
Glossary

Description
Commonly used terms are defined here.

Mata glossary

arguments

The values a function receives are called the function’s arguments. For instance, in lud(A, L, U), A,
L, and U are the arguments.

array

An array is any indexed object that holds other objects as elements. Vectors are examples of 1-

dimensional arrays. Vector v is an array, and v[1] is its first element. Matrices are 2-dimensional ar-

rays. Matrix X is an array, and X[1, 1] is its first element. In theory, one can have 3-dimensional, 4-
dimensional, and higher arrays, although Mata does not directly provide them. See [M-2] Subscripts for

more information on arrays in Mata.

Arrays are usually indexed by sequential integers, but in associative arrays, the indices are strings that

have no natural ordering. Associative arrays can be 1-dimensional, 2-dimensional, or higher. If A were

an associative array, then A[‶first"] might be one of its elements. See [M-5] asarray( ) for associative

arrays in Mata.

binary operator

A binary operator is an operator applied to two arguments. In 2-3, the minus sign is a binary operator,
as opposed to the minus sign in -9, which is a unary operator.

broad type

Two matrices are said to be of the same broad type if the elements in each are numeric, are string, or

are pointers. Mata provides two numeric types, real and complex. The term broad type is used to mask

the distinction within numeric and is often used when discussing operators or functions. One might say,

“The comma operator can be used to join the rows of two matrices of the same broad type,” and the

implication of that is that one could join a real to a complex. The result would be complex. Also see

type, eltype, and orgtype.
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c-conformability

Matrix, vector, or scalar A is said to be c-conformable with matrix, vector, or scalar B if they have the

same number of rows and columns (they are p-conformable), or if they have the same number of rows

and one is a vector, or if they have the same number of columns and one is a vector, or if one or the

other is a scalar. c stands for colon; c-conformable matrices are suitable for being used with Mata’s :op
operators. A and B are c-conformable if and only if

A B

r × c r × c

r × 1 r × c

1 × c r × c

1 × 1 r × c

r × c r × 1

r × c 1 × c

r × c 1 × 1

The idea behind c-conformability is generalized elementwise operation. Consider C=A:*B. If A and B

have the same number of rows and have the same number of columns, then ||C𝑖𝑗|| = ||A𝑖𝑗*B𝑖𝑗||. Now
say that A is a column vector and B is a matrix. Then ||C𝑖𝑗|| = ||A𝑖*B𝑖𝑗||: each element of A is applied

to the entire row of B. If A is a row vector, each column of A is applied to the entire column of B. If A

is a scalar, A is applied to every element of B. And then all the rules repeat, with the roles of A and B

interchanged. See [M-2] op colon for a complete definition.

class programming

See object-oriented programming.

colon operators

Colon operators are operators preceded by a colon, and the colon indicates that the operator is to be per-

formed elementwise. A:*B indicates element-by-element multiplication, whereas A*B indicates matrix

multiplication. Colons may be placed in front of any operator. Usually one thinks of elementwise as

meaning c𝑖𝑗 = a𝑖𝑗 <op> b𝑖𝑗, but in Mata, elementwise is also generalized to include c-conformability.

See [M-2] op colon.

column stripes

See row and column stripes.

https://www.stata.com/manuals/m-6glossary.pdf#m-6GlossaryMataglossaryp-conformability
https://www.stata.com/manuals/m-2op_colon.pdf#m-2op_colon
https://www.stata.com/manuals/m-6glossary.pdf#m-6GlossaryMataglossaryobject-orientedprogramming
https://www.stata.com/manuals/m-2op_colon.pdf#m-2op_colon
https://www.stata.com/manuals/m-6glossary.pdf#m-6GlossaryMataglossarystripes
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column-major order

Matrices are stored as vectors. Column-major order specifies that the vector form of a matrix is created

by stacking the columns. For instance,

: A
1 2

1 1 4
2 2 5
3 3 6

is stored as

1 2 3 4 5 6

1 1 2 3 4 5 6

in column-major order. The LAPACK functions use column-major order. Mata uses row-major order. See

row-major order.

colvector

See vector, colvector, and rowvector.

complex

A matrix is said to be complex if its elements are complex numbers. Complex is one of two numeric

types in Stata, the other being real. Complex is generally used to describe how a matrix is stored and not

the kind of numbers that happen to be in it: complex matrix Z might happen to contain real numbers.

Also see type, eltype, and orgtype.

condition number

The condition number associated with a numerical problem is a measure of that quantity’s amenability

to digital computation. A problem with a low condition number is said to be well conditioned, whereas

a problem with a high condition number is said to be ill conditioned.

Sometimes reciprocals of condition numbers are reported and yet authors will still refer to them sloppily

as condition numbers. Reciprocal condition numbers are often scaled between 0 and 1, with values near

epsilon(1) indicating problems.

conformability

Conformability refers to row-and-column matching between two or more matrices. For instance, to

multiply A*B, A must have the same number of columns as B has rows. If that is not true, then the

matrices are said to be nonconformable (for multiplication).

Three kinds of conformability are often mentioned in the Mata documentation: p-conformability, c-

conformability, and r-conformability.

https://www.stata.com/manuals/m-6glossary.pdf#m-6GlossaryMataglossaryrow-majororder
https://www.stata.com/manuals/m-6glossary.pdf#m-6GlossaryMataglossaryvector
https://www.stata.com/manuals/m-6glossary.pdf#m-6GlossaryMataglossarytype
https://www.stata.com/manuals/m-6glossary.pdf#m-6GlossaryMataglossaryp-conformability
https://www.stata.com/manuals/m-6glossary.pdf#m-6GlossaryMataglossaryc-conformability
https://www.stata.com/manuals/m-6glossary.pdf#m-6GlossaryMataglossaryc-conformability
https://www.stata.com/manuals/m-6glossary.pdf#m-6GlossaryMataglossaryr-conformability
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conjugate

If z = a + bi, the conjugate of z is conj(z) = a − bi. The conjugate is obtained by reversing the sign of

the imaginary part. The conjugate of a real number is the number itself.

conjugate transpose

See transpose.

data matrix

A dataset containing n observations on k variables in often stored in an n × k matrix. An observation

refers to a row of that matrix; a variable refers to a column. When the rows are observations and the

columns are variables, the matrix is called a data matrix.

declarations

Declarations state the eltype and orgtype of functions, arguments, and variables. In

real matrix myfunc(real vector A, complex scalar B)
{

real scalar i
. . .

}

the real matrix is a function declaration, the real vector and complex scalar are argument dec-

larations, and real scalar i is a variable declaration. The real matrix states the function returns a

real matrix. The real vector and complex scalar state the kind of arguments myfunc() expects and
requires. The real scalar i helps Mata to produce more efficient compiled code.

Declarations are optional, so the above could just as well have read

function myfunc(A, B)
{

. . .
}

When you omit the function declaration, you must substitute the word function.

When you omit the other declarations, transmorphic matrix is assumed, which is fancy jargon for a

matrix that can hold anything. The advantages of explicit declarations are that they reduce the chances

you make a mistake either in coding or in using the function, and they assist Mata in producing more

efficient code. Working interactively, most people omit the declarations.

See [M-2] Declarations for more information.

defective matrix

An n × n matrix is defective if it does not have n linearly independent eigenvectors.

https://www.stata.com/manuals/m-6glossary.pdf#m-6GlossaryMataglossarytranspose
https://www.stata.com/manuals/m-2declarations.pdf#m-2Declarations
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dereference

Dereferencing is an action performed on pointers. Pointers contain memory addresses, such as 0x2a1228.

One assumes something of interest is stored at 0x2a1228, say, a real scalar equal to 2. When one accesses

that 2 via the pointer by coding *p, one is said to be dereferencing the pointer. Unary * is the dereferencing
operator.

diagonal matrix

Amatrix is diagonal if its off-diagonal elements are zero; A is diagonal if A[i, j]==0 for i!=j. Usually,
diagonal matrices are also square. Some definitions require that a diagonal matrix also be a square matrix.

diagonal of a matrix

The diagonal of a matrix is the set of elements A[i,j].

dyadic operator

Synonym for binary operator.

eigenvalues and eigenvectors

A scalar, 𝜆, is said to be an eigenvalue of square matrix A: n × n if there is a nonzero column vector x:

n × 1 (called an eigenvector) such that

Ax = 𝜆x (1)

Equation (1) can also be written as

(A− 𝜆I)x = 0

where I is the n×n identity matrix. Anontrivial solution to this system of n linear homogeneous equations

exists if and only if

det(A− 𝜆I) = 0 (2)

This nth-degree polynomial in 𝜆 is called the characteristic polynomial or characteristic equation of A,

and the eigenvalues 𝜆 are its roots, also known as the characteristic roots.

The eigenvector defined by (1) is also known as the right eigenvector, because matrixA is postmultiplied

by eigenvector x. See [M-5] eigensystem( ) and left eigenvectors.

eltype

See type, eltype, and orgtype.

https://www.stata.com/manuals/m-6glossary.pdf#m-6GlossaryMataglossarybinary_operator
https://www.stata.com/manuals/m-5eigensystem.pdf#m-5eigensystem()
https://www.stata.com/manuals/m-6glossary.pdf#m-6GlossaryMataglossarylefteigenvectors
https://www.stata.com/manuals/m-6glossary.pdf#m-6GlossaryMataglossarytype
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epsilon(1), etc.

epsilon(1) refers to the unit roundoff error associated with a computer, also informally called machine

precision. It is the smallest amount by which a number may differ from 1. For IEEE double-precision

variables, epsilon(1) is approximately 2.22045e–16.

epsilon(x) is the smallest amount by which a real number can differ from x, or an approximation

thereof; see [M-5] epsilon( ).

exp

exp is used in syntax diagrams to mean “any valid expression may appear here”; see [M-2] exp.

external variable

See global variable.

frames

Frames, also known as data frames, are in-memory areas where datasets are analyzed. Stata can hold

multiple datasets in memory, and each dataset is held in a memory area called a frame. A variety of

commands exist to manage frames and manipulate the data in them. See [D] frames.

function

The words program and function are used interchangeably. The programs that you write in Mata are in

fact functions. Functions receive arguments and optionally return results.

Examples of functions that are included withMata are sqrt(), ttail(), and substr(). Such functions
are often referred to as the built-in functions or the library functions. Built-in functions refer to functions

implemented in the C code that implements Mata, and library functions refer to functions written in the

Mata programming language, but many users use the words interchangeably because how functions are

implemented is of little importance. If you have a choice between using a built-in function and a library

function, however, the built-in function will usually execute more quickly and the library function will be

easier to use. Mostly, however, features are implemented one way or the other and you have no choice.

Also see underscore functions.

For a list of the functions that Mata provides, see [M-4] Intro.

generalized eigenvalues

A scalar, 𝜆, is said to be a generalized eigenvalue of a pair of n× n square numeric matrices A, B if there

is a nonzero column vector x: n × 1 (called a generalized eigenvector) such that

Ax = 𝜆Bx (1)

https://www.stata.com/manuals/m-5epsilon.pdf#m-5epsilon()
https://www.stata.com/manuals/m-2exp.pdf#m-2exp
https://www.stata.com/manuals/m-6glossary.pdf#m-6GlossaryMataglossaryglobalvariable
https://www.stata.com/manuals/dframes.pdf#dframes
https://www.stata.com/manuals/m-6glossary.pdf#m-6GlossaryMataglossaryunderscorefunctions
https://www.stata.com/manuals/m-4intro.pdf#m-4Intro
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Equation (1) can also be written as

(A− 𝜆B)x = 0

A nontrivial solution to this system of n linear homogeneous equations exists if and only if

det(A− 𝜆B) = 0 (2)

In practice, the generalized eigenvalue problem for the matrix pair (A,B) is usually formulated as finding
a pair of scalars (w, b) and a nonzero column vector x such that

wAx = bBx

The scalar w/b is a generalized eigenvalue if b is not zero.

Infinity is a generalized eigenvalue if b is zero or numerically close to zero. This situation may arise if

B is singular.

The Mata functions that compute generalized eigenvalues return them in two complex vectors, w and b

of length n. If b[i] = 0, the ith generalized eigenvalue is infinite, otherwise the ith generalized eigenvalue

is w[i]/b[i].

global variable

Global variables, also known as external variables and as global external variables, refer to variables that

are common across programs and which programs may access without the variable being passed as an

argument.

The variables you create interactively are global variables. Even so, programs cannot access those vari-

ables without engaging in another step, and global variables can be created without your creating them

interactively.

To access (and create if necessary) global external variables, you declare the variable in the body of your

program:

function myfunction(. . .)
{

external real scalar globalvar

. . .
}

See Linking to external globals in [M-2] Declarations.

There are other ways of creating and accessing global variables, but the declaration method is recom-

mended. The alternatives are crexternal(), findexternal(), and rmexternal() documented in

[M-5] findexternal( ) and valofexternal() documented in [M-5] valofexternal( ).

https://www.stata.com/manuals/m-2declarations.pdf#m-2DeclarationsRemarksandexamplesLinkingtoexternalglobals
https://www.stata.com/manuals/m-2declarations.pdf#m-2Declarations
https://www.stata.com/manuals/m-5findexternal.pdf#m-5findexternal()
https://www.stata.com/manuals/m-5valofexternal.pdf#m-5valofexternal()
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hashing, hash functions, and hash tables

Hashing refers to a technique for quickly finding information corresponding to an identifier. The identi-

fier might be a name, a Social Security number, fingerprints, or anything else on which the information

is said to be indexed. The hash function returns a many-to-one mapping of identifiers onto a dense sub-

range of the integers. Those integers, called hashes, are then used to index a hash table. The selected

element of the hash table specifies a list containing identifiers and information. The list is then searched

for the particular identifier desired. The advantage is that rather than searching a single large list, one

need only search one of K smaller lists. For this to be fast, the hash function must be quick to compute

and produce roughly equal frequencies of hashes over the range of identifiers likely to be observed.

Hermitian matrix

Matrix A is Hermitian if it is equal to its conjugate transpose; A = A′; see transpose. This means that

each off-diagonal element a𝑖𝑗 must equal the conjugate of a𝑗𝑖, and that the diagonal elements must be

real. The following matrix is Hermitian:

[ 2 4 + 5𝑖
4 − 5𝑖 6 ]

The definition A = A′ is the same as the definition for a symmetric matrix, although usually the word

symmetric is reserved for real matrices and Hermitian, for complex matrices. In this manual, we use the

word symmetric for both; see symmetric matrices.

Hessenberg decomposition

The Hessenberg decomposition of a matrix,A, can be written as

Q′AQ = H

where H is in upper Hessenberg form and Q is orthogonal if A is real or unitary if A is complex. See

[M-5] hessenbergd( ).

Hessenberg form

Amatrix,A, is in upper Hessenberg form if all entries below the first subdiagonal are zero: A𝑖𝑗 = 0 for

all i > j + 1.

Amatrix,A, is in lower Hessenberg form if all entries above the first superdiagonal are zero: A𝑖𝑗 = 0

for all j > i + 1.

instance and realization

Instance and realization are synonyms for variable, as in Mata variable. For instance, consider a real

scalar variable X. One can equally well say that X is an instance of a real scalar or a realization of a real

scalar. Authors represent a variable this way when they wish to emphasize that X is not representative

of all real scalars but is just one of many real scalars. Instance is often used with structures and classes

when the writer wishes to emphasize the difference between the values contained in the variable and

the definition of the structure or the class. It is confusing to say that V is a class C, even though it is

commonly said, because the reader might confuse the definition of C with the specific values contained

in V. Thus careful authors say that V is an instance of class C.

https://www.stata.com/manuals/m-6glossary.pdf#m-6GlossaryMataglossarytranspose
https://www.stata.com/manuals/m-6glossary.pdf#m-6GlossaryMataglossarysymmetricmatrices
https://www.stata.com/manuals/m-5hessenbergd.pdf#m-5hessenbergd()
https://www.stata.com/manuals/m-6glossary.pdf#m-6GlossaryMataglossaryvariable
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istmt

An istmt is an interactive statement, a statement typed at Mata’s colon prompt.

J(r, c, value)

J() is the function that returns an r × c matrix with all elements set to value; see [M-5] J( ). Also, J()
is often used in the documentation to describe the various types of void matrices; see void matrix. Thus

the documentation might say that such-and-such returns J(0, 0, .) under certain conditions. That is

another way of saying that such-and-such returns a 0 × 0 real matrix.

When r or c is 0, there are no elements to be filled in with value, but even so, value is used to determine

the type of the matrix. Thus J(0, 0, 1i) refers to a 0 × 0 complex matrix, J(0, 0, ””) refers to a 0 ×
0 string matrix, and J(0, 0, NULL) refers to a 0 × 0 pointer matrix.

In the documentation, J() is used for more than describing 0 × 0 matrices. Sometimes, the matrices

being described are r × 0 or are 0 × c. Say that a function example(X) is supposed to return a column
vector; perhaps it returns the last column of X . Now say that X is 0 × 0. Function example() still

should return a column vector, and so it returns a 0 × 1 matrix. This would be documented by noting

that example() returns J(0, 1, .) when X is 0 × 0.

LAPACK

LAPACK stands for Linear Algebra PACKage and forms the basis for many of Mata’s linear algebra capa-

bilities; see [M-1] LAPACK.

left eigenvectors

A vector x: n× 1 is said to be a left eigenvector of square matrixA: n× n if there is a nonzero scalar, 𝜆,
such that

xA = 𝜆x

lval

lval stands for left-hand-side value and is defined as the property of being able to appear on the left-hand

side of an equal-assignment operator. Matrices are lvals in Mata, and thus

X = . . .

is valid. Functions are not lvals; thus, you cannot code

substr(mystr,1,3) = ”abc”

lvals would be easy to describe except that pointers can also be lvals. Few people ever use pointers. See

[M-2] op assignment for a complete definition.

https://www.stata.com/manuals/m-5j.pdf#m-5J()
https://www.stata.com/manuals/m-6glossary.pdf#m-6GlossaryMataglossaryvoid_matrix
https://www.stata.com/manuals/m-1lapack.pdf#m-1LAPACK
https://www.stata.com/manuals/m-2op_assignment.pdf#m-2op_assignment
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machine precision

See epsilon(1), etc.

.mata source code file

By convention, we store the Mata source code for function function() in file function.mata; see
[M-1] Source.

matrix

The most general organization of data, containing r rows and c columns. Vectors, column vectors, row

vectors, and scalars are special cases of matrices.

.mlib library

The object code of functions can be collected and stored in a library. Most Mata functions, in fact, are

located in the official libraries provided with Stata. You can create your own libraries. See [M-3] mata

mlib.

.mo file

The object code of a function can be stored in a .mo file, where it can be later reused. See [M-1] How

and [M-3] mata mosave.

monadic operator

Synonym for unary operator.

NaN

NaN stands for Not a Number and is a special computer floating-point code used for results that cannot

be calculated. Mata (and Stata) do not use NaNs. When NaNs arise, they are converted into . (missing

value).

norm

A norm is a real-valued function f(x) satisfying

f (0) = 0

f (x) > 0 for all x ≠ 0

f (cx) = |c| f (x)
f (x+y) ≤ f (x) + f (y)

The word norm applied to a vector x usually refers to its Euclidean norm, p = 2 norm, or length: the

square root of the sum of its squared elements. The are other norms, the popular ones being p = 1 (the

sum of the absolute values of its elements) and p = infinity (the maximum element). Norms can also be

generalized to deal with matrices. See [M-5] norm( ).

https://www.stata.com/manuals/m-6glossary.pdf#m-6GlossaryMataglossaryepsilon
https://www.stata.com/manuals/m-1source.pdf#m-1Source
https://www.stata.com/manuals/m-3matamlib.pdf#m-3matamlib
https://www.stata.com/manuals/m-3matamlib.pdf#m-3matamlib
https://www.stata.com/manuals/m-1how.pdf#m-1How
https://www.stata.com/manuals/m-3matamosave.pdf#m-3matamosave
https://www.stata.com/manuals/m-6glossary.pdf#m-6GlossaryMataglossaryunary_operator
https://www.stata.com/manuals/m-5norm.pdf#m-5norm()
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NULL

A special value for a pointer that means “points to nothing”. If you list the contents of a pointer variable

that contains NULL, the address will show as 0x0. See pointer.

numeric

Amatrix is said to be numeric if its elements are real or complex; see type, eltype, and orgtype.

object code

Object code refers to the binary code that Mata produces from the source code you type as input. See

[M-1] How.

object-oriented programming

Object-oriented programming is a programming concept that treats programming elements as objects

and concentrates on actions affecting those objects rather than merely on lists of instructions. Object-

oriented programming uses classes to describe objects. Classes are much like structures with a primary

difference being that classes can contain functions (known as methods) as well as variables. Unlike

structures, however, classes may inherit variables and functions from other classes, which in theory

makes object-oriented programs easier to extend and modify than non–object-oriented programs.

observations and variables

A dataset containing n observations on k variables in often stored in an n × k matrix. An observation

refers to a row of that matrix; a variable refers to a column.

operator

An operator is +, -, and the like. Most operators are binary (or dyadic), such as + in A+B and * in C*D.
Binary operators also include logical operators such as & and | (“and” and “or”) in E&F and G|H. Other
operators are unary (or monadic), such as ! (not) in !J, or both unary and binary, such as - in -K and in

L-M. When we say “operator” without specifying which, we mean binary operator. Thus colon operators

are in fact colon binary operators. See [M-2] exp.

optimization

Mata compiles the code that you write. After compilation, Mata performs an optimization step, the

purpose of which is to make the compiled code execute more quickly. You can turn off the optimization

step—see [M-3] mata set—but doing so is not recommended.

orgtype

See type, eltype, and orgtype.

https://www.stata.com/manuals/m-6glossary.pdf#m-6GlossaryMataglossarypointer
https://www.stata.com/manuals/m-6glossary.pdf#m-6GlossaryMataglossarytype
https://www.stata.com/manuals/m-1how.pdf#m-1How
https://www.stata.com/manuals/m-2exp.pdf#m-2exp
https://www.stata.com/manuals/m-3mataset.pdf#m-3mataset
https://www.stata.com/manuals/m-6glossary.pdf#m-6GlossaryMataglossarytype
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orthogonal matrix and unitary matrix

A is orthogonal if A is square and A′A==I. The word orthogonal is usually reserved for real matrices; if
the matrix is complex, it is said to be unitary (and then transpose means conjugate-transpose). We use

the word orthogonal for both real and complex matrices.

If A is orthogonal, then det(A) = ±1.

p-conformability

Matrix, vector, or scalar A is said to be p-conformable with matrix, vector, or scalar B if

rows(A)==rows(B) and cols(A)==cols(B). p stands for plus; p-conformability is one of the prop-
erties necessary to be able to add matrices together. p-conformability, however, does not imply

that the matrices are of the same type. Thus (1,2,3) is p-conformable with (4,5,6) and with

(”this”,”that”,”what”) but not with (4\5\6).

permutation matrix and permutation vector

A permutation matrix is an n × n matrix that is a row (or column) permutation of the identity matrix.

If P is a permutation matrix, then P*A permutes the rows of A and A*P permutes the columns of A.

Permutation matrices also have the property that P−1 = P′.

Apermutation vector is a 1× n or n× 1 vector that contains a permutation of the integers 1, 2, . . . , n. Per-

mutation vectors can be used with subscripting to reorder the rows or columns of a matrix. Permutation

vectors are a memory-conserving way of recording permutation matrices; see [M-1] Permutation.

pointer

Amatrix is said to be a pointer matrix if its elements are pointers.

A pointer is the address of a variable. Say that variable X contains a matrix. Another variable p might

contain 137,799,016 and, if 137,799,016 were the address at which X were stored, then p would be said

to point to X . Addresses are seldom written in base 10, and so rather than saying p contains 137,799,016,

we would be more likely to say that p contains 0x836a568, which is the way we write numbers in base

16. Regardless of how we write addresses, however, p contains a number and that number corresponds

to the address of another variable.

In our program, if we refer to p, we are referring to p’s contents, the number 0x836a568. The monadic

operator * is defined as “refer to the address” or “dereference”: *p means X. We could code Y = *p or

Y = X, and either way, we would obtain the same result. In our program, we could refer to X[i, j] or

(*p)[i, j], and either way, we would obtain the i, j element of X .

The monadic operator & is how we put addresses into p. To load p with the address of X , we code p =
&X .

The special address 0 (zero, written in hexadecimal as 0x0), also known as NULL, is how we record that

a pointer variable points to nothing. A pointer variable contains NULL or it contains a valid address of

another variable.

See [M-2] pointers for a complete description of pointers and their use.

https://www.stata.com/manuals/m-1permutation.pdf#m-1Permutation
https://www.stata.com/manuals/m-2pointers.pdf#m-2pointers
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pragma

“(Pragmatic information) A standardised form of comment which has meaning to a compiler. It may

use a special syntax or a specific form within the normal comment syntax. A pragma usually conveys

non-essential information, often intended to help the compiler to optimise the program.” See The Free

On-line Dictionary of Computing, http://foldoc.org/, Editor Denis Howe. For Mata, see [M-2] pragma.

rank

Terms in common use are rank, row rank, and column rank. The row rank of a matrix A: m × n is the

number of rows of A that are linearly independent. The column rank is defined similarly, as the number

of columns that are linearly independent. The terms row rank and column rank, however, are used merely

for emphasis; the ranks are equal and the result is simply called the rank of A.

For a square matrix A (where m==n), the matrix is invertible if and only if rank(A)==n. One often hears
that A is of full rank in this case and rank deficient in the other. See [M-5] rank( ).

r-conformability

A set of two or more matrices, vectors, or scalars A, B, . . . , are said to be r-conformable if each is

c-conformable with a matrix of max(rows(A), rows(B), ...) rows and max(cols(A), cols(B),
...) columns.

r-conformability is a more relaxed form of c-conformability in that, if two matrices are c-conformable,

they are r-conformable, but not vice versa. For instance, A: 1 × 3 and B: 3 × 1 are r-conformable but not

c-conformable. Also, c-conformability is defined with respect to a pair of matrices only; r-conformability

can be applied to a set of matrices.

r-conformability is often required of the arguments for functions that would otherwise naturally be ex-

pected to require scalars. See R-conformability in [M-5] normal( ) for an example.

real

Amatrix is said to be a real matrix if its elements are all reals and it is stored in a real matrix. Real is

one of the two numeric types in Mata, the other being complex. Also see type, eltype, and orgtype.

row and column stripes

Stripes refer to the labels associated with the rows and columns of a Stata matrix; see Stata matrix.

row-major order

Matrices are stored as vectors. Row-major order specifies that the vector form of a matrix is created by

stacking the rows. For instance,

: A
1 2 3

1 1 2 3
2 4 5 6

http://foldoc.org
https://www.stata.com/manuals/m-2pragma.pdf#m-2pragma
https://www.stata.com/manuals/m-5rank.pdf#m-5rank()
https://www.stata.com/manuals/m-6glossary.pdf#m-6GlossaryMataglossaryc-conformability
https://www.stata.com/manuals/m-5normal.pdf#m-5normal()RemarksandexamplesR-conformability
https://www.stata.com/manuals/m-5normal.pdf#m-5normal()
https://www.stata.com/manuals/m-6glossary.pdf#m-6GlossaryMataglossarytype
https://www.stata.com/manuals/m-6glossary.pdf#m-6GlossaryMataglossaryStata_matrix
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is stored as

1 2 3 4 5 6

1 1 2 3 4 5 6

in row-major order. Mata uses row-major order. The LAPACK functions use column-major order. See

column-major order.

rowvector

See vector, colvector, and rowvector.

scalar

Aspecial case of a matrix with one row and one column. A scalar may be substituted anywhere a matrix,

vector, column vector, or row vector is required, but not vice versa.

Schur decomposition

The Schur decomposition of a matrix,A, can be written as

Q′AQ = T

where T is in Schur form and Q, the matrix of Schur vectors, is orthogonal ifA is real or unitary ifA is

complex. See [M-5] schurd( ).

Schur form

There are two Schur forms: real Schur form and complex Schur form.

A real matrix is in Schur form if it is block upper triangular with 1 × 1 and 2 × 2 diagonal blocks.

Each 2 × 2 diagonal block has equal diagonal elements and opposite sign off-diagonal elements. The

real eigenvalues are on the diagonal and complex eigenvalues can be obtained from the 2× 24 diagonal
blocks.

A complex square matrix is in Schur form if it is upper triangular with the eigenvalues on the diagonal.

source code

Source code refers to the human-readable code that you type into Mata to define a function. Source code

is compiled into object code, which is binary. See [M-1] How.

square matrix

A matrix is square if it has the same number of rows and columns. A 3 × 3 matrix is square; a 3 × 4

matrix is not.

https://www.stata.com/manuals/m-6glossary.pdf#m-6GlossaryMataglossarycolumn-majororder
https://www.stata.com/manuals/m-6glossary.pdf#m-6GlossaryMataglossaryvector
https://www.stata.com/manuals/m-5schurd.pdf#m-5schurd()
https://www.stata.com/manuals/m-1how.pdf#m-1How
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Stata matrix

Stata itself, separate from Mata, has matrix capabilities. Stata matrices are separate from those of Mata,

although Stata matrices can be gotten from and put into Mata matrices; see [M-5] st matrix( ). Stata

matrices are described in [P] matrix and [U] 14 Matrix expressions.

Stata matrices are exclusively numeric and contain real elements only. Stata matrices also differ from

Mata matrices in that, in addition to the matrix itself, a Stata matrix has text labels on the rows and

columns. These labels are called row stripes and column stripes. One can think of rows and columns

as having names. The purpose of these names is discussed in [U] 14.2 Row and column names. Mata

matrices have no such labels. Thus three steps are required to get or to put all the information recorded

in a Stata matrix: 1) getting or putting the matrix itself; 2) getting or putting the row stripe from or into

a string matrix; and 3) getting or putting the column stripe from or into a string matrix. These steps are

discussed in [M-5] st matrix( ).

string

A matrix is said to be a string matrix if its elements are strings (text); see type, eltype, and orgtype. In

Mata, a string may be text or binary and may be up to 2,147,483,647 characters (bytes) long.

structure

A structure is an eltype, indicating a set of variables tied together under one name. struct mystruct
might be

struct mystruct {
real scalar n1, n2
real matrix X

}

If variable a was declared a struct mystruct scalar, then the scalar a would contain three pieces:

two real scalars and one real matrix. The pieces would be referred to as a.n1, a.n2, and a.X. If variable
b were also declared a struct mystruct scalar, it too would contain three pieces, b.n1, b.n2, and
b.X. The advantage of structures is that they can be referred to as a whole. You can code a.n1=b.n1
to copy one piece, or you can code a=b if you wanted to copy all three pieces. In all ways, a and b are

variables. You may pass a to a subroutine, for instance, which amounts to passing all three values.

Structures variables are usually scalar, but they are not limited to being so. If Awere a struct mystruct
matrix, then each element of A would contain three pieces, and one could refer, for instance, to

A[2,3].n1, A[2,3].n2, and A[2,3].X, and even to A[2,3].X[3,2].

See [M-2] struct.

subscripts

Subscripts are how you refer to an element or even a submatrix of a matrix.

Mata provides two kinds of subscripts, known as list subscripts and range subscripts.

In list subscripts, A[2,3] refers to the (2,3) element of A. A[(2\3), (4,6)] refers to the submatrix

made up of the second and third rows, fourth and sixth columns, of A.

https://www.stata.com/manuals/m-5st_matrix.pdf#m-5st_matrix()
https://www.stata.com/manuals/pmatrix.pdf#pmatrix
https://www.stata.com/manuals/u14.pdf#u14Matrixexpressions
https://www.stata.com/manuals/u14.pdf#u14.2Rowandcolumnnames
https://www.stata.com/manuals/m-5st_matrix.pdf#m-5st_matrix()
https://www.stata.com/manuals/m-6glossary.pdf#m-6GlossaryMataglossarytype
https://www.stata.com/manuals/m-6glossary.pdf#m-6GlossaryMataglossaryeltype
https://www.stata.com/manuals/m-2struct.pdf#m-2struct
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In range subscripts, A[|2,3|] also refers to the (2,3) element of A. A[|2,3\4,6|] refers to the subma-
trix beginning at the (2,3) element and ending at the (4,6) element.

See [M-2] Subscripts for more information.

symmetric matrices

Matrix A is symmetric if A = A′. The word symmetric is usually reserved for real matrices, and in that

case, a symmetric matrix is a square matrix with a𝑖𝑗==a𝑗𝑖.

Matrix A is said to be Hermitian if A = A′, where the transpose operator is understood to mean the

conjugate-transpose operator; see Hermitian matrix. In Mata, the ′ operator is the conjugate-transpose

operator, and thus, in this manual, we will use the word symmetric both to refer to real, symmetric

matrices and to refer to complex, Hermitian matrices.

Sometimes, you will see us follow the word symmetric with a parenthesized Hermitian, as in, “the re-

sulting matrix is symmetric (Hermitian)”. That is done only for emphasis.

The inverse of a symmetric (Hermitian) matrix is symmetric (Hermitian).

symmetriconly

Symmetriconly is a word we have coined to refer to a square matrix whose corresponding off-diagonal

elements are equal to each other, whether the matrix is real or complex. Symmetriconly matrices have

no mathematical significance, but sometimes, in data-processing and memory-management routines, it

is useful to be able to distinguish such matrices.

time-series–operated variable

Time-series–operated variables are a Stata concept. The term refers to op.varname combinations such
as L.gnp to mean the lagged value of variable gnp. Mata’s [M-5] st data( ) function works with time-

series–operated variables just as it works with other variables, but many other Stata-interface functions

do not allow op.varname combinations. In those cases, you must use [M-5] st tsrevar( ).

titlecase

Titlecasing is a Unicode concept implemented in Mata in the ustrtitle() function. To “titlecase” a

phrase means to convert to Unicode titlecase the first letter of each Unicode word. This is almost, but

not exactly, like capitalizing the first letter of each Unicode word. Like capitalization, titlecasing letters

is locale-dependent, which means that the same letter might have different titlecase forms in different

locales. In some locales, the titlecase form of a letter is different than the capital form of that same letter.

For example, in some locales, capital letters at the beginning of words are not supposed to have accents

on them, even if that capital letter by itself would have an accent.

https://www.stata.com/manuals/m-2subscripts.pdf#m-2Subscripts
https://www.stata.com/manuals/m-6glossary.pdf#m-6GlossaryMataglossaryHermitian_matrix
https://www.stata.com/manuals/m-5st_data.pdf#m-5st_data()
https://www.stata.com/manuals/m-5st_tsrevar.pdf#m-5st_tsrevar()
https://www.stata.com/manuals/m-5ustrupper.pdf#m-5ustrupper()
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traceback log

When a function fails—either because of a programming error or because it was used incorrectly—it

produces a traceback log:

: myfunction(2,3)
solve(): 3200 conformability error
mysub(): - function returned error

myfunction(): - function returned error
<istmt>: - function returned error

r(3200);

The log says that solve() detected the problem—arguments are not conformable—and that solve()
was called by mysub()was called by myfunction()was called by what you typed at the keyboard. See
[M-2] Errors for more information.

transmorphic

Transmorphic is an eltype. A scalar, vector, or matrix can be transmorphic, which indicates that its

elements may be real, complex, string, pointer, or even a structure. The elements are all the same type;

you are just not saying which they are. Variables that are not declared are assumed to be transmorphic, or

a variable can be explicitly declared to be transmorphic. Transmorphic is just fancy jargon for saying
that the elements of the scalar, vector, or matrix can be anything and that, from one instant to the next,

the scalar, vector, or matrix might change from holding elements of one type to elements of another.

See [M-2] Declarations.

transpose

The transpose operator is written different ways in different books, including ′, superscript *, superscript

T , and superscript H . Here we use the ′ notation: A′ means the transpose of A, A with its rows and

columns interchanged.

In complex analysis, the transpose operator, however it is written, is usually defined tomean the conjugate

transpose; that is, one interchanges the rows and columns of the matrix and then one takes the conjugate

of each element, or one does it in the opposite order—it makes no difference. Conjugation simply means

reversing the sign of the imaginary part of a complex number: the conjugate of 1+2i is 1-2i. The

conjugate of a real is the number itself; the conjugate of 2 is 2.

In Mata, ′ is defined to mean conjugate transpose. Since the conjugate of a real is the number itself, A′ is

regular transposition when A is real. Similarly, we have defined ′ so that it performs regular transposition

for string and pointer matrices. For complex matrices, however, ′ also performs conjugation.

If you have a complex matrix and simply want to transpose it without taking the conjugate of its elements,

see [M-5] transposeonly( ). Or code conj(A’). The extra conj() will undo the undesired conjugation

performed by the transpose operator.

Usually, however, you want transposition and conjugation to go hand in hand. Most mathematical for-

mulas, generalized to complex values, work that way.

https://www.stata.com/manuals/m2errors.pdf#m\unhbox \voidb@x \kern \z@ \char `\-2ErrorsRemarksandexamplesr(3200)
https://www.stata.com/manuals/m-2errors.pdf#m-2Errors
https://www.stata.com/manuals/m-2declarations.pdf#m-2Declarations
https://www.stata.com/manuals/m-5transposeonly.pdf#m-5transposeonly()
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triangular matrix

A triangular matrix is a matrix with all elements equal to zero above the diagonal or all elements equal

to zero below the diagonal.

Amatrix A is lower triangular if all elements are zero above the diagonal, that is, if A[i, j]==0, j > i.

A matrix A is upper triangular if all elements are zero below the diagonal, that is, if A[i, j]==0, j < i.

A diagonal matrix is both lower and upper triangular. That is worth mentioning because any function

suitable for use with triangular matrices is suitable for use with diagonal matrices.

A triangular matrix is usually square.

The inverse of a triangular matrix is a triangular matrix. The determinant of a triangular matrix is the

product of the diagonal elements. The eigenvalues of a triangular matrix are the diagonal elements.

type, eltype, and orgtype

The type of a matrix (or vector or scalar) is formally defined as the matrix’s eltype and orgtype, listed one

after the other—such as real vector—but it can also mean just one or the other—such as the eltype

real or the orgtype vector.

eltype refers to the type of the elements. The eltypes are

real numbers such as 1, 2, 3.4

complex numbers such as 1+2i, 3+0i

string strings such as ”bill”
pointer pointers such as &varname
struct structures

numeric meaning real or complex
transmorphic meaning any of the above

orgtype refers to the organizational type. orgtype specifies how the elements are organized. The orgtypes

are

matrix two-dimensional arrays

vector one-dimensional arrays

colvector one-dimensional column arrays

rowvector one-dimensional row arrays

scalar single items

The fully specified type is the element and organization types combined, as in real vector.

unary operator

A unary operator is an operator applied to one argument. In -2, the minus sign is a unary operator. In
!(a==b | a==c), ! is a unary operator.
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underscore functions

Functions whose names start with an underscore are called underscore functions, and when an underscore

function exists, usually a function without the underscore prefix also exists. In those cases, the function

is usually implemented in terms of the underscore function, and the underscore function is harder to use

but is faster or provides greater control. Usually, the difference is in the handling of errors.

For instance, function fopen() opens a file. If the file does not exist, execution of your program is

aborted. Function fopen() does the same thing, but if the file cannot be opened, it returns a special

value indicating failure, and it is the responsibility of your program to check the indicator and to take the

appropriate action. This can be useful when the file might not exist, and if it does not, you wish to take a

different action. Usually, however, if the file does not exist, you will wish to abort, and use of fopen()
will allow you to write less code.

unitary matrix

See orthogonal matrix.

UTF-8

UTF-8 is the way of encoding Unicode characters chosen by Stata for its strings. It is backward compatible

with ASCII encoding in the sense that plain ASCII characters are encoded the same in UTF-8 as in ASCII

and that strings are still null terminated. Characters beyond plain ASCII are encoded using two to four

bytes per character. As with other Unicode encodings, all possible Unicode characters (code points) can

be represented by UTF-8.

variable

In a program, the entities that store values (a, b, c, . . . , x, y, z) are called variables. Variables are given

names of 1 to 32 characters long. To be terribly formal about it: a variable is a container; it contains a

matrix, vector, or scalar and is referred to by its variable name or by another variable containing a pointer

to it.

Also, variable is sometimes used to refer to columns of data matrices; see data matrix.

vector, colvector, and rowvector

A special case of a matrix with either one row or one column. A vector may be substituted anywhere a

matrix is required. Amatrix, however, may not be substituted for a vector.

A colvector is a vector with one column.

A rowvector is a vector with one row.

A vector is either a rowvector or colvector, without saying which.

https://www.stata.com/manuals/m-6glossary.pdf#m-6GlossaryMataglossaryorthogonalmatrix
https://www.stata.com/manuals/m-6glossary.pdf#m-6GlossaryMataglossarydatamatrix
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view

A view is a special type of matrix that appears to be an ordinary matrix, but in fact the values in the

matrix are the values of certain or all variables and observations in the Stata dataset that is currently in

memory. Its values are not just equal to the dataset’s values; they are the dataset’s values: if an element

of the matrix is changed, the corresponding variable and observation in the Stata dataset also changes.

Views are obtained by st view() and are efficient; see [M-5] st view( ).

void function

A function is said to be void if it returns nothing. For instance, the function [M-5] printf( ) is a void

function; it prints results, but it does not return anything in the sense that, say, [M-5] sqrt( ) does. It would

not make any sense to code x = printf(”hi there”), but coding x = sqrt(2) is perfectly logical.

void matrix

Amatrix is said to be void if it is 0 × 0, r × 0, or 0 × c; see [M-2] void.

Also see
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