
st frame*() — Data frame manipulation

Description Syntax Remarks and examples Conformability Diagnostics Also see

Description
st framecurrent() returns the name of current (working) frame.

st framedir() returns the names of all existing frames.

st framecreate() makes a new frame without making it the current frame.

st framecurrent() changes the identity of current (working) frame.

st framerename() renames the existing frame, which can be the current frame.

st framedrop() drops or eliminates the frame that is not the current frame.

st framedropabc() drops or eliminates all frames except the current frame. abc stands for “all but

current”.

st framereset() resets Stata or Mata to contain one empty frame named default.

st framecopy() copies or duplicates complete contents from one frame to another, clearing the previ-

ous contents of the target frame if necessary.

st frameexists() determines whether the frame named name exists.

st framecreate(), st framecurrent(), st framerename(), st framedrop(), and st framecopy()
perform the same action as st framecreate(), st framecurrent(), st framerename(), st framedrop(),
and st framecopy(), respectively, except that they handle errors differently. The functions without a
leading underscore issue an error message, display a traceback log, and abort execution when used incor-

rectly. The functions with a leading underscore do not abort. They return a nonzero value and execution

continues.

For an overview of frames, see [D] frames intro.

1

https://www.stata.com/manuals/dframesintro.pdf#dframesintro

st frame*() — Data frame manipulation 2

Syntax
string scalar st framecurrent()

string colvector st framedir()

void st framecreate(fname)

real scalar st framecreate(fname, noisy)

void st framecurrent(fname)

real scalar st framecurrent(fname, noisy)

void st framerename(fname, newfname)

real scalar st framerename(fname, newfname, noisy)

void st framedrop(fname)

real scalar st framedrop(fname, noisy)

void st framedropabc()

void st framereset()

void st framecopy(fname to, fname from)

real scalar st framecopy(fname to, fname from, noisy)

real scalar st frameexists(name)

where

fname is a string scalar containing a name of an existing frame.

newfname is a string scalar containing a name that is not the name of an existing frame.

name is a string scalar containing a name, whether or not of an existing frame.

noisy is a real scalar containing 0 (error messages suppressed) or any nonzero value (error

messages shown).

Remarks and examples
Stata allows more than one dataset to be stored in memory. Each is stored in a separate frame, which you

name. For an overview of frames, see [D] frames intro. The st frame*() functions let you create new

frames, delete existing ones, and switch the identity of the current or working frame from one frame to

another. Stata commands and Mata functions work on the current (working) frame. Data from more than

one frame may be accessed simultaneously by creating Mata views onto those frames and using them in

expressions.

https://www.stata.com/manuals/dframesintro.pdf#dframesintro
https://www.stata.com/manuals/m-5st_view.pdf#m-5st_view()

st frame*() — Data frame manipulation 3

Notice that some of the st frame*() commands are paired:

void st_framecreate(...)
real scalar _st_framecreate(..., noisy)

void st_framecurrent(...)
real scalar _st_framecurrent(..., noisy)

void st_framerename(...)
real scalar _st_framerename(..., noisy)

void st_framedrop(...)
real scalar _st_framedrop(..., noisy)

void st_framecopy(...)
real scalar _st_framecopy(..., noisy)

The paired functions do the same thing but handle errors differently. The functions without a leading

underscore issue an error message, display a traceback log, and abort execution when used incorrectly.

For example,

: st_framecreate(”default”)
frame name default already exists

st_framecreate(): 3598 Stata returned error
<istm>: - function returned error

r(3598);

The functions with a leading underscore do not abort. They return a nonzero value and execution con-

tinues. Consider the following function:

void example()
{

rc = _st_framecreate(”default”, 1)
printf(”execution continues, rc = %f\n”, rc)

}

Execution of it results in

: example()
frame name default already exists
execution continues, rc = 110

The error message appeared but execution continued, and the error message appeared only because we

coded 1 for noisy in the call to st framecreate():

rc = _st_framecreate(”default”, 1)

Had we coded 0, the error message would not have appeared, but execution would still have continued,
and we would still see the execution-continues message, and rc would have still contained 110.

The 110 is an example of a Stata return code. Stata return codes are 0 when the function runs without

error. The number 110 is the particular code for already exists. Something already existed, in this case,

the frame name. If we had illustrated return codes using st framedrop() and specified a frame name

that did not exist, the return code would have been 111, meaning something does not exist, that something

being the frame name.

https://www.stata.com/manuals/m2errors.pdf#m\unhbox \voidb@x \kern \z@ \char `\-2ErrorsRemarksandexamplesr(3598)

st frame*() — Data frame manipulation 4

The underscore variants exist to allow you to write more elegant code in which the output does not

suggest to the user that your code has a bug when it was in fact used incorrectly by the user. We could

have written example() as

void example()
{

rc = _st_framecreate(”default”, 1)
if (rc!=0) exit(rc)
printf(”execution continues, rc = %f\n”, rc)

}

and then the output would have been

: example()
frame name default already exists
r(110);

Conformability
All arguments to the st frame*() and st frame*() functions are 1 × 1.

Diagnostics
st framecurrent(), st framedir(), st framedropabc(), and st frameexists() always run

successfully. The other st frame*() commands abort execution when errors occur.

The st frame*() commands never abort. They return 0 or, when errors occur, the relevant nonzero

Stata return code.

Also see
[D] frames intro — Introduction to frames

[M-5] st store() — Modify values stored in current Stata dataset

[M-5] st view() — Make matrix that is a view onto current Stata dataset

[M-4] Stata — Stata interface functions

[D] putmata — Put Stata variables into Mata and vice versa

Stata, Stata Press, and Mata are registered trademarks of StataCorp LLC. Stata and Stata
Press are registered trademarks with the World Intellectual Property Organization of the
United Nations. StataNow and NetCourseNow are trademarks of StataCorp LLC. Other
brand and product names are registered trademarks or trademarks of their respective com-
panies. Copyright © 1985–2025 StataCorp LLC, College Station, TX, USA. All rights
reserved.

®

For suggested citations, see the FAQ on citing Stata documentation.

https://www.stata.com/manuals/perror.pdf#perrorRemarksandexamplesr(110)
https://www.stata.com/manuals/dframesintro.pdf#dframesintro
https://www.stata.com/manuals/m-5st_store.pdf#m-5st_store()
https://www.stata.com/manuals/m-5st_view.pdf#m-5st_view()
https://www.stata.com/manuals/m-4stata.pdf#m-4Stata
https://www.stata.com/manuals/dputmata.pdf#dputmata
https://www.stata.com/support/faqs/resources/citing-software-documentation-faqs/

