is one of the following:

exponential, loglogistic, llogistic, weibull, lognormal, lnormal, or gamma. This option
is required.

time specifies that the model be fit in the accelerated failure-time metric rather than in the log relative-
hazard metric. This option is valid only for the exponential andWeibull models because these are the

only models that have both a proportional-hazards and an accelerated failure-time parameterization.

Regardless of metric, the likelihood function is the same, and models are equally appropriate in either

metric; it is just a matter of changing interpretation.

time must be specified at estimation.

constraints(constraints); see [R] Estimation options.



mestreg — Multilevel mixed-effects parametric survival models 423

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived from
asymptotic theory (oim, opg), that are robust to some kinds of misspecification (robust), and that
allow for intragroup correlation (cluster clustvar); see [R] vce option. If vce(robust) is specified,
robust variances are clustered at the highest level in the multilevel model.

� � �
Reporting �

level(#); see [R] Estimation options.

nohr, which may be specified at estimation or upon redisplaying results, specifies that coefficients rather
than exponentiated coefficients be displayed, that is, that coefficients rather than hazard ratios be

displayed. This option affects only how coefficients are displayed, not how they are estimated.

This option is valid only for the exponential and Weibull models because they have a natural

proportional-hazards parameterization. These two models, by default, report hazards ratios (expo-

nentiated coefficients).

tratio specifies that exponentiated coefficients, which are interpreted as time ratios, be displayed.

tratio is appropriate only for the loglogistic, lognormal, and gamma models or for the exponen-

tial and Weibull models when fit in the accelerated failure-time metric.

tratio may be specified at estimation or upon replay.

noshow prevents mestreg from showing the key st variables. This option is rarely used because most

users type stset, show or stset, noshow to set once and for all whether they want to see these

variables mentioned at the top of the output of every st command; see [ST] stset.

nocnsreport; see [R] Estimation options.

notable suppresses the estimation table, either at estimation or upon replay.

noheader suppresses the output header, either at estimation or upon replay.

nogroup suppresses the display of group summary information (number of groups, average group size,
minimum, and maximum) from the output header.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] Estimation options.
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� � �
Integration �

intmethod(intmethod) specifies the integration method to be used for the random-effects model.

mvaghermite performs mean–variance adaptive Gauss–Hermite quadrature; mcaghermite per-

forms mode-curvature adaptive Gauss–Hermite quadrature; ghermite performs nonadaptive

Gauss–Hermite quadrature; and laplace performs the Laplacian approximation, equivalent to mode-
curvature adaptive Gaussian quadrature with one integration point.

The default integration method is mvaghermite unless a crossed random-effects model is fit, in which
case the default integration method is laplace. The Laplacian approximation has been known to
produce biased parameter estimates; however, the bias tends to be more prominent in the estimates of

the variance components rather than in the estimates of the fixed effects.

For crossed random-effects models, estimation with more than one quadrature point may be pro-

hibitively intensive even for a small number of levels. For this reason, the integration method defaults

to the Laplacian approximation. You may override this behavior by specifying a different integration

method.

intpoints(#) sets the number of integration points for quadrature. The default is intpoints(7),
which means that seven quadrature points are used for each level of random effects. This option is

not allowed with intmethod(laplace).

The more integration points, the more accurate the approximation to the log likelihood. However,

computation time increases as a function of the number of quadrature points raised to a power equaling

the dimension of the random-effects specification. In crossed random-effects models and in models

with many levels or many random coefficients, this increase can be substantial.

� � �
Maximization �

maximize options: difficult, technique(algorithm spec), iterate(#), [no]log, trace,
gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(init specs); see [R] Maximize. Those that require

special mention for mestreg are listed below.

from() accepts a properly labeled vector of initial values or a list of coefficient names with values.
A list of values is not allowed.

The following options are available with mestreg but are not shown in the dialog box:

startvalues(svmethod), startgrid[ (gridspec) ], noestimate, and dnumerical; see [ME]meglm.

collinear, coeflegend; see [R] Estimation options.

Remarks and examples
For a general introduction to me commands, see [ME] me.

Remarks are presented under the following headings:

Introduction
Two-level models
Three-level models
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Introduction
Mixed-effects survival models contain both fixed effects and random effects. In longitudinal data and

panel data, random effects are useful for modeling intracluster correlation; that is, observations in the

same cluster are correlated because they share common cluster-level random effects.

mestreg allows for many levels of random effects. However, for simplicity, we now consider two-

level models, where we have a series of 𝑀 independent clusters and a set of random effects u𝑗 corre-

sponding to those clusters. Two often-used models for adjusting survivor functions for the effects of

covariates are the accelerated failure-time (AFT) model and the multiplicative or proportional hazards

(PH) model.

In the AFTmodel, the natural logarithm of the survival time, log 𝑡, is expressed as a linear function of
the covariates; when we incorporate random-effects, this yields the model

log𝑡𝑗𝑖 = x𝑗𝑖β + z𝑗𝑖u𝑗 + 𝑣𝑗𝑖

for 𝑗 = 1, . . . , 𝑀 clusters, with cluster 𝑗 consisting of 𝑖 = 1, . . . , 𝑛𝑗 observations. The 1× 𝑝 row vector

x𝑗𝑖 contains the covariates for the fixed effects, with regression coefficients (fixed effects) β.

The 1 × 𝑞 vector z𝑗𝑖 contains the covariates corresponding to the random effects and can be used to

represent both random intercepts and random coefficients. For example, in a random-intercept model,

z𝑗𝑖 is simply the scalar 1. The random effects u𝑗 are 𝑀 realizations from a multivariate normal dis-

tribution with mean 0 and 𝑞 × 𝑞 variance matrix 𝚺. The random effects are not directly estimated as

model parameters but are instead summarized according to the unique elements of 𝚺, known as variance

components.

Finally, 𝑣𝑗𝑖 are the observation-level errors with density 𝜑(⋅). The distributional form of the error

term determines the regression model. Five regression models are implemented in mestreg using the
AFT parameterization: exponential, gamma, loglogistic, lognormal, and Weibull. The lognormal regres-

sion model is obtained by letting 𝜑(⋅) be the normal density. Similarly, by letting 𝜑(⋅) be the logistic
density, one obtains the loglogistic regression. Setting 𝜑(⋅) equal to the extreme-value density yields the
exponential and the Weibull regression models.

In the PH models fit by mestreg, the covariates have a multiplicative effect on the hazard function

ℎ(𝑡𝑗𝑖) = ℎ0(𝑡𝑗𝑖) exp(x𝑗𝑖β + z𝑗𝑖u𝑗)

for some baseline hazard function ℎ0(𝑡). For the mestreg command, ℎ0(𝑡) is assumed to be parametric.
The exponential and Weibull models are implemented in mestreg for the PH parameterization. These

two models are implemented using both the AFT and PH parameterizations.

mestreg is suitable only for data that have been stset. By using stset on your data, you define
the variables t0, t, and d, which serve as the trivariate response variable (𝑡0, 𝑡, 𝑑). Each response
corresponds to a period under observation, (𝑡0, 𝑡], resulting in either failure (𝑑 = 1) or right-censoring

(𝑑 = 0) at time 𝑡.
mestreg does not allow delayed entry or gaps. However, mestreg is appropriate for data exhibiting

multiple records per subject and time-varying covariates. mestreg requires subjects to be nested within
clusters.

stsetweights are not used; instead, weights must be specified at estimation. Weights are not allowed

with crossed models or the Laplacian approximation. See Survey estimation in Methods and formulas

for details.
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Two-level models

Example 1: Two-level random-intercept PH model
In example 11 of [ST] streg, we fit a Weibull model with an inverse-Gaussian shared frailty to the

recurrence times for catheter-insertion point infection for 38 kidney dialysis patients. In this example,

the subjects are the catheter insertions, not the patients themselves. This is a function of how the data were

recorded—the onset of risk occurs at the time the catheter is inserted and not, say, at the time of admission

of the patient into the study. Thus we have two subjects (insertions) within each group (patient). Each

catheter insertion results in either infection (infect==1) or right-censoring (infect==0). The stset
results are shown below.

. use https://www.stata-press.com/data/r19/catheter
(Kidney data, McGilchrist and Aisbett, Biometrics, 1991)
. stset
-> stset time, failure(infect)
Survival-time data settings

Failure event: infect!=0 & infect<.
Observed time interval: (0, time]

Exit on or before: failure

76 total observations
0 exclusions

76 observations remaining, representing
58 failures in single-record/single-failure data

7,424 total analysis time at risk and under observation
At risk from t = 0

Earliest observed entry t = 0
Last observed exit t = 562

While it is reasonable to assume independence of patients, we would not want to assume that recur-

rence times within each patient are independent. The model used in [ST] streg allowed us to model the

correlation by assuming that it was the result of a latent patient-level effect, or frailty.

The random-effects approach used by mestreg is more flexible because it allows you to experiment
with several levels of random effects, including random coefficients, or both. You can then choose the

model that best suits your data. Herewe use mestreg to fit a random-effectsWeibull model with normally

distributed random effects. This model can be viewed as a shared frailty model with lognormal frailty.
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. mestreg age female || patient:, distribution(weibull)
Failure _d: infect

Analysis time _t: time
Fitting fixed-effects model:
Iteration 0: Log likelihood = -1700989.9
Iteration 1: Log likelihood = -440.1998
Iteration 2: Log likelihood = -336.62162
Iteration 3: Log likelihood = -334.64937
Iteration 4: Log likelihood = -334.57959
Iteration 5: Log likelihood = -334.57944
Iteration 6: Log likelihood = -334.57944
Refining starting values:
Grid node 0: Log likelihood = -336.03604
Fitting full model:
Iteration 0: Log likelihood = -336.03604 (not concave)
Iteration 1: Log likelihood = -333.14043
Iteration 2: Log likelihood = -330.40952
Iteration 3: Log likelihood = -329.89242
Iteration 4: Log likelihood = -329.87847
Iteration 5: Log likelihood = -329.87832
Iteration 6: Log likelihood = -329.87832
Mixed-effects Weibull PH regression Number of obs = 76
Group variable: patient Number of groups = 38

Obs per group:
min = 2
avg = 2.0
max = 2

Integration method: mvaghermite Integration pts. = 7
Wald chi2(2) = 10.12

Log likelihood = -329.87832 Prob > chi2 = 0.0063

_t Haz. ratio Std. err. z P>|z| [95% conf. interval]

age 1.007348 .013788 0.53 0.593 .9806828 1.034737
female .1904727 .099992 -3.16 0.002 .0680737 .5329493
_cons .0072901 .0072274 -4.96 0.000 .0010444 .0508881

/ln_p .2243233 .1402795 -.0506195 .4992661

patient
var(_cons) .8308495 .4978425 .256735 2.688808

Note: Estimates are transformed only in the first equation to hazard ratios.
Note: _cons estimates baseline hazard (conditional on zero random effects).
LR test vs. Weibull model: chibar2(01) = 9.40 Prob >= chibar2 = 0.0011

The results are similar to those in [ST] streg. The likelihood-ratio test compares the random-effects

model with a survival model with fixed-effects only. The results support the random-effects model.

By default, when fitting a model with the PH parameterization, mestreg displays exponentiated coef-
ficients, labeled as hazard ratios. These hazard ratios should be interpreted as “conditional hazard ratios”,

that is, conditional on the random effects.

For example, the hazard ratio for age is 1.01. This means that according to the model, for a given
patient, the hazard would increase 1% with each year of age. However, at the population level, marginal

hazards corresponding to different levels of the covariates are not necessarily proportional. Example 5

in [ME] mestreg postestimation illustrates this point with simulated data.
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The exponentiated coefficients of covariates that usually remain constant within a group do not have

a natural interpretation as conditional hazard ratios. However, the magnitude of the exponentiated coef-

ficients always gives an idea of the effect of the covariates. In this example, female is constant within
the group. The estimated hazard ratio for female is 0.19, which indicates that hazard functions for fe-
males tend to be smaller than hazard functions for males. Both conditional and unconditional predictions

can be obtained with predict. Unconditional predictions can be visualized by using stcurve. Uncon-
ditional effects can be tested and visualized by using margins and marginsplot. See example 1 in
[ME] mestreg postestimation for an example using predict, margins, and marginsplot.

Example 2: Two-level random-intercept AFT model
Although the PH parameterization is more popular in the literature because the output is easier to

interpret, the AFT parameterization is useful when we need to make comparisons with other models that

have only an AFT parameterization. For example, we might want to compare the Weibull results from

example 1 with the results from a gamma model.

Let’s redisplay the results of a Weibull PH model from example 1 as coefficients:

. mestreg, nohr
Mixed-effects Weibull PH regression Number of obs = 76
Group variable: patient Number of groups = 38

Obs per group:
min = 2
avg = 2.0
max = 2

Integration method: mvaghermite Integration pts. = 7
Wald chi2(2) = 10.12

Log likelihood = -329.87832 Prob > chi2 = 0.0063

_t Coefficient Std. err. z P>|z| [95% conf. interval]

age .0073207 .0136874 0.53 0.593 -.0195062 .0341476
female -1.658247 .5249676 -3.16 0.002 -2.687164 -.629329
_cons -4.921236 .9914009 -4.96 0.000 -6.864346 -2.978126

/ln_p .2243233 .1402795 -.0506195 .4992661

patient
var(_cons) .8308495 .4978425 .256735 2.688808

LR test vs. Weibull model: chibar2(01) = 9.40 Prob >= chibar2 = 0.0011
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We can refit the Weibull model using the AFT parameterization by specifying option time.

. mestreg age female || patient:, distribution(weibull) time
Failure _d: infect

Analysis time _t: time
Fitting fixed-effects model:
Iteration 0: Log likelihood = -346.46486
Iteration 1: Log likelihood = -343.29515
Iteration 2: Log likelihood = -335.0513
Iteration 3: Log likelihood = -334.58308
Iteration 4: Log likelihood = -334.57944
Iteration 5: Log likelihood = -334.57944
Refining starting values:
Grid node 0: Log likelihood = -335.10428
Fitting full model:
Iteration 0: Log likelihood = -335.10428
Iteration 1: Log likelihood = -332.13546
Iteration 2: Log likelihood = -330.01623
Iteration 3: Log likelihood = -329.88013
Iteration 4: Log likelihood = -329.87832
Iteration 5: Log likelihood = -329.87832
Mixed-effects Weibull AFT regression Number of obs = 76
Group variable: patient Number of groups = 38

Obs per group:
min = 2
avg = 2.0
max = 2

Integration method: mvaghermite Integration pts. = 7
Wald chi2(2) = 13.00

Log likelihood = -329.87832 Prob > chi2 = 0.0015

_t Coefficient Std. err. z P>|z| [95% conf. interval]

age -.0058496 .010872 -0.54 0.591 -.0271585 .0154592
female 1.325034 .3719102 3.56 0.000 .596103 2.053964
_cons 3.932346 .5663757 6.94 0.000 2.82227 5.042422

/ln_p .2243237 .1402794 -.0506189 .4992663

patient
var(_cons) .5304902 .2343675 .2231626 1.261053

LR test vs. Weibull model: chibar2(01) = 9.40 Prob >= chibar2 = 0.0011

The estimates of coefficients and variance components are different between the two models. In

fact, the coefficients have the opposite signs. This is expected because the two models have different

parameterizations. The relationship between the coefficients and variances of the two parameterizations

for the Weibull model is

𝛽PH = −𝑝 × 𝛽AFT

varPH = 𝑝2 × varAFT

where 𝑝 denotes the ancillary parameter. It is estimated in the logarithmic metric and is displayed in the
output as /ln p.
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For example, we could calculate 𝛽PH for female as approximately − exp(0.22) × 1.33 = −1.66.

If we exponentiate this to obtain the hazard ratio that was reported in example 1, we obtain the same

reported result, 0.19.

For a discussion of the differences between the PH and AFT parameterizations, see, for example,

Cleves, Gould, and Marchenko (2016).

Now, we can compare the results from our Weibull specification with the results from a gamma spec-

ification.

. mestreg age female || patient:, distribution(gamma)
Failure _d: infect

Analysis time _t: time
Fitting fixed-effects model:
Iteration 0: Log likelihood = -351.17349
Iteration 1: Log likelihood = -337.04571
Iteration 2: Log likelihood = -335.10167
Iteration 3: Log likelihood = -335.09115
Iteration 4: Log likelihood = -335.09115
Refining starting values:
Grid node 0: Log likelihood = -334.49759
Fitting full model:
Iteration 0: Log likelihood = -334.49759
Iteration 1: Log likelihood = -331.87827
Iteration 2: Log likelihood = -329.64795
Iteration 3: Log likelihood = -329.52682
Iteration 4: Log likelihood = -329.52635
Iteration 5: Log likelihood = -329.52634
Mixed-effects gamma AFT regression Number of obs = 76
Group variable: patient Number of groups = 38

Obs per group:
min = 2
avg = 2.0
max = 2

Integration method: mvaghermite Integration pts. = 7
Wald chi2(2) = 13.23

Log likelihood = -329.52634 Prob > chi2 = 0.0013

_t Coefficient Std. err. z P>|z| [95% conf. interval]

age -.0060276 .0108267 -0.56 0.578 -.0272475 .0151924
female 1.324745 .3685132 3.59 0.000 .6024726 2.047018
_cons 3.873854 .5628993 6.88 0.000 2.770592 4.977117

/logs -.1835075 .1008892 -.3812467 .0142317

patient
var(_cons) .5071823 .2241959 .213254 1.206232

LR test vs. gamma model: chibar2(01) = 11.13 Prob >= chibar2 = 0.0004

The coefficients and the random-effects variance are very similar for the two AFT models.
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We can compare the marginal distributions or hazard functions for the two models by using stcurve;
see example 2 in [ME] mestreg postestimation.

Example 3: Two-level random-slope model
In this example, we use a modified form of the dataset from Rabe-Hesketh and Skrondal (2022,

sec. 15.7), previously published in Danahy et al. (1977) and analyzed by Pickles and Crouchley (1994,

1995) and Rabe-Hesketh, Skrondal, and Pickles (2004).

angina.dta includes data on 21 patients with coronary heart disease who participated in a random-
ized crossover trial comparing a drug to prevent angina (chest pain) with a placebo. The participants are

identified by pid.

Before receiving the drug (or placebo), participants were asked to exercise on exercise bikes to the

onset of angina or, if angina did not occur, to exhaustion. The exercise time, seconds, and the result
of the exercise, angina—angina (angina=1) or exhaustion (angina=0)—were recorded. The drug

(treat=1) or placebo (treat=0) was then taken orally, and the exercise test was repeated one, three,
and five hours (variable occasion) after drug or placebo administration. Because each exercise test can
have a failure (the occurrence of angina), the test is the subject. Each test is identified by tid. Failure is
indicated by the variable angina. In this case, we have eight repeated measures per study participant.

Before fitting the model, we stset our data:

. use https://www.stata-press.com/data/r19/angina
(Angina drug data, Rabe-Hesketh and Skrondal (2021, ch. 15.7))
. stset seconds, failure(angina) id(tid)
Survival-time data settings

ID variable: tid
Failure event: angina!=0 & angina<.

Observed time interval: (seconds[_n-1], seconds]
Exit on or before: failure

168 total observations
0 exclusions

168 observations remaining, representing
168 subjects
155 failures in single-failure-per-subject data

47,267 total analysis time at risk and under observation
At risk from t = 0

Earliest observed entry t = 0
Last observed exit t = 743

To reiterate, we specify seconds as the time variable, angina as the failure variable, and tid as the

variable identifying multiple observations per test.

Rabe-Hesketh and Skrondal (2022) apply several models to this dataset, including a lognormal model

and a Cox model with random effects. We fit a Weibull model with covariates occasion and treat and
interaction between occasion and treat. We include a random effect at the subject level.
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. mestreg occasion##treat || pid:, distribution(weibull) nofvlabel
Failure _d: angina

Analysis time _t: seconds
ID variable: tid

note: 1.occasion#1.treat identifies no observations in the sample.
note: 4.occasion#1.treat omitted because of collinearity.
(output omitted )

Mixed-effects Weibull PH regression Number of obs = 168
Group variable: pid Number of groups = 21

Obs per group:
min = 8
avg = 8.0
max = 8

Integration method: mvaghermite Integration pts. = 7
Wald chi2(6) = 78.14

Log likelihood = -885.67135 Prob > chi2 = 0.0000

_t Haz. ratio Std. err. z P>|z| [95% conf. interval]

occasion
2 .719456 .2031744 -1.17 0.244 .4136423 1.251364
3 .902988 .2542476 -0.36 0.717 .5200146 1.568009
4 1.264262 .3516347 0.84 0.399 .7329746 2.180648

1.treat .3825531 .128784 -2.85 0.004 .1977608 .7400195

occasion#
treat
1 1 1 (empty)
2 1 .1576401 .0804767 -3.62 0.000 .0579589 .4287586
3 1 .4512793 .2127706 -1.69 0.091 .1791093 1.137032
4 1 1 (omitted)

_cons 4.90e-13 9.98e-13 -13.91 0.000 9.03e-15 2.66e-11

/ln_p 1.640297 .0689544 1.505149 1.775445

pid
var(_cons) 4.529641 1.544175 2.322124 8.835725

Note: Estimates are transformed only in the first equation to hazard ratios.
Note: _cons estimates baseline hazard (conditional on zero random effects).
LR test vs. Weibull model: chibar2(01) = 177.40 Prob >= chibar2 = 0.0000

Because individuals were exercising without the administration of a placebo or treatment at the first

occasion (occasion==1), the category for interaction between occasion==1 and treat==1 is empty.

The estimated variance at the individual level (that is, the variance between individuals) is equal to

4.53. The likelihood-ratio test shows evidence in favor of the random-effects model versus the fixed-

effects model.

The parameter 𝑝 is exp(1.640297) = 5.16, which is larger than 1. This means that the estimated

hazard (conditional on the covariates and on the random effects) is a monotonically increasing function

if we assume a Weibull distribution.
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The model contains interaction terms for occasion and treat. Interpretation of interaction terms
is usually less straightforward. Briefly, to interpret the exponentiated coefficients as conditional hazard

ratios, we need to examine all the covariates in the interaction. The hazard function for pid = 𝑗, when
we set occasion = 𝑘 and treat = 𝑙, will be

ℎ(𝑡) = ℎ0(𝑡) × exp(𝛽occ𝑘
+ 𝛽treat𝑙

+ 𝛽occ𝑘×treat𝑙
+ cons + 𝑢𝑗)

where 𝛽occ𝑘
, 𝛽treat𝑙

, and 𝛽occ𝑘×treat𝑙
are, respectively, the coefficients for the dummies for occasion = 𝑘

and treat = 𝑙 and the interaction (occasion = 𝑘 × treatment = 𝑙).
For example, when treat = 0, the hazard function is

ℎ(𝑡|treat = 0, occasion = 𝑘, pid = 𝑗) = ℎ0(𝑡) × exp(𝛽occ𝑘
+ cons + 𝑢𝑗)

where 𝛽occ1
is equal to 0 because occasion = 1 is the base category. This means that for a given pid,

ℎ(𝑡|treat = 0, occ = 𝑘, pid = 𝑗)
ℎ(𝑡|treat = 0, occ = 1, pid = 𝑗)

= exp(𝛽occ𝑘
)

Notice that this is only true within pid, because different participants have different 𝑢𝑗s.

The coefficients have already been exponentiated, so we can see clearly that according to this model,

when there is no treatment, the hazard for occasion 2 is smaller than the hazard for occasion 1. The

increasing ratios indicate that the hazard increases with the occasion. Similar calculations could be per-

formed for other interaction terms.

The easiest way to interpret models with interactions is by using margins and marginsplot, which
allow us to compute and then visualize unconditional predictions and marginal effects. See [R]margins

for more information.

Above we assumed a constant treatment effect for all individuals for each occasion. However, we

may instead believe that the treatment effect varies also with individuals. This can be modeled by

adding a random coefficient for the treatment, i.treat, at the individual level; we also include the

covariance(unstructured) option to estimate a covariance term between the random intercept and

the random slope for 1.treat.
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. mestreg occasion##treat || pid: i.treat, distribution(weibull)
> covariance(unstructured) nofvlabel

Failure _d: angina
Analysis time _t: seconds

ID variable: tid
note: 1.occasion#1.treat identifies no observations in the sample.
note: 4.occasion#1.treat omitted because of collinearity.
(output omitted )

Mixed-effects Weibull PH regression Number of obs = 168
Group variable: pid Number of groups = 21

Obs per group:
min = 8
avg = 8.0
max = 8

Integration method: mvaghermite Integration pts. = 7
Wald chi2(6) = 50.18

Log likelihood = -859.50038 Prob > chi2 = 0.0000

_t Haz. ratio Std. err. z P>|z| [95% conf. interval]

occasion
2 .5993591 .1861745 -1.65 0.099 .3260503 1.101766
3 .8643306 .2560242 -0.49 0.623 .483665 1.544597
4 1.333201 .3843218 1.00 0.318 .7577392 2.345694

1.treat .2147751 .1280091 -2.58 0.010 .0667814 .6907365

occasion#
treat
1 1 1 (empty)
2 1 .1594337 .0885644 -3.31 0.001 .0536714 .4736058
3 1 .4632936 .2273925 -1.57 0.117 .1770402 1.212385
4 1 1 (omitted)

_cons 6.21e-17 1.75e-16 -13.20 0.000 2.44e-19 1.58e-14

/ln_p 1.91931 .0736166 1.775024 2.063596

pid
var(1.treat) 4.682507 1.956897 2.064178 10.62208
var(_cons) 6.939041 2.372975 3.549852 13.56403

pid
cov(1.treat,

_cons) 1.73782 1.313054 1.32 0.186 -.8357182 4.311357

Note: Estimates are transformed only in the first equation to hazard ratios.
Note: _cons estimates baseline hazard (conditional on zero random effects).
LR test vs. Weibull model: chi2(3) = 229.74 Prob > chi2 = 0.0000
Note: LR test is conservative and provided only for reference.



mestreg — Multilevel mixed-effects parametric survival models 435

We obtain somewhat different estimates of hazard ratios, but our inferential conclusions remain the same.

We now observe two variances in the output, the variance for the intercept at the individual level and the

variance for the coefficient for treatment at the individual level. The variance for the intercept is smaller

because some of the variability is now explained by varying coefficients for treatment. The covariance

is positive, meaning that the random slope tends to be larger for individuals who have a larger random

intercept. See example 4 in [ME]mestreg postestimation for an application of predict that presents a
graphical analysis of this relationship.

Three-level models

Example 4: Three-level random-slope model
Blossfeld, Golsch, and Rohwer (2007) analyze a dataset based on the German Life History Study

of Mayer and Brückner (1989), collected in the years 1981–1983. (This dataset is also available in

Blossfeld, Rohwer, and Schneider (2019), a second edition of the 2007 reference.) The jobhistory
dataset contains a modified version of Blossfeld, Golsch, and Rohwer’s anonymization of a random

sample of 201 respondents from the original data. Each of the 600 observations in the dataset corresponds

to a job episode. Variable id contains identification of the individual, tstart contains the starting point
of the job (in months from the beginning of the century), tend is the end of the job episode, and failure
indicates whether the date in tend corresponds to the actual end of the employment in a certain job or
whether it is a censored observation.

We first stset the data. As explained in Cleves (1999) and Therneau and Grambsch (2000), when
analyzing multiple-failure data, we can consider two main approaches. One approach is to define the

study time from the first time that an individual starts being at risk. The second approach is to define the

study time from the last failure. We will take the second approach, which means that we treat each job

episode as the subject.

Therefore, the origin is defined as the start of each job episode, and the study time will be the time

from the start of each episode until the jobs end or the episode is censored.

. use https://www.stata-press.com/data/r19/jobhistory
(Job history data, Event History Analysis with Stata, Blossfeld et al. 2007)
. stset tend, origin(tstart) failure(failure)
Survival-time data settings

Failure event: failure!=0 & failure<.
Observed time interval: (origin, tend]

Exit on or before: failure
Time for analysis: (time-origin)

Origin: time tstart

600 total observations
0 exclusions

600 observations remaining, representing
458 failures in single-record/single-failure data

40,782 total analysis time at risk and under observation
At risk from t = 0

Earliest observed entry t = 0
Last observed exit t = 428
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We want to fit a Weibull model using the education level, the number of previous jobs, the prestige

of the current job, and gender as explanatory variables. education records the highest education level
before entering the labor market, njobs contains the number of previous jobs for each individual, and
prestige is an index for the prestige of the current job. The birthyear variable indicates the year of
birth. female is 1 for women, 0 for men. To account for individual heterogeneity, we include a random
effect at the individual level.

. mestreg education njobs prestige i.female || id:, distribution(weibull)
Failure _d: failure

Analysis time _t: (tend-origin)
Origin: time tstart

Fitting fixed-effects model:
Iteration 0: Log likelihood = -5736904.5
Iteration 1: Log likelihood = -2664.7487
Iteration 2: Log likelihood = -2484.7829
Iteration 3: Log likelihood = -2477.4358
Iteration 4: Log likelihood = -2477.3338
Iteration 5: Log likelihood = -2477.3337
Refining starting values:
Grid node 0: Log likelihood = -2491.2191
Fitting full model:
Iteration 0: Log likelihood = -2491.2191 (not concave)
Iteration 1: Log likelihood = -2468.3995
Iteration 2: Log likelihood = -2450.0938
Iteration 3: Log likelihood = -2443.0739
Iteration 4: Log likelihood = -2442.875
Iteration 5: Log likelihood = -2442.8747
Iteration 6: Log likelihood = -2442.8746
Mixed-effects Weibull PH regression Number of obs = 600
Group variable: id Number of groups = 201

Obs per group:
min = 1
avg = 3.0
max = 9

Integration method: mvaghermite Integration pts. = 7
Wald chi2(4) = 87.38

Log likelihood = -2442.8746 Prob > chi2 = 0.0000

_t Haz. ratio Std. err. z P>|z| [95% conf. interval]

education 1.11897 .0463468 2.71 0.007 1.031722 1.213597
njobs .7071195 .0357624 -6.85 0.000 .6403884 .7808043

prestige .9677567 .0069576 -4.56 0.000 .9542157 .98149
1.female 1.75651 .3185526 3.11 0.002 1.231063 2.506228

_cons .0053352 .0029015 -9.62 0.000 .0018376 .0154904

/ln_p .1695545 .0453649 .0806409 .2584681

id
var(_cons) 1.016459 .2149037 .671623 1.538347

Note: Estimates are transformed only in the first equation to hazard ratios.
Note: _cons estimates baseline hazard (conditional on zero random effects).
LR test vs. Weibull model: chibar2(01) = 68.92 Prob >= chibar2 = 0.0000

The estimated variance of the random intercept is equal to 1.02.
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According to this model, an increase in the number of previous jobs is negatively associated with job

mobility; the same is true for an increase in the prestige of the current job. By contrast, an increase in

the years of education is positively associated with job mobility. Also, women seem to be more mobile

than men.

We now store our estimates for later use:

. estimates store randint

The dataset has only two natural levels. However, for illustration purposes, let’s consider the following

situation. Assume that we want to account for unobserved variables associated with the date of birth, such

as life experience, level of familiarity with new technologies, and family situation. We therefore add a

random effect for the year of birth. Now, individuals will be nested within birth years.

. mestreg education njobs prestige i.female || birthyear: || id:,
> distribution(weibull)

Failure _d: failure
Analysis time _t: (tend-origin)

Origin: time tstart
(output omitted )

Mixed-effects Weibull PH regression Number of obs = 600
Grouping information

No. of Observations per group
Group variable groups Minimum Average Maximum

birthyear 12 3 50.0 99
id 201 1 3.0 9

Integration method: mvaghermite Integration pts. = 7
Wald chi2(4) = 83.20

Log likelihood = -2439.9066 Prob > chi2 = 0.0000

_t Haz. ratio Std. err. z P>|z| [95% conf. interval]

education 1.120373 .045203 2.82 0.005 1.035189 1.212566
njobs .7181197 .0372039 -6.39 0.000 .6487813 .7948686

prestige .966567 .0069189 -4.75 0.000 .9531009 .9802234
1.female 1.734236 .3022479 3.16 0.002 1.232419 2.440384

_cons .0059091 .0031758 -9.55 0.000 .0020609 .0169429

/ln_p .1685641 .0454824 .0794203 .257708

birthyear
var(_cons) .0950371 .0741445 .0205976 .4385006

birthyear>id
var(_cons) .8728384 .2020938 .5544339 1.374099

Note: Estimates are transformed only in the first equation to hazard ratios.
Note: _cons estimates baseline hazard (conditional on zero random effects).
LR test vs. Weibull model: chi2(2) = 74.85 Prob > chi2 = 0.0000
Note: LR test is conservative and provided only for reference.

The results for the fixed part of the model are similar to the ones in the previous model.

Now, we have two estimated variances—one estimate for the random intercept at the individual level

and one estimate for the random intercept at the birth-year level.
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The variance component for the individual level is smaller for this model, and it looks as if the first

model might have been trying to explain a variance component at the birth-year level by incorporating

it into the individual-level variance. We can perform a likelihood-ratio test to compare the stored model

randint with the current model:

. lrtest randint .
Likelihood-ratio test
Assumption: randint nested within .
LR chi2(1) = 5.94
Prob > chi2 = 0.0148
Note: The reported degrees of freedom assumes the null hypothesis is not on

the boundary of the parameter space. If this is not true, then the
reported test is conservative.

The test is conservative because we are testing on the boundary of the parameter space; see Distribu-

tion theory for likelihood-ratio test in [ME]me for details. Provided that we are testing only one variance

component, we can adjust the 𝑝-value accordingly by dividing the reported value by two, which results
in an adjusted 𝑝-value equal to 0.0074.

The test is significant at the 0.05 level. It supports the three-level model with the additional variance

component at the birth-year level.

Stored results
mestreg stores the following in e():

Scalars

e(N) number of observations

e(k) number of parameters

e(k eq) number of equations in e(b)
e(k eq model) number of equations in overall model test

e(k dv) number of dependent variables

e(k f) number of fixed-effects parameters

e(k r) number of random-effects parameters

e(k rs) number of variances

e(k rc) number of covariances

e(df m) model degrees of freedom

e(ll) log likelihood

e(chi2) 𝜒2

e(p) 𝑝-value for model test
e(ll c) log likelihood, comparison model

e(chi2 c) 𝜒2, comparison test
e(df c) degrees of freedom, comparison test

e(p c) 𝑝-value for comparison test
e(N clust) number of clusters

e(rank) rank of e(V)
e(ic) number of iterations

e(rc) return code

e(converged) 1 if converged, 0 otherwise

Macros

e(cmd) gsem
e(cmd2) mestreg
e(cmdline) command as typed

e(depvar) name of dependent variable

e(wtype) weight type
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e(wexp) weight expression (first-level weights)

e(fweightk) fweight variable for kth highest level, if specified
e(iweightk) iweight variable for kth highest level, if specified
e(pweightk) pweight variable for kth highest level, if specified
e(covariates) list of covariates

e(ivars) grouping variables

e(model) model name

e(title) title in estimation output

e(distribution) distribution

e(clustvar) name of cluster variable

e(offset) offset

e(intmethod) integration method

e(n quad) number of integration points

e(chi2type) Wald; type of model 𝜒2

e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.

e(frm2) hazard or time
e(opt) type of optimization

e(which) max or min; whether optimizer is to perform maximization or minimization

e(ml method) type of ml method
e(user) name of likelihood-evaluator program

e(technique) maximization technique

e(datasignature) the checksum

e(datasignaturevars) variables used in calculation of checksum

e(properties) b V
e(estat cmd) program used to implement estat
e(predict) program used to implement predict
e(marginsnotok) predictions disallowed by margins
e(marginswtype) weight type for margins
e(marginswexp) weight expression for margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices

e(b) coefficient vector

e(Cns) constraints matrix

e(ilog) iteration log (up to 20 iterations)

e(gradient) gradient vector

e(N g) group counts

e(g min) group-size minimums

e(g avg) group-size averages

e(g max) group-size maximums

e(V) variance–covariance matrix of the estimators

e(V modelbased) model-based variance

Functions

e(sample) marks estimation sample

In addition to the above, the following is stored in r():

Matrices

r(table) matrix containing the coefficients with their standard errors, test statistics, 𝑝-values, and
confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when any
r-class command is run after the estimation command.
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Methods and formulas
Methods and formulas are presented under the following headings:

Survival models
Survey data

Survival models
Survival models have a trivariate response (𝑡0, 𝑡, 𝑑):

𝑡0 is the starting time under observation 𝑡0 ≥ 0;
𝑡 is the ending time under observation 𝑡 ≥ 𝑡0; and

𝑑 is an indicator for failure 𝑑 ∈ {0, 1}.
The survival function for a given family is the complement of the cumulative distribution function,

𝑆(𝑡) = 1 − 𝐹(𝑡). The unconditional density for a failure at time 𝑡 is given by

𝑔(𝑡) = 𝜕𝐹(𝑡)
𝜕𝑡

= −𝜕𝑆(𝑡)
𝜕𝑡

Some distributions contain ancillary parameters that are not denoted here.

The conditional density for a failure at time 𝑡 is

𝑔(𝑡|𝑡 ≥ 𝑡0, 𝑑 = 1) = 𝑔(𝑡)/𝑆(𝑡0)

and the conditional probability of survival without failure up to time 𝑡 is

𝑃(𝑇 ≥ 𝑡|𝑡 ≥ 𝑡0, 𝑑 = 0) = 𝑆(𝑡)/𝑆(𝑡0)

The conditional likelihood is given by

𝐿(𝑡, 𝑡0, 𝑑) = { 𝑔(𝑡)
𝑆(𝑡0)

}
𝑑

{ 𝑆(𝑡)
𝑆(𝑡0)

}
1−𝑑

See Survival distributions in [SEM] Methods and formulas for gsem for the specific density function

corresponding to each distribution.

Given a set of cluster-level random effects u𝑗 for 𝑗 = 1, . . . , 𝑀, the conditional distribution of t𝑗 =
(𝑡𝑗1, . . . , 𝑡𝑗𝑛𝑗

)′ on η𝑗 = X𝑗β + Z𝑗u𝑗 = (x𝑗1β + z𝑗𝑖u𝑗, . . . , x𝑗𝑛𝑗
β + z𝑗𝑛𝑗

u𝑗) for cluster 𝑗 is

𝑓(t𝑗|η𝑗) =
𝑛𝑗

∏
𝑖=1

𝑓(𝑡𝑗𝑖|𝜂𝑗𝑖)

where 𝑓(𝑡𝑗𝑖|𝜂𝑗𝑖) is the contribution to the likelihood from observation 𝑗𝑖; that is,

𝑓(𝑡𝑗𝑖|𝜂𝑗𝑖) = {
𝑔(𝑡𝑗𝑖|x𝑗𝑖β + z𝑗𝑖u𝑗)

𝑆(𝑡0𝑗𝑖|x𝑗𝑖β + z𝑗𝑖u𝑗)
}

𝑑𝑗𝑖

{
𝑆(𝑡𝑗𝑖|x𝑗𝑖β + z𝑗𝑖u𝑗)
𝑆(𝑡0𝑗𝑖|x𝑗𝑖β + z𝑗𝑖u𝑗)

}
1−𝑑𝑗𝑖

(1)

where 𝑔(𝑡|𝜂) and 𝑆(𝑡|𝜂) are, respectively, the density and the survivor function conditional on the linear
prediction 𝜂.
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As mentioned in Introduction under Remarks and examples, mestreg does not allow delayed entry

or gaps. Therefore, the first observation for a given subject will have a value of 𝑡0 = 0, and subsequent

spells for the subject must start at the end of the previous spell. That is, if observations 𝑗𝑖 and 𝑗, 𝑖 + 1

belong to the same subject, then 𝑡0𝑗,𝑖+1 = 𝑡𝑗𝑖.

Because the prior distribution of u𝑗 is multivariate normal with mean 0 and 𝑞 × 𝑞 variance matrix
𝚺, the likelihood contribution for the 𝑗th cluster is obtained by integrating u𝑗 out of the joint density

𝑓(t𝑗,u𝑗),

ℒ𝑗(β, 𝚺) = (2𝜋)−𝑞/2 |𝚺|−1/2 ∫ 𝑓(t𝑗|X𝑗β + Z𝑗u𝑗) exp (−u′
𝑗𝚺

−1u𝑗/2) 𝑑u𝑗 (2)

The integration in (2) has no closed form and thus must be approximated; see Methods and formulas in

[ME] meglm for details.

Survey data
In the presence of sampling weights, following Rabe-Hesketh and Skrondal (2006), the weighted log

pseudolikelihood for a two-level model is given as

ℒ(β, 𝚺) =
𝑀

∑
𝑗=1

𝑤𝑗 log∫
∞

−∞
exp{

𝑛𝑗

∑
𝑖=1

𝑤𝑖|𝑗 log𝑓(𝑡𝑗𝑖|𝜂𝑗𝑖)} 𝜙(v𝑗1) 𝑑v𝑗1

where 𝑤𝑗 is the inverse of the probability of selection for the 𝑗th cluster; 𝑤𝑖|𝑗 is the inverse of the condi-

tional probability of selection of individual 𝑖, given the selection of cluster 𝑗; 𝑓(𝑡𝑗𝑖|𝜂𝑗𝑖) is as in (1); and
𝜂𝑗𝑖, 𝜙(⋅), v𝑗1 are defined as in Methods and formulas in [ME] meglm.

Weighted estimation is achieved through the direct application of 𝑤𝑗 and 𝑤𝑖|𝑗 into the likelihood

calculations as detailed above to reflect replicated clusters for 𝑤𝑗 and replicated observations within

clusters for 𝑤𝑖|𝑗. Because this estimation is based on replicated clusters and observations, frequency

weights are handled similarly.
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Postestimation commands predict margins
Remarks and examples Methods and formulas Also see

Postestimation commands
The following postestimation commands are of special interest after mestreg:

Command Description

stcurve plot the survivor, hazard, and cumulative hazard functions

estat group summarize the composition of the nested groups

estat sd display variance components as standard deviations and correlations

The following standard postestimation commands are also available:

Command Description

contrast contrasts and ANOVA-style joint tests of parameters

estat ic Akaike’s, consistent Akaike’s, corrected Akaike’s, and Schwarz’s Bayesian in-
formation criteria (AIC, CAIC, AICc, and BIC, respectively)

estat summarize summary statistics for the estimation sample

estat vce variance–covariance matrix of the estimators (VCE)

estat (svy) postestimation statistics for survey data

estimates cataloging estimation results

etable table of estimation results
∗ hausman Hausman’s specification test

lincom point estimates, standard errors, testing, and inference for linear combinations
of parameters

∗ lrtest likelihood-ratio test

margins marginal means, predictive margins, marginal effects, and average marginal
effects

marginsplot graph the results from margins (profile plots, interaction plots, etc.)

nlcom point estimates, standard errors, testing, and inference for nonlinear combina-
tions of parameters

predict means, medians, hazards, densities, REs, residuals, etc.

predictnl point estimates, standard errors, testing, and inference for generalized predic-
tions

pwcompare pairwise comparisons of parameters

test Wald tests of simple and composite linear hypotheses

testnl Wald tests of nonlinear hypotheses

∗hausman and lrtest are not appropriate with svy estimation results.

443
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predict

Description for predict
predict creates a new variable containing predictions such as mean and median survival times, haz-

ards, survivor functions, linear predictions, and standard errors.

Menu for predict
Statistics > Postestimation

Syntax for predict

Syntax for obtaining predictions of the outcome and other statistics

predict [ type ] { stub* | newvarlist } [ if ] [ in ] [ , statistic options ]

Syntax for obtaining estimated random effects and their standard errors

predict [ type ] { stub* | newvarlist } [ if ] [ in ], reffects [ re options ]

Syntax for obtaining ML scores

predict [ type ] { stub* | newvarlist } [ if ] [ in ], scores

statistic Description

Main

mean mean survival time; the default

median median survival time

hazard hazard

eta fitted linear predictor

xb linear predictor for the fixed portion of the model only

stdp standard error of the fixed-portion linear prediction

surv predicted survivor function

density predicted density function

distribution predicted distribution function

These statistics are available both in and out of sample; type predict ... if e(sample) ... if wanted
only for the estimation sample.
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options Description

Main

conditional(ctype) compute statistic conditional on estimated random effects; default is

conditional(ebmeans)
marginal compute statistic marginally with respect to the random effects

nooffset make calculation ignoring offset or exposure

Integration

int options integration options

median may not be combined with marginal.

ctype Description

ebmeans empirical Bayes means of random effects; the default

ebmodes empirical Bayes modes of random effects

fixedonly prediction for the fixed portion of the model only

re options Description

Main

ebmeans use empirical Bayes means of random effects; the default

ebmodes use empirical Bayes modes of random effects

reses(stub* | newvarlist) calculate standard errors of empirical Bayes estimates

Integration

int options integration options

int options Description

intpoints(#) use # quadrature points to compute marginal predictions and empirical
Bayes means

iterate(#) set maximum number of iterations in computing statistics involving
empirical Bayes estimators

tolerance(#) set convergence tolerance for computing statistics involving empirical
Bayes estimators

Options for predict

� � �
Main �

mean, the default, calculates the mean survival time.

median calculates the median survival time.

hazard calculates the hazard. When marginal is specified, marginal hazard is calculated as a ratio of
the marginal density to the marginal survivor function.

surv calculates the predicted survivor function.

eta, xb, stdp, density, distribution, scores, conditional(), marginal, and nooffset; see
[ME] meglm postestimation. marginal may not be specified with median.

reffects, ebmeans, ebmodes, and reses(); see [ME] meglm postestimation.
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� � �
Integration �

intpoints(), iterate(), and tolerance(); see [ME] meglm postestimation.

margins

Description for margins
margins estimates margins of response for mean and median survival times and linear predictions.

Menu for margins
Statistics > Postestimation

Syntax for margins
margins [marginlist ] [ , options ]
margins [marginlist ] , predict(statistic ...) [ predict(statistic ...) ... ] [ options ]

statistic Description

mean mean survival time; the default

median median survival time

xb linear predictor for the fixed portion of the model only

hazard not allowed with margins
eta not allowed with margins
stdp not allowed with margins
surv not allowed with margins
density not allowed with margins
distribution not allowed with margins
reffects not allowed with margins
scores not allowed with margins

Options conditional(ebmeans) and conditional(ebmodes) are not allowed with margins.
Option marginal is assumed where applicable if conditional(fixedonly) is not specified.

Statistics not allowed with margins are functions of stochastic quantities other than e(b).

For the full syntax, see [R] margins.

Remarks and examples
Various predictions, statistics, and diagnostic measures are available after fitting a mixed-effects para-

metric survival model with mestreg. For the most part, predictions center on obtaining estimates of the
survival times or hazard functions. Conditional predictions are based on the computation of the group-

specific random effects, and marginal predictions are obtained by numerically integrating out the random

effects.
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Example 1 : Predicting conditional and marginal mean survival time
In example 1 of [ME]mestreg, we analyzed the time to infection of the catheter insertion point for 38

kidney dialysis patients. We fit the following model:

. use https://www.stata-press.com/data/r19/catheter
(Kidney data, McGilchrist and Aisbett, Biometrics, 1991)
. stset time, failure(infect)
(output omitted )

. mestreg age female || patient:, distribution(weibull)
(output omitted )

The predict command allows us to compute marginal and conditional predictions. Unless stated

differently, we use the word “conditional” to mean “conditional on the empirical Bayes predictions of

the random effects”. Below we compute marginal and conditional means for the mean survival time.

. predict m_marg, mean marginal

. predict m_cond, mean conditional
(predictions based on fixed effects and posterior means of random effects)
(using 7 quadrature points)

Now, we can display the predictions for some of the patients.

. sort female age patient

. list patient female age m_* in 15/20, sepby(patient)

patient female age m_marg m_cond

15. 29 0 53 52.79355 22.36027
16. 29 0 53 52.79355 22.36027

17. 16 0 60 50.67546 28.01295
18. 16 0 60 50.67546 28.01295

19. 38 0 60 50.67546 49.47013
20. 38 0 60 50.67546 49.47013

We see in the output that the predicted expected conditional mean for patient 29 is equal to 22.36 (shown

in m cond). This is the expected time to infection for this patient. However, the predicted marginal mean
for this patient is 52.79 (shown in m marg). This is the expected time to infection for a patient from the

population who is male and is 53 years old. This particular patient seems to be more prone to infection

than would be expected based on his age and gender.

Conditional predictions are specific to each group, while marginal predictions are the same within

each covariate pattern through the data. Patients 16 and 38 have the same covariate patterns; therefore,

their marginal predicted means are the same. However, conditional predicted means differ.
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margins and marginsplot show the changes in the marginal means for different ages.

. margins, predict(mean marginal) at(female=0 age=(20(5)70)) noatlegend
Adjusted predictions Number of obs = 76
Model VCE: OIM
Expression: Marginal predicted mean, predict(mean marginal)

Delta-method
Margin std. err. z P>|z| [95% conf. interval]

_at
1 64.03481 28.99882 2.21 0.027 7.19816 120.8715
2 62.18903 26.33284 2.36 0.018 10.57761 113.8005
3 60.39646 24.11456 2.50 0.012 13.13279 107.6601
4 58.65556 22.37001 2.62 0.009 14.81116 102.5
5 56.96484 21.11488 2.70 0.007 15.58043 98.34925
6 55.32285 20.34538 2.72 0.007 15.44663 95.19908
7 53.7282 20.03192 2.68 0.007 14.46635 92.99004
8 52.17951 20.12 2.59 0.010 12.74503 91.61398
9 50.67546 20.53852 2.47 0.014 10.42071 90.93021
10 49.21476 21.21134 2.32 0.020 7.64129 90.78823
11 47.79617 22.06715 2.17 0.030 4.545348 91.04698

. marginsplot
Variables that uniquely identify margins: age
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We see that the predicted marginal mean decreases with age; older patients are expected to have an

event earlier. This is consistent with the findings from example 1 of [ME] mestreg that the hazard is

increasing with age.
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Example 2 : Predicting survivor functions
Continuing with example 1, we now predict survivor functions.

. predict S_marg, surv marginal
(using 7 quadrature points)
. predict S_cond, surv conditional
(predictions based on fixed effects and posterior means of random effects)
(using 7 quadrature points)
. sort female age patient _t
. list patient female age _t S_* in 15/20, sepby(patient)

patient female age _t S_marg S_cond

15. 29 0 53 2 .9628581 .9564017
16. 29 0 53 25 .5165027 .3493623

17. 16 0 60 4 .9122225 .9230723
18. 16 0 60 17 .6273606 .6129264

19. 38 0 60 8 .8141544 .9107039
20. 38 0 60 63 .20487 .2900458

Survival predictions vary with the value of the study time variable because they are predictions of

the survivor function at the study time t. For example, patient 29 has a 0.96 probability that a new
insertion remains at least 2 days without infection and a 0.35 probability that a new insertion remains at

least 25 days without infection. For a randomly chosen 53-year-old male patient from the population,

the probabilities to remain at least 2 or 25 days without infection are, respectively, 0.96 and 0.52.

We can use stcurve to plot these predictions simultaneously for males and females of the same age.

. stcurve, surv at1(female=0 age=53) at2(female=1 age=53)
(option unconditional assumed)
note: function evaluated at specified values of selected covariates and

overall means of other covariates (if any).
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We see that the survivor function for females is above the survivor function for males, which means that

females have a greater probability of not having an episode by study time t.

Example 3 : Comparing marginal hazards
In example 2 of [ME]mestreg, we estimated two different distributions with random effects on patient

and covariates age and female. Here we compare the marginal hazards using stcurve. By default,

stcurve plots predictions at the mean of the covariates, computed over the whole estimation sample.
We plot the predictions for female==1.

. mestreg age female || patient:, dist(weibull) time
(output omitted )

. stcurve, hazard at(female=1)
(option unconditional assumed)
note: function evaluated at specified values of selected covariates and

overall means of other covariates (if any).
. graph save g1
file g1.gph saved
. mestreg age female || patient:, dist(gamma)
(output omitted )

. stcurve, hazard at(female=1)
(option unconditional assumed)
note: function evaluated at specified values of selected covariates and

overall means of other covariates (if any).
. graph save g2
file g2.gph saved
. graph combine g1.gph g2.gph

.004

.005

.006

.007

H
az

ar
d 

fu
nc

tio
n

0 200 400 600
Analysis time

Mixed-effects Weibull AFT regression

.003

.004

.005

.006

.007

H
az

ar
d 

fu
nc

tio
n

0 200 400 600
Analysis time

Mixed-effects gamma AFT regression

The two estimated marginal hazards are similar. The marginal hazard has a very different shape from

the conditional hazards. The conditional hazard function for a Weibull or a gamma distribution are both

monotonic (increasing, constant, or decreasing, depending on the parameters).
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Example 4 : Obtaining predictions of random effects
In example 3 of [ME]mestreg, we fit aWeibull model with random intercepts and random coefficients

at the subject level. We obtained a positive covariance between the random effects. We refit the model

here and then use predict with the option reffects to obtain predictions of the random effects based

on the empirical Bayes posterior means.

. use https://www.stata-press.com/data/r19/angina, clear
(Angina drug data, Rabe-Hesketh and Skrondal (2021, ch. 15.7))
. mestreg occasion##treat || pid: i.treat, distribution(weibull)
> covariance(unstructured) nofvlabel
(output omitted )

. predict re*, reffects
(calculating posterior means of random effects)
(using 7 quadrature points)

Plotting the predictions of the predicted random coefficient versus the random intercept shows the

pattern we discussed in the main section: individuals with a larger random slope tend also to have a

larger random intercept.

. twoway scatter re1 re2, ytitle(EB means for random coefficient)
> xtitle(EB means for random intercept)
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Individuals with large random intercepts have individual hazards that are larger than those of other

individuals with the same covariate patterns. Also, individuals with large random coefficients have in-

dividual conditional hazard ratios for treatment that are larger than those of other individuals with the

same covariate pattern.

In other words, if the aim of the treatment is to decrease the hazard, then the positive correlation means

that the treatment tends to be less effective for individuals who have a higher individual hazard (within

the same occasion number).

Example 5 : Conditional and marginal hazards
In example 1 of [ME] mestreg, we mentioned that hazard ratios should be interpreted as conditional

on the random effects. Here we use predict to illustrate this concept. We use a simulated dataset for a

Weibull model with random effects for group and a binary covariate x.
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We show that for a given group, the conditional hazard function satisfies the proportional-hazards

(PH) assumption. That is, for a given group 𝑗,

ℎ(𝑡|x = 1, group = 𝑗) = exp(𝛽𝑥) × ℎ(𝑡|x = 0, group = 𝑗)

is equivalent to

log{ℎ(𝑡|x = 1, group = 𝑗)} = 𝛽𝑥 + log{ℎ(𝑡|x = 0, group = 𝑗)}

This property of the log hazard-function translates to one curve being a shifted version of the other, which

is easier to see than the proportionality of the (untransformed) hazard function.

After fitting the model, we use predict to compute the conditional prediction of the hazard function
for group 1; we create the variables hcond0 and hcond1. hcond0 will contain the conditional hazard for
group 1 when x==0; hcond1 will contain the conditional hazard for group 1 when x==1.

We also create zcond = loghcond0 + 𝛽𝑥. If the PH assumption is satisfied, then the plotted values

of zcond will be superimposed on those of loghcond1.

. use https://www.stata-press.com/data/r19/weibre, clear

. mestreg i.x || group:, distribution(weibull) nolog
Failure _d: 1 (meaning all fail)

Analysis time _t: t
Mixed-effects Weibull PH regression Number of obs = 100,000
Group variable: group Number of groups = 500

Obs per group:
min = 200
avg = 200.0
max = 200

Integration method: mvaghermite Integration pts. = 7
Wald chi2(1) = 21447.86

Log likelihood = 175196.47 Prob > chi2 = 0.0000

_t Haz. ratio Std. err. z P>|z| [95% conf. interval]

1.x 2.713138 .0184908 146.45 0.000 2.677137 2.749622
_cons 2.564135 .0797385 30.28 0.000 2.412518 2.725281

/ln_p -.6925791 .0024746 -.6974291 -.687729

group
var(_cons) .472804 .0303096 .4169789 .536103

Note: Estimates are transformed only in the first equation to hazard ratios.
Note: _cons estimates baseline hazard (conditional on zero random effects).
LR test vs. Weibull model: chibar2(01) = 35800.39 Prob >= chibar2 = 0.0000
. predict hcond, hazard conditional(ebmeans)
(predictions based on fixed effects and posterior means of random effects)
. gen loghcond0 = log(hcond) if x==0
(49,991 missing values generated)
. gen loghcond1 = log(hcond) if x==1
(50,009 missing values generated)
. gen zcond = loghcond0 + _b[_t:1.x]
(49,991 missing values generated)
. sort _t group
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. twoway line loghcond0 loghcond1 zcond _t if group==1
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In the graph above, the line for loghcond1 cannot be distinguished from the line for zcond for most of
the distribution. This illustrates that the PH assumption is satisfied for the conditional hazard. Notice that

you can still see a part of loghcond1 near the origin. This is because the two variables correspond to
different values of t and only loghcond1 happens to be defined at the early values.

Now, we make the same computation for the marginal hazard.

. predict hmarg, hazard marginal

. gen loghmarg0 = log(hmarg) if x==0
(49,991 missing values generated)
. gen loghmarg1 = log(hmarg) if x==1
(50,009 missing values generated)
. gen zmarg = loghmarg0 + _b[_t:1.x]
(49,991 missing values generated)
. sort _t group
. twoway line loghmarg0 loghmarg1 zmarg _t
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The curve for zmarg is clearly different from the curve for loghmarg1, demonstrating that the

marginal distribution does not meet the PH assumption. Notice that the line for loghmarg1 is shorter
than the others. This is because predictions are obtained at the values of t in the dataset. These values
of t were simulated based on the model, which determines that observations with x==1 fail earlier.

Methods and formulas
Methods and formulas for predicting random effects and other statistics are given in Methods and

formulas of [ME]meglm postestimation. Statistics of special interest for survival analysis are described

below.

predict newvar with the conditional() option computes the following predictions:

median:
newvar𝑗𝑖 = {𝑡 ∶ ̂𝑆(𝑡|x𝑗𝑖, 𝑢̂𝑗𝑖) = 1/2}

where ̂𝑆(𝑡|x𝑗𝑖, 𝑢̂𝑗𝑖) is 𝑆(𝑡|x𝑗𝑖β̂ + 𝑢̂𝑗𝑖), where 𝑢̂𝑗𝑖 are the empirical Bayes predictions for 𝑢𝑗𝑖. If

conditional(fixedonly) is specified, then 0 is substituted for 𝑢̂𝑗𝑖.

mean:

newvar𝑗𝑖 = ∫
∞

0

̂𝑆(𝑡|x𝑗𝑖, 𝑢𝑗𝑖)𝑑𝑡

surv:
newvar𝑗𝑖 = ̂𝑆(𝑡𝑗𝑖|x𝑗𝑖, 𝑢̂𝑗𝑖)

hazard:
newvar𝑗𝑖 = ̂𝑔(𝑡𝑗𝑖|x𝑗𝑖, 𝑢̂𝑗𝑖)/ ̂𝑆(𝑡𝑗𝑖|x𝑗𝑖, 𝑢̂𝑗𝑖)

where ̂𝑔(𝑡|x𝑗𝑖, 𝑢𝑗𝑖) is the density 𝑔(𝑡|x𝑗𝑖β̂ + 𝑢̂𝑗𝑖).
When the marginal option is used with mean or surv, the prediction is computed marginally with

respect to the random effects. That is, the prediction is integrated over the random-effects distributions.

When the marginal option is used with hazard, the hazard for the marginal distribution is computed.
That is, the predicted hazard is computed as the quotient of the marginal hazard and the marginal survivor

function.

Also see
[ME] mestreg — Multilevel mixed-effects parametric survival models

[ME] meglm postestimation — Postestimation tools for meglm

[ME] mixed postestimation — Postestimation tools for mixed

[ST] stcurve — Plot the survivor or related function after streg, stcox, and more

[U] 20 Estimation and postestimation commands
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Description Quick start Menu Syntax Options
Remarks and examples Stored results Methods and formulas Also see

Description
metobit fits mixed-effects models for continuous responses where the outcome variable is censored.

Censoring limits may be fixed for all observations or vary across observations.

Quick start
Without weights

Two-level tobit regression of y on x with random intercepts by lev2 where y is censored at a lower limit
of 5

metobit y x || lev2:, ll(5)

Same as above, but specify that left-censoring occurs at 5 and right-censoring occurs at 25

metobit y x || lev2:, ll(5) ul(25)

Same as above, but where lower and upper are variables containing the censoring limits
metobit y x || lev2:, ll(lower) ul(upper)

Mixed-effects model adding random coefficients for x
metobit y x || lev2: x, ll(5)

Three-level random-intercept model of y on x with lev2 nested within lev3
metobit y x || lev3: || lev2:, ll(5)

Crossed-effects model of y on x with two-way crossed random effects by factors a and b
metobit y x || _all:R.a || b:, ll(5)

With weights

Two-level tobit regression of y on x with random intercepts by lev2 and observation-level frequency
weights wvar1

metobit y x [fweight=wvar1] || lev2:, ll(5)

Two-level random-intercept model from a two-stage sampling design with PSUs identified by psu using
PSU-level and observation-level sampling weights wvar2 and wvar1, respectively

metobit y x [pweight=wvar1] || psu:, pweight(wvar2) ll(5)

Same as above, but svyset data first
svyset psu, weight(wvar2) || _n, weight(wvar1)
svy: metobit y x || psu:, ll(5)

455
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Menu
Statistics > Multilevel mixed-effects models > Tobit regression

Syntax
metobit depvar fe equation [ || re equation ] [ || re equation ... ] [ , options ]

where the syntax of fe equation is

[ indepvars ] [ if ] [ in ] [weight ] [ , fe options ]

and the syntax of re equation is one of the following:

for random coefficients and intercepts

levelvar: [ varlist ] [ , re options ]

for random effects among the values of a factor variable in a crossed-effects model

levelvar: R.varname

levelvar is a variable identifying the group structure for the random effects at that level or is all repre-
senting one group comprising all observations.

fe options Description

Model

noconstant suppress constant term from the fixed-effects equation

offset(varname) include varname in model with coefficient constrained to 1

re options Description

Model

covariance(vartype) variance–covariance structure of the random effects

noconstant suppress constant term from the random-effects equation

fweight(varname) frequency weights at higher levels

iweight(varname) importance weights at higher levels

pweight(varname) sampling weights at higher levels
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options Description

Model

ll[ (varname | #) ] left-censoring variable or limit

ul[ (varname | #) ] right-censoring variable or limit

constraints(constraints) apply specified linear constraints

SE/Robust

vce(vcetype) vcetype may be oim, opg, robust, or cluster clustvar

Reporting

level(#) set confidence level; default is level(95)
nocnsreport do not display constraints

notable suppress coefficient table

noheader suppress output header

nogroup suppress table summarizing groups

display options control columns and column formats, row spacing, line width,
display of omitted variables and base and empty cells, and
factor-variable labeling

Integration

intmethod(intmethod) integration method

intpoints(#) set the number of integration (quadrature) points for all levels;
default is intpoints(7)

Maximization

maximize options control the maximization process; seldom used

startvalues(svmethod) method for obtaining starting values

startgrid[ (gridspec) ] perform a grid search to improve starting values

noestimate do not fit the model; show starting values instead

dnumerical use numerical derivative techniques

collinear keep collinear variables

coeflegend display legend instead of statistics

vartype Description

independent one unique variance parameter per random effect and all covariances
0; the default unless the R. notation is used

exchangeable equal variances for random effects and one common pairwise
covariance

identity equal variances for random effects and all covariances 0; the
default if the R. notation is used

unstructured all variances and covariances to be distinctly estimated

fixed(matname) user-selected variances and covariances constrained to specified
values; the remaining variances and covariances unrestricted

pattern(matname) user-selected variances and covariances constrained to be equal;
the remaining variances and covariances unrestricted
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intmethod Description

mvaghermite mean–variance adaptive Gauss–Hermite quadrature; the default
unless a crossed random-effects model is fit

mcaghermite mode-curvature adaptive Gauss–Hermite quadrature

ghermite nonadaptive Gauss–Hermite quadrature

laplace Laplacian approximation; the default for crossed random-effects
models

indepvars and varlist may contain factor variables; see [U] 11.4.3 Factor variables.

depvar, indepvars, and varlist may contain time-series operators; see [U] 11.4.4 Time-series varlists.

bayes, by, collect, and svy are allowed; see [U] 11.1.10 Prefix commands. Formore details, see [BAYES]bayes:metobit.

vce() and weights are not allowed with the svy prefix; see [SVY] svy.
fweights, iweights, and pweights are allowed; see [U] 11.1.6 weight. Only one type of weight may be specified. Weights

are not supported under the Laplacian approximation or for crossed models.

startvalues(), startgrid, noestimate, dnumerical, collinear, and coeflegend do not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options

� � �
Model �

noconstant suppresses the constant (intercept) term and may be specified for the fixed-effects equation

and for any of or all the random-effects equations.

ll[(varname | #)] and ul[(varname | #)] indicate the lower and upper limits for censoring, respec-

tively. Observations with depvar ≤ ll() are left-censored; observations with depvar≥ ul() are

right-censored; and remaining observations are not censored. You do not have to specify the cen-

soring values. If you specify ll, the lower limit is the minimum of depvar. If you specify ul, the
upper limit is the maximum of depvar.

offset(varname) specifies that varname be included in the fixed-effects portion of the model with the

coefficient constrained to be 1.

covariance(vartype) specifies the structure of the covariance matrix for the random effects and may

be specified for each random-effects equation. vartype is one of the following: independent,
exchangeable, identity, unstructured, fixed(matname), or pattern(matname).

covariance(independent) covariance structure allows for a distinct variance for each random

effect within a random-effects equation and assumes that all covariances are 0. The default is

covariance(independent) unless a crossed random-effects model is fit, in which case the de-
fault is covariance(identity).

covariance(exchangeable) structure specifies one common variance for all random effects and

one common pairwise covariance.

covariance(identity) is short for “multiple of the identity”; that is, all variances are equal and all
covariances are 0.

covariance(unstructured) allows for all variances and covariances to be distinct. If an equation
consists of 𝑝 random-effects terms, the unstructured covariance matrix will have 𝑝(𝑝+1)/2 unique
parameters.
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covariance(fixed(matname)) and covariance(pattern(matname)) covariance structures

provide a convenient way to impose constraints on variances and covariances of random effects.

Each specification requires amatname that defines the restrictions placed on variances and covari-

ances. Only elements in the lower triangle of matname are used, and row and column names of

matname are ignored. Amissing value inmatnamemeans that a given element is unrestricted. In a

fixed(matname) covariance structure, (co)variance (𝑖, 𝑗) is constrained to equal the value spec-
ified in the 𝑖, 𝑗th entry of matname. In a pattern(matname) covariance structure, (co)variances
(𝑖, 𝑗) and (𝑘, 𝑙) are constrained to be equal if matname[𝑖, 𝑗] = matname[𝑘, 𝑙].

fweight(varname) specifies frequency weights at higher levels in a multilevel model, whereas fre-

quency weights at the first level (the observation level) are specified in the usual manner, for exam-

ple, [fw=fwtvar1]. varname can be any valid Stata variable name, and you can specify fweight()
at levels two and higher of a multilevel model. For example, in the two-level model

. mecmd fixed_portion [fw = wt1] || school: ... , fweight(wt2) ...

the variable wt1 would hold the first-level (the observation-level) frequency weights, and wt2 would
hold the second-level (the school-level) frequency weights.

iweight(varname) specifies importance weights at higher levels in a multilevel model, whereas impor-
tance weights at the first level (the observation level) are specified in the usual manner, for example,

[iw=iwtvar1]. varname can be any valid Stata variable name, and you can specify iweight() at

levels two and higher of a multilevel model. For example, in the two-level model

. mecmd fixed_portion [iw = wt1] || school: ... , iweight(wt2) ...

the variable wt1would hold the first-level (the observation-level) importance weights, and wt2would
hold the second-level (the school-level) importance weights.

pweight(varname) specifies sampling weights at higher levels in a multilevel model, whereas sam-

pling weights at the first level (the observation level) are specified in the usual manner, for example,

[pw=pwtvar1]. varname can be any valid Stata variable name, and you can specify pweight() at
levels two and higher of a multilevel model. For example, in the two-level model

. mecmd fixed_portion [pw = wt1] || school: ... , pweight(wt2) ...

variable wt1 would hold the first-level (the observation-level) sampling weights, and wt2 would hold
the second-level (the school-level) sampling weights.

constraints(constraints); see [R] Estimation options.

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived from
asymptotic theory (oim, opg), that are robust to some kinds of misspecification (robust), and that
allow for intragroup correlation (cluster clustvar); see [R] vce option. If vce(robust) is specified,
robust variances are clustered at the highest level in the multilevel model.

� � �
Reporting �

level(#), nocnsreport; see [R] Estimation options.

notable suppresses the estimation table, either at estimation or upon replay.

noheader suppresses the output header, either at estimation or upon replay.

nogroup suppresses the display of group summary information (number of groups, average group size,
minimum, and maximum) from the output header.
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display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] Estimation options.

� � �
Integration �

intmethod(intmethod) specifies the integration method to be used for the random-effects model.

mvaghermite performs mean–variance adaptive Gauss–Hermite quadrature; mcaghermite per-

forms mode-curvature adaptive Gauss–Hermite quadrature; ghermite performs nonadaptive

Gauss–Hermite quadrature; and laplace performs the Laplacian approximation, equivalent to mode-
curvature adaptive Gaussian quadrature with one integration point.

The default integration method is mvaghermite unless a crossed random-effects model is fit, in which
case the default integration method is laplace. The Laplacian approximation has been known to
produce biased parameter estimates; however, the bias tends to be more prominent in the estimates of

the variance components rather than in the estimates of the fixed effects.

For crossed random-effects models, estimation with more than one quadrature point may be pro-

hibitively intensive even for a small number of levels. For this reason, the integration method defaults

to the Laplacian approximation. You may override this behavior by specifying a different integration

method.

intpoints(#) sets the number of integration points for quadrature. The default is intpoints(7),
which means that seven quadrature points are used for each level of random effects. This option is

not allowed with intmethod(laplace).

The more integration points, the more accurate the approximation to the log likelihood. However,

computation time increases as a function of the number of quadrature points raised to a power equaling

the dimension of the random-effects specification. In crossed random-effects models and in models

with many levels or many random coefficients, this increase can be substantial.

� � �
Maximization �

maximize options: difficult, technique(algorithm spec), iterate(#), [no]log, trace,
gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(init specs); see [R] Maximize. Those that require

special mention for metobit are listed below.

from() accepts a properly labeled vector of initial values or a list of coefficient names with values.
A list of values is not allowed.

The following options are available with metobit but are not shown in the dialog box:

startvalues(svmethod), startgrid[ (gridspec) ], noestimate, and dnumerical; see [ME]meglm.

collinear, coeflegend; see [R] Estimation options.

Remarks and examples
Mixed-effects tobit regression is tobit regression containing both fixed effects and random effects. In

longitudinal data and panel data, random effects are useful for modeling intracluster correlation; that is,

observations in the same cluster are correlated because they share common cluster-level random effects.
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In a mixed-effects tobit regression, the values of the outcome variable may be observed, unobserved

but known to fall below a given limit (left-censored data), or unobserved but known to fall above a given

limit (right-censored data). That is, the observed data, 𝑦∗
𝑖𝑗, represent possibly censored versions of 𝑦𝑖𝑗

for the 𝑖th observation within the 𝑗th cluster.
The observed outcome is therefore defined as

𝑦∗
𝑖𝑗 =

⎧{
⎨{⎩

𝑦𝑖𝑗 if 𝑎 < 𝑦𝑖𝑗 < 𝑏
𝑎 if 𝑦𝑖𝑗 ≤ 𝑎
𝑏 if 𝑦𝑖𝑗 ≥ 𝑏

where 𝑎 is the lower-censoring limit and 𝑏 is the upper-censoring limit. If the data are uncensored,

𝑦∗
𝑖𝑗 = 𝑦𝑖𝑗, and the value is determined by the value of the outcome variable. If they are left-censored, all

that is known is that 𝑦𝑖𝑗 ≤ 𝑎 and 𝑦∗
𝑖𝑗 is determined by ll(). If they are right-censored, all that is known

is that 𝑦𝑖𝑗 ≥ 𝑏 and 𝑦∗
𝑖𝑗 is determined by ul(). The censoring limits specified in ll() and ul() can be

the same for all observations or can vary from observation to observation.

Regardless of the type of censoring, the expected value of the underlying dependent variable—say,

y—is modeled using the following linear prediction:

𝐸(y|X,u) = Xβ + Zu (1)

X is an 𝑛 × 𝑝 design/covariate matrix, analogous to the covariates you would find in a standard linear

regression model, with regression coefficients (fixed effects) β. Z is the 𝑛 × 𝑞 design/covariate matrix
for the random effects u. This linear prediction also contains the offset when offset() is specified.

The columns of matrix Z are the covariates corresponding to the random effects and can be used to

represent both random intercepts and random coefficients. For example, in a random-intercepts model, Z

is simply the scalar 1. The random effects u are realizations from a multivariate normal distribution with

mean 0 and 𝑞 × 𝑞 variance matrix 𝚺. The random effects are not directly estimated as model parameters

but are instead summarized according to the unique elements of 𝚺, known as variance components. One

special case of (1) places Z = X so that all covariate effects are essentially random and distributed as

multivariate normal with mean β and variance 𝚺.

Belowwe present a short example of mixed-effects tobit regression; refer to [ME]me and [ME]meglm

for additional examples of random-effects models. A two-level tobit model can also be fit using xttobit;
see [XT] xttobit. In the absence of random effects, mixed-effects tobit regression reduces to standard tobit

regression; see [R] tobit.

Example 1: Random-intercept model
We have wage data on young women who were between ages 14 and 24 in 1968 and who were

surveyed over the period 1968–1988; see [XT] xt for a more detailed discussion of the data. We are

interested in the effect of completed years of schooling, current age, union membership, and residence

in the South on wages.

. use https://www.stata-press.com/data/r19/nlswork
(National Longitudinal Survey of Young Women, 14-24 years old in 1968)

We fit a mixed-effects tobit model of the log of inflation-adjusted wages (ln wage). For illustration
purposes, we use the ul() option to impose an artificial upper limit at 1.96, the 75th percentile of the
recorded log wages.
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. metobit ln_wage i.union age south##c.grade || idcode:, ul(1.96)
Fitting fixed-effects model:
Iteration 0: Log likelihood = -11628.188
Iteration 1: Log likelihood = -10617.455
Iteration 2: Log likelihood = -10555.304
Iteration 3: Log likelihood = -10554.78
Iteration 4: Log likelihood = -10554.78
Refining starting values:
Grid node 0: Log likelihood = -10225.917
Fitting full model:
Iteration 0: Log likelihood = -10225.917 (not concave)
Iteration 1: Log likelihood = -8728.9674 (not concave)
Iteration 2: Log likelihood = -7827.6894 (not concave)
Iteration 3: Log likelihood = -7112.0272
Iteration 4: Log likelihood = -6894.0253
Iteration 5: Log likelihood = -6821.7055
Iteration 6: Log likelihood = -6818.5592
Iteration 7: Log likelihood = -6818.5512
Iteration 8: Log likelihood = -6818.5512
Mixed-effects tobit regression Number of obs = 19,224

Uncensored = 13,188
Limits: Lower = -inf Left-censored = 0

Upper = 1.96 Right-censored = 6,036
Group variable: idcode Number of groups = 4,148

Obs per group:
min = 1
avg = 4.6
max = 12

Integration method: mvaghermite Integration pts. = 7
Wald chi2(5) = 2812.43

Log likelihood = -6818.5512 Prob > chi2 = 0.0000

ln_wage Coefficient Std. err. z P>|z| [95% conf. interval]

1.union .1418088 .0068398 20.73 0.000 .1284029 .1552146
age .0107585 .0004068 26.45 0.000 .0099612 .0115559

1.south -.2373995 .048346 -4.91 0.000 -.3321559 -.1426431
grade .0763865 .0029104 26.25 0.000 .0706822 .0820909

south#
c.grade

1 .0099306 .0037452 2.65 0.008 .0025902 .0172709

_cons .4146363 .0396691 10.45 0.000 .3368864 .4923862

idcode
var(_cons) .0985482 .003018 .0928071 .1046444

var(e.ln_w~e) .0619327 .000876 .0602394 .0636736

LR test vs. tobit model: chibar2(01) = 7472.46 Prob >= chibar2 = 0.0000

The estimation table reports the fixed effects, which are interpreted just as you would the output from

tobit, and the estimated variance components. Because the dependent variable is log transformed, the
fixed-effects coefficients can be interpreted in terms of a percent change. For example, we see that on

average, union members make 14.2% more than nonunion members and that each additional year of age

is associated with a 1.1% increase in wages.
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The random-effects equation is labeled idcode. The estimated variance of the subject-specific ran-
dom intercept is 0.099 with standard error 0.003. A likelihood-ratio test comparing the model with a tobit

model without random effects is provided under the table and indicates that the two-level tobit model is

preferred.

Stored results
metobit stores the following in e():

Scalars

e(N) number of observations

e(N unc) number of uncensored observations

e(N lc) number of left-censored observations

e(N rc) number of right-censored observations

e(k) number of parameters

e(k dv) number of dependent variables

e(k eq) number of equations in e(b)
e(k eq model) number of equations in overall model test

e(k f) number of fixed-effects parameters

e(k r) number of random-effects parameters

e(k rs) number of variances

e(k rc) number of covariances

e(df m) model degrees of freedom

e(ll) log likelihood

e(N clust) number of clusters

e(chi2) 𝜒2

e(p) 𝑝-value for model test
e(ll c) log likelihood, comparison model

e(chi2 c) 𝜒2, comparison test
e(df c) degrees of freedom, comparison test

e(p c) 𝑝-value for comparison test
e(rank) rank of e(V)
e(ic) number of iterations

e(rc) return code

e(converged) 1 if converged, 0 otherwise

Macros

e(cmd) meglm
e(cmd2) metobit
e(cmdline) command as typed

e(depvar) names of dependent variables

e(llopt) minimum of depvar or contents of ll()
e(ulopt) maximum of depvar or contents of ul()
e(wtype) weight type

e(wexp) weight expression (first-level weights)

e(fweightk) fweight variable for kth highest level, if specified
e(iweightk) iweight variable for kth highest level, if specified
e(pweightk) pweight variable for kth highest level, if specified
e(covariates) list of covariates

e(ivars) grouping variables

e(model) tobit
e(title) title in estimation output

e(link) identity
e(family) gaussian
e(clustvar) name of cluster variable

e(offset) offset

e(intmethod) integration method
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e(n quad) number of integration points

e(chi2type) Wald; type of model 𝜒2

e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.

e(opt) type of optimization

e(which) max or min; whether optimizer is to perform maximization or minimization

e(ml method) type of ml method
e(user) name of likelihood-evaluator program

e(technique) maximization technique

e(datasignature) the checksum

e(datasignaturevars) variables used in calculation of checksum

e(properties) b V
e(estat cmd) program used to implement estat
e(predict) program used to implement predict
e(marginsnotok) predictions disallowed by margins
e(marginswtype) weight type for margins
e(marginswexp) weight expression for margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices

e(b) coefficient vector

e(Cns) constraints matrix

e(ilog) iteration log (up to 20 iterations)

e(gradient) gradient vector

e(N g) group counts

e(g min) group-size minimums

e(g avg) group-size averages

e(g max) group-size maximums

e(V) variance–covariance matrix of the estimators

e(V modelbased) model-based variance

Functions

e(sample) marks estimation sample

In addition to the above, the following is stored in r():
Matrices

r(table) matrix containing the coefficients with their standard errors, test statistics, 𝑝-values, and
confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when any
r-class command is run after the estimation command.

Methods and formulas
Without a loss of generality, consider a two-level regression model

𝐸(y𝑗|X𝑗,u𝑗) = X𝑗β + Z𝑗u𝑗 y ∼ normal

for 𝑗 = 1, . . . , 𝑀 clusters, with the 𝑗th cluster consisting of 𝑛𝑗 observations, where, for the 𝑗th cluster, y𝑗
is the 𝑛𝑗 ×1 censored response vector, X𝑗 is the 𝑛𝑗 ×𝑝 matrix of fixed predictors, Z𝑗 is the 𝑛𝑗 ×𝑞 matrix
of random predictors, u𝑗 is the 𝑞 × 1 vector of random effects, and β is the 𝑝 × 1 vector of regression

coefficients on the fixed predictors. The random effects, u𝑗, are assumed to be multivariate normal with

mean 0 and variance 𝚺.

Let η𝑗 be the linear predictor, η𝑗 = X𝑗β+Z𝑗u𝑗, that also includes the offset variable when offset()
is specified. 𝑦𝑖𝑗 and 𝜂𝑖𝑗 are the 𝑖th individual elements of y𝑗 and η𝑗, 𝑖 = 1, . . . , 𝑛𝑗. 𝑎𝑖𝑗 refers to the lower

limit for observation 𝑖𝑗, and 𝑏𝑖𝑗 refers to the upper limit for observation 𝑖𝑗. The conditional density
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function for the response at observation 𝑖𝑗 is then

𝑓(𝑦∗
𝑖𝑗|𝜂𝑖𝑗) =

⎧{{
⎨{{⎩

(
√

2𝜋𝜎𝜖)
−1

exp−(𝑦𝑖𝑗−𝜂𝑖𝑗)2/(2𝜎2
𝜖) if 𝑦𝑖𝑗 = 𝑦∗

𝑖𝑗

Φ ( 𝑎𝑖𝑗−𝜂𝑖𝑗
𝜎𝜖

) if 𝑦𝑖𝑗 ≤ 𝑦∗
𝑖𝑗

1 − Φ ( 𝑏𝑖𝑗−𝜂𝑖𝑗
𝜎𝜖

) if 𝑦𝑖𝑗 ≥ 𝑦∗
𝑖𝑗

where Φ(⋅) is the cumulative normal distribution.
Because the observations are assumed to be conditionally independent, the conditional log density

function for cluster 𝑗 is

log𝑓(y∗
𝑗|η𝑗) =

𝑛𝑖

∑
𝑗=1

log𝑓(𝑦∗
𝑖𝑗|𝜂𝑖𝑗)

and the likelihood function for cluster 𝑗 is given by

ℒ𝑗(β, 𝚺) = (2𝜋)−𝑞/2|𝚺|−1/2 ∫
ℜ𝑞

𝑓(y∗
𝑗|η𝑗) exp(−1

2
u′

𝑗𝚺
−1u𝑗) 𝑑u𝑗

= (2𝜋)−𝑞/2|𝚺|−1/2 ∫
ℜ𝑞

exp{ log𝑓(y∗
𝑗|η𝑗) − 1

2
u′

𝑗𝚺
−1u𝑗} 𝑑u𝑗

(2)

where ℜ denotes the set of values on the real line and ℜ𝑞 is the analog in 𝑞-dimensional space.
The integration in (2) has no closed form and thus must be approximated; see Methods and formulas

in [ME] meglm for details.

metobit supports multilevel weights and survey data; see Methods and formulas in [ME]meglm for

details.

Also see
[ME] metobit postestimation — Postestimation tools for metobit

[ME] meintreg — Multilevel mixed-effects interval regression

[ME] me — Introduction to multilevel mixed-effects models

[BAYES] bayes: metobit — Bayesian multilevel tobit regression

[R] tobit — Tobit regression

[SEM] Intro 5 — Tour of models (Multilevel mixed-effects models)

[SVY] svy estimation — Estimation commands for survey data

[XT] xttobit — Random-effects tobit model

[U] 20 Estimation and postestimation commands
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Postestimation commands predict margins
Remarks and examples Methods and formulas Also see

Postestimation commands
The following postestimation commands are of special interest after metobit:

Command Description

estat group summarize the composition of the nested groups

estat icc estimate intraclass correlations

estat sd display variance components as standard deviations and correlations

The following standard postestimation commands are also available:

Command Description

contrast contrasts and ANOVA-style joint tests of parameters

estat ic Akaike’s, consistent Akaike’s, corrected Akaike’s, and Schwarz’s Bayesian in-
formation criteria (AIC, CAIC, AICc, and BIC, respectively)

estat summarize summary statistics for the estimation sample

estat vce variance–covariance matrix of the estimators (VCE)

estat (svy) postestimation statistics for survey data

estimates cataloging estimation results

etable table of estimation results
∗ hausman Hausman’s specification test

lincom point estimates, standard errors, testing, and inference for linear combinations
of parameters

∗ lrtest likelihood-ratio test

margins marginal means, predictive margins, marginal effects, and average marginal
effects

marginsplot graph the results from margins (profile plots, interaction plots, etc.)

nlcom point estimates, standard errors, testing, and inference for nonlinear combina-
tions of parameters

predict means, probabilities, densities, REs, residuals, etc.

predictnl point estimates, standard errors, testing, and inference for generalized predic-
tions

pwcompare pairwise comparisons of parameters

test Wald tests of simple and composite linear hypotheses

testnl Wald tests of nonlinear hypotheses

∗hausman and lrtest are not appropriate with svy estimation results.

466
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predict

Description for predict
predict creates a new variable containing predictions such as linear predictions, standard errors,

probabilities, and expected values.

Menu for predict
Statistics > Postestimation

Syntax for predict

Syntax for obtaining predictions of the outcome and other statistics

predict [ type ] { stub* | newvarlist } [ if ] [ in ] [ , statistic options ]

Syntax for obtaining estimated random effects and their standard errors

predict [ type ] { stub* | newvarlist } [ if ] [ in ], reffects [ re options ]

Syntax for obtaining ML scores

predict [ type ] { stub* | newvarlist } [ if ] [ in ], scores

statistic Description

Main

eta fitted linear predictor; the default

xb linear predictor for the fixed portion of the model only

stdp standard error of the fixed-portion linear prediction

pr(a,b) Pr(𝑎 < 𝑦 < 𝑏)
e(a,b) 𝐸(𝑦 | 𝑎 < 𝑦 < 𝑏)
ystar(a,b) 𝐸(𝑦∗), 𝑦∗ = max{𝑎,min(𝑦, 𝑏)}

These statistics are available both in and out of sample; type predict ... if e(sample) ... if wanted
only for the estimation sample.

where a and b may be numbers or variables; a missing (a ≥ .) means −∞, and b missing (b ≥ .) means
+∞; see [U] 12.2.1 Missing values.
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options Description

Main

conditional(ctype) compute statistic conditional on estimated random effects; default is
conditional(ebmeans)

marginal compute statistic marginally with respect to the random effects

nooffset make calculation ignoring offset or exposure

Integration

int options integration options

ctype Description

ebmeans empirical Bayes means of random effects; the default

ebmodes empirical Bayes modes of random effects

fixedonly prediction for the fixed portion of the model only

re options Description

Main

ebmeans use empirical Bayes means of random effects; the default

ebmodes use empirical Bayes modes of random effects

reses(stub* | newvarlist) calculate standard errors of empirical Bayes estimates

Integration

int options integration options

int options Description

intpoints(#) use # quadrature points to compute marginal predictions and empirical
Bayes means

iterate(#) set maximum number of iterations in computing statistics involving
empirical Bayes estimators

tolerance(#) set convergence tolerance for computing statistics involving empirical
Bayes estimators

Options for predict

� � �
Main �

eta, the default, calculates the fitted linear prediction.

pr(a,b) calculates estimates of Pr(a < 𝑦 < b), which is the probability that 𝑦 would be observed in the
interval (a, b).
a and b may be specified as numbers or variable names; lb and ub are variable names;

pr(20,30) calculates Pr(20 < 𝑦 < 30);
pr(lb,ub) calculates Pr(lb < 𝑦 < ub); and
pr(20,ub) calculates Pr(20 < 𝑦 < ub).
a missing (a ≥ .) means −∞; pr(.,30) calculates Pr(−∞ < 𝑦 < 30);
pr(lb,30) calculates Pr(−∞ < 𝑦 < 30) in observations for which lb ≥ .
(and calculates Pr(𝑙𝑏 < 𝑦 < 30) elsewhere).



metobit postestimation — Postestimation tools for metobit 469

b missing (b ≥ .) means +∞; pr(20,.) calculates Pr(+∞ > 𝑦 > 20);
pr(20,ub) calculates Pr(+∞ > 𝑦 > 20) in observations for which ub ≥ .
(and calculates Pr(20 < 𝑦 < ub) elsewhere).

e(a,b) calculates estimates of 𝐸(𝑦 |a < 𝑦 < b), which is the expected value of 𝑦 conditional on 𝑦 being
in the interval (a, b), meaning that 𝑦 is truncated. a and b are specified as they are for pr().

ystar(a,b) calculates estimates of 𝐸(𝑦∗), where 𝑦∗ = 𝑎 if 𝑦 ≤ 𝑎, 𝑦∗ = 𝑏 if 𝑦 ≥ 𝑏, and 𝑦∗ = 𝑦
otherwise, meaning that 𝑦∗ is the censored version of 𝑦. a and b are specified as they are for pr().

xb, stdp, scores, conditional(), marginal, and nooffset; see [ME] meglm postestimation.

reffects, ebmeans, ebmodes, and reses(); see [ME] meglm postestimation.

� � �
Integration �

intpoints(), iterate(), tolerance(); see [ME] meglm postestimation.

margins

Description for margins
margins estimates margins of response for linear predictions, probabilities, and expected values.

Menu for margins
Statistics > Postestimation

Syntax for margins
margins [marginlist ] [ , options ]
margins [marginlist ] , predict(statistic ...) [ predict(statistic ...) ... ] [ options ]

statistic Description

eta fitted linear predictor; the default

xb linear predictor for the fixed portion of the model only

pr(a,b) Pr(𝑎 < 𝑦 < 𝑏)
e(a,b) 𝐸(𝑦 | 𝑎 < 𝑦 < 𝑏)
ystar(a,b) 𝐸(𝑦∗), 𝑦∗ = max{𝑎,min(𝑦, 𝑏)}
stdp not allowed with margins

Statistics not allowed with margins are functions of stochastic quantities other than e(b).

For the full syntax, see [R] margins.
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Remarks and examples
Various predictions, statistics, and diagnostic measures are available after fitting a mixed-effects tobit

model with metobit.

The predict command allows us to compute marginal and conditional predictions. Unless stated

differently, we use the word “conditional” to mean “conditional on the empirical Bayes predictions of

the random effects.” The default prediction is the linear prediction, eta, which is the expected value of
the unobserved censored variable. Predictions of expected values for censored and truncated versions of

the response are also available.

Example 1: Predicting censored and uncensored means
In example 1 of [ME]metobit, we analyzed wages for a subpopulation from the National Longitudinal

Survey. The dependent variable is the logarithm of wage, and we fit a model that assumes that the data

are right-censored at 1.9.

. use https://www.stata-press.com/data/r19/nlswork3
(National Longitudinal Survey of Young Women, 14-24 years old in 1968)
. metobit ln_wage union age south##c.grade || idcode:, ul(1.9)
(output omitted )

Below, we use predict to predict both the mean for the (unobserved) uncensored variable and the
(censored) observed values. We also manually generate the censored version of ln wage.

. predict uncens_pred, eta marginal
(9310 missing values generated)
. predict cens_pred, ystar(.,1.9) marginal
. generate double ln_wage_cens = min(ln_wage,1.9)
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To see how the two predictions differ, we can plot them side by side against the censored wage

(ln wage cens).

. scatter uncens_pred ln_wage_cens, name(gr1) xsize(4) ysize(4)

. scatter cens_pred ln_wage_cens, name(gr2) xsize(4) ysize(4)

. graph combine gr1 gr2, ycommon
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We see that many of the predictions for the uncensored variable exceed the censoring point, while the

predictions for the censored variable never fall above the upper-censoring limit.

Methods and formulas
Methods and formulas are presented under the following headings:

Introduction
Conditional predictions
Marginal predictions
Marginal variance of the linear predictor

Introduction
This postestimation entry presents the methods and formulas used to calculate the pr(), e(), and

ystar() statistics. See Methods and formulas of [ME] estat icc for a discussion of intraclass corre-

lations. See Methods and formulas of [ME] meglm postestimation for a discussion of the remaining

postestimation features.

Recall that in a two-level model, the linear predictor for any 𝑖th observation in the 𝑗th cluster is defined
as 𝜂𝑖𝑗 = x𝑖𝑗β + z𝑖𝑗u𝑗. Let ℓℓ𝑖𝑗 represent a lower bound for 𝑦𝑖𝑗 and 𝑢ℓ𝑖𝑗 represent an upper bound.
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Conditional predictions
The probability that 𝑦𝑖𝑗| ̂𝜂𝑖𝑗 is observed in the interval (ℓℓ𝑖𝑗, 𝑢ℓ𝑖𝑗)—the pr(𝑎,𝑏) option—is calcu-

lated as

pr(ℓℓ𝑖𝑗, 𝑢ℓ𝑖𝑗) = Pr(ℓℓ𝑖𝑗 < ̂𝜂𝑖𝑗 + 𝜖𝑖𝑗 < 𝑢ℓ𝑖𝑗) = Φ (
𝑢ℓ𝑖𝑗 − ̂𝜂𝑖𝑗

𝜎̂𝜖
) − Φ (

ℓℓ𝑖𝑗 − ̂𝜂𝑖𝑗

𝜎̂𝜖
)

where 𝜎̂𝜖 is the estimated residual standard deviation.

The e(𝑎,𝑏) option computes the expected value of 𝑦𝑖𝑗| ̂𝜂𝑖𝑗 conditional on 𝑦𝑖𝑗| ̂𝜂𝑖𝑗 being in the interval

(ℓℓ𝑖𝑗, 𝑢ℓ𝑖𝑗), that is, when 𝑦𝑖𝑗| ̂𝜂𝑖𝑗 is truncated. The expected value is calculated as

e(ℓℓ𝑖𝑗, 𝑢ℓ𝑖𝑗) = 𝐸( ̂𝜂𝑖𝑗 + 𝜖𝑖𝑗 | ℓℓ𝑖𝑗 < ̂𝜂𝑖𝑗 + 𝜖𝑖𝑗 < 𝑢ℓ𝑖𝑗)

= ̂𝜂𝑖𝑗 − 𝜎̂𝜖

𝜙 ( 𝑢ℓ𝑖𝑗−𝜂̂𝑖𝑗
𝜎̂𝜖

) − 𝜙 ( ℓℓ𝑖𝑗−𝜂̂𝑖𝑗
𝜎̂𝜖

)

Φ ( 𝑢ℓ𝑖𝑗−𝜂̂𝑖𝑗
𝜎̂𝜖

) − Φ ( ℓℓ𝑖𝑗−𝜂̂𝑖𝑗
𝜎̂𝜖

)

where 𝜙 is the normal density and Φ is the cumulative normal distribution.

You can also compute ystar(𝑎, 𝑏)—the expected value of 𝑦𝑖𝑗| ̂𝜂𝑖𝑗, where 𝑦𝑖𝑗 is assumed censored at

ℓℓ𝑖𝑗 and 𝑢ℓ𝑖𝑗:

𝑦∗
𝑖𝑗 =

⎧{
⎨{⎩

ℓℓ𝑖𝑗 if 𝑦𝑖𝑗 ≤ ℓℓ𝑖𝑗
𝜂𝑖𝑗 + 𝜖𝑖𝑗 if ℓℓ𝑖𝑗 < 𝑦𝑖𝑗 < 𝑢ℓ𝑖𝑗
𝑢ℓ𝑖𝑗 if 𝑦𝑖𝑗 ≥ 𝑢ℓ𝑖𝑗

This computation can be expressed in several ways, but the most intuitive formulation involves a

combination of the two statistics just defined:

𝐸(𝑦∗
𝑖𝑗) = pr(−∞, ℓℓ𝑖𝑗)ℓℓ𝑖𝑗 + pr(ℓℓ𝑖𝑗, 𝑢ℓ𝑖𝑗)e(ℓℓ𝑖𝑗, 𝑢ℓ𝑖𝑗) + pr(𝑢ℓ𝑖𝑗, +∞)𝑢ℓ𝑖𝑗

Marginal predictions
When the marginal option is specified, the pr() statistic is calculated as

pr(ℓℓ𝑖𝑗, 𝑢ℓ𝑖𝑗) = Φ (
𝑢ℓ𝑖𝑗 − x𝑖𝑗β̂

̂𝑠𝑖𝑗
) − Φ (

ℓℓ𝑖𝑗 − x𝑖𝑗β̂

̂𝑠𝑖𝑗
)

where ̂𝑠𝑖𝑗 is the square root of the estimated marginal variance of the linear predictor, defined in detail

below.

The marginal e() statistic is calculated as

e(ℓℓ𝑖𝑗, 𝑢ℓ𝑖𝑗) = x𝑖𝑗β̂ − ̂𝑠𝑖𝑗

𝜙 ( 𝑢ℓ𝑖𝑗−x𝑖𝑗β̂
̂𝑠𝑖𝑗

) − 𝜙 ( ℓℓ𝑖𝑗−x𝑖𝑗β̂
̂𝑠𝑖𝑗

)

Φ ( 𝑢ℓ𝑖𝑗−x𝑖𝑗β̂
̂𝑠𝑖𝑗

) − Φ ( ℓℓ𝑖𝑗−x𝑖𝑗β̂
̂𝑠𝑖𝑗

)
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and the marginal ystar() statistic is calculated as above with marginal predictions used in place of the
conditional ones.

Marginal variance of the linear predictor
In a two-level model, the marginal variance for observation 𝑖𝑗 is given by

𝜎2
𝑖𝑗 = 𝜎2

𝜖 + z𝑖𝑗𝚺2z
′
𝑖𝑗

where 𝜎2
𝜖 is the residual variance at level 1 and 𝚺2 is the variance matrix of the random effects at level 2.

The marginal standard deviation is 𝑠𝑖𝑗 = √𝜎2
𝑖𝑗.

In general, for a 𝐺-level random-effects model, the marginal variance for one observation is given by

𝜎2 = 𝜎2
𝜖 +

𝐺
∑
𝑔=2

z𝑔𝚺𝑔z
′
𝑔

where z𝑔 is a row vector of the covariates at level 𝑔 for that observation and 𝚺𝑔 is the variance matrix of

the random effects at level 𝑔.

Also see
[ME] metobit — Multilevel mixed-effects tobit regression

[ME] meglm postestimation — Postestimation tools for meglm

[U] 20 Estimation and postestimation commands



mixed — Multilevel mixed-effects linear regression

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
Acknowledgments References Also see

Description
mixed fits linear mixed-effects models. These models are also known as multilevel models or hier-

archical linear models. The overall error distribution of the linear mixed-effects model is assumed to be

Gaussian, and heteroskedasticity and correlations within lowest-level groups also may be modeled.

Quick start
Linear mixed-effects model of y on x with random intercepts by lev2

mixed y x || lev2:

Same as above, but perform restricted maximum-likelihood (REML) estimation instead of the default

maximum likelihood (ML) estimation

mixed y x || lev2:, reml

Same as above, but perform small-sample inference on x using the Kenward–Roger degrees of freedom
(DF) method

mixed y x || lev2:, reml dfmethod(kroger)

Add random coefficients on x
mixed y x || lev2: x

Same as above, but allow correlation between the random slopes and intercepts

mixed y x || lev2: x, covariance(unstructured)

Three-level model with random intercepts by lev2 and lev3 for lev2 nested within lev3
mixed y x || lev3: || lev2:

Crossed-effects model with two-way crossed effects by factors a and b
mixed y x || _all:R.a || b:

Menu
Statistics > Multilevel mixed-effects models > Linear regression

474
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Syntax
mixed depvar fe equation [ || re equation ] [ || re equation ... ] [ , options ]

where the syntax of fe equation is

[ indepvars ] [ if ] [ in ] [weight ] [ , fe options ]

and the syntax of re equation is one of the following:

for random coefficients and intercepts

levelvar: [ varlist ] [ , re options ]

for random effects among the values of a factor variable in a crossed-effects model

levelvar: R.varname [ , re options ]

levelvar is a variable identifying the group structure for the random effects at that level or is all repre-
senting one group comprising all observations.

fe options Description

Model

noconstant suppress constant term from the fixed-effects equation

constraints(constraints)apply specified linear constraints

re options Description

Model

covariance(vartype) variance–covariance structure of the random effects

noconstant suppress constant term from the random-effects equation

fweight(exp) frequency weights at higher levels

pweight(exp) sampling weights at higher levels

collinear keep collinear variables
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options Description

Model

mle fit model via maximum likelihood; the default

reml fit model via restricted maximum likelihood

dfmethod(df method) specify method for computing DF of a 𝑡 distribution
residuals(restype[ , resopts ]) structure of residual errors

pwscale(scale method) control scaling of sampling weights in two-level models

SE/Robust

vce(vcetype) vcetype may be oim, robust, or cluster clustvar; types other
than oim may not be combined with dfmethod()

Reporting

level(#) set confidence level; default is level(95)
variance show random-effects and residual-error parameter estimates as

variances and covariances; the default

stddeviations show random-effects and residual-error parameter estimates as
standard deviations and correlations

dftable(dftable) specify contents of fixed-effects table; requires dfmethod() at
estimation

noretable suppress random-effects table

nofetable suppress fixed-effects table

estmetric show parameter estimates as stored in e(b)
noheader suppress output header

nogroup suppress table summarizing groups

nostderr do not estimate standard errors of random-effects parameters

nocnsreport do not display constraints

display options control columns and column formats, row spacing, line width,
display of omitted variables and base and empty cells, and
factor-variable labeling

EM options

emiterate(#) number of EM iterations; default is emiterate(20)
emtolerance(#) EM convergence tolerance; default is emtolerance(1e-10)
emonly fit model exclusively using EM

emlog show EM iteration log

emdots show EM iterations as dots

Maximization

maximize options control the maximization process; seldom used

matsqrt parameterize variance components using matrix square roots;
the default

matlog parameterize variance components using matrix logarithms

small replay small-sample inference results

coeflegend display legend instead of statistics
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vartype Description

independent one unique variance parameter per random effect, all covariances 0;
the default unless the R. notation is used

exchangeable equal variances for random effects, and one common pairwise
covariance

identity equal variances for random effects, all covariances 0;
the default if the R. notation is used

unstructured all variances and covariances to be distinctly estimated

df method Description

residual residual degrees of freedom, 𝑛 − rank(𝑋)
repeated repeated-measures ANOVA

anova ANOVA

satterthwaite[ , dfopts ] generalized Satterthwaite approximation; REML estimation only

kroger[ , dfopts ] Kenward–Roger; REML estimation only

restype Description

independent i.i.d. Gaussian within-group errors with one common variance;
the default

exchangeable within-group errors with equal variances and one common
covariance

ar [ # ] within-group errors with autoregressive (AR) structure of order #,
AR(#); ar 1 is implied by ar

ma [ # ] within-group errors with moving-average (MA) structure of order #,
MA(#); ma 1 is implied by ma

unstructured within-group errors with distinct variances and covariances

banded [ # ] within-group errors with distinct variances and covariances within
first # off-diagonals; banded implies all matrix bands
(unstructured)

toeplitz [ # ] within-group errors have Toeplitz structure of order #;
toeplitz implies that all matrix off-diagonals be estimated

exponential within-group errors with an exponential function for the pairwise
correlations and one overall error variance

scale method Description

size scale first-level (observation-level) weights to sum to the sample size
of their corresponding second-level cluster

effective scale first-level weights to sum to the effective sample size of their
corresponding second-level cluster

gk set second-level weights to the cluster averages of the products of
the weights at both levels and first-level weights to 1
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dftable Description

default test statistics, 𝑝-values, and confidence intervals; the default
ci DFs and confidence intervals

pvalue DFs, test statistics, and 𝑝-values

indepvars and varlist may contain factor variables; see [U] 11.4.3 Factor variables.

depvar, indepvars, and varlist may contain time-series operators; see [U] 11.4.4 Time-series varlists.

bayes, bootstrap, by, collect, jackknife, mi estimate, rolling, and statsby are allowed; see [U] 11.1.10 Prefix
commands. For more details, see [BAYES] bayes: mixed.

mi estimate is not allowed if dfmethod() is specified.
Weights are not allowed with the bootstrap prefix; see [R] bootstrap.
pweights and fweights are allowed; see [U] 11.1.6 weight. However, no weights are allowed if either option reml or option

dfmethod() is specified.
small and coeflegend do not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options

� � �
Model �

noconstant suppresses the constant (intercept) term and may be specified for the fixed-effects equation

and for any of or all the random-effects equations.

covariance(vartype) specifies the structure of the covariance matrix for the random effects and may

be specified for each random-effects equation. vartype is one of the following: independent,
exchangeable, identity, or unstructured.

independent allows for a distinct variance for each random effect within a random-effects equation

and assumes that all covariances are 0.

exchangeable specifies one common variance for all random effects and one common pairwise

covariance.

identity is short for “multiple of the identity”; that is, all variances are equal and all covariances
are 0.

unstructured allows for all variances and covariances to be distinct. If an equation consists of 𝑝
random-effects terms, the unstructured covariance matrix will have 𝑝(𝑝+1)/2 unique parameters.

covariance(independent) is the default, except when the R. notation is used, in

which case covariance(identity) is the default and only covariance(identity) and

covariance(exchangeable) are allowed.

fweight(exp) specifies frequency weights at higher levels in a multilevel model, whereas frequency

weights at the first level (the observation level) are specified in the usual manner, for example,

[fw=fwtvar1]. exp can be any valid Stata variable, and you can specify fweight() at levels two

and higher of a multilevel model. For example, in the two-level model

. mixed fixed_portion [fw = wt1] || school: ..., fweight(wt2) ...

the variable wt1 would hold the first-level (the observation-level) frequency weights, and wt2 would
hold the second-level (the school-level) frequency weights.
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pweight(exp) specifies sampling weights at higher levels in a multilevel model, whereas sampling

weights at the first level (the observation level) are specified in the usual manner, for example,

[pw=pwtvar1]. exp can be any valid Stata variable, and you can specify pweight() at levels two
and higher of a multilevel model. For example, in the two-level model

. mixed fixed_portion [pw = wt1] || school: ..., pweight(wt2) ...

variable wt1 would hold the first-level (the observation-level) sampling weights, and wt2 would hold
the second-level (the school-level) sampling weights.

See Survey data in Remarks and examples below for more information regarding the use of sampling

weights in multilevel models.

mle and reml specify the statistical method for fitting the model.

mle, the default, specifies that the model be fit using ML. Options dfmethod(satterthwaite) and
dfmethod(kroger) are not supported under ML estimation.

reml specifies that the model be fit using REML, also known as residual maximum likelihood.

dfmethod(df method) requests that reported hypothesis tests for the fixed effects (coefficients) use a
small-sample adjustment. By default, inference is based on a large-sample approximation of the sam-

pling distributions of the test statistics by normal and 𝜒2 distributions. Caution should be exercised

when choosing a DF method; see Small-sample inference for fixed effects in Remarks and examples

for details.

When dfmethod(df method) is specified, the sampling distributions of the test statistics are approx-
imated by a 𝑡 distribution, according to the requested method for computing the DF. df method is one

of the following: residual, repeated, anova, satterthwaite, or kroger.

residual uses the residual degrees of freedom, 𝑛 − rank(𝑋), as the DF for all tests of fixed effects.
For a linear model without random effects with independent and identically distributed (i.i.d.)

errors, the distributions of the test statistics for fixed effects are 𝑡 distributions with the residual
DF. For other mixed-effects models, this method typically leads to poor approximations of the

actual sampling distributions of the test statistics.

repeated uses the repeated-measures ANOVAmethod for computing the DF. It is used with balanced
repeated-measures designs with spherical correlation error structures. It partitions the residual

degrees of freedom into the between-subject degrees of freedom and the within-subject degrees of

freedom. repeated is supported only with two-level models. For more complex mixed-effects
models or with unbalanced data, this method typically leads to poor approximations of the actual

sampling distributions of the test statistics.

anova uses the traditionalANOVAmethod for computing the DF. According to this method, the DF for
a test of a fixed effect of a given variable depends on whether that variable is also included in any

of the random-effects equations. For traditionalANOVAmodels with balanced designs, this method

provides exact sampling distributions of the test statistics. For more complexmixed-effects models

or with unbalanced data, this method typically leads to poor approximations of the actual sampling

distributions of the test statistics.

satterthwaite[ , dfopts ] implements a generalization of the Satterthwaite (1946) approximation
of the unknown sampling distributions of test statistics for complex linear mixed-effect models.

This method is supported only with REML estimation.
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kroger[ , dfopts ] implements the Kenward and Roger (1997) method, which is designed to approx-
imate unknown sampling distributions of test statistics for complex linear mixed-effects models.

This method is supported only with REML estimation.

dfopts is either eim or oim.

eim specifies that the expected information matrix be used to compute Satterthwaite or Ken-

ward–Roger degrees of freedom. This is the default.

oim specifies that the observed information matrix be used to compute Satterthwaite or Ken-

ward–Roger degrees of freedom.

Residual, repeated, and ANOVAmethods are suitable only when the sampling distributions of the test

statistics are known to be 𝑡 or 𝐹. This is usually only known for certain classes of linear mixed-effects
models with simple covariance structures and when data are balanced. These methods are available

with both ML and REML estimation.

For unbalanced data or balanced data with complicated covariance structures, the sampling distri-

butions of the test statistics are unknown and can only be approximated. The Satterthwaite and

Kenward–Roger methods provide approximations to the distributions in these cases. According

to Schaalje, McBride, and Fellingham (2002), the Kenward–Roger method should, in general, be

preferred to the Satterthwaite method. However, there are situations in which the two methods are

expected to perform similarly, such as with compound symmetry covariance structures. The Ken-

ward–Roger method is more computationally demanding than the Satterthwaite method. Both meth-

ods are available only with REML estimation. See Small-sample inference for fixed effects in Remarks

and examples for examples and more detailed descriptions of the DF methods.

dfmethod() may not be combined with weighted estimation, the mi estimate prefix, or vce(),
unless it is the default vce(oim).

residuals(restype[ , resopts ]) specifies the structure of the residual errors within the lowest-level

groups (the second level of a multilevel model with the observations comprising the first level)

of the linear mixed model. For example, if you are modeling random effects for classes nested

within schools, then residuals() refers to the residual variance–covariance structure of the ob-

servations within classes, the lowest-level groups. restype is one of the following: independent,
exchangeable, ar [ # ], ma [ # ], unstructured, banded [ # ], toeplitz [ # ], or exponential.
independent, the default, specifies that all residuals be i.i.d. Gaussian with one common variance.

When combined with by(varname), independence is still assumed, but you estimate a distinct
variance for each level of varname. Unlike with the structures described below, varname does not

need to be constant within groups.

exchangeable estimates two parameters, one common within-group variance and one common pair-
wise covariance. When combined with by(varname), these two parameters are distinctly esti-
mated for each level of varname. Because you are modeling a within-group covariance, varname

must be constant within lowest-level groups.

ar [ # ] assumes that within-group errors have an autoregressive (AR) structure of order #; ar 1 is the
default. The t(varname) option is required, where varname is an integer-valued time variable used

to order the observations within groups and to determine the lags between successive observations.

Any nonconsecutive time values will be treated as gaps. For this structure, # + 1 parameters are

estimated (# AR coefficients and one overall error variance). restype ar may be combined with

by(varname), but varname must be constant within groups.
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ma [ # ] assumes that within-group errors have a moving-average (MA) structure of order #; ma 1 is the
default. The t(varname) option is required, where varname is an integer-valued time variable used

to order the observations within groups and to determine the lags between successive observations.

Any nonconsecutive time values will be treated as gaps. For this structure, # + 1 parameters are

estimated (# MA coefficients and one overall error variance). restype ma may be combined with
by(varname), but varname must be constant within groups.

unstructured is themost general structure; it estimates distinct variances for eachwithin-group error
and distinct covariances for each within-group error pair. The t(varname) option is required,

where varname is a nonnegative-integer–valued variable that identifies the observations within

each group. The groups may be unbalanced in that not all levels of t() need to be observed within
every group, but you may not have repeated t() values within any particular group. When you

have 𝑝 levels of t(), then 𝑝(𝑝 + 1)/2 parameters are estimated. restype unstructured may be
combined with by(varname), but varname must be constant within groups.

banded [ # ] is a special case of unstructured that restricts estimation to the covariances within the
first # off-diagonals and sets the covariances outside this band to 0. The t(varname) option is

required, where varname is a nonnegative-integer–valued variable that identifies the observations

within each group. # is an integer between 0 and 𝑝 −1, where 𝑝 is the number of levels of t(). By
default, # is 𝑝 − 1; that is, all elements of the covariance matrix are estimated. When # is 0, only

the diagonal elements of the covariance matrix are estimated. restype banded may be combined
with by(varname), but varname must be constant within groups.

toeplitz [ # ] assumes that within-group errors have Toeplitz structure of order #, for which corre-
lations are constant with respect to time lags less than or equal to # and are 0 for lags greater than

#. The t(varname) option is required, where varname is an integer-valued time variable used to

order the observations within groups and to determine the lags between successive observations.

# is an integer between 1 and the maximum observed lag (the default). Any nonconsecutive time

values will be treated as gaps. For this structure, #+1 parameters are estimated (# correlations and

one overall error variance). restype toeplitzmay be combined with by(varname), but varname

must be constant within groups.

exponential is a generalization of the AR covariance model that allows for unequally spaced and

noninteger time values. The t(varname) option is required, where varname is real-valued. For

the exponential covariance model, the correlation between two errors is the parameter 𝜌, raised
to a power equal to the absolute value of the difference between the t() values for those errors.
For this structure, two parameters are estimated (the correlation parameter 𝜌 and one overall error
variance). restype exponential may be combined with by(varname), but varname must be

constant within groups.

resopts are by(varname) and t(varname).

by(varname) is for usewithin the residuals() option and specifies that a set of distinct residual-
error parameters be estimated for each level of varname. In other words, you use by() to model
heteroskedasticity.

t(varname) is for use within the residuals() option to specify a time variable for the ar,
ma, toeplitz, and exponential structures, or to identify the observations when restype is

unstructured or banded.

pwscale(scale method) controls how sampling weights (if specified) are scaled in two-level models.

scale method is one of the following: size, effective, or gk.
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size specifies that first-level (observation-level) weights be scaled so that they sum to the sample size

of their corresponding second-level cluster. Second-level sampling weights are left unchanged.

effective specifies that first-level weights be scaled so that they sum to the effective sample size of

their corresponding second-level cluster. Second-level sampling weights are left unchanged.

gk specifies the Graubard and Korn (1996) method. Under this method, second-level weights are set
to the cluster averages of the products of the weights at both levels, and first-level weights are then

set equal to 1.

pwscale() is supported only with two-level models. See Survey data in Remarks and examples

below for more details on using pwscale(). pwscale()may not be combined with the dfmethod()
option.

constraints(constraints); see [R] Estimation options.

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived from
asymptotic theory (oim), that are robust to some kinds of misspecification (robust), and that allow for

intragroup correlation (cluster clustvar); see [R] vce option. If vce(robust) is specified, robust
variances are clustered at the highest level in the multilevel model.

vce(robust) and vce(cluster clustvar) are not supported with REML estimation. Only vce(oim)
is allowed in combination with dfmethod().

� � �
Reporting �

level(#); see [R] Estimation options.

variance, the default, displays the random-effects and residual-error parameter estimates as variances
and covariances.

stddeviations displays the random-effects and residual-error parameter estimates as standard devia-
tions and correlations.

dftable(dftable) specifies the contents of the fixed-effects table for small-sample inference when

dfmethod() is used during estimation. dftable is one of the following: default, ci, or pvalue.

default displays the default standard fixed-effects table that contains test statistics, 𝑝-values, and
confidence intervals.

ci displays the fixed-effects table in which the columns containing statistics and 𝑝-values are replaced
with a column containing coefficient-specific DFs. Confidence intervals are also displayed.

pvalue displays the fixed-effects table that includes a column containing DFs with the standard

columns containing test statistics and 𝑝-values. Confidence intervals are not displayed.
noretable suppresses the random-effects table from the output.

nofetable suppresses the fixed-effects table from the output.

estmetric displays all parameter estimates in one table using the metric in which they are stored in

e(b). The results are stored in the same metric regardless of the parameterization of the variance
components, matsqrt or matlog, used at estimation time. Random-effects parameter estimates are
stored as log standard-deviations and hyperbolic arctangents of correlations, with equation names

that organize them by model level. Residual-variance parameter estimates are stored as log standard-

deviations and, when applicable, as hyperbolic arctangents of correlations. Note that fixed-effects

estimates are always stored and displayed in the same metric.
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noheader suppresses the output header, either at estimation or upon replay.

nogroup suppresses the display of group summary information (number of groups, average group size,
minimum, and maximum) from the output header.

nostderr prevents mixed from calculating standard errors for the estimated random-effects parameters,

although standard errors are still provided for the fixed-effects parameters. Specifying this option will

speed up computation times. nostderr is available only when residuals are modeled as independent
with constant variance.

nocnsreport; see [R] Estimation options.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] Estimation options.

� � �
EM options �

These options control the expectation-maximization (EM) iterations that take place before estimation

switches to a gradient-basedmethod. When residuals are modeled as independent with constant variance,

EM will either converge to the solution or bring parameter estimates close to the solution. For other

residual structures or for weighted estimation, EM is used to obtain starting values.

emiterate(#) specifies the number of EM iterations to perform. The default is emiterate(20).

emtolerance(#) specifies the convergence tolerance for the EM algorithm. The default is

emtolerance(1e-10). EM iterations will be halted once the log (restricted) likelihood changes

by a relative amount less than #. At that point, optimization switches to a gradient-based method,

unless emonly is specified, in which case maximization stops.

emonly specifies that the likelihood be maximized exclusively using EM. The advantage of specify-

ing emonly is that EM iterations are typically much faster than those for gradient-based methods.

The disadvantages are that EM iterations can be slow to converge (if at all) and that EM provides

no facility for estimating standard errors for the random-effects parameters. emonly is available
only with unweighted estimation and when residuals are modeled as independent with constant

variance.

emlog specifies that the EM iteration log be shown. The EM iteration log is, by default, not displayed

unless the emonly option is specified.

emdots specifies that the EM iterations be shown as dots. This option can be convenient because the

EM algorithm may require many iterations to converge.

� � �
Maximization �

maximize options: difficult, technique(algorithm spec), iterate(#), [no]log, trace,
gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), and nonrtolerance; see [R] Maximize. Those that require special mention for

mixed are listed below.

For the technique() option, the default is technique(nr). The bhhh algorithm may not be speci-

fied.

matsqrt (the default), during optimization, parameterizes variance components by using the matrix

square roots of the variance–covariance matrices formed by these components at each model level.

matlog, during optimization, parameterizes variance components by using the matrix logarithms of the
variance–covariance matrices formed by these components at each model level.
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The matsqrt parameterization ensures that variance–covariance matrices are positive semidefinite,
while matlog ensures matrices that are positive definite. For most problems, the matrix square root is
more stable near the boundary of the parameter space. However, if convergence is problematic, one

option may be to try the alternate matlog parameterization. When convergence is not an issue, both

parameterizations yield equivalent results.

The following options are available with mixed but are not shown in the dialog box:

small replays previously obtained small-sample results. This option is available only upon replay

and requires that the dfmethod() option be used during estimation. small is equivalent to

dftable(default) upon replay.

collinear specifies that mixed not omit collinear variables from the random-effects equation. Usually,

there is no reason to leave collinear variables in place; in fact, doing so usually causes the estimation

to fail because of the matrix singularity caused by the collinearity. However, with certain models

(for example, a random-effects model with a full set of contrasts), the variables may be collinear, yet

the model is fully identified because of restrictions on the random-effects covariance structure. In

such cases, using the collinear option allows the estimation to take place with the random-effects
equation intact.

coeflegend; see [R] Estimation options.

Remarks and examples
Remarks are presented under the following headings:

Introduction
Two-level models
Covariance structures
Likelihood versus restricted likelihood
Three-level models
Blocked-diagonal covariance structures
Heteroskedastic random effects
Heteroskedastic residual errors
Other residual-error structures
Crossed-effects models
Diagnosing convergence problems
Survey data
Small-sample inference for fixed effects

Introduction
Linear mixed models are models containing both fixed effects and random effects. They are a gener-

alization of linear regression allowing for the inclusion of random deviations (effects) other than those

associated with the overall error term. In matrix notation,

y = Xβ + Zu + ε (1)

where y is the 𝑛×1 vector of responses, X is an 𝑛×𝑝 design/covariate matrix for the fixed effects β, and
Z is the 𝑛 × 𝑞 design/covariate matrix for the random effects u. The 𝑛 × 1 vector of errors ε is assumed
to be multivariate normal with mean 0 and variance matrix 𝜎2

𝜖R.
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The fixed portion of (1), Xβ, is analogous to the linear predictor from a standard OLS regression

model with β being the regression coefficients to be estimated. For the random portion of (1), Zu + ε,
we assume that u has variance–covariance matrix G and that u is orthogonal to ε so that

Var [u
ε
] = [G 0

0 𝜎2
𝜖R

]

The random effects u are not directly estimated (although they may be predicted), but instead are char-

acterized by the elements ofG, known as variance components, that are estimated along with the overall

residual variance 𝜎2
𝜖 and the residual-variance parameters that are contained within R.

The general forms of the design matrices X and Z allow estimation for a broad class of linear models:

blocked designs, split-plot designs, growth curves, multilevel or hierarchical designs, etc. They also

allow a flexible method of modeling within-cluster correlation. Subjects within the same cluster can

be correlated as a result of a shared random intercept, or through a shared random slope on (say) age,

or both. The general specification of G also provides additional flexibility—the random intercept and

random slope could themselves be modeled as independent, or correlated, or independent with equal

variances, and so forth. The general structure of R also allows for residual errors to be heteroskedastic

and correlated, and allows flexibility in exactly how these characteristics can be modeled.

Comprehensive treatments of mixed models are provided by, among others, Searle, Casella, and Mc-

Culloch (1992); McCulloch, Searle, and Neuhaus (2008); Verbeke and Molenberghs (2000); Rauden-

bush and Bryk (2002); and Pinheiro and Bates (2000). In particular, chapter 2 of Searle, Casella, and

McCulloch (1992) provides an excellent history.

The key to fitting mixed models lies in estimating the variance components, and for that there exist

many methods. Most of the early literature in mixed models dealt with estimating variance components

in ANOVA models. For simple models with balanced data, estimating variance components amounts

to solving a system of equations obtained by setting expected mean-squares expressions equal to their

observed counterparts. Much of the work in extending theANOVAmethod to unbalanced data for general

ANOVA designs is due to Henderson (1953).

The ANOVA method, however, has its shortcomings. Among these is a lack of uniqueness in that

alternative, unbiased estimates of variance components could be derived using other quadratic forms

of the data in place of observed mean squares (Searle, Casella, and McCulloch 1992, 38–39). As a

result, ANOVAmethods gave way to more modern methods, such as minimum norm quadratic unbiased

estimation (MINQUE) and minimum variance quadratic unbiased estimation (MIVQUE); see Rao (1973)

for MINQUE and LaMotte (1973) for MIVQUE. Both methods involve finding optimal quadratic forms of

the data that are unbiased for the variance components.

The most popular methods, however, are ML and REML, and these are the two methods that are sup-

ported by mixed. The ML estimates are based on the usual application of likelihood theory, given the

distributional assumptions of the model. The basic idea behind REML (Thompson 1962) is that you can

form a set of linear contrasts of the response that do not depend on the fixed effects β, but instead depend
only on the variance components to be estimated. You then apply MLmethods by using the distribution

of the linear contrasts to form the likelihood.

Returning to (1): in clustered-data situations, it is convenient not to consider all 𝑛 observations at

once but instead to organize the mixed model as a series of 𝑀 independent groups or clusters

y𝑗 = X𝑗β + Z𝑗u𝑗 + ε𝑗 (2)
for 𝑗 = 1, . . . , 𝑀, with cluster 𝑗 consisting of 𝑛𝑗 observations. The response y𝑗 comprises the rows of

y corresponding with the 𝑗th cluster, with X𝑗 and ε𝑗 defined analogously. The random effects u𝑗 can

now be thought of as 𝑀 realizations of a 𝑞 × 1 vector that is normally distributed with mean 0 and 𝑞 × 𝑞
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variance matrix 𝚺. The matrix Z𝑖 is the 𝑛𝑗 × 𝑞 design matrix for the 𝑗th cluster random effects. Relating

this to (1), note that

Z =
⎡
⎢⎢
⎣

Z1 0 · · · 0

0 Z2 · · · 0

⋮ ⋮ ⋱ ⋮
0 0 0 Z𝑀

⎤
⎥⎥
⎦

; u = ⎡⎢
⎣

u1
⋮
u𝑀

⎤⎥
⎦

; G = I𝑀 ⊗ 𝚺; R = I𝑀 ⊗ 𝚲 (3)

The mixed-model formulation (2) is from Laird and Ware (1982) and offers two key advantages.

First, it makes specifications of random-effects terms easier. If the clusters are schools, you can simply

specify a random effect at the school level, as opposed to thinking of what a school-level random effect

would mean when all the data are considered as a whole (if it helps, think Kronecker products). Second,

representing a mixed-model with (2) generalizes easily to more than one set of random effects. For

example, if classes are nested within schools, then (2) can be generalized to allow random effects at both

the school and the class-within-school levels. This we demonstrate later.

In the sections that follow, we assume that residuals are independent with constant variance; that is, in

(3) we treat𝚲 equal to the identity matrix and limit ourselves to estimating one overall residual variance,

𝜎2
𝜖 . Beginning in Heteroskedastic residual errors, we relax this assumption.

Two-level models
We begin with a simple application of (2) as a two-level model, because a one-level linear model, by

our terminology, is just standard OLS regression.

Example 1: Two-level random intercept model
Consider a longitudinal dataset, used by both Ruppert, Wand, and Carroll (2003) and Diggle

et al. (2002), consisting of weight measurements of 48 pigs on 9 successive weeks. Pigs are identi-
fied by the variable id. Below is a plot of the growth curves for the first 10 pigs.

. use https://www.stata-press.com/data/r19/pig
(Longitudinal analysis of pig weights)
. twoway connected weight week if id<=10, connect(L)

20

40

60

80

w
ei

gh
t

0 2 4 6 8 10
week



mixed — Multilevel mixed-effects linear regression 487

It seems clear that each pig experiences a linear trend in growth and that overall weight measurements

vary from pig to pig. Because we are not really interested in these particular 48 pigs per se, we instead

treat them as a random sample from a larger population andmodel the between-pig variability as a random

effect, or in the terminology of (2), as a random-intercept term at the pig level. We thus wish to fit the

model

weight𝑖𝑗 = 𝛽0 + 𝛽1week𝑖𝑗 + 𝑢𝑗 + 𝜖𝑖𝑗 (4)

for 𝑖 = 1, . . . , 9 weeks and 𝑗 = 1, . . . , 48 pigs. The fixed portion of the model, 𝛽0 + 𝛽1week𝑖𝑗, simply

states that we want one overall regression line representing the population average. The random effect 𝑢𝑗
serves to shift this regression line up or down according to each pig. Because the random effects occur

at the pig level (id), we fit the model by typing

. mixed weight week || id:
Performing EM optimization ...
Performing gradient-based optimization:
Iteration 0: Log likelihood = -1014.9268
Iteration 1: Log likelihood = -1014.9268
Computing standard errors ...
Mixed-effects ML regression Number of obs = 432
Group variable: id Number of groups = 48

Obs per group:
min = 9
avg = 9.0
max = 9

Wald chi2(1) = 25337.49
Log likelihood = -1014.9268 Prob > chi2 = 0.0000

weight Coefficient Std. err. z P>|z| [95% conf. interval]

week 6.209896 .0390124 159.18 0.000 6.133433 6.286359
_cons 19.35561 .5974059 32.40 0.000 18.18472 20.52651

Random-effects parameters Estimate Std. err. [95% conf. interval]

id: Identity
var(_cons) 14.81751 3.124225 9.801716 22.40002

var(Residual) 4.383264 .3163348 3.805112 5.04926

LR test vs. linear model: chibar2(01) = 472.65 Prob >= chibar2 = 0.0000

Notes:

1. By typing weight week, we specified the response, weight, and the fixed portion of the model in
the same way that we would if we were using regress or any other estimation command. Our fixed
effects are a coefficient on week and a constant term.

2. When we added || id:, we specified random effects at the level identified by the group variable id,
that is, the pig level (level two). Because we wanted only a random intercept, that is all we had to

type.

3. The estimation log consists of three parts:

a. A set of EM iterations used to refine starting values. By default, the iterations themselves are not

displayed, but you can display them with the emlog option.
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b. A set of gradient-based iterations. By default, these are Newton–Raphson iterations, but other

methods are available by specifying the appropriate maximize options; see [R]Maximize.

c. The message “Computing standard errors”. This is just to inform you that mixed has finished

its iterative maximization and is now reparameterizing from a matrix-based parameterization (see

Methods and formulas) to the natural metric of variance components and their estimated standard

errors.

4. The output title, “Mixed-effects ML regression”, informs us that our model was fit using ML, the

default. For REML estimates, use the reml option.

Because this model is a simple random-intercept model fit by ML, it would be equivalent to using

xtreg with its mle option.

5. The first estimation table reports the fixed effects. We estimate 𝛽0 = 19.36 and 𝛽1 = 6.21.

6. The second estimation table shows the estimated variance components. The first section of the table

is labeled id: Identity, meaning that these are random effects at the id (pig) level and that their
variance–covariance matrix is a multiple of the identity matrix; that is, 𝚺 = 𝜎2

𝑢I. Because we have

only one random effect at this level, mixed knew that Identity is the only possible covariance

structure. In any case, the variance of the level-two errors, 𝜎2
𝑢, is estimated as 14.82 with standard

error 3.12.

7. The row labeled var(Residual) displays the estimated variance of the overall error term; that is,
𝜎̂2

𝜖 = 4.38. This is the variance of the level-one errors, that is, the residuals.

8. Finally, a likelihood-ratio test comparing the model with one-level ordinary linear regression, model

(4) without 𝑢𝑗, is provided and is highly significant for these data.

We now store our estimates for later use:

. estimates store randint
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Example 2: Two-level random slope model
Extending (4) to allow for a random slope on week yields the model

weight𝑖𝑗 = 𝛽0 + 𝛽1week𝑖𝑗 + 𝑢0𝑗 + 𝑢1𝑗week𝑖𝑗 + 𝜖𝑖𝑗 (5)

and we fit this with mixed:

. mixed weight week || id: week
Performing EM optimization ...
Performing gradient-based optimization:
Iteration 0: Log likelihood = -869.03825
Iteration 1: Log likelihood = -869.03825
Computing standard errors ...
Mixed-effects ML regression Number of obs = 432
Group variable: id Number of groups = 48

Obs per group:
min = 9
avg = 9.0
max = 9

Wald chi2(1) = 4689.51
Log likelihood = -869.03825 Prob > chi2 = 0.0000

weight Coefficient Std. err. z P>|z| [95% conf. interval]

week 6.209896 .0906819 68.48 0.000 6.032163 6.387629
_cons 19.35561 .3979159 48.64 0.000 18.57571 20.13551

Random-effects parameters Estimate Std. err. [95% conf. interval]

id: Independent
var(week) .3680668 .0801181 .2402389 .5639103

var(_cons) 6.756364 1.543503 4.317721 10.57235

var(Residual) 1.598811 .1233988 1.374359 1.85992

LR test vs. linear model: chi2(2) = 764.42 Prob > chi2 = 0.0000
Note: LR test is conservative and provided only for reference.
. estimates store randslope

Because we did not specify a covariance structure for the random effects (𝑢0𝑗, 𝑢1𝑗)′, mixed used the
default Independent structure; that is,

𝚺 = Var [𝑢0𝑗
𝑢1𝑗

] = [𝜎2
𝑢0 0
0 𝜎2

𝑢1
] (6)

with 𝜎̂2
𝑢0 = 6.76 and 𝜎̂2

𝑢1 = 0.37. Our point estimates of the fixed effects are essentially identical to

those from model (4), but note that this does not hold generally. Given the 95% confidence interval

for 𝜎̂2
𝑢1, it would seem that the random slope is significant, and we can use lrtest and our two stored

estimation results to verify this fact:
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. lrtest randslope randint
Likelihood-ratio test
Assumption: randint nested within randslope
LR chi2(1) = 291.78
Prob > chi2 = 0.0000
Note: The reported degrees of freedom assumes the null hypothesis is not on

the boundary of the parameter space. If this is not true, then the
reported test is conservative.

The near-zero significance level favors the model that allows for a random pig-specific regression

line over the model that allows only for a pig-specific shift.

Covariance structures
In example 2, we fit a model with the default Independent covariance given in (6). Within any

random-effects level specification, we can override this default by specifying an alternative covariance

structure via the covariance() option.

Example 3: Two-level model with correlated random effects
We generalize (6) to allow 𝑢0𝑗 and 𝑢1𝑗 to be correlated; that is,

𝚺 = Var [𝑢0𝑗
𝑢1𝑗

] = [𝜎2
𝑢0 𝜎01

𝜎01 𝜎2
𝑢1

]

. mixed weight week || id: week, covariance(unstructured)
Performing EM optimization ...
Performing gradient-based optimization:
Iteration 0: Log likelihood = -868.96185
Iteration 1: Log likelihood = -868.96185
Computing standard errors ...
Mixed-effects ML regression Number of obs = 432
Group variable: id Number of groups = 48

Obs per group:
min = 9
avg = 9.0
max = 9

Wald chi2(1) = 4649.17
Log likelihood = -868.96185 Prob > chi2 = 0.0000

weight Coefficient Std. err. z P>|z| [95% conf. interval]

week 6.209896 .0910745 68.18 0.000 6.031393 6.388399
_cons 19.35561 .3996387 48.43 0.000 18.57234 20.13889
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Random-effects parameters Estimate Std. err. [95% conf. interval]

id: Unstructured
var(week) .3715251 .0812958 .2419532 .570486

var(_cons) 6.823363 1.566194 4.351297 10.69986
cov(week,_cons) -.0984378 .2545767 -.5973991 .4005234

var(Residual) 1.596829 .123198 1.372735 1.857505

LR test vs. linear model: chi2(3) = 764.58 Prob > chi2 = 0.0000
Note: LR test is conservative and provided only for reference.

But we do not find the correlation to be at all significant.

. lrtest . randslope
Likelihood-ratio test
Assumption: randslope nested within .
LR chi2(1) = 0.15
Prob > chi2 = 0.6959

Instead, we could have also specified covariance(identity), restricting 𝑢0𝑗 and 𝑢1𝑗 to

not only be independent but also to have common variance, or we could have specified

covariance(exchangeable), which imposes a common variance but allows for a nonzero correla-
tion.

Likelihood versus restricted likelihood
Thus far, all our examples have used ML to estimate variance components. We could have just as

easily asked for REML estimates. Refitting the model in example 2 by REML, we get

. mixed weight week || id: week, reml
Performing EM optimization ...
Performing gradient-based optimization:
Iteration 0: Log restricted-likelihood = -870.51473
Iteration 1: Log restricted-likelihood = -870.51473
Computing standard errors ...
Mixed-effects REML regression Number of obs = 432
Group variable: id Number of groups = 48

Obs per group:
min = 9
avg = 9.0
max = 9

Wald chi2(1) = 4592.10
Log restricted-likelihood = -870.51473 Prob > chi2 = 0.0000

weight Coefficient Std. err. z P>|z| [95% conf. interval]

week 6.209896 .0916387 67.77 0.000 6.030287 6.389504
_cons 19.35561 .4021144 48.13 0.000 18.56748 20.14374
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Random-effects parameters Estimate Std. err. [95% conf. interval]

id: Independent
var(week) .3764405 .0827027 .2447317 .5790317

var(_cons) 6.917604 1.593247 4.404624 10.86432

var(Residual) 1.598784 .1234011 1.374328 1.859898

LR test vs. linear model: chi2(2) = 765.92 Prob > chi2 = 0.0000
Note: LR test is conservative and provided only for reference.

AlthoughML estimators are based on the usual likelihood theory, the idea behind REML is to transform

the response into a set of linear contrasts whose distribution is free of the fixed effects β. The restricted
likelihood is then formed by considering the distribution of the linear contrasts. This not only frees the

maximization problem from β but also incorporates the degrees of freedom used to estimate β into the

estimation of the variance components. This follows because, by necessity, the rank of the linear contrasts

must be less than the number of observations.

As a simple example, consider a constant-only regression where 𝑦𝑖 ∼ 𝑁(𝜇, 𝜎2) for 𝑖 = 1, . . . , 𝑛.
TheML estimate of 𝜎2 can be derived theoretically as the 𝑛-divided sample variance. The REML estimate

can be derived by considering the first 𝑛 − 1 error contrasts, 𝑦𝑖 − 𝑦, whose joint distribution is free of 𝜇.
Applying maximum likelihood to this distribution results in an estimate of 𝜎2, that is, the (𝑛−1)-divided

sample variance, which is unbiased for 𝜎2.

The unbiasedness property of REML extends to all mixed models when the data are balanced, and thus

REML would seem the clear choice in balanced-data problems, although in large samples the difference

between ML and REML is negligible. One disadvantage of REML is that likelihood-ratio (LR) tests based

on REML are inappropriate for comparing models with different fixed-effects specifications. ML is ap-

propriate for such LR tests and has the advantage of being easy to explain and being the method of choice

for other estimators.

Another factor to consider is that ML estimation under mixed is more feature-rich, allowing for

weighted estimation and robust variance–covariance matrices, features not supported under REML. In

the end, which method to use should be based both on your needs and on personal taste.

Examining the REML output, we find that the estimates of the variance components are slightly larger

than the ML estimates. This is typical, because ML estimates, which do not incorporate the degrees of

freedom used to estimate the fixed effects, tend to be biased downward.

Three-level models
The clustered-data representation of the mixedmodel given in (2) can be extended to two nested levels

of clustering, creating a three-level model once the observations are considered. Formally,

y𝑗𝑘 = X𝑗𝑘β + Z
(3)
𝑗𝑘 u

(3)
𝑘 + Z

(2)
𝑗𝑘 u

(2)
𝑗𝑘 + ε𝑗𝑘 (7)

for 𝑖 = 1, . . . , 𝑛𝑗𝑘 first-level observations nested within 𝑗 = 1, . . . , 𝑀𝑘 second-level groups, which are

nested within 𝑘 = 1, . . . , 𝑀 third-level groups. Group 𝑗, 𝑘 consists of 𝑛𝑗𝑘 observations, so y𝑗𝑘, X𝑗𝑘, and

ε𝑗𝑘 each have row dimension 𝑛𝑗𝑘. Z
(3)
𝑗𝑘 is the 𝑛𝑗𝑘 × 𝑞3 design matrix for the third-level random effects

u
(3)
𝑘 , andZ

(2)
𝑗𝑘 is the 𝑛𝑗𝑘 ×𝑞2 design matrix for the second-level random effects u

(2)
𝑗𝑘 . Furthermore, assume

that
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u
(3)
𝑘 ∼ 𝑁(0, 𝚺3); u

(2)
𝑗𝑘 ∼ 𝑁(0, 𝚺2); ε𝑗𝑘 ∼ 𝑁(0, 𝜎2

𝜖 I)

and that u
(3)
𝑘 , u

(2)
𝑗𝑘 , and ε𝑗𝑘 are independent.

Fitting a three-level model requires you to specify two random-effects equations: one for level three

and then one for level two. The variable list for the first equation represents Z
(3)
𝑗𝑘 and for the second

equation represents Z
(2)
𝑗𝑘 ; that is, you specify the levels top to bottom in mixed.

Example 4: Three-level model with random intercepts
Baltagi, Song, and Jung (2001) estimate a Cobb–Douglas production function examining the produc-

tivity of public capital in each state’s private output. Originally provided by Munnell (1990), the data

were recorded over 1970–1986 for 48 states grouped into nine regions.

. use https://www.stata-press.com/data/r19/productivity
(Public capital productivity)
. describe
Contains data from https://www.stata-press.com/data/r19/productivity.dta
Observations: 816 Public capital productivity

Variables: 11 29 Mar 2024 10:57
(_dta has notes)

Variable Storage Display Value
name type format label Variable label

state byte %9.0g States 1-48
region byte %9.0g Regions 1-9
year int %9.0g Years 1970-1986
public float %9.0g Public capital stock
hwy float %9.0g log(highway component of public)
water float %9.0g log(water component of public)
other float %9.0g log(bldg/other component of

public)
private float %9.0g log(private capital stock)
gsp float %9.0g log(gross state product)
emp float %9.0g log(nonagriculture payrolls)
unemp float %9.0g State unemployment rate

Sorted by:

Because the states are nested within regions, we fit a three-level mixed model with random intercepts at

both the region and the state-within-region levels. That is, we use (7) with both Z
(3)
𝑗𝑘 and Z

(2)
𝑗𝑘 set to the

𝑛𝑗𝑘 × 1 column of ones, and 𝚺3 = 𝜎2
3 and 𝚺2 = 𝜎2

2 are both scalars.
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. mixed gsp private emp hwy water other unemp || region: || state:
(output omitted )

Mixed-effects ML regression Number of obs = 816
Grouping information

No. of Observations per group
Group variable groups Minimum Average Maximum

region 9 51 90.7 136
state 48 17 17.0 17

Wald chi2(6) = 18829.06
Log likelihood = 1430.5017 Prob > chi2 = 0.0000

gsp Coefficient Std. err. z P>|z| [95% conf. interval]

private .2671484 .0212591 12.57 0.000 .2254814 .3088154
emp .754072 .0261868 28.80 0.000 .7027468 .8053973
hwy .0709767 .023041 3.08 0.002 .0258172 .1161363

water .0761187 .0139248 5.47 0.000 .0488266 .1034109
other -.0999955 .0169366 -5.90 0.000 -.1331906 -.0668004
unemp -.0058983 .0009031 -6.53 0.000 -.0076684 -.0041282
_cons 2.128823 .1543854 13.79 0.000 1.826233 2.431413

Random-effects parameters Estimate Std. err. [95% conf. interval]

region: Identity
var(_cons) .0014506 .0012995 .0002506 .0083957

state: Identity
var(_cons) .0062757 .0014871 .0039442 .0099855

var(Residual) .0013461 .0000689 .0012176 .0014882

LR test vs. linear model: chi2(2) = 1154.73 Prob > chi2 = 0.0000
Note: LR test is conservative and provided only for reference.

Notes:

1. Our model now has two random-effects equations, separated by ||. The first is a random intercept

(constant only) at the region level (level three), and the second is a random intercept at the state
level (level two). The order in which these are specified (from left to right) is significant—mixed
assumes that state is nested within region.

2. The information on groups is now displayed as a table, with one row for each grouping. You can

suppress this table with the nogroup or the noheader option, which will suppress the rest of the

header, as well.

3. The variance-component estimates are now organized and labeled according to level.

After adjusting for the nested-level error structure, we find that the highway and water components

of public capital had significant positive effects on private output, whereas the other public buildings

component had a negative effect.
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Technical note
In the previous example, the states are coded 1–48 and are nested within nine regions. mixed treated

the states as nested within regions, regardless of whether the codes for each state were unique between

regions. That is, even if codes for states were duplicated between regions, mixed would have enforced
the nesting and produced the same results.

The group information at the top of the mixed output and that produced by the postestimation com-
mand estat group (see [ME] estat group) take the nesting into account. The statistics are thus not

necessarily what you would get if you instead tabulated each group variable individually.

Model (7) extends in a straightforward manner to more than three levels, as does the specification of

such models in mixed.

Blocked-diagonal covariance structures
Covariance matrices of random effects within an equation can be modeled either as a multiple of

the identity matrix, as diagonal (that is, Independent), as exchangeable, or as general symmetric
(Unstructured). These may also be combined to produce more complex block-diagonal covariance
structures, effectively placing constraints on the variance components.

Example 5: Using repeated levels to induce blocked-diagonal covariance structures
Returning to our productivity data, we now add random coefficients on hwy and unemp at the region

level. This only slightly changes the estimates of the fixed effects, so we focus our attention on the

variance components:

. mixed gsp private emp hwy water other unemp || region: hwy unemp || state:,
> nolog nogroup nofetable
Mixed-effects ML regression Number of obs = 816

Wald chi2(6) = 17137.94
Log likelihood = 1447.6787 Prob > chi2 = 0.0000

Random-effects parameters Estimate Std. err. [95% conf. interval]

region: Independent
var(hwy) .0000209 .0001103 6.71e-10 .6507106

var(unemp) .0000238 .0000135 7.84e-06 .0000722
var(_cons) .0030349 .0086684 .0000112 .8191376

state: Identity
var(_cons) .0063658 .0015611 .0039365 .0102943

var(Residual) .0012469 .0000643 .001127 .0013795

LR test vs. linear model: chi2(4) = 1189.08 Prob > chi2 = 0.0000
Note: LR test is conservative and provided only for reference.
. estimates store prodrc
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This model is the same as that fit in example 4 except that Z
(3)
𝑗𝑘 is now the 𝑛𝑗𝑘 × 3 matrix with columns

determined by the values of hwy, unemp, and an intercept term (one), in that order, and (because we used

the default Independent structure) 𝚺3 is

𝚺3 = ⎛⎜
⎝

hwy unemp cons
𝜎2

𝑎 0 0
0 𝜎2

𝑏 0
0 0 𝜎2

𝑐

⎞⎟
⎠

The random-effects specification at the state level remains unchanged; that is, 𝚺2 is still treated as the

scalar variance of the random intercepts at the state level.

An LR test comparing this model with that from example 4 favors the inclusion of the two random

coefficients, a fact we leave to the interested reader to verify.

The estimated variance components, upon examination, reveal that the variances of the random coef-

ficients on hwy and unemp could be treated as equal. That is,

𝚺3 = ⎛⎜
⎝

hwy unemp cons
𝜎2

𝑎 0 0
0 𝜎2

𝑎 0
0 0 𝜎2

𝑐

⎞⎟
⎠

looks plausible. We can impose this equality constraint by treating 𝚺3 as block diagonal: the first block

is a 2×2 multiple of the identity matrix, that is, 𝜎2
𝑎I2; the second is a scalar, equivalently, a 1×1 multiple

of the identity.

We construct block-diagonal covariances by repeating level specifications:

. mixed gsp private emp hwy water other unemp || region: hwy unemp,
> cov(identity) || region: || state:, nolog nogroup nofetable
Mixed-effects ML regression Number of obs = 816

Wald chi2(6) = 17136.65
Log likelihood = 1447.6784 Prob > chi2 = 0.0000

Random-effects parameters Estimate Std. err. [95% conf. interval]

region: Identity
var(hwy unemp) .0000238 .0000134 7.89e-06 .0000719

region: Identity
var(_cons) .0028191 .0030429 .0003399 .023383

state: Identity
var(_cons) .006358 .0015309 .0039661 .0101925

var(Residual) .0012469 .0000643 .001127 .0013795

LR test vs. linear model: chi2(3) = 1189.08 Prob > chi2 = 0.0000
Note: LR test is conservative and provided only for reference.

We specified two equations for the region level: the first for the random coefficients on hwy and unemp
with covariance set to Identity and the second for the random intercept cons, whose covariance
defaults to Identity because it is of dimension 1. mixed labeled the estimate of 𝜎2

𝑎 as var(hwy unemp)
to designate that it is common to the random coefficients on both hwy and unemp.
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An LR test shows that the constrained model fits equally well.

. lrtest . prodrc
Likelihood-ratio test
Assumption: . nested within prodrc
LR chi2(1) = 0.00
Prob > chi2 = 0.9784
Note: The reported degrees of freedom assumes the null hypothesis is not on

the boundary of the parameter space. If this is not true, then the
reported test is conservative.

Because the null hypothesis for this test is one of equality (𝐻0 ∶ 𝜎2
𝑎 = 𝜎2

𝑏 ), it is not on the boundary of

the parameter space. As such, we can take the reported significance as precise rather than a conservative

estimate.

You can repeat level specifications as often as you like, defining successive blocks of a block-diagonal

covariance matrix. However, repeated-level equations must be listed consecutively; otherwise, mixed
will give an error.

Technical note
In the previous estimation output, there was no constant term included in the first region equation,

even though we did not use the noconstant option. When you specify repeated-level equations, mixed
knows not to put constant terms in each equation because such a model would be unidentified. By

default, it places the constant in the last repeated-level equation, but you can use noconstant creatively
to override this.

Linear mixed-effects models can also be fit using meglm with the default gaussian family. meglm pro-
vides twomore covariance structures throughwhich you can impose constraints on variance components;

see [ME] meglm for details.

Heteroskedastic random effects
Blocked-diagonal covariance structures and repeated-level specifications of random effects can also

be used to model heteroskedasticity among random effects at a given level.

Example 6: Using repeated levels to model heteroskedasticity
Following Rabe-Hesketh and Skrondal (2022, sec. 7.2), we analyze data from Asian children in a

British community who were weighed up to four times, roughly between the ages of 6 weeks and 27

months. The dataset is a random sample of data previously analyzed by Goldstein (1986) and Prosser,

Rasbash, and Goldstein (1991).
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. use https://www.stata-press.com/data/r19/childweight
(Weight data on Asian children)
. describe
Contains data from https://www.stata-press.com/data/r19/childweight.dta
Observations: 198 Weight data on Asian children

Variables: 5 23 May 2024 15:12
(_dta has notes)

Variable Storage Display Value
name type format label Variable label

id int %8.0g Child identifier
age float %8.0g Age in years
weight float %8.0g Weight in Kg
brthwt int %8.0g Birthweight in g
girl byte %9.0g bg Gender

Sorted by: id age
. graph twoway (line weight age, connect(ascending)), by(girl)
> xtitle(Age in years) ytitle(Weight in kg)

5

10

15

20

0 1 2 3 0 1 2 3

Boy Girl

W
ei

gh
t i

n 
kg

Age in years
Graphs by Gender

Ignoring gender effects for the moment, we begin with the following model for the 𝑖th measurement
on the 𝑗th child:

weight𝑖𝑗 = 𝛽0 + 𝛽1age𝑖𝑗 + 𝛽2age2
𝑖𝑗 + 𝑢𝑗0 + 𝑢𝑗1age𝑖𝑗 + 𝜖𝑖𝑗

This models overall mean growth as quadratic in age and allows for two child-specific random effects:

a random intercept 𝑢𝑗0, which represents each child’s vertical shift from the overall mean (𝛽0), and a

random age slope 𝑢𝑗1, which represents each child’s deviation in linear growth rate from the overall

mean linear growth rate (𝛽1). For simplicity, we do not consider child-specific changes in the quadratic

component of growth.
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. mixed weight age c.age#c.age || id: age, nolog
Mixed-effects ML regression Number of obs = 198
Group variable: id Number of groups = 68

Obs per group:
min = 1
avg = 2.9
max = 5

Wald chi2(2) = 1863.46
Log likelihood = -258.51915 Prob > chi2 = 0.0000

weight Coefficient Std. err. z P>|z| [95% conf. interval]

age 7.693701 .2381076 32.31 0.000 7.227019 8.160384

c.age#c.age -1.654542 .0874987 -18.91 0.000 -1.826037 -1.483048

_cons 3.497628 .1416914 24.68 0.000 3.219918 3.775338

Random-effects parameters Estimate Std. err. [95% conf. interval]

id: Independent
var(age) .2987207 .0827569 .1735603 .5141388

var(_cons) .5023857 .141263 .2895294 .8717297

var(Residual) .3092897 .0474887 .2289133 .417888

LR test vs. linear model: chi2(2) = 114.70 Prob > chi2 = 0.0000
Note: LR test is conservative and provided only for reference.

Because there is no reason to believe that the random effects are uncorrelated, it is always a good idea

to first fit a model with the covariance(unstructured) option. We do not include the output for such

a model because for these data the correlation between random effects is not significant; however, we

did check this before reverting to mixed’s default Independent structure.

Next we introduce gender effects into the fixed portion of the model by including a main gender effect

and a gender–age interaction for overall mean growth. We specify ibn.girl and the noconstant option
to omit the constant and estimate separate intercepts for boys and girls. The nofvlabel option requests
that the values of the girl variable instead of value labels be shown in the results.
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. mixed weight ibn.girl i.girl#c.age c.age#c.age, noconstant nofvlabel
> || id: age, nolog
Mixed-effects ML regression Number of obs = 198
Group variable: id Number of groups = 68

Obs per group:
min = 1
avg = 2.9
max = 5

Wald chi2(5) = 6583.73
Log likelihood = -253.182 Prob > chi2 = 0.0000

weight Coefficient Std. err. z P>|z| [95% conf. interval]

girl
0 3.754275 .1726404 21.75 0.000 3.415906 4.092644
1 3.243808 .174255 18.62 0.000 2.902274 3.585341

girl#c.age
0 7.806765 .2524583 30.92 0.000 7.311956 8.301574
1 7.577296 .2531318 29.93 0.000 7.081166 8.073425

c.age#c.age -1.654323 .0871752 -18.98 0.000 -1.825183 -1.483463

Random-effects parameters Estimate Std. err. [95% conf. interval]

id: Independent
var(age) .2772846 .0769233 .1609861 .4775987

var(_cons) .4076892 .12386 .2247635 .7394906

var(Residual) .3131704 .047684 .2323672 .422072

LR test vs. linear model: chi2(2) = 104.39 Prob > chi2 = 0.0000
Note: LR test is conservative and provided only for reference.
. estimates store homoskedastic

The main gender effect is significant at the 5% level, but the gender–age interaction is not:

. test 0.girl#c.age = 1.girl#c.age
( 1) [weight]0bn.girl#c.age - [weight]1.girl#c.age = 0

chi2( 1) = 1.66
Prob > chi2 = 0.1978

On average, boys are heavier than girls, but their average linear growth rates are not significantly differ-

ent.

In the above model, we introduced a gender effect on average growth, but we still assumed that the

variability in child-specific deviations from this average was the same for boys and girls. To check this

assumption, we introduce gender into the random component of the model.
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. mixed weight ibn.girl i.girl#c.age c.age#c.age, noconstant nofvlabel
> || id: ibn.girl i.girl#c.age, noconstant nolog nofetable
Mixed-effects ML regression Number of obs = 198
Group variable: id Number of groups = 68

Obs per group:
min = 1
avg = 2.9
max = 5

Wald chi2(5) = 7319.20
Log likelihood = -248.94752 Prob > chi2 = 0.0000

Random-effects parameters Estimate Std. err. [95% conf. interval]

id: Independent
var(0.girl) .3161091 .1557911 .1203181 .8305061
var(1.girl) .5798676 .1959725 .2989896 1.124609

var(0.girl#age) .4734482 .1574626 .2467028 .9085962
var(1.girl#age) .0664634 .0553274 .0130017 .3397538

var(Residual) .3078826 .046484 .2290188 .4139037

LR test vs. linear model: chi2(4) = 112.86 Prob > chi2 = 0.0000
Note: LR test is conservative and provided only for reference.
. estimates store heteroskedastic

In the above, we suppress displaying the fixed portion of the model (the nofetable option) because
it does not differ much from that of the previous model.

Our previous model had the random-effects specification

|| id: age

which we have replaced with

|| id: ibn.girl i.girl#c.age, noconstant

The former models a random intercept and random slope on age, and does so treating all children as a

random sample from one population. The latter also specifies a random intercept and random slope on

age, but allows for the variability of the random intercepts and slopes to differ between boys and girls.

In other words, it allows for heteroskedasticity in random effects due to gender. We use the noconstant
option so that we can separate the overall random intercept (automatically provided by the former syntax)

into one specific to boys and one specific to girls.

There seems to be a large gender effect in the variability of linear growth rates. We can compare

both models with an LR test, recalling that we stored the previous estimation results under the name

homoskedastic:

. lrtest homoskedastic heteroskedastic
Likelihood-ratio test
Assumption: homoskedastic nested within heteroskedas~c
LR chi2(2) = 8.47
Prob > chi2 = 0.0145
Note: The reported degrees of freedom assumes the null hypothesis is not on

the boundary of the parameter space. If this is not true, then the
reported test is conservative.
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Because the null hypothesis here is one of equality of variances and not that variances are 0, the above

does not test on the boundary; thus we can treat the significance level as precise and not conservative.

Either way, the results favor the new model with heteroskedastic random effects.

Heteroskedastic residual errors
Up to this point, we have assumed that the level-one residual errors—the 𝜖’s in the stated mod-

els—have been i.i.d. Gaussian with variance 𝜎2
𝜖 . This is demonstrated in mixed output in the random-

effects table, where up until now we have estimated a single residual-error variance, labeled as

var(Residual).

To relax the assumptions of homoskedasticity or independence of residual errors, use the

residuals() option.

Example 7: Independent residual variance structure
West, Welch, and Gałecki (2022, chap. 7) analyze data studying the effect of ceramic dental veneer

placement on gingival (gum) health. Data on 55 teeth located in the maxillary arches of 12 patients were

considered.

. use https://www.stata-press.com/data/r19/veneer, clear
(Dental veneer data)
. describe
Contains data from https://www.stata-press.com/data/r19/veneer.dta
Observations: 110 Dental veneer data

Variables: 7 24 May 2024 12:11
(_dta has notes)

Variable Storage Display Value
name type format label Variable label

patient byte %8.0g Patient ID
tooth byte %8.0g Tooth number with patient
gcf byte %8.0g Gingival crevicular fluid (GCF)
age byte %8.0g Patient age
base_gcf byte %8.0g Baseline GCF
cda float %9.0g Average contour difference after

veneer placement
followup byte %9.0g t Follow-up time: 3 or 6 months

Sorted by:

Veneers were placed to match the original contour of the tooth as closely as possible, and researchers

were interested in how contour differences (variable cda) impacted gingival health. Gingival health was
measured as the amount of gingival crevicular fluid (GCF) at each tooth, measured at baseline (variable

base gcf) and at two posttreatment follow-ups at 3 and 6 months. The variable gcf records GCF at

follow-up, and the variable followup records the follow-up time.

Because two measurements were taken for each tooth and there exist multiple teeth per patient, we fit

a three-level model with the following random effects: a random intercept and random slope on follow-

up time at the patient level, and a random intercept at the tooth level. For the 𝑖th measurement of the 𝑗th
tooth from the 𝑘th patient, we have

gcf𝑖𝑗𝑘 = 𝛽0 + 𝛽1followup𝑖𝑗𝑘 + 𝛽2base gcf𝑖𝑗𝑘 + 𝛽3cda𝑖𝑗𝑘 + 𝛽4age𝑖𝑗𝑘+

𝑢0𝑘 + 𝑢1𝑘followup𝑖𝑗𝑘 + 𝑣0𝑗𝑘 + 𝜖𝑖𝑗𝑘
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which we can fit using mixed:

. mixed gcf followup base_gcf cda age || patient: followup, cov(un) || tooth:,
> reml nolog
Mixed-effects REML regression Number of obs = 110

Grouping information

No. of Observations per group
Group variable groups Minimum Average Maximum

patient 12 2 9.2 12
tooth 55 2 2.0 2

Wald chi2(4) = 7.48
Log restricted-likelihood = -420.92761 Prob > chi2 = 0.1128

gcf Coefficient Std. err. z P>|z| [95% conf. interval]

followup .3009815 1.936863 0.16 0.877 -3.4952 4.097163
base_gcf -.0183127 .1433094 -0.13 0.898 -.299194 .2625685

cda -.329303 .5292525 -0.62 0.534 -1.366619 .7080128
age -.5773932 .2139656 -2.70 0.007 -.9967582 -.1580283

_cons 45.73862 12.55497 3.64 0.000 21.13133 70.34591

Random-effects parameters Estimate Std. err. [95% conf. interval]

patient: Unstructured
var(followup) 41.88772 18.79997 17.38009 100.9535

var(_cons) 524.9851 253.0205 204.1287 1350.175
cov(followup,_cons) -140.4229 66.57623 -270.9099 -9.935904

tooth: Identity
var(_cons) 47.45738 16.63034 23.8792 94.3165

var(Residual) 48.86704 10.50523 32.06479 74.47382

LR test vs. linear model: chi2(4) = 91.12 Prob > chi2 = 0.0000
Note: LR test is conservative and provided only for reference.

We used REML estimation for no other reason than variety.

Among the other features of the model fit, we note that the residual variance 𝜎2
𝜖 was estimated as 48.87

and that our model assumed that the residuals were independent with constant variance (homoskedastic).

Because it may be the case that the precision of gcf measurements could change over time, we modify
the above to estimate two distinct error variances: one for the 3-month follow-up and one for the 6-month

follow-up.
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To fit this model, we add the residuals(independent, by(followup)) option, which maintains
independence of residual errors but allows for heteroskedasticity with respect to follow-up time.

. mixed gcf followup base_gcf cda age || patient: followup, cov(un) || tooth:,
> residuals(independent, by(followup)) reml nolog
Mixed-effects REML regression Number of obs = 110

Grouping information

No. of Observations per group
Group variable groups Minimum Average Maximum

patient 12 2 9.2 12
tooth 55 2 2.0 2

Wald chi2(4) = 7.51
Log restricted-likelihood = -420.4576 Prob > chi2 = 0.1113

gcf Coefficient Std. err. z P>|z| [95% conf. interval]

followup .2703944 1.933096 0.14 0.889 -3.518405 4.059193
base_gcf .0062144 .1419121 0.04 0.965 -.2719283 .284357

cda -.2947235 .5245126 -0.56 0.574 -1.322749 .7333023
age -.5743755 .2142249 -2.68 0.007 -.9942487 -.1545024

_cons 45.15089 12.51452 3.61 0.000 20.62288 69.6789

Random-effects parameters Estimate Std. err. [95% conf. interval]

patient: Unstructured
var(followup) 41.75169 18.72989 17.33099 100.583

var(_cons) 515.2018 251.9661 197.5542 1343.595
cov(followup,_cons) -139.0496 66.27806 -268.9522 -9.146944

tooth: Identity
var(_cons) 47.35914 16.48931 23.93514 93.70693

Residual: Independent,
by followup

3 months: var(e) 61.36785 18.38913 34.10946 110.4096
6 months: var(e) 36.42861 14.97501 16.27542 81.53666

LR test vs. linear model: chi2(5) = 92.06 Prob > chi2 = 0.0000
Note: LR test is conservative and provided only for reference.

Comparison of both models via an LR test reveals the difference in residual variances to be not sig-

nificant, something we leave to you to verify as an exercise.

The default residual-variance structure is independent, and when specified without by() is equiv-
alent to the default behavior of mixed: estimating one overall residual standard variance for the entire
model.

Other residual-error structures
Besides the default independent residual-error structure, mixed supports four other structures that

allow for correlation between residual errors within the lowest-level (smallest or level two) groups. For

purposes of notation, in what follows we assume a two-level model, with the obvious extension to higher-

level models.
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The exchangeable structure assumes one overall variance and one common pairwise covariance;

that is,

Var(ε𝑗) = Var
⎡
⎢
⎢
⎣

𝜖𝑗1
𝜖𝑗2
⋮

𝜖𝑗𝑛𝑗

⎤
⎥
⎥
⎦

=
⎡
⎢⎢
⎣

𝜎2
𝜖 𝜎1 · · · 𝜎1

𝜎1 𝜎2
𝜖 · · · 𝜎1

⋮ ⋮ ⋱ ⋮
𝜎1 𝜎1 𝜎1 𝜎2

𝜖

⎤
⎥⎥
⎦

By default, mixed will report estimates of the two parameters as estimates of the common variance 𝜎2
𝜖

and of the covariance 𝜎1. When the by(varname) option is also specified, these two parameters are

estimated for each level varname.

The ar 𝑝 structure assumes that the errors have an AR structure of order 𝑝. That is,

𝜖𝑖𝑗 = 𝜙1𝜖𝑖−1,𝑗 + · · · + 𝜙𝑝𝜖𝑖−𝑝,𝑗 + 𝑢𝑖𝑗

where 𝑢𝑖𝑗 are i.i.d. Gaussian with mean 0 and variance 𝜎2
𝑢. mixed reports estimates of 𝜙1, . . . , 𝜙𝑝 and

the overall error variance 𝜎2
𝜖 , which can be derived from the above expression. The t(varname) option

is required, where varname is a time variable used to order the observations within lowest-level groups

and to determine any gaps between observations. When the by(varname) option is also specified, the set
of 𝑝 + 1 parameters is estimated for each level of varname. If 𝑝 = 1, then the estimate of 𝜙1 is reported

as rho, because in this case it represents the correlation between successive error terms.

The ma 𝑞 structure assumes that the errors are an MA process of order 𝑞. That is,

𝜖𝑖𝑗 = 𝑢𝑖𝑗 + 𝜃1𝑢𝑖−1,𝑗 + · · · + 𝜃𝑞𝑢𝑖−𝑞,𝑗

where 𝑢𝑖𝑗 are i.i.d. Gaussian with mean 0 and variance 𝜎2
𝑢. mixed reports estimates of 𝜃1, . . . , 𝜃𝑞 and

the overall error variance 𝜎2
𝜖 , which can be derived from the above expression. The t(varname) option

is required, where varname is a time variable used to order the observations within lowest-level groups

and to determine any gaps between observations. When the by(varname) option is also specified, the
set of 𝑞 + 1 parameters is estimated for each level of varname.

The unstructured structure is the most general and estimates unique variances and unique pairwise
covariances for all residuals within the lowest-level grouping. Because the data may be unbalanced and

the ordering of the observations is arbitrary, the t(varname) option is required, where varname is an

identification variable that matches error terms in different groups. If varname has 𝑛 distinct levels,

then 𝑛(𝑛 + 1)/2 parameters are estimated. Not all 𝑛 levels need to be observed within each group, but

duplicated levels of varnamewithin a given group are not allowed because they would cause a singularity

in the estimated error-variance matrix for that group. When the by(varname) option is also specified,
the set of 𝑛(𝑛 + 1)/2 parameters is estimated for each level of varname.

The banded 𝑞 structure is a special case of unstructured that confines estimation to within the first
𝑞 off-diagonal elements of the residual variance–covariance matrix and sets the covariances outside this
band to 0. As is the case with unstructured, the t(varname) option is required, where varname is

an identification variable that matches error terms in different groups. However, with banded variance
structures, the ordering of the values in varname is significant because it determines which covariances

are to be estimated and which are to be set to 0. For example, if varname has 𝑛 = 5 distinct values 𝑡 =
1, 2, 3, 4, 5, then a banded variance–covariance structure of order 𝑞 = 2 would estimate the following:

Var(ε𝑗) = Var

⎡
⎢
⎢
⎢
⎣

𝜖1𝑗
𝜖2𝑗
𝜖3𝑗
𝜖4𝑗
𝜖5𝑗

⎤
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎣

𝜎2
1 𝜎12 𝜎13 0 0

𝜎12 𝜎2
2 𝜎23 𝜎24 0

𝜎13 𝜎23 𝜎2
3 𝜎34 𝜎35

0 𝜎24 𝜎34 𝜎2
4 𝜎45

0 0 𝜎35 𝜎45 𝜎2
5

⎤
⎥
⎥
⎥
⎦
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In other words, you would have an unstructured variance matrix that constrains 𝜎14 = 𝜎15 = 𝜎25 = 0.

If varname has 𝑛 distinct levels, then (𝑞 + 1)(2𝑛 − 𝑞)/2 parameters are estimated. Not all 𝑛 levels need

to be observed within each group, but duplicated levels of varname within a given group are not allowed

because they would cause a singularity in the estimated error-variance matrix for that group. When the

by(varname) option is also specified, the set of parameters is estimated for each level of varname. If

𝑞 is left unspecified, then banded is equivalent to unstructured; that is, all variances and covariances
are estimated. When 𝑞 = 0, Var(ε𝑗) is treated as diagonal and can thus be used to model uncorrelated
yet heteroskedastic residual errors.

The toeplitz 𝑞 structure assumes that the residual errors are homoskedastic and that the correlation
between two errors is determined by the time lag between the two. That is, Var(𝜖𝑖𝑗) = 𝜎2

𝜖 and

Corr(𝜖𝑖𝑗, 𝜖𝑖+𝑘,𝑗) = 𝜌𝑘

If the lag 𝑘 is less than or equal to 𝑞, then the pairwise correlation 𝜌𝑘 is estimated; if the lag is greater

than 𝑞, then 𝜌𝑘 is assumed to be 0. If 𝑞 is left unspecified, then 𝜌𝑘 is estimated for each observed lag

𝑘. The t(varname) option is required, where varname is a time variable 𝑡 used to determine the lags
between pairs of residual errors. As such, t() must be integer-valued. 𝑞 + 1 parameters are estimated:

one overall variance 𝜎2
𝜖 and 𝑞 correlations. When the by(varname) option is also specified, the set of

𝑞 + 1 parameters is estimated for each level of varname.

The exponential structure is a generalization of the AR structure that allows for noninteger and

irregularly spaced time lags. That is, Var(𝜖𝑖𝑗) = 𝜎2
𝜖 and

Corr(𝜖𝑖𝑗, 𝜖𝑘𝑗) = 𝜌|𝑖−𝑘|

for 0 ≤ 𝜌 ≤ 1, with 𝑖 and 𝑘 not required to be integers. The t(varname) option is required, where var-
name is a time variable used to determine 𝑖 and 𝑘 for each residual-error pair. t() is real-valued. mixed
reports estimates of 𝜎2

𝜖 and 𝜌. When the by(varname) option is also specified, these two parameters are
estimated for each level of varname.

Example 8: Autoregressive residual variance structure
Pinheiro and Bates (2000, chap. 5) analyze data from a study of the estrus cycles of mares. Originally

analyzed in Pierson and Ginther (1987), the data record the number of ovarian follicles larger than 10mm,

daily over a period ranging from three days before ovulation to three days after the subsequent ovulation.
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. use https://www.stata-press.com/data/r19/ovary
(Ovarian follicles in mares)
. describe
Contains data from https://www.stata-press.com/data/r19/ovary.dta
Observations: 308 Ovarian follicles in mares

Variables: 6 20 May 2024 13:49
(_dta has notes)

Variable Storage Display Value
name type format label Variable label

mare byte %9.0g Mare ID
stime float %9.0g Scaled time
follicles byte %9.0g Number of ovarian follicles > 10

mm in diameter
sin1 float %9.0g sine(2*pi*stime)
cos1 float %9.0g cosine(2*pi*stime)
time byte %9.0g Time order within mare

Sorted by: mare stime

The stime variable is time that has been scaled so that ovulation occurs at scaled times 0 and 1, and the
time variable records the time ordering within mares. Because graphical evidence suggests a periodic
behavior, the analysis includes the sin1 and cos1 variables, which are sine and cosine transformations
of scaled time, respectively.

We consider the following model for the 𝑖th measurement on the 𝑗th mare:

follicles𝑖𝑗 = 𝛽0 + 𝛽1sin1𝑖𝑗 + 𝛽2cos1𝑖𝑗 + 𝑢𝑗 + 𝜖𝑖𝑗

The above model incorporates the cyclical nature of the data as affecting the overall average number

of follicles and includes mare-specific random effects 𝑢𝑗. Because we believe successive measurements

within each mare are probably correlated (even after controlling for the periodicity in the average), we

also model the within-mare errors as being AR of order 2.

. mixed follicles sin1 cos1 || mare:, residuals(ar 2, t(time)) reml nolog
Mixed-effects REML regression Number of obs = 308
Group variable: mare Number of groups = 11

Obs per group:
min = 25
avg = 28.0
max = 31

Wald chi2(2) = 34.72
Log restricted-likelihood = -772.59855 Prob > chi2 = 0.0000

follicles Coefficient Std. err. z P>|z| [95% conf. interval]

sin1 -2.899228 .5110784 -5.67 0.000 -3.900923 -1.897532
cos1 -.8652936 .5432923 -1.59 0.111 -1.930127 .1995397
_cons 12.14455 .9473731 12.82 0.000 10.28773 14.00137
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Random-effects parameters Estimate Std. err. [95% conf. interval]

mare: Identity
var(_cons) 7.09265 4.402051 2.101409 23.93903

Residual: AR(2)
phi1 .5386103 .0624897 .4161328 .6610878
phi2 .1446711 .0632039 .0207938 .2685484

var(e) 14.25103 2.435226 10.19512 19.9205

LR test vs. linear model: chi2(3) = 251.67 Prob > chi2 = 0.0000
Note: LR test is conservative and provided only for reference.

We picked an order of 2 as a guess, but we could have used LR tests of competingARmodels to determine

the optimal order, because models of smaller order are nested within those of larger order.

Example 9: Unstructured residual variance structure
Fitzmaurice, Laird, and Ware (2011, chap. 7) analyzed data on 37 subjects who participated in an

exercise therapy trial.

. use https://www.stata-press.com/data/r19/exercise
(Exercise Therapy Trial)
. describe
Contains data from https://www.stata-press.com/data/r19/exercise.dta
Observations: 259 Exercise Therapy Trial

Variables: 4 24 Jun 2024 18:35
(_dta has notes)

Variable Storage Display Value
name type format label Variable label

id byte %9.0g Person ID
day byte %9.0g Day of measurement
program byte %9.0g 1 = reps increase; 2 = weights

increase
strength byte %9.0g Strength measurement

Sorted by: id day

Subjects (variable id) were placed on either an increased-repetition regimen (program==1) or a program
that kept the repetitions constant but increased weight (program==2). Muscle-strength measurements

(variable strength) were taken at baseline (day==0) and then every two days over the next twelve days.

Following Fitzmaurice, Laird, and Ware (2011, chap. 7), and to demonstrate fitting residual-error

structures to data collected at uneven time points, we confine our analysis to those data collected at

baseline and at days 4, 6, 8, and 12. We fit a full two-way factorial model of strength on program and
day, with an unstructured residual-error covariance matrix over those repeated measurements taken on
the same subject:
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. keep if inlist(day, 0, 4, 6, 8, 12)
(74 observations deleted)
. mixed strength i.program##i.day || id:,
> noconstant residuals(unstructured, t(day)) nolog
Mixed-effects ML regression Number of obs = 173
Group variable: id Number of groups = 37

Obs per group:
min = 3
avg = 4.7
max = 5

Wald chi2(9) = 45.85
Log likelihood = -296.58215 Prob > chi2 = 0.0000

strength Coefficient Std. err. z P>|z| [95% conf. interval]

2.program 1.360119 1.003549 1.36 0.175 -.6068018 3.32704

day
4 1.125 .3322583 3.39 0.001 .4737858 1.776214
6 1.360127 .3766893 3.61 0.000 .6218298 2.098425
8 1.583563 .4905876 3.23 0.001 .6220287 2.545097
12 1.623576 .5372946 3.02 0.003 .5704978 2.676654

program#day
2 4 -.169034 .4423472 -0.38 0.702 -1.036019 .6979505
2 6 .2113012 .4982385 0.42 0.671 -.7652283 1.187831
2 8 -.1299762 .6524813 -0.20 0.842 -1.408816 1.148864
2 12 .3212829 .7306781 0.44 0.660 -1.11082 1.753386

_cons 79.6875 .7560449 105.40 0.000 78.20568 81.16932

Random-effects parameters Estimate Std. err. [95% conf. interval]

id: (empty)

Residual: Unstructured
var(e0) 9.145662 2.126243 5.798588 14.42474
var(e4) 11.87114 2.761206 7.524966 18.72753
var(e6) 10.06571 2.34885 6.371108 15.9028
var(e8) 13.22464 3.113903 8.336004 20.9802

var(e12) 13.16909 3.16733 8.21923 21.0999
cov(e0,e4) 9.625237 2.331961 5.054677 14.1958
cov(e0,e6) 8.489044 2.106368 4.360639 12.61745
cov(e0,e8) 9.280415 2.369542 4.636199 13.92463
cov(e0,e12) 8.898008 2.348231 4.295559 13.50046
cov(e4,e6) 10.49185 2.492516 5.606605 15.37709
cov(e4,e8) 11.89787 2.848734 6.314456 17.48129
cov(e4,e12) 11.28344 2.80501 5.785724 16.78116
cov(e6,e8) 11.0507 2.646972 5.86273 16.23867
cov(e6,e12) 10.5006 2.590262 5.423781 15.57742
cov(e8,e12) 12.4091 3.010776 6.508093 18.31012

LR test vs. linear model: chi2(14) = 314.67 Prob > chi2 = 0.0000
Note: The reported degrees of freedom assumes the null hypothesis is not on

the boundary of the parameter space. If this is not true, then the
reported test is conservative.
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Because we are using the variable id only to group the repeated measurements and not to introduce

random effects at the subject level, we use the noconstant option to omit any subject-level effects. The
unstructured covariance matrix is the most general and contains many parameters. In this example, we

estimate a distinct residual variance for each day and a distinct covariance for each pair of days.

That there is positive covariance between all pairs of measurements is evident, but what is not as

evident is whether the covariances may be more parsimoniously represented. One option would be to

explore whether the correlation diminishes as the time gap between strength measurements increases and

whether it diminishes systematically. Given the irregularity of the time intervals, an exponential structure

would be more appropriate than, say, an AR or MA structure.

. estimates store unstructured

. mixed strength i.program##i.day || id:, noconstant
> residuals(exponential, t(day)) nolog nofetable
Mixed-effects ML regression Number of obs = 173
Group variable: id Number of groups = 37

Obs per group:
min = 3
avg = 4.7
max = 5

Wald chi2(9) = 36.77
Log likelihood = -307.83324 Prob > chi2 = 0.0000

Random-effects parameters Estimate Std. err. [95% conf. interval]

id: (empty)

Residual: Exponential
rho .9786462 .0051238 .9659207 .9866854

var(e) 11.22349 2.338372 7.460764 16.88389

LR test vs. linear model: chi2(1) = 292.17 Prob > chi2 = 0.0000
Note: The reported degrees of freedom assumes the null hypothesis is not on

the boundary of the parameter space. If this is not true, then the
reported test is conservative.

In the above example, we suppressed displaying the main regression parameters because they did

not differ much from those of the previous model. While the unstructured model estimated 15 vari-

ance–covariance parameters, the exponential model claims to get the job done with just 2, a fact that is

not disputed by an LR test comparing the two nested models (at least not at the 0.01 level).

. lrtest unstructured .
Likelihood-ratio test
Assumption: . nested within unstructured
LR chi2(13) = 22.50
Prob > chi2 = 0.0481
Note: The reported degrees of freedom assumes the null hypothesis is not on

the boundary of the parameter space. If this is not true, then the
reported test is conservative.
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Crossed-effects models
Not all mixed models contain nested levels of random effects.

Example 10: Crossed-effects model
Returning to our longitudinal analysis of pig weights, suppose that instead of (5) we wish to fit

weight𝑖𝑗 = 𝛽0 + 𝛽1week𝑖𝑗 + 𝑢𝑖 + 𝑣𝑗 + 𝜖𝑖𝑗 (8)

for the 𝑖 = 1, . . . , 9 weeks and 𝑗 = 1, . . . , 48 pigs and

𝑢𝑖 ∼ 𝑁(0, 𝜎2
𝑢); 𝑣𝑗 ∼ 𝑁(0, 𝜎2

𝑣); 𝜖𝑖𝑗 ∼ 𝑁(0, 𝜎2
𝜖 )

all independently. Both (5) and (8) assume an overall population-average growth curve 𝛽0 + 𝛽1week
and a random pig-specific shift.

The models differ in how week enters into the random part of the model. In (5), we assume that the

effect due to week is linear and pig specific (a random slope); in (8), we assume that the effect due to

week, 𝑢𝑖, is systematic to that week and common to all pigs. The rationale behind (8) could be that,

assuming that the pigs were measured contemporaneously, we might be concerned that week-specific

random factors such as weather and feeding patterns had significant systematic effects on all pigs.

Model (8) is an example of a two-way crossed-effects model, with the pig effects 𝑣𝑗 being crossed

with the week effects 𝑢𝑖. One way to fit such models is to consider all the data as one big cluster, and

treat the 𝑢𝑖 and 𝑣𝑗 as a series of 9 + 48 = 57 random coefficients on indicator variables for week and
pig. In the notation of (2),

u =

⎡
⎢
⎢
⎢
⎢
⎣

𝑢1
⋮

𝑢9
𝑣1
⋮

𝑣48

⎤
⎥
⎥
⎥
⎥
⎦

∼ 𝑁(0,G); G = [𝜎2
𝑢I9 0

0 𝜎2
𝑣I48

]

Because G is block diagonal, it can be represented in mixed as repeated-level equations. All we need is
an identification variable to identify all the observations as one big group and a way to tell mixed to treat
week and pig as crossed-effects factor variables (or equivalently, as two sets of overparameterized indi-
cator variables identifying weeks and pigs, respectively). mixed supports the special group designation
all for the former and the R.varname notation for the latter.
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. use https://www.stata-press.com/data/r19/pig, clear
(Longitudinal analysis of pig weights)
. mixed weight week || _all: R.week || _all: R.id
Performing EM optimization ...
Performing gradient-based optimization:
Iteration 0: Log likelihood = -1013.824
Iteration 1: Log likelihood = -1013.824
Computing standard errors ...
Mixed-effects ML regression Number of obs = 432
Group variable: _all Number of groups = 1

Obs per group:
min = 432
avg = 432.0
max = 432

Wald chi2(1) = 13258.28
Log likelihood = -1013.824 Prob > chi2 = 0.0000

weight Coefficient Std. err. z P>|z| [95% conf. interval]

week 6.209896 .0539313 115.14 0.000 6.104192 6.315599
_cons 19.35561 .6333982 30.56 0.000 18.11418 20.59705

Random-effects parameters Estimate Std. err. [95% conf. interval]

_all: Identity
var(R.week) .0849874 .0868856 .0114588 .6303302

_all: Identity
var(R.id) 14.83623 3.126142 9.816733 22.42231

var(Residual) 4.297328 .3134404 3.724888 4.957741

LR test vs. linear model: chi2(2) = 474.85 Prob > chi2 = 0.0000
Note: LR test is conservative and provided only for reference.
. estimates store crossed

Thus we estimate 𝜎̂2
𝑢 = 0.08 and 𝜎̂2

𝑣 = 14.84. Both (5) and (8) estimate a total of five parameters: two

fixed effects and three variance components. The models, however, are not nested within each other,

which precludes the use of an LR test to compare both models. Refitting model (5) and looking at the

Akaike information criteria values by using estimates stats,

. quietly mixed weight week || id:week

. estimates stats crossed .
Akaike’s information criterion and Bayesian information criterion

Model N ll(null) ll(model) df AIC BIC

crossed 432 . -1013.824 5 2037.648 2057.99
. 432 . -869.0383 5 1748.077 1768.419

Note: BIC uses N = number of observations. See [R] IC note.
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definitely favors model (5). This finding is not surprising given that our rationale behind (8) was some-

what fictitious. In our estimates stats output, the values of ll(null) are missing. mixed does not
fit a constant-only model as part of its usual estimation of the full model, but you can use mixed to fit a
constant-only model directly, if you wish.

The R.varname notation is equivalent to giving a list of overparameterized (none dropped) indicator

variables for use in a random-effects specification. When you specify R.varname, mixed handles the
calculations internally rather than creating the indicators in the data. Because the set of indicators is

overparameterized, R.varname implies noconstant.

Technical note
Although we were able to fit the crossed-effects model (8), it came at the expense of increasing the

column dimension of our random-effects design from 2 in model (5) to 57 in model (8). Computation

time and memory requirements grow (roughly) quadratically with the dimension of the random effects.

As a result, fitting such crossed-effects models is feasible only when the total column dimension is small

to moderate.

Reexamining model (8), we note that if we drop 𝑢𝑖, we end up with a model equivalent to (4), meaning

that we could have fit (4) by typing

. mixed weight week || _all: R.id

instead of

. mixed weight week || id:

as we did when we originally fit the model. The results of both estimations are identical, but the latter

specification, organized at the cluster (pig) level with random-effects dimension 1 (a random intercept)

is much more computationally efficient. Whereas with the first form we are limited in how many pigs

we can analyze, there is no such limitation with the second form.

Furthermore, we fit model (8) by using

. mixed weight week || _all: R.week || _all: R.id

as a direct way to demonstrate the R. notation. However, we can technically treat pigs as nested within
the all group, yielding the equivalent and more efficient (total column dimension 10) way to fit (8):

. mixed weight week || _all: R.week || id:

We leave it to you to verify that both produce identical results. See Rabe-Hesketh and Skrondal (2022)

for additional techniques to make calculations more efficient in more complex models.

Example 11: Three-level model expressed in terms of a two-level model
As another example of how the same model may be fit in different ways by using mixed (and as a

way to demonstrate covariance(exchangeable)), consider the three-level model used in example 4:

y𝑗𝑘 = X𝑗𝑘β + 𝑢(3)
𝑘 + 𝑢(2)

𝑗𝑘 + ε𝑗𝑘
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where y𝑗𝑘 represents the logarithms of gross state products for the 𝑛𝑗𝑘 = 17 observations from state 𝑗
in region 𝑘, X𝑗𝑘 is a set of regressors, 𝑢(3)

𝑘 is a random intercept at the region level, and 𝑢(2)
𝑗𝑘 is a random

intercept at the state (nested within region) level. We assume that 𝑢(3)
𝑘 ∼ 𝑁(0, 𝜎2

3) and 𝑢(2)
𝑗𝑘 ∼ 𝑁(0, 𝜎2

2)
independently. Define

v𝑘 =
⎡
⎢⎢⎢
⎣

𝑢(3)
𝑘 + 𝑢(2)

1𝑘
𝑢(3)

𝑘 + 𝑢(2)
2𝑘

⋮
𝑢(3)

𝑘 + 𝑢(2)
𝑀𝑘,𝑘

⎤
⎥⎥⎥
⎦

where 𝑀𝑘 is the number of states in region 𝑘. Making this substitution, we can stack the observations

for all the states within region 𝑘 to get

y𝑘 = X𝑘β + Z𝑘v𝑘 + ε𝑘

where Z𝑘 is a set of indicators identifying the states within each region; that is,

Z𝑘 = I𝑀𝑘
⊗ J17

for a 𝑘-column vector of 1s J𝑘, and

𝚺 = Var(v𝑘) =
⎡
⎢⎢
⎣

𝜎2
3 + 𝜎2

2 𝜎2
3 · · · 𝜎2

3
𝜎2

3 𝜎2
3 + 𝜎2

2 · · · 𝜎2
3

⋮ ⋮ ⋱ ⋮
𝜎2

3 𝜎2
3 𝜎2

3 𝜎2
3 + 𝜎2

2

⎤
⎥⎥
⎦𝑀𝑘×𝑀𝑘

Because 𝚺 is an exchangeable matrix, we can fit this alternative form of the model by specifying the

exchangeable covariance structure.

. use https://www.stata-press.com/data/r19/productivity
(Public capital productivity)
. mixed gsp private emp hwy water other unemp || region: R.state,
> cov(exchangeable)
(output omitted )

Mixed-effects ML regression Number of obs = 816
Group variable: region Number of groups = 9

Obs per group:
min = 51
avg = 90.7
max = 136

Wald chi2(6) = 18829.06
Log likelihood = 1430.5017 Prob > chi2 = 0.0000

gsp Coefficient Std. err. z P>|z| [95% conf. interval]

private .2671484 .0212591 12.57 0.000 .2254813 .3088154
emp .7540721 .0261868 28.80 0.000 .7027468 .8053973
hwy .0709767 .023041 3.08 0.002 .0258172 .1161363

water .0761187 .0139248 5.47 0.000 .0488266 .1034109
other -.0999955 .0169366 -5.90 0.000 -.1331907 -.0668004
unemp -.0058983 .0009031 -6.53 0.000 -.0076684 -.0041282
_cons 2.128823 .1543855 13.79 0.000 1.826233 2.431413
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Random-effects parameters Estimate Std. err. [95% conf. interval]

region: Exchangeable
var(R.state) .0077263 .0017926 .0049032 .0121749
cov(R.state) .0014506 .0012995 -.0010963 .0039975

var(Residual) .0013461 .0000689 .0012176 .0014882

LR test vs. linear model: chi2(2) = 1154.73 Prob > chi2 = 0.0000
Note: LR test is conservative and provided only for reference.

The estimates of the fixed effects and their standard errors are equivalent to those from example 4, and

remapping the variance components from (𝜎2
3 + 𝜎2

2, 𝜎2
3, 𝜎2

𝜖 ), as displayed here, to (𝜎2
3, 𝜎2

2, 𝜎2
𝜖 ), as dis-

played in example 4, will show that they are equivalent as well.

Of course, given the discussion in the previous technical note, it is more efficient to fit this model as

we did originally, as a three-level model.

Diagnosing convergence problems
Given the flexibility of mixed-effects models, you will find that some models fail to converge when

used with your data; see Diagnosing convergence problems in [ME] me for advice applicable to mixed-

effects models in general.

In unweighted linear mixed-effects models with independent and homoskedastic residuals, one useful

way to diagnose problems of nonconvergence is to rely on the EM algorithm (Dempster, Laird, and

Rubin 1977), normally used by mixed only as a means of refining starting values. The advantages of
EM are that it does not require a Hessian calculation, each successive EM iteration will result in a larger

likelihood, iterations can be calculated quickly, and iterations will quickly bring parameter estimates

into a neighborhood of the solution. The disadvantages of EM are that, once in a neighborhood of the

solution, it can be slow to converge, if at all, and EM provides no facility for estimating standard errors

of the estimated variance components. One useful property of EM is that it is always willing to provide

a solution if you allow it to iterate enough times, if you are satisfied with being in a neighborhood of the

optimum rather than right on the optimum, and if standard errors of variance components are not crucial

to your analysis.

If you encounter a nonconvergent model, try using the emonly option to bypass gradient-based opti-
mization. Use emiterate(#) to specify the maximum number of EM iterations, which you will usually

want to set much higher than the default of 20. If your EM solution shows an estimated variance compo-

nent that is near 0, a ridge is formed by an interval of values near 0, which produces the same likelihood

and looks equally good to the optimizer. In this case, the solution is to drop the offending variance

component from the model.

Survey data
Multilevel modeling of survey data is a little different from standard modeling in that weighted sam-

pling can take place at multiple levels in the model, resulting in multiple sampling weights. Most survey

datasets, regardless of the design, contain one overall inclusion weight for each observation in the data.

This weight reflects the inverse of the probability of ultimate selection, and by “ultimate” we mean that

it factors in all levels of clustered sampling, corrections for noninclusion and oversampling, poststratifi-

cation, etc.
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For simplicity, in what follows assume a simple two-stage sampling design where groups are ran-

domly sampled and then individuals within groups are sampled. Also assume that no additional weight

corrections are performed; that is, sampling weights are simply the inverse of the probability of selection.

The sampling weight for observation 𝑖 in cluster 𝑗 in our two-level sample is then 𝑤𝑖𝑗 = 1/𝜋𝑖𝑗, where

𝜋𝑖𝑗 is the probability that observation 𝑖, 𝑗 is selected. If you were performing a standard analysis such
as OLS regression with regress, you would simply use a variable holding 𝑤𝑖𝑗 as your pweight vari-
able, and the fact that it came from two levels of sampling would not concern you. Perhaps you would

type vce(cluster groupvar) where groupvar identifies the top-level groups to get standard errors that
control for correlation within these groups, but you would still use only a single weight variable.

Now take these same data and fit a two-level model with mixed. As seen in (14) in Methods and

formulas later in this entry, it is not sufficient to use the single sampling weight 𝑤𝑖𝑗, because weights

enter into the log likelihood at both the group level and the individual level. Instead, what is required for

a two-level model under this sampling design is 𝑤𝑗, the inverse of the probability that group 𝑗 is selected
in the first stage, and 𝑤𝑖|𝑗, the inverse of the probability that individual 𝑖 from group 𝑗 is selected at the
second stage conditional on group 𝑗 already being selected. It simply will not do to just use 𝑤𝑖𝑗 without

making any assumptions about 𝑤𝑗.

Given the rules of conditional probability, 𝑤𝑖𝑗 = 𝑤𝑗𝑤𝑖|𝑗. If your dataset has only 𝑤𝑖𝑗, then you will

need to either assume equal probability sampling at the first stage (𝑤𝑗 = 1 for all 𝑗) or find some way to
recover 𝑤𝑗 from other variables in your data; see Rabe-Hesketh and Skrondal (2006) and the references

therein for some suggestions on how to do this, but realize that there is little yet known about how well

these approximations perform in practice.

What you really need to fit your two-level model are data that contain 𝑤𝑗 in addition to either 𝑤𝑖𝑗 or

𝑤𝑖|𝑗. If you have 𝑤𝑖𝑗—that is, the unconditional inclusion weight for observation 𝑖, 𝑗—then you need

to either divide 𝑤𝑖𝑗 by 𝑤𝑗 to obtain 𝑤𝑖|𝑗 or rescale 𝑤𝑖𝑗 so that its dependence on 𝑤𝑗 disappears. If you

already have 𝑤𝑖|𝑗, then rescaling becomes optional (but still an important decision to make).

Weight rescaling is not an exact science, because the scale of the level-one weights is at issue re-

gardless of whether they represent 𝑤𝑖𝑗 or 𝑤𝑖|𝑗: because 𝑤𝑖𝑗 is unique to group 𝑗, the group-to-group
magnitudes of these weights need to be normalized so that they are “consistent” from group to group.

This is in stark contrast to a standard analysis, where the scale of sampling weights does not factor into

estimation, instead only affecting the estimate of the total population size.

mixed offers three methods for standardizing weights in a two-level model, and you can specify which
method youwant via the pwscale() option. If you specify pwscale(size), then the𝑤𝑖|𝑗 (or𝑤𝑖𝑗, it does

not matter) are scaled to sum to the cluster size 𝑛𝑗. Method pwscale(effective) adds in a dependence
on the sum of the squared weights so that level-one weights sum to the “effective” sample size. Just like

pwscale(size), pwscale(effective) also behaves the same whether you have 𝑤𝑖|𝑗 or 𝑤𝑖𝑗, and so it

can be used with either.

Although both pwscale(size) and pwscale(effective) leave 𝑤𝑗 untouched, the pwscale(gk)
method is a little different in that 1) it changes the weights at both levels and 2) it does assume you have

𝑤𝑖|𝑗 for level-one weights and not 𝑤𝑖𝑗 (if you have the latter, then first divide by 𝑤𝑗). Using the method

of Graubard and Korn (1996), it sets the weights at the group level (level two) to the cluster averages

of the products of both level weights (this product being 𝑤𝑖𝑗). It then sets the individual weights to 1

everywhere; see Methods and formulas for the computational details of all three methods.

Determining which method is “best” is a tough call and depends on cluster size (the smaller the clus-

ters, the greater the sensitivity to scale), whether the sampling is informative (that is, the samplingweights

are correlated with the residuals), whether you are interested primarily in regression coefficients or in

variance components, whether you have a simple random-intercept model or a more complex random-
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coefficients model, and other factors; see Rabe-Hesketh and Skrondal (2006), Carle (2009), and Pfeffer-

mann et al. (1998) for some detailed advice. At the very least, you want to compare estimates across all

three scaling methods (four, if you add no scaling) and perform a sensitivity analysis.

If you choose to rescale level-one weights, it does not matter whether you have 𝑤𝑖|𝑗 or 𝑤𝑖𝑗. For

the pwscale(size) and pwscale(effective) methods, you get identical results, and even though

pwscale(gk) assumes 𝑤𝑖|𝑗, you can obtain this as 𝑤𝑖|𝑗 = 𝑤𝑖𝑗/𝑤𝑗 before proceeding.

If you do not specify pwscale(), then no scaling takes place, and thus at a minimum, you need to
make sure you have 𝑤𝑖|𝑗 in your data and not 𝑤𝑖𝑗.

Example 12: Mixed-effect models with survey data
Rabe-Hesketh and Skrondal (2006) analyzed data from the 2000 Programme for International Student

Assessment (PISA) study on reading proficiency among 15-year-oldAmerican students, as performed by

the Organisation for Economic Co-operation and Development (OECD). The original study was a three-

stage cluster sample, where geographic areas were sampled at the first stage, schools at the second, and

students at the third. Our version of the data does not contain the geographic-areas variable, so we treat

this as a two-stage sample where schools are sampled at the first stage and students at the second.

. use https://www.stata-press.com/data/r19/pisa2000
(Programme for International Student Assessment (PISA) 2000 data)
. describe
Contains data from https://www.stata-press.com/data/r19/pisa2000.dta
Observations: 2,069 Programme for International

Student Assessment (PISA) 2000
data

Variables: 11 12 Jun 2024 10:08
(_dta has notes)

Variable Storage Display Value
name type format label Variable label

female byte %8.0g 1 if female
isei byte %8.0g International socioeconomic index
w_fstuwt float %9.0g Student-level weight
wnrschbw float %9.0g School-level weight
high_school byte %8.0g 1 if highest level by either

parent is high school
college byte %8.0g 1 if highest level by either

parent is college
one_for byte %8.0g 1 if one parent foreign born
both_for byte %8.0g 1 if both parents are foreign

born
test_lang byte %8.0g 1 if English (the test language)

is spoken at home
pass_read byte %8.0g 1 if passed reading proficiency

threshold
id_school int %8.0g School ID

Sorted by:

For student 𝑖 in school 𝑗, where the variable id school identifies the schools, the variable w fstuwt
is a student-level overall inclusion weight (𝑤𝑖𝑗, not 𝑤𝑖|𝑗) adjusted for noninclusion and nonparticipation

of students, and the variable wnrschbw is the school-level weight𝑤𝑗 adjusted for oversampling of schools

with more minority students. The weight adjustments do not interfere with the methods prescribed above,

and thus we can treat the weight variables simply as 𝑤𝑖𝑗 and 𝑤𝑗, respectively.
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Rabe-Hesketh and Skrondal (2006) fit a two-level logistic model for passing a reading proficiency

threshold. We fit a two-level linear random-intercept model for socioeconomic index. Because we have

𝑤𝑖𝑗 and not 𝑤𝑖|𝑗, we rescale using pwscale(size) and thus obtain results as if we had 𝑤𝑖|𝑗.

. mixed isei female high_school college one_for both_for test_lang
> [pw=w_fstuwt] || id_school:, pweight(wnrschbw) pwscale(size)
(output omitted )

Mixed-effects regression Number of obs = 2,069
Group variable: id_school Number of groups = 148

Obs per group:
min = 1
avg = 14.0
max = 28

Wald chi2(6) = 187.23
Log pseudolikelihood = -1443093.9 Prob > chi2 = 0.0000

(Std. err. adjusted for 148 clusters in id_school)

Robust
isei Coefficient std. err. z P>|z| [95% conf. interval]

female .59379 .8732886 0.68 0.497 -1.117824 2.305404
high_school 6.410618 1.500337 4.27 0.000 3.470011 9.351224

college 19.39494 2.121145 9.14 0.000 15.23757 23.55231
one_for -.9584613 1.789947 -0.54 0.592 -4.466692 2.54977
both_for -.2021101 2.32633 -0.09 0.931 -4.761633 4.357413

test_lang 2.519539 2.393165 1.05 0.292 -2.170978 7.210056
_cons 28.10788 2.435712 11.54 0.000 23.33397 32.88179

Robust
Random-effects parameters Estimate std. err. [95% conf. interval]

id_school: Identity
var(_cons) 34.69374 8.574865 21.37318 56.31617

var(Residual) 218.7382 11.22111 197.8147 241.8748

Notes:

1. We specified the level-one weights using standard Stata weight syntax, that is, [pw=w fstuwt].

2. We specified the level-two weights via the pweight(wnrschbw) option as part of the random-effects
specification for the id school level. As such, it is treated as a school-level weight. Accordingly,
wnrschbw needs to be constant within schools, and mixed did check for that before estimating.

3. Because our level-one weights are unconditional, we specified pwscale(size) to rescale them.

4. As is the case with other estimation commands in Stata, standard errors in the presence of sampling

weights are robust.

5. Robust standard errors are clustered at the top level of the model, and this will always be true unless

you specify vce(cluster clustvar), where clustvar identifies an even higher level of grouping.

As a form of sensitivity analysis, we compare the above with scaling via pwscale(gk). Because
pwscale(gk) assumes 𝑤𝑖|𝑗, you want to first divide 𝑤𝑖𝑗 by 𝑤𝑗. But you can handle that within the

weight specification itself.
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. mixed isei female high_school college one_for both_for test_lang
> [pw=w_fstuwt/wnrschbw] || id_school:, pweight(wnrschbw) pwscale(gk)
(output omitted )

Mixed-effects regression Number of obs = 2,069
Group variable: id_school Number of groups = 148

Obs per group:
min = 1
avg = 14.0
max = 28

Wald chi2(6) = 291.37
Log pseudolikelihood = -7270505.6 Prob > chi2 = 0.0000

(Std. err. adjusted for 148 clusters in id_school)

Robust
isei Coefficient std. err. z P>|z| [95% conf. interval]

female -.3519458 .7436334 -0.47 0.636 -1.80944 1.105549
high_school 7.074911 1.139777 6.21 0.000 4.84099 9.308833

college 19.27285 1.286029 14.99 0.000 16.75228 21.79342
one_for -.9142879 1.783091 -0.51 0.608 -4.409082 2.580506
both_for 1.214151 1.611885 0.75 0.451 -1.945085 4.373388

test_lang 2.661866 1.556491 1.71 0.087 -.3887996 5.712532
_cons 31.20145 1.907413 16.36 0.000 27.46299 34.93991

Robust
Random-effects parameters Estimate std. err. [95% conf. interval]

id_school: Identity
var(_cons) 31.67522 6.792239 20.80622 48.22209

var(Residual) 226.2429 8.150714 210.8188 242.7955

The results are somewhat similar to before, which is good news from a sensitivity standpoint. Note that

we specified [pw=w fstwtw/wnrschbw] and thus did the conversion from 𝑤𝑖𝑗 to 𝑤𝑖|𝑗 within our call to

mixed.

We close this section with a bit of bad news. Although weight rescaling and the issues that arise have

been well studied for two-level models, as pointed out by Carle (2009), “. . . a best practice for scaling

weights across multiple levels has yet to be advanced.” As such, pwscale() is currently supported

only for two-level models. If you are fitting a higher-level model with survey data, you need to make

sure your sampling weights are conditional on selection at the previous stage and not overall inclusion

weights, because there is currently no rescaling option to fall back on if you do not.

Small-sample inference for fixed effects
Researchers are often interested in making inferences about fixed effects in a linear mixed-effects

model. In the special case where the data are balanced and the mixed-effects model has a simple co-

variance structure, the sampling distributions of the statistics for testing hypotheses about fixed effects

are known to follow an 𝐹 distribution with specific denominator degrees of freedom (DDF) under the

null hypothesis. For example, the test statistics for testing hypotheses about fixed effects in balanced

split-plot designs and balanced repeated-measures designs have exact 𝑡 or 𝐹 distributions. In general,

however, the null sampling distributions of test statistics for fixed effects are not known and can only be

approximated in more complicated mixed-effects models.
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For a large sample, the null sampling distributions of the test statistics can be approximated by a

normal distribution for a one-hypothesis test and a 𝜒2 distribution for a multiple-hypotheses test. This is

the default behavior of mixed. However, these large-sample approximations may not be appropriate in
small samples, and 𝑡 and 𝐹 distributions may provide better approximations.

You can specify the dfmethod() option to request small-sample inference for fixed effects. mixed
with the dfmethod() option uses a 𝑡 distribution for one-hypothesis tests and an 𝐹 distribution for

multiple-hypotheses tests for inference about fixed effects. We use DF to refer to degrees of freedom

of a 𝑡 distribution, and we use DDF to refer to denominator degrees of freedom of an 𝐹 distribution.

Researchers have proposed various approximations that use 𝑡 and 𝐹 distributions but differ in how

respective DF and DDF are computed (for example, Khuri, Mathew, and Sinha [1998]; Brown and Prescott

[2015]; Schluchter and Elashoff [1990]; Elston [1998]; Kackar and Harville [1984]; Giesbrecht and

Burns [1985]; Fai and Cornelius [1996]; and Kenward and Roger [1997, 2009]). mixed provides five
methods with the dfmethod() option for calculating the DF of a 𝑡 distribution: residual, repeated,
anova, satterthwaite, and kroger.

Residual DDF (DF). This method uses the residual degrees of freedom, 𝑛 − 𝑝, as the DDF for all tests
of fixed effects. For a linear model without random effects and with i.i.d errors, the distributions of the

test statistics for testing the fixed effects are exact 𝑡 or 𝐹 distributions with the residual DF.

Repeated DDF (DF). This method partitions the residual degrees of freedom into the between-subject

degrees of freedom and the within-subject degrees of freedom. This partitioning of the degrees of free-

dom arises from balanced repeated-measures ANOVA analysis. If levels of a fixed effect change within a

subject, then the within-subject degrees of freedom is assigned to the fixed effect of interest; otherwise,

the between-subject degrees of freedom is assigned to that fixed effect. Winer, Brown, and Michels

(1991) showed that this method is appropriate only when the data are balanced and the correlation struc-

ture is assumed to be spherical. The repeated DDF method is supported only with two-level models. For

DDF methods accounting for unbalanced repeated measures, see, for example, Schluchter and Elashoff

(1990).

ANOVA DDF (DF). This method mimics the traditional ANOVA method. It determines the DDF for a

fixed effect depending on whether the corresponding covariate is contained in any of the random-effects

equations. If the covariate is contained in a random-effects equation, the DDF for the fixed effect is

computed as the number of levels of the level variable from that equation minus one. If the covariate

is specified in more than one random-effects equation, the DDF for the fixed effect is computed as the

smallest number of levels of the level variables from those equations minus one and is a conservative

estimate of the true DDF. If the covariate is specified only in the fixed-effects equation, the DDF is com-

puted as 𝜈ddf = 𝑛 − rank(X,Z). This method leads to an exact sampling distribution of the test statistics
only when random effects are balanced and the residuals are i.i.d; see, for example, chapter 1.6 in Brown

and Prescott (2015) for details.

Satterthwaite DDF (DF). This method performs a generalization of the Satterthwaite approximation

based on Kackar and Harville (1984), Giesbrecht and Burns (1985), and Fai and Cornelius (1996). Gies-

brecht and Burns (1985) developed a method of computing the DDF for a single-hypothesis test that is

analogous to Satterthwaite’s approximation of the degrees of freedom of a linear combination of ANOVA

mean squares. For a multiple-hypotheses test, Fai and Cornelius (1996) proposed an extension of the

Giesbrecht–Burns single-degree-of-freedom method. This method involves the spectral decomposition

of the contrast matrix of the hypothesis test and repeated application of the single-degree-of-freedom 𝑡
test. See Denominator degrees of freedom in Methods and formulas for more computational details.
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Kenward–Roger DDF (DF). This method, developed by Kenward and Roger (1997), was designed to

provide an approximation that improves the performance of hypothesis tests about fixed effects in small

samples for complicated mixed-effects models and reproduces the exact inference available for simpler

mixed-effects models. It provides adjusted test statistics, more appropriate DDFs for the approximate

𝐹 distributions when exact inference is not available, and yields the exact 𝑡 and 𝐹 distributions when

exact inference is available. This method first accounts for the small-sample bias and the variability

of the estimated random effects to obtain an adjusted estimator of the fixed-effects covariance matrix.

Then, it proposes an approximate 𝐹 test based on a scaled Wald test statistic that uses the adjusted vari-

ance–covariance estimator. See Denominator degrees of freedom in Methods and formulas for more

computational details.

Residual, repeated, and ANOVA are known as “exact” methods in the literature. These methods are

suitable only when the sampling distributions of the test statistics are known to be 𝑡 or 𝐹. This is usually
only known for certain classes of linear mixed-effects models with simple covariance structures andwhen

data are balanced. These methods are available with both ML and REML estimation.

Satterthwaite and Kenward–Roger are known as “approximation” methods in the literature. These

methods are for unbalanced data and complicated covariance structures where the sampling distributions

of test statistics are unknown and can only be approximated. Both methods are available only with REML

estimation. For single-hypothesis tests, DDFs calculated with the Kenward–Roger method are the same

as those calculated with the Satterthwaite method, but they differ for multiple-hypotheses tests. Although

DDFs of the two methods are the same for single-hypothesis tests, the inference is not the same because

the Kenward–Roger method uses bias-adjusted standard errors.

Except for the special cases for which the sampling distributions are known, there is no definitive

recommendation for which approximation performs best. Schaalje, McBride, and Fellingham (2002)

compared the Satterthwaite method with the Kenward–Roger method via simulation using different co-

variance structures and various sample sizes. They concluded that the Kenward–Roger method outper-

forms the Satterthwaite method in most situations. They recommend using the Satterthwaite method only

when the covariance structure of the data is compound symmetry and the sample size is moderately large.

The Kenward–Roger method, however, is not guaranteed to work well in all situations. For example, for

more complicated covariance structures and very small-sample sizes, the Kenward–Roger method may

produce inflated type I error rates. In conclusion, you should choose your DDF method carefully. See,

for example, Schaalje, McBride, and Fellingham (2002), Chen andWei (2003), Vallejo et al. (2004), and

West, Welch, and Gałecki (2022) for a comparison of different approximations.

Both types of methods, exact and approximation, are available for single-hypothesis tests. For

multiple-hypotheses tests, exact methods are available only if DDFs associated with fixed effects are

the same for all tested covariates. See Denominator degrees of freedom in Methods and formulas for

details.

Example 13: Small-sample inference with a balanced repeated-measures design
Consider an example fromWiner, Brown, and Michels (1991, table 4.3), also analyzed in example 15

of [R] anova, which reports the reaction time for five subjects who were tested with four drugs. The

reaction timewas recorded in the variable score. Assume that person is random (that is, wewish to infer

to the larger population of possible subjects) and drug is fixed (that is, only four drugs are of interest).
This is an example of a mixed-effects model with a simple covariance structure—a balanced repeated-

measures design. The dataset contains only 20 observations, so we would like to account for the small

sample in our analysis. Because this is a balanced repeated-measures design, we can use the repeated
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method to obtain small-sample inference for fixed effects. We specify the dfmethod(repeated) option
with mixed. We also request REML estimates by specifying the reml option to account for the small

number of groups.

. use https://www.stata-press.com/data/r19/t43
(T4.3 -- Winer, Brown, Michels)
. mixed score i.drug || person:, reml dfmethod(repeated)
Performing EM optimization ...
Performing gradient-based optimization:
Iteration 0: Log restricted-likelihood = -49.640099
Iteration 1: Log restricted-likelihood = -49.640099
Computing standard errors ...
Computing degrees of freedom ...
Mixed-effects REML regression Number of obs = 20
Group variable: person Number of groups = 5

Obs per group:
min = 4
avg = 4.0
max = 4

DF method: Repeated DF: min = 4.00
avg = 10.00
max = 12.00

F(3, 12.00) = 24.76
Log restricted-likelihood = -49.640099 Prob > F = 0.0000

score Coefficient Std. err. t P>|t| [95% conf. interval]

drug
2 -.8 1.939072 -0.41 0.687 -5.024874 3.424874
3 -10.8 1.939072 -5.57 0.000 -15.02487 -6.575126
4 5.6 1.939072 2.89 0.014 1.375126 9.824874

_cons 26.4 3.149604 8.38 0.001 17.6553 35.1447

Random-effects parameters Estimate Std. err. [95% conf. interval]

person: Identity
var(_cons) 40.20004 30.10272 9.264606 174.4319

var(Residual) 9.399997 3.837532 4.22305 20.92325

LR test vs. linear model: chibar2(01) = 15.03 Prob >= chibar2 = 0.0001
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In the table for fixed effects, 𝑡 statistics are reported instead of the default 𝑧 statistics. We can compare

our small-sample inference with the corresponding large-sample inference for fixed effects. We do not

need to rerun the estimation command, becausewe can obtain large-sample results upon replay by default.

. mixed
Mixed-effects REML regression Number of obs = 20
Group variable: person Number of groups = 5

Obs per group:
min = 4
avg = 4.0
max = 4

Wald chi2(3) = 74.28
Log restricted-likelihood = -49.640099 Prob > chi2 = 0.0000

score Coefficient Std. err. z P>|z| [95% conf. interval]

drug
2 -.8 1.939072 -0.41 0.680 -4.600511 3.000511
3 -10.8 1.939072 -5.57 0.000 -14.60051 -6.999489
4 5.6 1.939072 2.89 0.004 1.799489 9.400511

_cons 26.4 3.149604 8.38 0.000 20.22689 32.57311

Random-effects parameters Estimate Std. err. [95% conf. interval]

person: Identity
var(_cons) 40.20004 30.10272 9.264606 174.4319

var(Residual) 9.399997 3.837532 4.22305 20.92325

LR test vs. linear model: chibar2(01) = 15.03 Prob >= chibar2 = 0.0001

Comparing the above large-sample inference for fixed effects of drug with the small-sample infer-
ence, we see that the 𝑝-value for the level 4 of drug changes from 0.014 to 0.004.

If we wanted to replay our small-sample estimation results, we would type

. mixed, small
(output omitted )

The specified DF method and summaries of the coefficient-specific DFs are reported in the output

header. We can use the dftable() option to display a fixed-effects table containing coefficient-specific
DFs. dftable(pvalue) reports the fixed-effects table containing DFs, 𝑡 statistics, and 𝑝-values, and
dftable(ci) reports the fixed-effects table containing DFs and confidence intervals.
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. mixed, dftable(pvalue) noretable
Mixed-effects REML regression Number of obs = 20
Group variable: person Number of groups = 5

Obs per group:
min = 4
avg = 4.0
max = 4

DF method: Repeated DF: min = 4.00
avg = 10.00
max = 12.00

F(3, 12.00) = 24.76
Log restricted-likelihood = -49.640099 Prob > F = 0.0000

score Coefficient Std. err. df t P>|t|

drug
2 -.8 1.939072 12.0 -0.41 0.687
3 -10.8 1.939072 12.0 -5.57 0.000
4 5.6 1.939072 12.0 2.89 0.014

_cons 26.4 3.149604 4.0 8.38 0.001

Because levels of drug vary within person, the within-subject degrees of freedom, 12, are assigned
to the coefficients for the levels of drug. The DF for the constant term is always the between-subject

degrees of freedom, 4 in this example, because it is constant within random-effects levels.

The model 𝐹 test is reported in the output header instead of the default 𝜒2 test. The 𝐹 statistic for

testing drug = 0 is 24.76 with DDF = 12, which agrees with the results of anova, repeated():

. anova score person drug, repeated(drug)
Number of obs = 20 R-squared = 0.9244
Root MSE = 3.06594 Adj R-squared = 0.8803

Source Partial SS df MS F Prob>F

Model 1379 7 197 20.96 0.0000

person 680.8 4 170.2 18.11 0.0001
drug 698.2 3 232.73333 24.76 0.0000

Residual 112.8 12 9.4

Total 1491.8 19 78.515789

Between-subjects error term: person
Levels: 5 (4 df)

Lowest b.s.e. variable: person
Repeated variable: drug

Huynh-Feldt epsilon = 1.0789
*Huynh-Feldt epsilon reset to 1.0000
Greenhouse-Geisser epsilon = 0.6049
Box’s conservative epsilon = 0.3333

Prob > F
Source df F Regular H-F G-G Box

drug 3 24.76 0.0000 0.0000 0.0006 0.0076
Residual 12
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Example 14: Small-sample inference with an unbalanced repeated-measures design
Consider West, Welch, and Gałecki’s (2022) dental veneer dataset from example 7, containing two

measurements on each tooth from multiple teeth per patient. Because of small-sample size, we would

like to obtain small-sample inference for fixed effects.

Some patients are missing observations for some teeth:

. use https://www.stata-press.com/data/r19/veneer, clear
(Dental veneer data)
. table patient tooth

Tooth number with patient
6 7 8 9 10 11 Total

Patient ID
1 2 2 2 2 2 2 12
3 2 2 2 2 2 2 12
4 2 2 2 2 2 2 12
5 2 2 2 2 8
6 2 2 2 2 2 2 12
7 2 2 2 2 2 2 12
8 2 2 2 2 2 2 12
9 2 2 4
10 2 2 2 2 2 2 12
12 2 2 2 2 8
13 2 2
14 2 2 4
Total 16 20 20 18 22 14 110

The dataset is unbalanced; therefore, exact 𝐹 tests for fixed effects are unavailable. As such, we will

use the Satterthwaite and the Kenward–Roger approximation methods for calculating DF. Let’s fit the

model using the Kenward–Roger method first by specifying dfmethod(kroger).

. mixed gcf followup base_gcf cda age || patient: followup, cov(un)
> || tooth:, reml nolog dfmethod(kroger)
Mixed-effects REML regression Number of obs = 110

Grouping information

No. of Observations per group
Group variable groups Minimum Average Maximum

patient 12 2 9.2 12
tooth 55 2 2.0 2

DF method: Kenward--Roger DF: min = 10.41
avg = 28.96
max = 50.71

F(4, 27.96) = 1.47
Log restricted-likelihood = -420.92761 Prob > F = 0.2370

gcf Coefficient Std. err. t P>|t| [95% conf. interval]

followup .3009815 1.938641 0.16 0.879 -3.96767 4.569633
base_gcf -.0183127 .1466261 -0.12 0.901 -.3132419 .2766164

cda -.329303 .5533506 -0.60 0.554 -1.440355 .7817493
age -.5773932 .2350491 -2.46 0.033 -1.098324 -.056462

_cons 45.73862 13.21824 3.46 0.002 18.53866 72.93858
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Random-effects parameters Estimate Std. err. [95% conf. interval]

patient: Unstructured
var(followup) 41.88772 18.79997 17.38009 100.9535

var(_cons) 524.9851 253.0205 204.1287 1350.175
cov(followup,_cons) -140.4229 66.57623 -270.9099 -9.935904

tooth: Identity
var(_cons) 47.45738 16.63034 23.8792 94.3165

var(Residual) 48.86704 10.50523 32.06479 74.47382

LR test vs. linear model: chi2(4) = 91.12 Prob > chi2 = 0.0000
Note: LR test is conservative and provided only for reference.

Compared with the 𝑝-values of the large-sample results from example 7, the 𝑝-values for age and

cons change substantially from 0.007 and 0.000 to 0.033 and 0.002, respectively. Note that for the

Kenward–Roger method, not only the 𝑝-values and confidence intervals differ from those of the large-

sample results but also the standard errors for the fixed effects differ. The standard errors differ because

this method uses a bias-adjusted estimator of the variance–covariance matrix of fixed effects.

Now, let’s fit the model using the Satterthwaite approximation:

. mixed gcf followup base_gcf cda age || patient: followup, cov(un)
> || tooth:, reml nolog dfmethod(satterthwaite)
Mixed-effects REML regression Number of obs = 110

Grouping information

No. of Observations per group
Group variable groups Minimum Average Maximum

patient 12 2 9.2 12
tooth 55 2 2.0 2

DF method: Satterthwaite DF: min = 10.41
avg = 28.96
max = 50.71

F(4, 16.49) = 1.87
Log restricted-likelihood = -420.92761 Prob > F = 0.1638

gcf Coefficient Std. err. t P>|t| [95% conf. interval]

followup .3009815 1.936863 0.16 0.879 -3.963754 4.565717
base_gcf -.0183127 .1433094 -0.13 0.899 -.3065704 .269945

cda -.329303 .5292525 -0.62 0.537 -1.39197 .7333636
age -.5773932 .2139656 -2.70 0.022 -1.051598 -.1031885

_cons 45.73862 12.55497 3.64 0.001 19.90352 71.57372
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Random-effects parameters Estimate Std. err. [95% conf. interval]

patient: Unstructured
var(followup) 41.88772 18.79997 17.38009 100.9535

var(_cons) 524.9851 253.0205 204.1287 1350.175
cov(followup,_cons) -140.4229 66.57623 -270.9099 -9.935904

tooth: Identity
var(_cons) 47.45738 16.63034 23.8792 94.3165

var(Residual) 48.86704 10.50523 32.06479 74.47382

LR test vs. linear model: chi2(4) = 91.12 Prob > chi2 = 0.0000
Note: LR test is conservative and provided only for reference.

Using the Satterthwaite method, we see that the 𝑝-value for age is 0.022 and for cons is 0.001 and that
these are again substantially different from their large-sample counterparts. On the other hand, unlike

the standard errors for the Kenward–Roger method, those for the Satterthwaite method are the same as

the standard errors from the large-sample results.

Looking at the DF summaries in the output header of the two methods, we notice that they are ex-

actly the same. This is because DFs for fixed effects obtained using the Kenward–Roger and Satterth-

waite methods are the same for single-hypothesis tests. (You can verify this by specifying, for example,

dftable(pvalue) with the above commands or by using estat df; see [ME] estat df.) The DDFs dif-

fer, however, for multiple-hypotheses tests. For example, DDF computed for the overall model test using

dfmethod(satterthwaite) (16.49) is smaller than that computed using dfmethod(kroger) (27.96).

There are no general guidelines to which method should be preferred, but according to Schaalje,

McBride, and Fellingham (2002), the Kenward–Roger method outperforms the Satterthwaite method

when the variance–covariance structure of the random effects is unstructured, which is the case in our

example.

Determining which DDF method is best is a difficult task and may often need simulation. The choice

of the method depends on the specified covariance structure, sample size, and imbalance of the data. No

method applies to all situations; thus you should use caution when choosing among methods.

Stored results
mixed stores the following in e():

Scalars

e(N) number of observations

e(k) number of parameters

e(k f) number of fixed-effects parameters

e(k r) number of random-effects parameters

e(k rs) number of variances

e(k rc) number of covariances

e(k res) number of residual-error parameters

e(N clust) number of clusters

e(nrgroups) number of residual-error by() groups
e(ar p) AR order of residual errors, if specified

e(ma q) MA order of residual errors, if specified

e(res order) order of residual-error structure, if appropriate

e(df m) model degrees of freedom
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e(small) 1 if dfmethod() option specified, 0 otherwise
e(F) overall 𝐹 test statistic when dfmethod() is specified
e(ddf m) model DDF

e(df max) maximum DF

e(df avg) average DF

e(df min) minimum DF

e(ll) log (restricted) likelihood

e(chi2) 𝜒2

e(p) 𝑝-value for model test
e(ll c) log likelihood, comparison model

e(chi2 c) 𝜒2, comparison test
e(df c) degrees of freedom, comparison test

e(p c) 𝑝-value for comparison test
e(rank) rank of e(V)
e(ic) number of iterations

e(rc) return code

e(converged) 1 if converged, 0 otherwise

Macros

e(cmd) mixed
e(cmdline) command as typed

e(depvar) name of dependent variable

e(wtype) weight type (first-level weights)

e(wexp) weight expression (first-level weights)

e(fweight𝑘) fweight variable for 𝑘th highest level, if specified
e(pweight𝑘) pweight variable for 𝑘th highest level, if specified
e(ivars) grouping variables

e(title) title in estimation output

e(redim) random-effects dimensions

e(vartypes) variance-structure types

e(revars) random-effects covariates

e(resopt) residuals() specification, as typed
e(rstructure) residual-error structure

e(rstructlab) residual-error structure output label

e(rbyvar) residual-error by() variable, if specified
e(rglabels) residual-error by() groups labels
e(pwscale) sampling-weight scaling method

e(timevar) residual-error t() variable, if specified
e(dfmethod) DF method specified in dfmethod()
e(dftitle) title for DF method

e(chi2type) Wald; type of model 𝜒2 test

e(clustvar) name of cluster variable

e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.

e(method) ML or REML
e(opt) type of optimization

e(optmetric) matsqrt or matlog; random-effects matrix parameterization
e(emonly) emonly, if specified
e(ml method) type of ml method
e(technique) maximization technique

e(datasignature) the checksum

e(datasignaturevars) variables used in calculation of checksum

e(properties) b V
e(estat cmd) program used to implement estat
e(predict) program used to implement predict
e(marginswtype) weight type for margins
e(marginswexp) weight expression for margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved
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Matrices

e(b) coefficient vector

e(Cns) constraints matrix

e(N g) group counts

e(g min) group-size minimums

e(g avg) group-size averages

e(g max) group-size maximums

e(tmap) ID mapping for unstructured residual errors

e(V) variance–covariance matrix of the estimators

e(V modelbased) model-based variance

e(df) parameter-specific DF for fixed effects

e(V df) variance–covariance matrix of the estimators when dfmethod(kroger) is specified

Functions

e(sample) marks estimation sample

In addition to the above, the following is stored in r():

Matrices

r(table) matrix containing the coefficients with their standard errors, test statistics, 𝑝-values, and
confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when any
r-class command is run after the estimation command.

Methods and formulas
Methods and formulas are presented under the following headings:

Estimation using ML and REML
Denominator degrees of freedom

Residual DDF
Repeated DDF
ANOVADDF
Satterthwaite DDF
Kenward–Roger DDF

Fixed-effects constraints

Estimation using ML and REML
As given by (1), in the absence of weights we have the linear mixed model

y = Xβ + Zu + ε

where y is the 𝑛 × 1 vector of responses, X is an 𝑛 × 𝑝 design/covariate matrix for the fixed effects β,
and Z is the 𝑛 × 𝑞 design/covariate matrix for the random effects u. The 𝑛 × 1 vector of errors ε is for
now assumed to be multivariate normal with mean 0 and variance matrix 𝜎2

𝜖 I𝑛. We also assume that u

has variance–covariance matrix G and that u is orthogonal to ε so that

Var [u
ε
] = [G 0

0 𝜎2
𝜖 I𝑛

]

Considering the combined error term Zu + ε, we see that y is multivariate normal with mean Xβ and

𝑛 × 𝑛 variance–covariance matrix

V = ZGZ′ + 𝜎2
𝜖 I𝑛
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Defining θ as the vector of unique elements of G results in the log likelihood

𝐿(β,θ, 𝜎2
𝜖 ) = −1

2
{𝑛 log(2𝜋) + log |V| + (y − Xβ)′V−1(y − Xβ)} (9)

which is maximized as a function of β, θ, and 𝜎2
𝜖 . As explained in chapter 6 of Searle, Casella, and

McCulloch (1992), considering instead the likelihood of a set of linear contrasts Ky that do not depend

on β results in the restricted log likelihood

𝐿𝑅(β,θ, 𝜎2
𝜖 ) = 𝐿(β,θ, 𝜎2

𝜖 ) − 1
2
log ∣X′V−1X∣ (10)

Given the high dimension of V, however, the log-likelihood and restricted log-likelihood criteria are not

usually computed by brute-force application of the above expressions. Instead, you can simplify the

problem by subdividing the data into independent clusters (and subclusters if possible) and using matrix

decomposition methods on the smaller matrices that result from treating each cluster one at a time.

Consider the two-level model described previously in (2),

y𝑗 = X𝑗β + Z𝑗u𝑗 + ε𝑗

for 𝑗 = 1, . . . , 𝑀 clusters with cluster 𝑗 containing 𝑛𝑗 observations, with Var(u𝑗) = 𝚺, a 𝑞 × 𝑞 matrix.
Efficient methods for computing (9) and (10) are given in chapter 2 of Pinheiro and Bates (2000).

Namely, for the two-level model, define 𝚫 to be the Cholesky factor of 𝜎2
𝜖 𝚺−1, such that 𝜎2

𝜖 𝚺−1 =
𝚫′𝚫. For 𝑗 = 1, . . . , 𝑀, decompose

[Z𝑗
𝚫] = Q𝑗 [R11𝑗

0
]

by using an orthogonal-triangular (QR) decomposition, with Q𝑗 a (𝑛𝑗 + 𝑞)-square matrix and R11𝑗 a

𝑞-square matrix. We then apply Q𝑗 as follows:

[R10𝑗
R00𝑗

] = Q′
𝑗 [X𝑗

0
] ; [c1𝑗

c0𝑗
] = Q′

𝑗 [y𝑗
0

]

Stack the R00𝑗 and c0𝑗 matrices, and perform the additional QR decomposition

⎡⎢
⎣

R001 c01
⋮ ⋮

R00𝑀 c0𝑀

⎤⎥
⎦

= Q0 [R00 c0
0 c1

]

Pinheiro and Bates (2000) show that ML estimates of β, 𝜎2
𝜖 , and 𝚫 (the unique elements of 𝚫, that

is) are obtained by maximizing the profile log likelihood (profiled in 𝚫)

𝐿(𝚫) = 𝑛
2

{ log𝑛 − log(2𝜋) − 1} − 𝑛 log||c1|| +
𝑀

∑
𝑗=1

log ∣ det(𝚫)
det(R11𝑗)

∣ (11)

where || ⋅ || denotes the 2-norm. Following this maximization with

β̂ = R−1
00 c0; 𝜎̂2

𝜖 = 𝑛−1||c1||2 (12)
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REML estimates are obtained by maximizing

𝐿𝑅(𝚫) = 𝑛 − 𝑝
2

{ log(𝑛 − 𝑝) − log(2𝜋) − 1} − (𝑛 − 𝑝) log||c1||

− log |det(R00)| +
𝑀

∑
𝑗=1

log ∣ det(𝚫)
det(R11𝑗)

∣
(13)

followed by

β̂ = R−1
00 c0; 𝜎̂2

𝜖 = (𝑛 − 𝑝)−1||c1||2

For numerical stability, maximization of (11) and (13) is not performed with respect to the unique ele-

ments of𝚫 but instead with respect to the unique elements of the matrix square root (or matrix logarithm

if the matlog option is specified) of 𝚺/𝜎2
𝜖 ; define 𝛄 to be the vector containing these elements.

Once maximization with respect to𝛄 is completed, (𝛄, 𝜎2
𝜖 ) is reparameterized to {α, log(𝜎𝜖)}, where

α is a vector containing the unique elements of 𝚺, expressed as logarithms of standard deviations for

the diagonal elements and hyperbolic arctangents of the correlations for off-diagonal elements. This last

step is necessary 1) to obtain a joint variance–covariance estimate of the elements of 𝚺 and 𝜎2
𝜖 ; 2) to

obtain a parameterization under which parameter estimates can be interpreted individually, rather than

as elements of a matrix square root (or logarithm); and 3) to parameterize these elements such that their

ranges each encompass the entire real line.

Obtaining a joint variance–covariance matrix for the estimated {α, log(𝜎𝜖)} requires the evaluation
of the log likelihood (or log-restricted likelihood) with only β profiled out. For ML, we have

𝐿∗{α, log(𝜎𝜖)} = 𝐿{𝚫(α, 𝜎2
𝜖 ), 𝜎2

𝜖 }

= −𝑛
2
log(2𝜋𝜎2

𝜖 ) − ||c1||2

2𝜎2
𝜖

+
𝑀

∑
𝑗=1

log ∣ det(𝚫)
det(R11𝑗)

∣

with the analogous expression for REML.

The variance–covariance matrix of β̂ is estimated as

V̂ar(β̂) = 𝜎̂2
𝜖R

−1
00 (R−1

00 )′

but this does not mean that V̂ar(β̂) is identical under both ML and REML because R00 depends on 𝚫.

Because β̂ is asymptotically uncorrelated with {α̂, log(𝜎̂𝜖)}, the covariance of β̂with the other estimated

parameters is treated as 0.

Parameter estimates are stored in e(b) as {β̂, α̂, log(𝜎̂𝜖)}, with the corresponding (block-diagonal)
variance–covariance matrix stored in e(V). Parameter estimates can be displayed in this metric by spec-
ifying the estmetric option. However, in mixed output, variance components are most often displayed
either as variances and covariances or as standard deviations and correlations.

EM iterations are derived by considering the u𝑗 in (2) as missing data. Here we describe the procedure

for maximizing the log likelihood via EM; the procedure for maximizing the restricted log likelihood is

similar. The log likelihood for the full data (y,u) is

𝐿𝐹(β, 𝚺, 𝜎2
𝜖 ) =

𝑀
∑
𝑗=1

{ log𝑓1(y𝑗|u𝑗,β, 𝜎2
𝜖 ) + log𝑓2(u𝑗|𝚺)}
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where 𝑓1(⋅) is the density function for multivariate normal with mean X𝑗β + Z𝑗u𝑗 and variance 𝜎2
𝜖 I𝑛𝑗

,

and 𝑓2(⋅) is the density for multivariate normal with mean 0 and 𝑞 × 𝑞 covariance matrix 𝚺. As before,

we can profile β and 𝜎2
𝜖 out of the optimization, yielding the following EM iterative procedure:

1. For the current iterated value of 𝚺(𝑡), fix β̂ = β̂(𝚺(𝑡)) and 𝜎̂2
𝜖 = 𝜎̂2

𝜖 (𝚺(𝑡)) according to (12).
2. Expectation step: Calculate

𝐷(𝚺) ≡ 𝐸 {𝐿𝐹(β̂, 𝚺, 𝜎̂2
𝜖 )|y}

= 𝐶 − 𝑀
2
log det (𝚺) − 1

2

𝑀
∑
𝑗=1

𝐸 (u′
𝑗𝚺

−1u𝑗|y)

where 𝐶 is a constant that does not depend on 𝚺, and the expected value of the quadratic form

u′
𝑗𝚺

−1u𝑗 is taken with respect to the conditional density 𝑓(u𝑗|y, β̂, 𝚺(𝑡), 𝜎̂2
𝜖 ).

3. Maximization step: Maximize 𝐷(𝚺) to produce 𝚺(𝑡+1).

For general, symmetric 𝚺, the maximizer of 𝐷(𝚺) can be derived explicitly, making EM iterations

quite fast.

For general, residual-error structures,

Var(ε𝑗) = 𝜎2
𝜖 𝚲𝑗

where the subscript 𝑗 merely represents that ε𝑗 and 𝚲𝑗 vary in dimension in unbalanced data, the data

are first transformed according to

y∗
𝑗 = 𝚲̂

−1/2
𝑗 y𝑗; X∗

𝑗 = 𝚲̂
−1/2
𝑗 X𝑗; Z∗

𝑗 = 𝚲̂
−1/2
𝑗 Z𝑗;

and the likelihood-evaluation techniques described above are applied to y∗
𝑗, X

∗
𝑗, and Z

∗
𝑗 instead. The

unique elements of 𝚲, ρ, are estimated along with the fixed effects and variance components. Because
𝜎2

𝜖 is always estimated and multiplies the entire 𝚲𝑗 matrix, ρ̂ is parameterized to take this into account.

In the presence of sampling weights, following Rabe-Hesketh and Skrondal (2006), the weighted log

pseudolikelihood for a two-level model is given as

𝐿(β, 𝚺, 𝜎2
𝜖 ) =

𝑀
∑
𝑗=1

𝑤𝑗 log[∫ exp{
𝑛𝑗

∑
𝑖=1

𝑤𝑖|𝑗 log𝑓1(𝑦𝑖𝑗|u𝑗,β, 𝜎2
𝜖 )} 𝑓2(u𝑗|𝚺)𝑑u𝑗] (14)

where 𝑤𝑗 is the inverse of the probability of selection for the 𝑗th cluster, 𝑤𝑖|𝑗 is the inverse of the condi-

tional probability of selection of individual 𝑖 given the selection of cluster 𝑗, and 𝑓1(⋅) and 𝑓2(⋅) are the
multivariate normal densities previously defined.

Weighted estimation is achieved through incorporating 𝑤𝑗 and 𝑤𝑖|𝑗 into the matrix decomposition

methods detailed above to reflect replicated clusters for 𝑤𝑗 and replicated observations within clusters

for 𝑤𝑖|𝑗. Because this estimation is based on replicated clusters and observations, frequency weights are

handled similarly.

Rescaling of sampling weights can take one of three available forms:

Under pwscale(size),

𝑤∗
𝑖|𝑗 = 𝑛𝑗𝑤𝑖|𝑗 {

𝑛𝑗

∑
𝑖=1

𝑤𝑖|𝑗}
−1
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Under pwscale(effective),

𝑤∗
𝑖|𝑗 = 𝑤𝑖|𝑗 {

𝑛𝑗

∑
𝑖=1

𝑤𝑖|𝑗} {
𝑛𝑗

∑
𝑖=1

𝑤2
𝑖|𝑗}

−1

Under both the above, 𝑤𝑗 remains unchanged. For method pwscale(gk), however, both weights are
modified:

𝑤∗
𝑗 = 𝑛−1

𝑗

𝑛𝑗

∑
𝑖=1

𝑤𝑖|𝑗𝑤𝑗 𝑤∗
𝑖|𝑗 = 1

Under ML estimation, robust standard errors are obtained in the usual way (see [P] robust) with

the one distinction being that in multilevel models, robust variances are, at a minimum, clustered at

the highest level. This is because given the form of the log likelihood, scores aggregate at the top-level

clusters. For a two-level model, scores are obtained as the partial derivatives of𝐿𝑗(β, 𝚺, 𝜎2
𝜖 )with respect

to {β,α, log(𝜎𝜖)}, where 𝐿𝑗 is the log likelihood for cluster 𝑗 and 𝐿 = ∑𝑀
𝑗=1 𝐿𝑗. Robust variances are

not supported under REML estimation because the form of the log restricted likelihood does not lend itself

to separation by highest-level clusters.

EM iterations always assume equal weighting and an independent, homoskedastic error structure. As

such, with weighted data or when error structures are more complex, EM is used only to obtain starting

values.

For extensions to models with three or more levels, see Bates and Pinheiro (1998) and Rabe-Hesketh

and Skrondal (2006).

Denominator degrees of freedom
When the dfmethod() option is specified, mixed uses a 𝑡 distribution with 𝜈ddf degrees of freedom to

perform single-hypothesis tests for fixed effects 𝐻0∶ 𝛽𝑖 = 0 for 𝑖 = 1, 2, . . . , 𝑝 or an 𝐹 distribution with

model numerator degrees of freedom and 𝜈ddf𝑚 DDF for a model (joint) test of all coefficients (except the

constant) being equal to zero. Denominator degrees of freedom 𝜈ddf and 𝜈ddf𝑚 are computed according

to the specified DDF method.

Residual DDF

This method uses the residual degrees of freedom as the DDF, 𝜈ddf = 𝑛 − 𝑝, where 𝑛 is the total

number of observations, and 𝑝 is the rank of the design matrix X.

Repeated DDF

This method partitions the residual degrees of freedom into the between-subject degrees of freedom

and the within-subject degrees of freedom. This partitioning of the degrees of freedom arises from bal-

anced repeated-measures ANOVA analysis. If levels of a fixed effect change within a subject, then the

within-subject degrees of freedom is assigned to the fixed effect of interest; otherwise, the between-

subject degrees of freedom is assigned to that fixed effect. See Schluchter and Elashoff (1990) for more

computational details and, specifically, for the expressions of between-subject andwithin-subject degrees

of freedom.
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ANOVA DDF

This method determines the DDF for a fixed effect depending on whether the corresponding covariate

is contained in any of the random-effects equations. If the covariate is contained in a random-effects

equation, the DDF 𝜈ddf for the fixed effect is computed as the number of levels of the level variable from
that equation minus one. If the covariate is specified in more than one random-effects equation, the DDF

𝜈ddf for the fixed effect is computed as the smallest number of levels of the level variables from those

equations minus one and is a conservative estimate of the true DDF. If the covariate is specified only in

the fixed-effects equation, the DDF is computed as 𝜈ddf = 𝑛 − rank(X,Z).
For example, suppose we have the following mixed model,

mixed y A B C || D: A || E: A B

where A, B, and C are fixed effects, and D and E are nested random effects. For the fixed effect A, 𝜈ddf
is the smaller number of levels of variables D and E minus one because A is included in random-effects
equations at both levels D and E. For the fixed effect B, 𝜈ddf is the number of levels of level variable E
minus one because B is included in the random-effects equation at the level E. For the fixed effect C,
𝜈ddf = 𝑛 − rank(X,Z) because C is not included in any of the random-effects equations.

For the three methods above, the DDF for a model test of 𝐻0∶ β = 0 is computed as follows. If all

corresponding single-hypothesis tests 𝐻0∶ 𝛽𝑖 = 0 have the same DDF 𝜈ddf, then model DDF 𝜈ddf𝑚 = 𝜈ddf.
If the single-hypothesis DDF differs, then 𝜈ddf𝑚 is not defined, and the large-sample 𝜒2 test is reported

instead of the 𝐹 test.

To provide formulas for the Satterthwaite and Kenward–Roger methods, consider a general linear-

hypotheses test of fixed effects 𝐻0∶ C′β = b with a 𝑝 × 𝑙 matrix of linear hypotheses C of rank 𝑙.
The variance–covariance matrix of y is Var(y) = V = ZGZ′ + R = V(𝛔) and can be viewed as a

function of variance components 𝛔 (𝑟 × 1). Suppose that the first two partial derivatives of V(𝛔) with
respect to 𝛔 exist.

Let 𝛔̂ be the REML estimator of 𝛔. Then, the REML estimator of the fixed effects β is the generalized

least-squares estimator

β̂ = {X′V−1(𝛔̂)X}−1
X′V−1(𝛔̂)Y

where V̂ar(β̂) = 𝚽̂ = 𝚽(𝛔̂) = {X′V−1(𝛔̂)X}−1
is the conventional estimator of the vari-

ance–covariance matrix of the fixed effects β̂, and V(𝛔̂) is the estimator of the covariance matrix of
y.

Under the null 𝐻0∶ C′β = b, the 𝐹 test statistic is

𝐹 = 1
𝑙
(C′β̂ − b)′(C′𝚽̂C)−1(C′β̂ − b)

and it has an 𝐹 distribution with 𝑙 numerator and 𝜈ddf𝐶 DDF.

Satterthwaite DDF

This method is derived from the DDF formula of the original approximation attributable to Satterth-

waite (1946):

ddf = 2(C′𝚽̂C)2

Var(C′𝚽̂C)
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For a single-hypothesis test of𝐻0∶ c′β = b, where c and b are vectors of known constants, Giesbrecht

and Burns (1985) proposed using

𝜈ddf = 2(c′𝚽̂c)2

Var(c′𝚽̂c)
= 2(c′𝚽̂c)2

d′Wd
(15)

where d is a vector of partial derivatives of c′𝚽(𝛔)c with respect to 𝛔 evaluated at 𝛔̂, and V̂ar(𝛔̂) = W

is the estimator of the variance–covariance matrix of 𝛔̂ computed based on the expected information

matrix IE in (17) or on the observed information matrix if suboption oim of dfmethod() is specified.

For a multiple-hypotheses test (when the rank of C is greater than 1), Fai and Cornelius (1996) pro-

posed an extension of the Giesbrecht–Burns single-degree-of-freedom method. Their method involves

the spectral decompositionC′𝚽̂C = P′DP, where P = (p1,p2, . . . ,p𝑙) is an orthogonal matrix of eigen-
vectors, and D = diag(𝜆1, 𝜆2, . . . , 𝜆𝑙) is a diagonal matrix of the corresponding eigenvalues. Using this
decomposition, we can write the 𝐹-test statistic as a sum of 𝑙 independent approximate 𝑡 random variates,

𝐹 = 𝑄/𝑙 with

𝑄 =
𝑙

∑
𝑘=1

{p′
𝑘(C′β̂ − b)}2

𝜆𝑘
=

𝑙
∑
𝑘=1

𝑡2
𝑣𝑘

where 𝑣𝑘 is computed using (15). Because 𝑡𝑣𝑘
s are independent and have approximate 𝑡 distributions

with 𝑣𝑘 degrees of freedom,

𝐸(𝑄) =
𝑙

∑
𝑘=1

𝑣𝑘
𝑣𝑘 − 2

𝐼(𝑣𝑘 > 2)

Then, the DDF for a multiple-hypotheses test can be approximately written as

𝜈ddf𝐶 = 2𝐸(𝑄)
𝐸(𝑄) − 𝑙

For more computational details of the Satterthwaite method, see Fai and Cornelius (1996).

Kenward–Roger DDF

This method was developed by Kenward and Roger (1997). It is based on adjusting the conventional

variance–covariance estimator of fixed effects 𝚽̂ for small-sample bias and introducing a scaled 𝐹 test

that improves the small-sample performance of the conventional 𝐹 test of fixed effects.

Kenward and Roger (1997) propose the adjusted estimator,

𝚽̂𝐴 = 𝚽̂ + 2𝚽̂ {
𝑟

∑
𝑖=1

𝑟
∑
𝑗=1

𝑊𝑖𝑗(Q𝑖𝑗 − P𝑖𝚽̂P𝑗 − 1
4
R𝑖𝑗)} 𝚽̂ (16)

where P𝑖 = X′{𝜕V−1(𝛔)/𝜕𝜎𝑖}X, Q𝑖𝑗 = X′{𝜕V−1(𝛔)/𝜕𝜎𝑖}V(𝛔){𝜕V−1(𝛔)/𝜕𝜎𝑗}X, and R𝑖𝑗 =
X′V−1(𝛔){𝜕2V(𝛔)/𝜕𝜎𝑖𝜕𝜎𝑗}V−1(𝛔)X evaluated at 𝛔̂ and 𝑊𝑖𝑗 is the (𝑖, 𝑗)th element of W, the esti-

mator of the variance–covariance matrix of 𝛔̂ computed from the inverse of the expected information

matrix I𝐸, where the element 𝐼 𝑖𝑗
𝐸 of I𝐸 is defined as

2𝐼 𝑖𝑗
𝐸 = tr(𝜕V−1

𝜕𝜎𝑖
V

𝜕V−1

𝜕𝜎𝑗
V) − tr(2𝚽Q𝑖𝑗 − 𝚽P𝑖𝚽P𝑗) (17)
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Alternatively, you can use the observed information matrix as W by specifying suboption oim in

dfmethod().

All terms in (16), except those involvingR𝑖𝑗, are invariant under reparameterization of the covariance

structures. Also, the second derivative requires more computational resources and may not be numeri-

cally stable. For these reasons, the R𝑖𝑗 terms are ignored in the computation of 𝚽̂𝐴 in (16).

For multiple-hypotheses testing, Kenward and Roger (1997) propose the scaled 𝐹-test statistic, which
under the null hypothesis can be written as

𝐹KR = 𝜆
𝑙

(C′β̂ − b)′(C′𝚽̂𝐴C)−1(C′β̂ − b)

and has an 𝐹 distribution with 𝑙 numerator and 𝜈ddf𝐶 DDF. The scale factor 𝜆 = 𝜈ddf𝐶/(𝑙 − 1 + 𝜈ddf𝐶).
The DDF 𝜈ddf𝐶 and 𝜆 are approximated as

𝜈ddf𝐶 = 4 + 𝑙 + 2
𝑙 × 𝜌 − 1

and 𝜆 =
𝜈ddf𝐶

𝐸∗(𝜈ddf𝐶 − 2)

where 𝜌 = 𝑉 ∗/2(𝐸∗)2 and 𝐸∗ and 𝑉 ∗ are the respective approximate mean and variance of the 𝐹KR

statistic; see Kenward and Roger (1997, 987) for expressions for 𝐸∗ and 𝑉 ∗.

Fixed-effects constraints
Fixed-effects constraints Rβ = r are computed by first generating the T and a matrices via the

eigenvalue decomposition described in [P] makecns. The fixed-effects model matrix is adjusted by

X𝑐 = XT and the dependent variable by y𝑐 = y − Xa′. Computations then proceed with unconstrained

optimization using X𝑐 and y𝑐. On convergence, we solve for the reduced-form fixed effects β̂𝑐 and then

solve for the constrained fixed effects β̂ = Tβ̂𝑐 + a′. (Here, β̂ and β̂𝑐 correspond to b′ and b′
𝑐 in

[P] makecns.)
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Postestimation commands predict margins test and testparm
lincom contrast pwcompare Remarks and examples
Stored results Methods and formulas References Also see

Postestimation commands
The following postestimation commands are of special interest after mixed:

Command Description

estat df calculate and display degrees of freedom for fixed effects

estat group summarize the composition of the nested groups

estat icc estimate intraclass correlations

estat recovariance display the estimated random-effects covariance matrices

estat sd display variance components as standard deviations and correlations

estat wcorrelation display within-cluster correlations and standard deviations

The following standard postestimation commands are also available:

Command Description

contrast contrasts and ANOVA-style joint tests of parameters

estat ic Akaike’s, consistent Akaike’s, corrected Akaike’s, and Schwarz’s Bayesian in-
formation criteria (AIC, CAIC, AICc, and BIC, respectively)

estat summarize summary statistics for the estimation sample

estat vce variance–covariance matrix of the estimators (VCE)

estimates cataloging estimation results

etable table of estimation results

hausman Hausman’s specification test

lincom point estimates, standard errors, testing, and inference for linear combinations
of parameters

lrtest likelihood-ratio test

margins marginal means, predictive margins, marginal effects, and average marginal
effects

marginsplot graph the results from margins (profile plots, interaction plots, etc.)

nlcom point estimates, standard errors, testing, and inference for nonlinear combina-
tions of parameters

predict predictions and their SEs, residuals, etc.

predictnl point estimates, standard errors, testing, and inference for generalized predic-
tions

pwcompare pairwise comparisons of parameters

test Wald tests of simple and composite linear hypotheses

testnl Wald tests of nonlinear hypotheses
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predict

Description for predict
predict creates a new variable containing predictions such as linear predictions, standard errors,

fitted values, residuals, and standardized residuals.

Menu for predict
Statistics > Postestimation

Syntax for predict
Syntax for obtaining predictions of the outcome and other statistics

predict [ type ] newvar [ if ] [ in ] [ , statistic relevel(levelvar) ]

Syntax for obtaining BLUPs of random effects and the BLUPs’ standard errors

predict [ type ] { stub* | newvarlist } [ if ] [ in ], reffects [ relevel(levelvar)

reses(stub* | newvarlist) ]

Syntax for obtaining scores after ML estimation

predict [ type ] stub* [ if ] [ in ], scores

statistic Description

Main

xb linear prediction for the fixed portion of the model only; the default

stdp standard error of the fixed-portion linear prediction

fitted fitted values, fixed-portion linear prediction plus contributions based on
predicted random effects

residuals residuals, response minus fitted values
∗ rstandard standardized residuals

Unstarred statistics are available both in and out of sample; type predict ... if e(sample) ... if wanted
only for the estimation sample. Starred statistics are calculated only for the estimation sample, even when

if e(sample) is not specified.

Options for predict

� � �
Main �

xb, the default, calculates the linear prediction xβ based on the estimated fixed effects (coefficients) in

the model. This is equivalent to fixing all random effects in the model to their theoretical mean value

of 0.

stdp calculates the standard error of the linear predictor xβ.
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fitted calculates fitted values, which are equal to the fixed-portion linear predictor plus contributions
based on predicted random effects, or in mixed-model notation, xβ+Zu. By default, the fitted values

take into account random effects from all levels in the model; however, if the relevel(levelvar)
option is specified, then the fitted values are fit beginningwith the topmost level down to and including

level levelvar. For example, if classes are nested within schools, then typing

. predict yhat_school, fitted relevel(school)

would produce school-level predictions. That is, the predictions would incorporate school-specific

random effects but not those for each class nested within each school.

residuals calculates residuals, equal to the responses minus fitted values. By default, the fitted values
take into account random effects from all levels in the model; however, if the relevel(levelvar)
option is specified, then the fitted values are fit beginning at the topmost level down to and including

level levelvar.

rstandard calculates standardized residuals, equal to the residuals multiplied by the inverse square root
of the estimated error covariance matrix.

reffects calculates best linear unbiased predictions (BLUPs) of the random effects. By default, BLUPs

for all random effects in the model are calculated. However, if the relevel(levelvar) option is

specified, then BLUPs for only level levelvar in the model are calculated. For example, if classes are
nested within schools, then typing

. predict b*, reffects relevel(school)

would produce BLUPs at the school level. You must specify 𝑞 new variables, where 𝑞 is the number
of random-effects terms in the model (or level). However, it is much easier to just specify stub* and
let Stata name the variables stub1, stub2, . . . , stub𝑞 for you.
Rabe-Hesketh and Skrondal (2022, sec. 2.11.2) discuss the link between the empirical Bayes pre-

dictions and BLUPs and how these predictions are unbiased. They are unbiased when the groups

associated with the random effects are expected to vary in repeated samples. If you expect the groups

to be fixed in repeated samples, then these predictions are no longer unbiased.

scores calculates the parameter-level scores, one for each parameter in the model including regression
coefficients and variance components. The score for a parameter is the first derivative of the log like-

lihood (or log pseudolikelihood) with respect to that parameter. One score per highest-level group is

calculated, and it is placed on the last record within that group. Scores are calculated in the estimation

metric as stored in e(b).

scores is not available after restricted maximum-likelihood (REML) estimation.

relevel(levelvar) specifies the level in the model at which predictions involving random effects are

to be obtained; see the options above for the specifics. levelvar is the name of the model level and is

either the name of the variable describing the grouping at that level or is all, a special designation
for a group comprising all the estimation data.

reses(stub* | newvarlist) calculates the standard errors of the BLUPs of the random effects. By default,

standard errors for all BLUPs in the model are calculated. However, if the relevel(levelvar) option
is specified, then standard errors for only level levelvar in the model are calculated; see the reffects
option.
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You must specify 𝑞 new variables, where 𝑞 is the number of random-effects terms in the model (or
level). However, it is much easier to just specify stub* and let Stata name the variables stub1, stub2,
. . . , stub𝑞 for you. The new variables will have the same storage type as the corresponding random-

effects variables.

The reffects and reses() options often generate multiple new variables at once. When this occurs,

the random effects (or standard errors) contained in the generated variables correspond to the order in

which the variance components are listed in the output of mixed. Still, examining the variable labels
of the generated variables (with the describe command, for instance) can be useful in deciphering
which variables correspond to which terms in the model.

margins

Description for margins
margins estimates margins of response for linear predictions.

Menu for margins
Statistics > Postestimation

Syntax for margins
margins [marginlist ] [ , options ]
margins [marginlist ] , predict(statistic ...) [ options ]

statistic Description

xb linear predictor for the fixed portion of the model only; the default

stdp not allowed with margins
fitted not allowed with margins
residuals not allowed with margins
rstandard not allowed with margins
reffects not allowed with margins
scores not allowed with margins

Statistics not allowed with margins are functions of stochastic quantities other than e(b).

For the full syntax, see [R] margins.
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test and testparm

Description for test and testparm
test and testparm, by default, perform 𝜒2 tests of simple and composite linear hypotheses about

the parameters for the most recently fit mixed model. They also support 𝐹 tests with a small-sample

adjustment for fixed effects.

Menu for test and testparm
Statistics > Postestimation

Syntax for test and testparm
test (spec) [(spec) ...] [ , test options small ]

testparm varlist[ , testparm options small ]

Options for test and testparm

� � �
Options �

test options; see [R] test options. Options df(), common, and nosvyadjust may not be specified to-
gether with small.

testparm options; see options of testparm in [R] test. Options df() and nosvyadjust may not be

specified together with small.

small specifies thatF tests for fixed effects be carried out with the denominator degrees of freedom (DDF)

obtained by the same method used in the most recently fit mixed model. If option dfmethod() is
not specified in the previous mixed command, option small is not allowed. For certain methods, the
DDF for some tests may not be available. See Small-sample inference for fixed effects in [ME]mixed

for more details.
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lincom

Description for lincom
lincom, by default, computes point estimates, standard errors, 𝑧 statistics, 𝑝-values, and confidence

intervals for linear combinations of parameters after mixed. lincom also provides 𝑡 statistics for linear
combinations of the fixed effects, with the degrees of freedom calculated by the DF method specified in

option dfmethod() of mixed.

Menu for lincom
Statistics > Postestimation

Syntax for lincom
lincom exp [ , lincom options small ]

Options for lincom
lincom options; see [R] lincom options. Option df() may not be specified together with small.

small specifies that 𝑡 statistics for linear combinations of fixed effects be displayed with the degrees
of freedom obtained by the same method used in the most recently fit mixed model. If option

dfmethod() is not specified in the previous mixed command, option small is not allowed. For

certain methods, the degrees of freedom for some linear combinations may not be available. See

Small-sample inference for fixed effects in [ME] mixed for more details.
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contrast

Description for contrast
contrast, by default, performs 𝜒2 tests of linear hypotheses and forms contrasts involving factor

variables and their interactions for the most recently fit mixedmodel. contrast also supports tests with
small-sample adjustments after mixed, dfmethod().

Menu for contrast
Statistics > Postestimation

Syntax for contrast
contrast termlist [ , contrast options small ]

Options for contrast
contrast options; see [R] contrast options. Options df() and nosvyadjust may not be specified to-

gether with small.

small specifies that tests for contrasts be carried out with the DDF obtained by the same method used

in the most recently fit mixed model. If option dfmethod() is not specified in the previous mixed
command, option small is not allowed. For certain methods, the DDF for some contrasts may not be
available. See Small-sample inference for fixed effects in [ME] mixed for more details.
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pwcompare

Description for pwcompare
pwcompare performs pairwise comparisons across the levels of factor variables from themost recently

fit mixed model. pwcompare, by default, reports the comparisons as contrasts (differences) of margins
along with 𝑧 tests or confidence intervals for the pairwise comparisons. pwcompare also supports 𝑡 tests
with small-sample adjustments after mixed, dfmethod().

Menu for pwcompare
Statistics > Postestimation

Syntax for pwcompare
pwcompare marginlist [ , pwcompare options small ]

Options for pwcompare
pwcompare options; see [R] pwcompare options. Option df() may not be specified together with

small.

small specifies that 𝑡 tests for pairwise comparisons be carried out with the degrees of freedom obtained

by the same method used in the most recently fit mixedmodel with the dfmethod() option. If option
dfmethod() is not specified in the previous mixed command, option small is not allowed. For

certain methods, the degrees of freedom for some pairwise comparisons may not be available. See

Small-sample inference for fixed effects in [ME] mixed for more details.

Remarks and examples
Various predictions, statistics, and diagnostic measures are available after fitting a mixed model using

mixed. For the most part, calculation centers around obtaining BLUPs of the random effects. Random

effects are not estimated when the model is fit but instead need to be predicted after estimation. Cal-

culation of intraclass correlations, estimating the dependence between responses for different levels of

nesting, may also be of interest.

Example 1: Obtaining predictions of random effects and checking model fit
In example 3 of [ME]mixed, we modeled the weights of 48 pigs measured on nine successive weeks

as

weight𝑖𝑗 = 𝛽0 + 𝛽1week𝑖𝑗 + 𝑢0𝑗 + 𝑢1𝑗week𝑖𝑗 + 𝜖𝑖𝑗 (1)

for 𝑖 = 1, . . . , 9, 𝑗 = 1, . . . , 48, 𝜖𝑖𝑗 ∼ 𝑁(0, 𝜎2
𝜖 ), and 𝑢0𝑗 and 𝑢1𝑗 normally distributed with mean 0 and

variance–covariance matrix

𝚺 = Var [𝑢0𝑗
𝑢1𝑗

] = [𝜎2
𝑢0 𝜎01

𝜎01 𝜎2
𝑢1

]
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. use https://www.stata-press.com/data/r19/pig
(Longitudinal analysis of pig weights)
. mixed weight week || id: week, covariance(unstructured)
Performing EM optimization ...
Performing gradient-based optimization:
Iteration 0: Log likelihood = -868.96185
Iteration 1: Log likelihood = -868.96185
Computing standard errors ...
Mixed-effects ML regression Number of obs = 432
Group variable: id Number of groups = 48

Obs per group:
min = 9
avg = 9.0
max = 9

Wald chi2(1) = 4649.17
Log likelihood = -868.96185 Prob > chi2 = 0.0000

weight Coefficient Std. err. z P>|z| [95% conf. interval]

week 6.209896 .0910745 68.18 0.000 6.031393 6.388399
_cons 19.35561 .3996387 48.43 0.000 18.57234 20.13889

Random-effects parameters Estimate Std. err. [95% conf. interval]

id: Unstructured
var(week) .3715251 .0812958 .2419532 .570486

var(_cons) 6.823363 1.566194 4.351297 10.69986
cov(week,_cons) -.0984378 .2545767 -.5973991 .4005234

var(Residual) 1.596829 .123198 1.372735 1.857505

LR test vs. linear model: chi2(3) = 764.58 Prob > chi2 = 0.0000
Note: LR test is conservative and provided only for reference.

Rather than see the estimated variance components listed as variance and covariances as above, we can

instead see them as correlations and standard deviations using estat sd; see [ME] estat sd.

. estat sd

Random-effects parameters Estimate Std. err. [95% conf. interval]

id: Unstructured
sd(week) .6095286 .0666874 .4918874 .7553052
sd(_cons) 2.612157 .2997895 2.085976 3.271064

corr(week,_cons) -.0618257 .1575911 -.3557072 .243182

sd(Residual) 1.263657 .0487466 1.171638 1.362903
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We can use estat recovariance to display the estimated variance components 𝚺̂ as a correlation

matrix; see [ME] estat recovariance.

. estat recovariance, correlation
Random-effects correlation matrix for level id

week _cons

week 1
_cons -.0618257 1

Finally, we can use estat wcorrelation to display the within-cluster marginal standard deviations
and correlations for one of the clusters; see [ME] estat wcorrelation.

. estat wcorrelation, format(%4.2g)
Standard deviations and correlations for id = 1:
Standard deviations:

obs 1 2 3 4 5 6 7 8 9

sd 2.9 3.1 3.3 3.7 4.1 4.5 5 5.5 6.1
Correlations:

obs 1 2 3 4 5 6 7 8 9

1 1
2 .8 1
3 .77 .83 1
4 .72 .81 .86 1
5 .67 .78 .85 .89 1
6 .63 .75 .83 .88 .91 1
7 .59 .72 .81 .87 .91 .93 1
8 .55 .69 .79 .86 .9 .93 .94 1
9 .52 .66 .77 .85 .89 .92 .94 .95 1

Because within-cluster correlations can vary between clusters, estat wcorrelation by default dis-
plays the results for the first cluster. In this example, each cluster (pig) has the same number of obser-

vations, and the timings of measurements (week) are the same between clusters. Thus the within-cluster
correlations are the same for all the clusters. In example 1 of [ME] estat wcorrelation, we fit a model

where different clusters have different within-cluster correlations and show how to display these corre-

lations.
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We can also obtain BLUPs of the pig-level random effects (𝑢0𝑗 and 𝑢1𝑗). We need to specify the

variables to be created in the order u1 u0 because that is the order in which the corresponding variance
components are listed in the output (week cons). We obtain the predictions and list them for the first

10 pigs.

. predict u1 u0, reffects

. by id, sort: generate tolist = (_n==1)

. list id u0 u1 if id <=10 & tolist

id u0 u1

1. 1 .2369444 -.3957636
10. 2 -1.584127 .510038
19. 3 -3.526551 .3200372
28. 4 1.964378 -.7719702
37. 5 1.299236 -.9241479

46. 6 -1.147302 -.5448151
55. 7 -2.590529 .0394454
64. 8 -1.137067 -.1696566
73. 9 -3.189545 -.7365507
82. 10 1.160324 .0030772

If you forget how to order your variables in predict, or if you use predict stub*, remember that
predict labels the generated variables for you to avoid confusion.

. describe u0 u1
Variable Storage Display Value

name type format label Variable label

u0 float %9.0g BLUP r.e. for id: _cons
u1 float %9.0g BLUP r.e. for id: week

Examining (1), we see that within each pig, the successive weight measurements are modeled as simple

linear regression with intercept 𝛽0 + 𝑢𝑗0 and slope 𝛽1 + 𝑢𝑗1. We can generate estimates of the pig-level

intercepts and slopes with

. generate intercept = _b[_cons] + u0

. generate slope = _b[week] + u1

. list id intercept slope if id<=10 & tolist

id interc~t slope

1. 1 19.59256 5.814132
10. 2 17.77149 6.719934
19. 3 15.82906 6.529933
28. 4 21.31999 5.437926
37. 5 20.65485 5.285748

46. 6 18.20831 5.665081
55. 7 16.76509 6.249341
64. 8 18.21855 6.040239
73. 9 16.16607 5.473345
82. 10 20.51594 6.212973
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Thus we can plot estimated regression lines for each of the pigs. Equivalently, we can just plot the

fitted values because they are based on both the fixed and the random effects:

. predict fitweight, fitted

. twoway connected fitweight week if id<=10, connect(L)
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We can also generate standardized residuals and see whether they follow a standard normal distribu-

tion, as they should in any good-fitting model:

. predict rs, rstandard

. summarize rs
Variable Obs Mean Std. dev. Min Max

rs 432 1.01e-09 .8929356 -3.621446 3.000929
. qnorm rs
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Example 2: Estimating the intraclass correlation
Following Rabe-Hesketh and Skrondal (2022, chap. 2), we fit a two-level random-effects model for

human peak-expiratory-flow rate. The subjects were each measured twice with the Mini-Wright peak-

flowmeter. It is of interest to determine how reliable the meter is as a measurement device. The intraclass

correlation provides a measure of reliability. Formally, in a two-level random-effects model, the intra-

class correlation corresponds to the correlation of measurements within the same individual and also to

the proportion of variance explained by the individual random effect.

First, we fit the two-level model with mixed:

. use https://www.stata-press.com/data/r19/pefrate, clear
(Peak-expiratory-flow rate)
. mixed wm || id:
Performing EM optimization ...
Performing gradient-based optimization:
Iteration 0: Log likelihood = -184.57839
Iteration 1: Log likelihood = -184.57839
Computing standard errors ...
Mixed-effects ML regression Number of obs = 34
Group variable: id Number of groups = 17

Obs per group:
min = 2
avg = 2.0
max = 2

Wald chi2(0) = .
Log likelihood = -184.57839 Prob > chi2 = .

wm Coefficient Std. err. z P>|z| [95% conf. interval]

_cons 453.9118 26.18617 17.33 0.000 402.5878 505.2357

Random-effects parameters Estimate Std. err. [95% conf. interval]

id: Identity
var(_cons) 11458.94 3998.952 5782.176 22708.98

var(Residual) 396.441 135.9781 202.4039 776.4942

LR test vs. linear model: chibar2(01) = 46.27 Prob >= chibar2 = 0.0000

Now we use estat icc to estimate the intraclass correlation:

. estat icc
Intraclass correlation

Level ICC Std. err. [95% conf. interval]

id .9665602 .0159495 .9165853 .9870185

This correlation is close to 1, indicating that theMini-Wright peak-flowmeter is reliable. But as noted

by Rabe-Hesketh and Skrondal (2022), the reliability is not only a characteristic of the instrument but also

of the between-subject variance. Here we see that the between-subject standard deviation, sd( cons),
is much larger than the within-subject standard deviation, sd(Residual).
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In the presence of fixed-effects covariates, estat icc reports the residual intraclass correlation, the
correlation between measurements conditional on the fixed-effects covariates. This is equivalent to the

correlation of the model residuals.

In the presence of random-effects covariates, the intraclass correlation is no longer constant and de-

pends on the values of the random-effects covariates. In this case, estat icc reports conditional in-

traclass correlations assuming 0 values for all random-effects covariates. For example, in a two-level

model, this conditional correlation represents the correlation of the residuals for two measurements on

the same subject, which both have random-effects covariates equal to 0. Similarly to the interpretation

of intercept variances in random-coefficients models (Rabe-Hesketh and Skrondal 2022, chap. 4), in-

terpretation of this conditional intraclass correlation relies on the usefulness of the 0 baseline values of

random-effects covariates. For example, mean centering of the covariates is often used to make a 0 value

a useful reference.

See [ME] estat icc for more information.

Example 3: Estimating residual intraclass correlations
In example 4 of [ME] mixed, we estimated a Cobb–Douglas production function with random inter-

cepts at the region level and at the state-within-region level:

y𝑗𝑘 = X𝑗𝑘β + 𝑢(3)
𝑘 + 𝑢(2)

𝑗𝑘 + ε𝑗𝑘

. use https://www.stata-press.com/data/r19/productivity
(Public capital productivity)
. mixed gsp private emp hwy water other unemp || region: || state:
(output omitted )

We can use estat group to see how the data are broken down by state and region:

. estat group

No. of Observations per group
Group variable groups Minimum Average Maximum

region 9 51 90.7 136
state 48 17 17.0 17

We are reminded that we have balanced productivity data for 17 years for each state.

We can use predict, fitted to get the fitted values

ŷ𝑗𝑘 = X𝑗𝑘β̂ + 𝑢̂(3)
𝑘 + 𝑢̂(2)

𝑗𝑘

but if we instead want fitted values at the region level, that is,

ŷ𝑗𝑘 = X𝑗𝑘β̂ + 𝑢̂(3)
𝑘
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we need to use the relevel() option:

. predict gsp_region, fitted relevel(region)

. list gsp gsp_region in 1/10

gsp gsp_re~n

1. 10.25478 10.40529
2. 10.2879 10.42336
3. 10.35147 10.47343
4. 10.41721 10.52648
5. 10.42671 10.54947

6. 10.4224 10.53537
7. 10.4847 10.60781
8. 10.53111 10.64727
9. 10.59573 10.70503

10. 10.62082 10.72794

Technical note
Out-of-sample predictions are permitted after mixed, but if these predictions involve BLUPs of random

effects, the integrity of the estimation data must be preserved. If the estimation data have changed since

the mixed model was fit, predict will be unable to obtain predicted random effects that are appropriate

for the fitted model and will give an error. Thus to obtain out-of-sample predictions that contain random-

effects terms, be sure that the data for these predictions are in observations that augment the estimation

data.

We can use estat icc to estimate residual intraclass correlations between productivity years in the
same region and in the same state and region.

. estat icc
Residual intraclass correlation

Level ICC Std. err. [95% conf. interval]

region .159893 .127627 .0287143 .5506202
state|region .8516265 .0301733 .7823466 .9016272

estat icc reports two intraclass correlations for this three-level nested model. The first is the level-3
intraclass correlation at the region level, the correlation between productivity years in the same region.

The second is the level-2 intraclass correlation at the state-within-region level, the correlation between

productivity years in the same state and region.

Conditional on the fixed-effects covariates, we find that annual productivity is only slightly correlated

within the same region, but it is highly correlated within the same state and region. We estimate that state

and region random effects compose approximately 85% of the total residual variance.
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Example 4: Small-sample adjusted tests for fixed effects
To illustrate the use of test and testparm with the small option for small-sample adjusted tests

for fixed effects, we refit the dental veneer data from example 14 of [ME]mixed using the Satterthwaite

method (option dfmethod(satterthwaite)) to compute the DF for fixed effects.

. use https://www.stata-press.com/data/r19/veneer, clear
(Dental veneer data)
. mixed gcf followup base_gcf cda age
> || patient: followup, covariance(unstructured)
> || tooth:, reml nolog dfmethod(satterthwaite)
Mixed-effects REML regression Number of obs = 110

Grouping information

No. of Observations per group
Group variable groups Minimum Average Maximum

patient 12 2 9.2 12
tooth 55 2 2.0 2

DF method: Satterthwaite DF: min = 10.41
avg = 28.96
max = 50.71

F(4, 16.49) = 1.87
Log restricted-likelihood = -420.92761 Prob > F = 0.1638

gcf Coefficient Std. err. t P>|t| [95% conf. interval]

followup .3009815 1.936863 0.16 0.879 -3.963754 4.565717
base_gcf -.0183127 .1433094 -0.13 0.899 -.3065704 .269945

cda -.329303 .5292525 -0.62 0.537 -1.39197 .7333636
age -.5773932 .2139656 -2.70 0.022 -1.051598 -.1031885

_cons 45.73862 12.55497 3.64 0.001 19.90352 71.57372

Random-effects parameters Estimate Std. err. [95% conf. interval]

patient: Unstructured
var(followup) 41.88772 18.79997 17.38009 100.9535

var(_cons) 524.9851 253.0205 204.1287 1350.175
cov(followup,_cons) -140.4229 66.57623 -270.9099 -9.935904

tooth: Identity
var(_cons) 47.45738 16.63034 23.8792 94.3165

var(Residual) 48.86704 10.50523 32.06479 74.47382

LR test vs. linear model: chi2(4) = 91.12 Prob > chi2 = 0.0000
Note: LR test is conservative and provided only for reference.

Now we can, for example, test the hypotheses that all fixed effects are zero by typing

. testparm *, small
( 1) [gcf]followup = 0
( 2) [gcf]base_gcf = 0
( 3) [gcf]cda = 0
( 4) [gcf]age = 0

F( 4, 16.49) = 1.87
Prob > F = 0.1638
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The 𝐹 statistic for the overall test is 1.87, and the DDF is estimated to be 16.49. These results are dif-

ferent from the model test using the Kenward–Roger DDFmethod reported in the header of the estimation

output in example 1 of [ME] estat df (the 𝐹 statistic is 1.47, and the model DDF is 27.96).

The results differ because the Kenward–Roger method uses an adjusted 𝐹-test statistic and adjusts
the fixed-effects variance–covariance estimator for a small sample. Both methods, however, lead to the

same conclusion of no joint significance of the fixed effects.

Without option small, the commands test and testparm report large-sample 𝜒2 Wald tests. We can

compare the small-sample and large-sample tests of the joint hypotheses that the coefficient on followup
and the coefficient on age equal zero.

. test followup = age = 0, small
( 1) [gcf]followup - [gcf]age = 0
( 2) [gcf]followup = 0

F( 2, 10.75) = 3.65
Prob > F = 0.0617

. test followup = age = 0
( 1) [gcf]followup - [gcf]age = 0
( 2) [gcf]followup = 0

chi2( 2) = 7.30
Prob > chi2 = 0.0260

The DDF of the 𝐹 test, which is computed using the Satterthwaite method from our posted results, is

10.75. The 𝑝-values are very different (0.0617 versus 0.0260), and they lead to different conclusions of
whether we should reject the null hypotheses at the 𝛼 = 0.05 level.

Similarly, you can use the small option with lincom to perform small-sample inference for linear

combinations of fixed effects.

Example 5: Small-sample adjusted contrasts
As we did with test, after fitting a mixed model with the dfmethod() option for small-sample

adjustment, we can use the small option with contrast to adjust for a small sample when estimating
contrasts. Suppose we have collected data on a vigilance performance test. This experiment has been

designed to test the response latency scores of two modes of signal during a four-hour monitoring period.

This is a split-plot factorial design where signal is the whole-plot factor, hour is the subplot factor, and
subject is the block factor. The whole-plot factor and the subplot factor are fixed; the block factor is
random. Also, suppose that two measurements are missing in this dataset.
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. use https://www.stata-press.com/data/r19/vptscores, clear
(Vigilance performance test scores with missing data)
. tabdisp subject hour, cellvar(score) by(signal) concise missing

Signal
and
Subject Monitoring period
ID 1 2 3 4

Auditory
1 3 4 7 7
2 6 5 . 8
3 3 4 7 9
4 3 3 6 8

Visual
5 1 2 5 10
6 2 3 6 .
7 2 4 5 9
8 2 3 6 11

We start by fitting a mixed model. Because the dataset is small and unbalanced, we apply the Ken-

ward–Roger method for small-sample adjustment:

. mixed score signal##hour || subject:, reml dfmethod(kroger) nolog nogroup
Mixed-effects REML regression Number of obs = 30
DF method: Kenward--Roger DF: min = 16.02

avg = 16.76
max = 18.29

F(7, 16.08) = 43.84
Log restricted-likelihood = -32.9724 Prob > F = 0.0000

score Coefficient Std. err. t P>|t| [95% conf. interval]

signal
Visual -2 .6288677 -3.18 0.005 -3.319693 -.6803071

hour
2 .25 .5359916 0.47 0.647 -.8861371 1.386137
3 3.108222 .5911044 5.26 0.000 1.859163 4.357281
4 4.25 .5359916 7.93 0.000 3.113863 5.386137

signal#hour
Visual#2 1 .7580066 1.32 0.206 -.6067405 2.606741
Visual#3 .6417778 .7979294 0.80 0.433 -1.046666 2.330221
Visual#4 4.044205 .7979294 5.07 0.000 2.355762 5.732649

_cons 3.75 .4446766 8.43 0.000 2.816836 4.683164

Random-effects parameters Estimate Std. err. [95% conf. interval]

subject: Identity
var(_cons) .2163751 .2345718 .0258477 1.811312

var(Residual) .574574 .2062107 .2843515 1.161011

LR test vs. linear model: chibar2(01) = 1.55 Prob >= chibar2 = 0.1069
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We can test the main effects and the interaction effects by typing the contrast command. With the

small option, contrast reports small-sample adjusted 𝐹 tests. Without the small option, contrast
performs large-sample 𝜒2 Wald tests. Below is the comparison of the small-sample and the large-sample

contrasts:

. contrast signal##hour, small
Contrasts of marginal linear predictions
Margins: asbalanced

df ddf F P>F

score
signal 1 5.95 1.78 0.2307

hour 3 16.35 100.62 0.0000

signal#hour 3 16.35 9.66 0.0007

. contrast signal##hour
Contrasts of marginal linear predictions
Margins: asbalanced

df chi2 P>chi2

score
signal 1 1.79 0.1810

hour 3 304.95 0.0000

signal#hour 3 29.35 0.0000

From these results, we can see that the 𝑝-values for the main effect of signal and the interaction

effect vary between small-sample and large-sample tests. However, both tests indicate that the hour
effect and the interaction effects are significant. We can decompose the interaction effect into separate

interaction contrasts for further investigation.
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. contrast r.signal#ar.hour, small
Contrasts of marginal linear predictions
Margins: asbalanced

df ddf F P>F

score
signal#hour

(Visual vs Auditory) (2 vs 1) 1 16.02 1.74 0.2056
(Visual vs Auditory) (3 vs 2) 1 16.37 0.20 0.6594
(Visual vs Auditory) (4 vs 3) 1 16.66 16.57 0.0008

Joint 3 16.35 9.66 0.0007

Contrast Std. err. df [95% conf. interval]

score
signal#hour

(Visual
vs

Auditory)
(2 vs 1) 1 .7580066 16.0 -.6067405 2.606741
(Visual

vs
Auditory)
(3 vs 2) -.3582222 .7979294 16.4 -2.046666 1.330221
(Visual

vs
Auditory)
(4 vs 3) 3.402427 .8359478 16.7 1.635991 5.168863

From previous analysis, we already knew the overall interaction was significant. From the decom-

position, we can easily see that the overall significance is driven by differences in the third and fourth

hours; the change in response latency from hour three to hour four is greater for visual signals than for

auditory signals.

We can also calculate the pairwise differences of the hourly marginal means by typing the pwcompare
command. With the small option, pwcompare reports small-sample adjusted pairwise comparisons

along with the degrees of freedom for each pairwise comparison.

. pwcompare hour, small
Pairwise comparisons of marginal linear predictions
Margins: asbalanced

Unadjusted
Contrast Std. err. df [95% conf. interval]

score
hour

2 vs 1 .75 .3790033 16.0 -.0533703 1.55337
3 vs 1 3.429111 .3989647 16.4 2.584889 4.273333
4 vs 1 6.272103 .3989647 16.4 5.427881 7.116324
3 vs 2 2.679111 .3989647 16.4 1.834889 3.523333
4 vs 2 5.522103 .3989647 16.4 4.677881 6.366324
4 vs 3 2.842991 .4179739 16.7 1.959774 3.726209
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When we compare these results with the large-sample results below, we can see that the confidence

interval of hour 2 versus hour 1 changes to include 0. Therefore, after adjusting for small-sample size, we

would not reject the hypothesis that the means for hour 1 and hour 2 are equivalent at the 5% significance

level.

. pwcompare hour
Pairwise comparisons of marginal linear predictions
Margins: asbalanced

Unadjusted
Contrast Std. err. [95% conf. interval]

score
hour

2 vs 1 .75 .3790033 .0071672 1.492833
3 vs 1 3.429111 .3971529 2.650706 4.207516
4 vs 1 6.272103 .3971529 5.493697 7.050508
3 vs 2 2.679111 .3971529 1.900706 3.457516
4 vs 2 5.522103 .3971529 4.743697 6.300508
4 vs 3 2.842991 .4145085 2.03057 3.655413

Stored results
pwcompare with option small stores the following in r():
Matrices

r(L df) degrees of freedom for each margin difference

r(M df) degrees of freedom for each margin estimate

pwcompare with options post and small stores the following in e():
Matrices

e(L df) degrees of freedom for each margin difference

e(M df) degrees of freedom for each margin estimate

Methods and formulas
Methods and formulas are presented under the following headings:

Prediction
Small-sample inference

Prediction
Following the notation defined throughout [ME] mixed, BLUPs of random effects u are obtained as

ũ = G̃Z′Ṽ−1 (y − Xβ̂)

where G̃ and Ṽ are G and V = ZGZ′ + 𝜎2
𝜖R with maximum likelihood (ML) or REML estimates of

the variance components plugged in. Standard errors for BLUPs are calculated based on the iterative

technique of Bates and Pinheiro (1998, sec. 3.3) for estimating the BLUPs themselves. If estimation

is done by REML, these standard errors account for uncertainty in the estimate of β, while for ML the

standard errors treat β as known. As such, standard errors of REML-based BLUPs will usually be larger.
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Fitted values are given by Xβ̂ + Zũ, residuals as ̂ε = y − Xβ̂ − Zũ, and standardized residuals as

̂ε∗ = 𝜎̂−1
𝜖 R̂−1/2 ̂ε

If the relevel(levelvar) option is specified, fitted values, residuals, and standardized residuals con-
sider only those random-effects terms up to and including level levelvar in the model.

For details concerning the calculation of scores, see Methods and formulas in [ME] mixed.

Small-sample inference
For small-sample computations performed when the small option is used with test, testparm,

lincom, contrast, or pwcompare, see Denominator degrees of freedom in Methods and formulas of

[ME] mixed.
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ANOVA denominator degrees of freedom (DDF) method. This method uses the traditional ANOVA

for computing DDF. According to this method, the DDF for a test of a fixed effect of a given variable

depends on whether that variable is also included in any of the random-effects equations. For tradi-

tionalANOVAmodels with balanced designs, this method provides exact sampling distributions of the

test statistics. For more complex mixed-effects models or with unbalanced data, this method typically

leads to poor approximations of the actual sampling distributions of the test statistics.

approximation denominator degrees of freedom (DDF) methods. The Kenward–Roger and Satterth-

waite DDFmethods are referred to as approximation methods because they approximate the sampling

distributions of test statistics using 𝑡 and 𝐹 distributions with the DDF specific to the method for com-

plicated mixed-effects models and for simple mixed models with unbalanced data. Also see exact

denominator degrees of freedom (DDF) methods.

between–within denominator degrees of freedom (DDF) method. See repeated denominator degrees

of freedom (DDF) method.

BLUPs. BLUPs are best linear unbiased predictions of either random effects or linear combinations of

random effects. In linear models containing random effects, these effects are not estimated directly

but instead are integrated out of the estimation. Once the fixed effects and variance components

have been estimated, you can use these estimates to predict group-specific random effects. These

predictions are called BLUPs because they are unbiased and have minimal mean squared errors among

all linear functions of the response.

canonical link. Corresponding to each family of distributions in a generalized linear model (GLM) is a

canonical link function for which there is a sufficient statistic with the same dimension as the number

of parameters in the linear predictor. The use of canonical link functions provides the GLM with

desirable statistical properties, especially when the sample size is small.

conditional hazard function. In the context of mixed-effects survival models, the conditional hazard

function is the hazard function computed conditionally on the random effects. Even within the same

covariate pattern, the conditional hazard function varies among individuals who belong to different

random-effects clusters.

conditional hazard ratio. In the context of mixed-effects survival models, the conditional hazard ratio

is the ratio of two conditional hazard functions evaluated at different values of the covariates. Unless

stated differently, the denominator corresponds to the conditional hazard function at baseline, that is,

with all the covariates set to zero.

conditional overdispersion. In a negative binomial mixed-effects model, conditional overdispersion is

overdispersion conditional on random effects. Also see overdispersion.

containment denominator degrees of freedom (DDF) method. See ANOVA denominator degrees of

freedom (DDF) method.

continuous-time autoregressive structure. A generalization of the autoregressive structure that allows

for unequally spaced and noninteger time values.

covariance structure. In a mixed-effects model, covariance structure refers to the variance–covariance

structure of the random effects.
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crossed-effects model. A crossed-effects model is a mixed-effects model in which the levels of random

effects are not nested. A simple crossed-effects model for cross-sectional time-series data would

contain a random effect to control for panel-specific variation and a second random effect to control

for time-specific random variation. Rather than being nested within panel, in this model a random

effect due to a given time is the same for all panels.

crossed-random effects. See crossed-effects model.

EB. See empirical Bayes.

empirical Bayes. In generalized linear mixed-effects models, empirical Bayes refers to the method of

prediction of the random effects after the model parameters have been estimated. The empirical Bayes

method uses Bayesian principles to obtain the posterior distribution of the random effects, but instead

of assuming a prior distribution for the model parameters, the parameters are treated as given.

empirical Bayes mean. See posterior mean.

empirical Bayes mode. See posterior mode.

error covariance, error covariance structure. Variance–covariance structure of the errors within the

lowest-level group. For example, if you aremodeling random effects for classes nestedwithin schools,

then error covariance refers to the variance–covariance structure of the observations within classes,

the lowest-level groups. With a slight abuse of the terminology, error covariance is sometimes also

referred to as residual covariance or residual error covariance in the literature.

exact denominator degrees of freedom (DDF) methods. Residual, repeated, andANOVA DDFmethods

are referred to as exact methods because they provide exact 𝑡 and 𝐹 sampling distributions of test

statistics for special classes of mixed-effects models—linear regression, repeated-measures designs,

and traditionalANOVAmodels—with balanced data. Also see approximation denominator degrees of

freedom (DDF) methods.

fixed effects. In the context of multilevel mixed-effects models, fixed effects represent effects that are

constant for all groups at any level of nesting. In the ANOVA literature, fixed effects represent the

levels of a factor for which the inference is restricted to only the specific levels observed in the study.

See also fixed-effects model in [XT] Glossary.

free parameter. Free parameters are parameters that are not defined by a linear form. Free parameters

are displayed with a forward slash in front of their names or their equation names.

Gauss–Hermite quadrature. In the context of generalized linearmixedmodels, Gauss–Hermite quadra-

ture is a method of approximating the integral used in the calculation of the log likelihood. The

quadrature locations and weights for individual clusters are fixed during the optimization process.

generalized linear mixed-effects model. A generalized linear mixed-effects model is an extension of a

generalized linear model allowing for the inclusion of random deviations (effects).

generalized linear model. The generalized linear model is an estimation framework in which the user

specifies a distributional family for the dependent variable and a link function that relates the de-

pendent variable to a linear combination of the regressors. The distribution must be a member of

the exponential family of distributions. The generalized linear model encompasses many common

models, including linear, probit, and Poisson regression.

GHQ. See Gauss–Hermite quadrature.

GLM. See generalized linear model.

GLME model. See generalized linear mixed-effects model.
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GLMM. Generalized linear mixed model. See generalized linear mixed-effects model.

hierarchical model. A hierarchical model is one in which successively more narrowly defined groups

are nested within larger groups. For example, in a hierarchical model, patients may be nested within

doctors who are in turn nested within the hospital at which they practice.

intraclass correlation. In the context of mixed-effects models, intraclass correlation refers to the corre-

lation for pairs of responses at each nested level of the model.

Kenward–Roger denominator degrees of freedom (DDF) method. This method implements the Ken-

ward and Roger (1997) method, which is designed to approximate unknown sampling distributions of

test statistics for complex linear mixed-effects models. This method is supported only with restricted

maximum-likelihood estimation.

Laplacian approximation. Laplacian approximation is a technique used to approximate definite in-

tegrals without resorting to quadrature methods. In the context of mixed-effects models, Laplacian

approximation is as a rule faster than quadrature methods at the cost of producing biased parameter

estimates of variance components.

Lindstrom–Bates algorithm. An algorithm used by the linearization method.

linear form. A linear combination is what we call a “linear form” as long as you do not refer to its

coefficients or any subset of the linear combination anywhere in the expression. Linear forms are

beneficial for some nonlinear commands such as nl because they make derivative computation faster
and more accurate. In contrast to free parameters, parameters of a linear form are displayed without

forward slashes in the output. Rather, they are displayed as parameters within an equation whose name

is the linear combination name. Also see Linear forms versus linear combinations in [ME] menl.

linear mixed model. See linear mixed-effects model.

linear mixed-effects model. A linear mixed-effects model is an extension of a linear model allowing for

the inclusion of random deviations (effects).

linearization log likelihood. Objective function used by the linearization method for optimization. This

is the log likelihood of the linear mixed-effects model used to approximate the specified nonlinear

mixed-effects model.

linearization method, Lindstrom–Bates method. Method developed by Lindstrom and Bates (1990)

to approximate for fitting nonlinear mixed-effects models. The linearization method uses a first-

order Taylor-series expansion of the specified nonlinear mean function to approximate it with a linear

function of fixed and random effects. Thus a nonlinear mixed-effects model is approximated by a

linear mixed-effects model, in which the fixed-effects and random-effects design matrices involve

derivatives of the nonlinear mean function with respect to fixed effects (coefficients) and random

effects, respectively. Also see Introduction in [ME] menl.

link function. In a generalized linear model or a generalized linear mixed-effects model, the link function

relates a linear combination of predictors to the expected value of the dependent variable. In a linear

regression model, the link function is simply the identity function.

LME model. See linear mixed-effects model.

lowest-level group. The second level of a multilevel model with the observations composing the first

level. For example, if you are modeling random effects for classes nested within schools, then classes

are the lowest-level groups.

MCAGHQ. See mode-curvature adaptive Gauss–Hermite quadrature.
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mean–variance adaptiveGauss–Hermite quadrature. In the context of generalized linearmixedmod-

els, mean–variance adaptive Gauss–Hermite quadrature is a method of approximating the integral

used in the calculation of the log likelihood. The quadrature locations and weights for individual

clusters are updated during the optimization process by using the posterior mean and the posterior

standard deviation.

mixed model. See mixed-effects model.

mixed-effects model. A mixed-effects model contains both fixed and random effects. The fixed effects

are estimated directly, whereas the random effects are summarized according to their (co)variances.

Mixed-effects models are used primarily to perform estimation and inference on the regression coeffi-

cients in the presence of complicated within-subject correlation structures induced by multiple levels

of grouping.

mode-curvature adaptive Gauss–Hermite quadrature. In the context of generalized linear mixed

models, mode-curvature adaptive Gauss–Hermite quadrature is a method of approximating the inte-

gral used in the calculation of the log likelihood. The quadrature locations and weights for individual

clusters are updated during the optimization process by using the posterior mode and the standard

deviation of the normal density that approximates the log posterior at the mode.

MVAGHQ. See mean–variance adaptive Gauss–Hermite quadrature.

named substitutable expression. Anamed substitutable expression is a substitutable expression defined

within menl’s define() option; see Substitutable expressions in [ME] menl.

nested random effects. In the context of mixed-effects models, nested random effects refer to the nested

grouping factors for the random effects. For example, we may have data on students who are nested

in classes that are nested in schools.

NLME model. See nonlinear mixed-effects model.

nonlinear mixed-effects model. A model in which the conditional mean function given random effects

is a nonlinear function of fixed and random effects. A linear mixed-effects model is a special case of

a nonlinear mixed-effects model.

one-level model. Aone-level model has no multilevel structure and no random effects. Linear regression

is a one-level model.

overdispersion. In count-data models, overdispersion occurs when there is more variation in the data

than would be expected if the process were Poisson.

posterior mean. In generalized linear mixed-effects models, posterior mean refers to the predictions of

random effects based on the mean of the posterior distribution.

posterior mode. In generalized linear mixed-effects models, posterior mode refers to the predictions of

random effects based on the mode of the posterior distribution.

QR decomposition. QR decomposition is an orthogonal-triangular decomposition of an augmented data

matrix that speeds up the calculation of the log likelihood; see Methods and formulas in [ME] mixed

for more details.

quadrature. Quadrature is a set of numerical methods to evaluate a definite integral.

random coefficient. In the context of mixed-effects models, a random coefficient is a counterpart to a

slope in the fixed-effects equation. You can think of a random coefficient as a randomly varying slope

at a specific level of nesting.
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random effects. In the context of mixed-effects models, random effects represent effects that may vary

from group to group at any level of nesting. In the ANOVA literature, random effects represent the

levels of a factor for which the inference can be generalized to the underlying population represented

by the levels observed in the study. See also random-effects model in [XT] Glossary.

random intercept. In the context of mixed-effects models, a random intercept is a counterpart to the

intercept in the fixed-effects equation. You can think of a random intercept as a randomly varying

intercept at a specific level of nesting.

random-effects substitutable expression. A random-effects substitutable expression is a substi-

tutable expression containing random-effects terms; see Random-effects substitutable expressions in

[ME] menl.

REML. See restricted maximum likelihood.

repeated denominator degrees of freedom (DDF) method. This method uses the repeated-measures

ANOVA for computing DDF. It is used with balanced repeated-measures designs with spherical corre-

lation error structures. It partitions the residual degrees of freedom into the between-subject degrees

of freedom and the within-subject degrees of freedom. The repeated method is supported only with

two-level models. For more complex mixed-effects models or with unbalanced data, this method

typically leads to poor approximations of the actual sampling distributions of the test statistics.

residual covariance, residual error covariance. See error covariance.

residual denominator degrees of freedom (DDF) method. This method uses the residual degrees of

freedom, 𝑛 − rank(𝑋), as the DDF for all tests of fixed effects. For a linear model without random

effects with independent and identically distributed errors, the distributions of the test statistics for

fixed effects are 𝑡 or𝐹 distributions with the residualDDF. For othermixed-effects models, this method

typically leads to poor approximations of the actual sampling distributions of the test statistics.

restricted maximum likelihood. Restricted maximum likelihood is a method of fitting linear mixed-

effects models that involves transforming out the fixed effects to focus solely on variance–component

estimation.

Satterthwaite denominator degrees of freedom (DDF) method. This method implements a gener-

alization of the Satterthwaite (1946) approximation of the unknown sampling distributions of test

statistics for complex linear mixed-effects models. This method is supported only with restricted

maximum-likelihood estimation.

substitutable expression. Substitutable expressions are like any other mathematical expressions involv-

ing scalars and variables, such as those you would use with Stata’s generate command, except that
the parameters to be estimated are bound in braces. See Substitutable expressions in [ME] menl.

three-level model. A three-level mixed-effects model has one level of observations and two levels of

grouping. Suppose that you have a dataset consisting of patients overseen by doctors at hospitals, and

each doctor practices at one hospital. Then a three-level model would contain a set of random effects

to control for hospital-specific variation, a second set of random effects to control for doctor-specific

random variation within a hospital, and a random-error term to control for patients’ random variation.

two-level model. A two-level mixed-effects model has one level of observations and one level of group-

ing. Suppose that you have a panel dataset consisting of patients at hospitals; a two-level model

would contain a set of random effects at the hospital level (the second level) to control for hospital-

specific random variation and a random-error term at the observation level (the first level) to control

for within-hospital variation.
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variance components. In a mixed-effects model, the variance components refer to the variances and

covariances of the various random effects.

within-group errors. In a two-level model with observations nested within groups, within-group errors

refer to error terms at the observation level. In a higher-level model, they refer to errors within the

lowest-level groups.
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Subject and author index

See the combined subject index and the combined author index in the Stata Index.
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