transposeonly() — Transposition without conjugation

Description

transposeonly(A) returns A with its rows and columns interchanged. When A is real, the actions of transposeonly(A) are indistinguishable from coding A'; see [M-2] op_transpose. The returned result is the same, and the execution time is the same, too. When A is complex, however, transposeonly(A) is equivalent to coding conj(A'), but transposeonly() obtains the result more quickly.

_transposeonly(A) interchanges the rows and columns of A in place—without use of additional memory—and returns the transposed (but not conjugated) result in A.

Syntax

 numeric matrix transposeonly(numeric matrix A)
 void _transposeonly(numeric matrix A)

Remarks and examples

transposeonly() is useful when you are coding in the programming, rather than the mathematical, sense. Say that you have two row vectors, a and b, and you want to place the two vectors together in a matrix R, and you want to turn them into column vectors. If a and b were certain to be real, you could just code

 R = (a', b')

The above line, however, would result in not just the organization but also the values recorded in R changing if a or b were complex. The solution is to code

 R = (transposeonly(a), transposeonly(b))

The above line will work for real or complex a and b. If you were concerned about memory consumption, you could instead code

 R = (a \ b)
 _transposeonly(R)
Conformability

\[
\text{\texttt{transposeonly}}(A):
\]
\[
A: \quad r \times c
\]
\[
\text{\textit{result}}: \quad c \times r
\]

\[
\text{\texttt{_transposeonly}}(A):
\]
\[
\text{\textit{input}}:
\]
\[
A: \quad r \times c
\]
\[
\text{\textit{output}}:
\]
\[
A: \quad c \times r
\]

Diagnostics

\text{\texttt{_transposeonly}}(A) aborts with error if \(A \) is a view.

Also see

[M-2] \texttt{op_transpose} — Conjugate transpose operator

[M-5] \texttt{_transpose()} — Transposition in place

[M-4] \texttt{Manipulation} — Matrix manipulation