
tokenget() — Advanced parsing

Description Syntax Remarks and examples Conformability Diagnostics Also see

Description
These functions provide advanced parsing. If you simply wish to convert strings into row vectors

by separating on blanks, converting ”mpg weight displ” into (”mpg”, ”weight”, ”displ”), see
[M-5] tokens().

Syntax
t = tokeninit([wchars[, pchars[, qchars[, allownum[, allowhex]]]]])

t = tokeninitstata()

void tokenset(t, string scalar s)

string rowvector tokengetall(t)

string scalar tokenget(t)

string scalar tokenpeek(t)

string scalar tokenrest(t)

real scalar tokenoffset(t)

void tokenoffset(t, real scalar offset)

string scalar tokenwchars(t)

void tokenwchars(t, string scalar wchars)

string rowvector tokenpchars(t)

void tokenpchars(t, string rowvector pchars)

string rowvector tokenqchars(t)

void tokenqchars(t, string rowvector qchars)

real scalar tokenallownum(t)

void tokenallownum(t, real scalar allownum)

real scalar tokenallowhex(t)

void tokenallowhex(t, real scalar allowhex)

1

https://www.stata.com/manuals/m-5tokens.pdf#m-5tokens()

tokenget() — Advanced parsing 2

where

t is transmorphic and contains the parsing environment information. You obtain a t from

tokeninit() or tokeninitstata() and then pass t to the other functions.

wchars is a string scalar containing the characters to be treated as whitespace, such as ” ”, (”
”+char(9)), or ””.

pchars is a string rowvector containing the strings to be treated as parsing characters, such as

”” and (”>”, ”<”, ”>=”, ”<=”). ”” and J(1,0,””) are given the same interpretation: there
are no parsing characters.

qchars is a string rowvector containing the character pairs to be treated as quote characters.

”” (that is, empty string) is given the same interpretation as J(1,0,””); there are no quote
characters. qchars = (‘””””’) (that is, the two-character string quote indicates that ” is to be
treated as open quote and ” is to be treated as close quote. qchars = (‘””””’, ‘”‘””’”’)
indicates that, in addition, ‘” is to be treated as open quote and ”’ as close quote. In a syntax
that did not use < and > as parsing characters, qchars = (”<>”) would indicate that < is to be
treated as open quote and > as close quote.

allownum is a string scalar containing 0 or 1. allownum = 1 indicates that numbers such as

12.23 and 1.52e+02 are to be returned as single tokens even in violation of other parsing rules.

allowhex is a string scalar containing 0 or 1. allowhex = 1 indicates that numbers such as

1.921fb54442d18X+001 and 1.0x+a are to be returned as single tokens even in violation of

other parsing rules.

Remarks and examples
Remarks are presented under the following headings:

Concepts
White-space characters
Parsing characters
Quote characters
Overrides
Setting the environment to parse on blanks with quote binding
Setting the environment to parse full Stata syntax
Setting the environment to parse tab-delimited files

Function overview
tokeninit() and tokeninitstata()
tokenset()
tokengetall()
tokenget(), tokenpeek(), and tokenrest()
tokenoffset()
tokenwchars(), tokenpchars(), and tokenqchars()
tokenallownum and tokenallowhex()

Concepts

Parsing refers to splitting a string into pieces, which we will call tokens. Parsing as implemented by

the token*() functions is defined by (1) the whitespace characters wchars, (2) the parsing characters
pchars, and (3) the quote characters qchars.

https://www.stata.com/manuals/m-5j.pdf#m-5J()Remarksandexamplesvoid_matrices
https://www.stata.com/manuals/m-5j.pdf#m-5J()Remarksandexamplesvoid_matrices

tokenget() — Advanced parsing 3

White-space characters

Consider the string ”this that what”. If there are no whitespace characters, no parsing characters, and
no quote characters, that is, if wchars = pchars = qchars = ””, then the result of parsing ”this that
what” would be one token that would be the string just as it is: ”this that what”.

If wchars were instead ” ”, then parsing ”this that what” results in (”this”, ”that”, ”what”).
Parsing ”this that what” (note the multiple blanks) would result in the same thing. White-space

characters separate one token from the next but are not otherwise significant.

Parsing characters

If we instead left wchars = ”” and set pchars = ” ”, ”this that what” parses into
(”this”, ” ”, ”that”, ” ”, ”what”) and parsing ”this that what” results in
(”this”, ” ”, ”that”, ” ”, ” ”, ” ”, ”what”).

pchars are like wchars except that they are themselves significant.

pchars do not usually contain space. A more reasonable definition of pchars is (”+”, ”-”). Then

parsing ”x+y” results in (”x”, ”+”, ”y”). Also, the parsing characters can be character combinations.
If pchars = (”+”, ”-”, ”++”, ”–”), then parsing ”x+y++” results in (”x”, ”+”, ”y”, ”++”) and

parsing ”x+++y” results in (”x”, ”++”, ”+”, ”y”). Longer pchars are matched before shorter ones
regardless of the order in which they appear in the pchars vector.

Quote characters

qchars specifies the quote characters. Pieces of the string being parsed that are surrounded by quotes

are returned as one token, ignoring the separation that would usually occur because of the wchars and

pchars definitions. Consider the string

mystr= ”x = y”

Let wchars = ” ” and pchars include ”=”. That by itself would result in the above string parsing into
the five tokens

mystr = ”x = y”

Now let qchars = (‘””””’); that is, qchars is the two-character string ””. Parsing then results in the
three tokens

mystr = ”x = y”

Each element of qchars contains a character pair: the open character followed by the close character.

We defined those two characters as ” and ” above, that is, as being the same. The two characters can
differ. We might define the first as ‘ and the second as ’. When the characters are different, quotations

can nest. The quotation ”he said ”hello”” makes no sense because that parses into (”he said ”,
hello, ””). The quotation ‘he said ‘hello”, however, makes perfect sense and results in the single
token ‘he said ‘hello”.

tokenget() — Advanced parsing 4

The quote characters can themselves be multiple characters. You can define open quote as ‘” and close
as ”’: qchars = (‘”‘””’”’). Or you can define multiple sets of quotation characters, such as qchars
= (‘””””’, ‘”‘””’”’).

The quote characters do not even have to be quotes at all. In some context you might find it convenient

to specify them as (”()”). With that definition, “(2× (3+ 2))” would parse into one token. Specifying
them like this can be useful, but in general we recommend against it. It is usually better to write your

code so that quote characters really are quote characters and to push the work of handling other kinds of

nested expressions back onto the caller.

Overrides

The token*() functions provide two overrides: allownum and allowhex. These have to do with

parsing numbers. First, consider life without overrides. You have set wchars = ” ” and

pchars = (”=”, ”+”, ”-”, ”*”, ”/”). You attempt to parse

y = x + 1e+13

The result is

y = x + 1e + 13

when what you wanted was

y = x + 1e+13

Setting allownum = 1 will achieve the desired result. allownum specifies that, when a token could be

interpreted as a number, the number interpretation is to be taken even in violation of the other parsing

rules.

Setting allownum = 1 will not find numbers buried in the middle of strings, such as the 1e+3 in

”xis1e+3”, but if the number occurs at the beginning of the token according to the parsing rules set
by wchars and pchars, allownum = 1 will continue the token in violation of those rules if that results in

a valid number.

The override allowhex is similar and Stata specific. Stata (and Mata) provide a unique and useful way

of writing hexadecimal floating-point numbers in a printable, short, and precise way: 𝜋 can be written

1.921fb54442d18X+001. Setting allowhex = 1 allows such numbers.

Setting the environment to parse on blanks with quote binding

Stata’s default rule for parsing do-file arguments is “parse on blanks and bind on quotes”. The settings

for duplicating that behavior are

wchars = ” ”

pchars = (””)

qchars = (‘””””’, ‘”‘””’”’)

allownum = 0

allowhex = 0

tokenget() — Advanced parsing 5

This behavior can be obtained by coding

t = tokeninit(” ”, ””, (‘””””’, ‘”‘””’”’), 0, 0)

or by coding

t = tokeninit()

because in tokeninit() the arguments are optional and “parse on blank with quote binding” is the

default.

With those settings, parsing ‘”first second ”third fourth” fifth”’ results in
(”first”, ”second”, ‘””third fourth””’, ”fifth”).

This result is a little different from that of Stata because the third token includes the quote binding char-

acters. Assume that the parsed string was obtained by coding

res = tokengetall(t)

The following code will remove the open and close quotes, should that be desirable.

for (i=1; i<=cols(res); i++) {
if (substr(res[i], 1, 1)==‘”””’) {

res[i] = substr(res[i], 2, strlen(res[i])-2)
}
else if (substr(res[i], 1, 2)==”‘” + ‘”””’) {

res[i] = substr(res[i], 3, strlen(res[i])-4)
}

}

Setting the environment to parse full Stata syntax

To parse full Stata syntax, the settings are

wchars = ” ”

pchars = (”\”, ”~”, ”!”, ”=”, ”:”, ”;”, ”,”,
”?”, ”!”, ”@”, ”#”, ”==”, ”!=”, ”>=”,

”<=”, ”<”, ”>”, ”&”, ”|”, ”&&”, ”||”,
”+”, ”-”, ”++”, ”–”, ”*”, ”/”, ”^”,
”(”, ”)”, ”[”, ”]”, ”{”, ”}”)

qchars = (‘””””’, ‘”‘””’”’, char(96)+char(39))

allownum = 1

allowhex = 1

The above is a slight oversimplification. Stata is an interpretive language and Stata does not require users

to type filenames in quotes, although Stata does allow it. Thus ”\” is sometimes a parsing character and
sometimes not, and the same is true of ”/”. As Stata parses a line from left to right, it will change pchars

between two tokenget() calls when the next token could be or is known to be a filename. Sometimes
Stata peeks ahead to decide which way to parse. You can do the same by using the tokenpchars() and
tokenpeek() functions.

To obtain the above environment, code

t = tokeninitstata()

tokenget() — Advanced parsing 6

Setting the environment to parse tab-delimited files

The token*() functions can be used to parse lines from tab-delimited files. A tab-delimited file contains

lines of the form

⟨field1⟩⟨tab⟩⟨field2⟩⟨tab⟩⟨field3⟩

The parsing environment variables are

wchars = ””

pchars = (char(9)) (i.e., tab)

qchars = (””)

allownum = 0

allowhex = 0

To set this environment, code

t = tokeninit(””, char(9), ””, 0, 0)

Say that you then parse the line

Farber, William⟨tab⟩ 2201.00⟨tab⟩12

The results will be

(”Farber, William”, char(9), ” 2201.00”, char(9), ”12”)

If the line were

Farber, William⟨tab⟩⟨tab⟩12

the result would be

(”Farber, William”, char(9), char(9), ”12”)

The tab-delimited format is not well defined when the missing fields occur at the end of the line. A line

with the last field missing might be recorded

Farber, William⟨tab⟩ 2201.00⟨tab⟩

or

Farber, William⟨tab⟩ 2201.00

A line with the last two fields missing might be recorded

Farber, William⟨tab⟩⟨tab⟩

or

Farber, William⟨tab⟩

or

Farber, William

tokenget() — Advanced parsing 7

The following program would correctly parse lines with missing fields regardless of how they are

recorded:

real rowvector readtabbed(transmorphic t, real scalar n)
{

real scalar i
string rowvector res
string scalar token
res = J(1, n, ””)
i = 1
while ((token = tokenget(t))!=””) {

if (token==char(9)) i++
else res[i] = token

}
return(res)

}

Function overview

The basic way to proceed is to initialize the parsing environment and store it in a variable,

t = tokeninit(...)

and then set the string s to be parsed,

tokenset(t, s)

and finally use tokenget() to obtain the tokens one at a time (tokenget() returns ”” when the end of
the line is reached), or obtain all the tokens at once using tokengetall(t). That is, either

while((token = tokenget(t)) != ””) {
... process token ...

}

or

tokens = tokengetall(t)
for (i=1; i<=cols(tokens); i++) {

... process tokens[i] ...
}

After that, set the next string to be parsed,

tokenset(t, nextstring)

and repeat.

tokeninit() and tokeninitstata()

tokeninit() and tokeninitstata() are alternatives. tokeninitstata() is generally unnecessary
unless you are writing a fairly complicated function.

tokenget() — Advanced parsing 8

Whichever function you use, code

t = tokeninit(...)

or

t = tokeninitstata()

If you declare t, declare it transmorphic. t is in fact a structure containing all the details of your

parsing environment, but that is purposely hidden from you so that you cannot accidentally modify the

environment.

tokeninit() allows up to five arguments:

t = tokeninit(wchars, pchars, qchars, allownum, allowhex)

You may omit arguments from the end. If omitted, the default values of the arguments are

allowhex = 0

allownum = 0

qchars = (‘””””’, ‘”‘””’”’)

pchars = (””)

wchars = ” ”

Notes:

1. Concerning wchars:

a. wchars is a string scalar. The whitespace characters appear one after the other in the

string. The order in which the characters appear is irrelevant.

b. Specify wchars as ” ” to treat blank as whitespace.

c. Specify wchars as ” ”+char(9) to treat blank and tab as whitespace. Including tab

is necessary only when strings to be parsed are obtained from a file; strings obtained

from Stata already have the tab characters removed.

d. Any character can be treated as a whitespace character, including letters.

e. Specify wchars as ”” to specify that there are no whitespace characters.

2. Concerning pchars:

a. pchars is a string rowvector. Each element of the vector is a separate parse character.

The order in which the parse characters are specified is irrelevant.

b. Specify pchars as (”+”, ”-”) to make + and - parse characters.

c. Parse characters may be character combinations such as ++ or >=. Character combi-
nations may be up to four characters long.

d. Specify pchars as ”” or J(1,0,””) to specify that there are no parse characters. It
makes no difference which you specify, but you will realize that J(1,0,””) is more
logically consistent if you think about it.

https://www.stata.com/manuals/m-5j.pdf#m-5J()Remarksandexamplesvoid_matrices

tokenget() — Advanced parsing 9

3. Concerning qchars:

a. qchars is a string rowvector. Each element of the vector contains the open fol-
lowed by the close characters. The order in which sets of quote characters are speci-

fied is irrelevant.

b. Specify qchars as (‘””””’) to make ” an open and close character.

c. Specify qchars as (‘””””’, ‘”‘””’”’) to make ”” and ‘””’ quote characters.

d. Individual quote characters can be up to two characters long.

e. Specify qchars as ”” or J(1,0,””) to specify that there are no quote characters.

tokenset()

After tokeninit() or tokeninitstata(), you are not yet through with initialization. You must

tokenset(s) to specify the string scalar you wish to parse. You tokenset() one line, parse it, and

if you have more lines, you tokenset() again and repeat the process. Often you will need to parse only
one line. Perhaps you wish to write a program to parse the argument of a complicated option in a Stata

ado-file. The structure is

program ...
...
syntax ... [, ... MYoption(string) ...]
mata: parseoption(‘”‘myoption’”’)
...

end

mata:
void parseoption(string scalar option)
{

transmorphic t
t = tokeninit(...)
tokenset(t, option)
...

}
end

Notes:

1. When you tokenset(s), the contents of s are not stored. Instead, a pointer to s is stored. This

approach saves memory and time, but it means that if you change s after setting it, you will

change the subsequent behavior of the token*() functions.

2. Simply changing s is not sufficient to restart parsing. If you change s, you must tokenset(s)
again.

tokengetall()

You have two alternatives in how to process the tokens. You can parse the entire line into a row vector

containing all the individual tokens by using tokengetall(),

tokens = tokengetall(t)

or you can use tokenget() to process the tokens one at a time, which is discussed in the next section.

https://www.stata.com/manuals/m-5j.pdf#m-5J()Remarksandexamplesvoid_matrices

tokenget() — Advanced parsing 10

Using tokengetall(), tokens[1] will be the first token, tokens[2] the second, and so on. There

are, in total, cols(tokens) tokens. If the line was empty or contained only whitespace characters,

cols(tokens) will be 0.

tokenget(), tokenpeek(), and tokenrest()

tokenget() returns the tokens one at a time and returns ”” when the end of the line is reached. The
basic loop for processing all the tokens in a line is

while ((token = tokenget(t)) != ””) {
...

}

tokenpeek() allows you to peek ahead at the next token without actually getting it, so whatever is

returned will be returned again by the next call to tokenget(). tokenpeek() is suitable only for ob-
taining the next token after tokenget(). Calling tokenpeek() twice in a row will not return the next

two tokens; it will return the next token twice. To obtain the next two tokens, code

...
current = tokenget(t) // get the current token
...
t2 = t // copy parse environment
next_1 = tokenget(t2) // peek at next token
next_1 = tokenget(t2) // peek at token after that
...
current = tokenget(t) // get next token

If you declare t2, declare it transmorphic.

tokenrest() returns the unparsed portion of the tokenset() string. Assume that you have just gotten
the first token by using tokenget(). tokenrest()would return the rest of the original string, following
the first token, unparsed. tokenrest(t) returns substr(original string, tokenoffset(t), .).

tokenoffset()

tokenoffset() is useful only when you are using the tokenget() rather than tokengetall() style
of programming. Let the original string you tokenset() be “this is an example”. Right after you have
tokenset() this string, tokenoffset() is 1:

this is an example
|

tokenoffset() = 1

After getting the first token (say it is ”this”), tokenoffset() is 5:

this is an example
|

tokenoffset() = 5

tokenoffset() is always located on the first character following the last character parsed.

tokenget() — Advanced parsing 11

The syntax of tokenoffset() is

tokenoffset(t)

and

tokenoffset(t, newoffset)

The first returns the current offset value. The second resets the parser’s location within the string.

tokenwchars(), tokenpchars(), and tokenqchars()

tokenwchars(), tokenpchars(), and tokenqchars() allow resetting the currentwchars, pchars, and

qchars. As with tokenoffset(), they come in two syntaxes.

With one argument, t, they return the current value of the setting. With two arguments, t and newvalue,

they reset the value.

Resetting in the midst of parsing is an advanced issue. The most useful of these functions is

tokenpchars(), since for interactive grammars, it is sometimes necessary to switch on and off a certain
parsing character such as /, which in one context means division and in another is a file separator.

tokenallownum and tokenallowhex()

These two functions allow obtaining the current values of allownum and allowhex and resetting them.

Conformability
tokeninit(wchars, pchars, qchars, allownum, allowhex):

wchars: 1 × 1 (optional)

pchars: 1 × c𝑝 (optional)

qchars: 1 × c𝑞 (optional)

allownum: 1 × 1 (optional)

allowhex: 1 × 1 (optional)

result: transmorphic

tokeninitstata():
result: transmorphic

tokenset(t, s):
t: transmorphic

s: 1 × 1

result: void

tokengetall(t):
t: transmorphic

result: 1 × k

tokenget(t), tokenpeek(t), tokenrest(t):
t: transmorphic

result: 1 × 1

tokenget() — Advanced parsing 12

tokenoffset(t), tokenwchars(t), tokenallownum(t), tokenallowhex(t):
t: transmorphic

result: 1 × 1

tokenoffset(t, newvalue), tokenwchars(t, newvalue),
tokenallownum(t, newvalue), tokenallowhex(t, newvalue):

t: transmorphic

newvalue: 1 × 1

result: void

tokenpchars(t), tokenqchars(t):
t: transmorphic

result: 1 × c

tokenpchars(t, newvalue), tokenqchars(t, newvalue):
t: transmorphic

newvalue: 1 × c

result: void

Diagnostics
None.

Also see
[M-5] invtokens() — Concatenate string rowvector into string scalar

[M-5] tokens() — Obtain tokens from string

[M-5] ustrword() — Obtain Unicode word from Unicode string

[M-4] Programming — Programming functions

[M-4] String — String manipulation functions

[P] gettoken — Low-level parsing

[P] tokenize — Divide strings into tokens

Stata, Stata Press, Mata, NetCourse, and NetCourseNow are registered trademarks of StataCorp
LLC. Stata and Stata Press are registered trademarks with the World Intellectual Property Or-
ganization of the United Nations. StataNow is a trademark of StataCorp LLC. Other brand and
product names are registered trademarks or trademarks of their respective companies. Copyright
© 1985–2025 StataCorp LLC, College Station, TX, USA. All rights reserved.

®

For suggested citations, see the FAQ on citing Stata documentation.

https://www.stata.com/manuals/m-5invtokens.pdf#m-5invtokens()
https://www.stata.com/manuals/m-5tokens.pdf#m-5tokens()
https://www.stata.com/manuals/m-5ustrword.pdf#m-5ustrword()
https://www.stata.com/manuals/m-4programming.pdf#m-4Programming
https://www.stata.com/manuals/m-4string.pdf#m-4String
https://www.stata.com/manuals/pgettoken.pdf#pgettoken
https://www.stata.com/manuals/ptokenize.pdf#ptokenize
https://www.stata.com/support/faqs/resources/citing-software-documentation-faqs/

