__st_data(i, j) returns the numeric value of the ith observation of the jth Stata variable. Observations are numbered 1 through __st_nobs(). Variables are numbered 1 through __st_nvar().

__st_data(i, j) is similar to __st_data(i, j) except

1. i may be specified as a vector or matrix to obtain multiple observations simultaneously,
2. j may be specified using names or indices (indices are faster), and
3. j may be specified to obtain multiple variables simultaneously.

The net effect is that __st_data() can return a scalar (the value of one variable in one observation), a row vector (the value of many variables in an observation), a column vector (the value of a variable in many observations), or a matrix (the value of many variables in many observations).

__st_data(i, j, selectvar) works like __st_data(i, j) except that only observations for which selectvar ≠ 0 are returned.

__st_sdata() and __st_sdata() are the string variants of __st_data() and __st_data(). __st_sdata() and __st_sdata() are for use with numeric variables; they return missing (.) when used with string variables. __st_sdata() and __st_sdata() are for use with string variables; they return empty string ("") when used with numeric variables.

Syntax

real scalar __st_data(real scalar i, real scalar j)
real matrix __st_data(real matrix i, rowvector j)
real matrix __st_data(real matrix i, rowvector j, scalar selectvar)
string scalar __st_sdata(real scalar i, real scalar j)
string matrix __st_sdata(real matrix i, rowvector j)
string matrix __st_sdata(real matrix i, rowvector j, scalar selectvar)

where

1. i may be specified as a 1 × 1 scalar, as a 1 × 1 scalar containing missing, as a column vector of observation numbers, as a row vector specifying an observation range, or as a k × 2 matrix specifying both.

a. __st_data(1, 2) returns the first observation on the second variable.
b. \texttt{st_data(.\, , 2)} returns all observations on the second variable.

c. \texttt{st_data((1\2\5), 2)} returns observations 1, 2, and 5 on the second variable.

d. \texttt{st_data((1,5), 2)} returns observations 1 through 5 on the second variable.

e. \texttt{st_data((1,5\7,9), 2)} returns observations 1 through 5 and observations 7 through 9 on the second variable.

When a range is specified, any element of the range \((i_1, i_2)\) may be specified to contribute zero observations if \(i_2 = i_1 - 1\).

2. \(j\) may be specified as a real row vector or as a string scalar or string row vector.

a. \texttt{st_data(.\, .\,)} returns the values of all variables, all observations of the Stata dataset.

b. \texttt{st_data(.\, , 1)} returns the value of the first variable, all observations.

c. \texttt{st_data(.\, , (3,1,9))} returns the values of the third, first, and ninth variables of all observations.

d. \texttt{st_data(.\, , ("mpg","weight"))} returns the values of variables \texttt{mpg} and \texttt{weight}, all observations.

e. \texttt{st_data(.\, , ("mpg weight"))} does the same as d above.

f. \texttt{st_data(.\, , ("gnp","1.gnp"))} returns the values of \texttt{gnp} and the lag of \texttt{gnp}, all observations.

g. \texttt{st_data(.\, , ("gnp 1.gnp"))} does the same as f above.

h. \texttt{st_data(.\, , ("mpg i.rep78"))} returns the value of \texttt{mpg} and the 5 pseudo-variables associated with \texttt{i.rep78}. There are 5 pseudo-variables because we are imagining that \texttt{auto.dta} is in memory; the actual number is a function of the values taken on by the variable in the sample specified. Factor variables can be specified only with string scalars; specifying ("mpg", "i.rep78") will not work.

3. \texttt{selectvar} may be specified as real or as a string. Observations for which \texttt{selectvar} \(\neq 0\) will be selected. If \texttt{selectvar} is real, it is interpreted as a variable number. If string, \texttt{selectvar} should contain the name of a Stata variable.

Specifying \texttt{selectvar} as "" or as missing (.\,) has the same result as not specifying \texttt{selectvar}; no observations are excluded.

Specifying \texttt{selectvar} as 0 means that observations with missing values of the variables specified by \(j\) are to be excluded.

Remarks and examples

Remarks are presented under the following headings:

- Description of \texttt{_st_data()} and \texttt{_st_sdata()}
- Description of \texttt{st_data()} and \texttt{st_sdata()}
- Details of observation subscripting using \texttt{st_data()} and \texttt{st_sdata()}
_st_data() returns one variable’s value in one observation. You refer to variables and observations by their numbers. The first variable in the Stata dataset is 1; the first observation is 1.

_st_data(1, 1)	value of 1st obs., 1st variable
_st_data(1, 2)	value of 1st obs., 2nd variable
_st_data(2, 1)	value of 2nd obs., 1st variable

_st_sdata() works the same way. _st_data() is for use with numeric variables, and _st_sdata() is for use with string variables.

_st_data() and _st_sdata() are the fastest way to obtain the value of a variable in one observation.

Description of _st_data() and _st_sdata()

_st_data() can be used just like _st_data(), and used that way, it produces the same result.

Variables, however, can be referred to by their names or their numbers:

st_data(1, 1)	value of 1st obs., 1st variable
st_data(1, 2)	value of 1st obs., 2nd variable
st_data(2, 1)	value of 2nd obs., 1st variable
st_data(1, "mpg")	value of 1st obs, variable mpg
st_data(2, "mpg")	value of 2nd obs, variable mpg

Also, you may specify more than one variable:

st_data(2, (1,2,3))	value of 2nd obs., variables 1, 2, and 3
st_data(2, ("mpg","weight","displ"))	value of 2nd obs., variables mpg, weight, and displ
st_data(2, "mpg weight displ")	(same as previous)

Used this way, st_data() returns a row vector.

Similarly, you may obtain multiple observations:

st_data((1\2\3), 10)	values of obs. 1, 2, and 3, variable 10
st_data((1,5), 10)	values of obs. 1 through 5, variable 10
st_data((1,5)\(7,9), 10)	values of obs. 1 through 5 and 7 through 9, variable 10

_st_sdata() works the same way as st_data().
Details of observation subscripting using _st_data{} and _st_sdata{}

1. \(i \) may be specified as a scalar: the specified, single observation is returned. \(i \) must be between 1 and \(\text{st_nobs()} \); see \([M-5]\) \text{st_nvar()}.

2. \(i \) may be specified as a scalar containing missing value: all observations are returned.

3. \(i \) may be specified as a column vector: the specified observations are returned. Each element of \(i \) must be between 1 and \(\text{st_nobs()} \) or may be missing. Missing is interpreted as \(\text{st_nobs()} \).

4. \(i \) may be specified as a \(1 \times 2 \) row vector: the specified range of observations is returned; \((c_1,c_2)\) returns the \(c_2 - c_1 + 1 \) observations \(c_1 \) through \(c_2 \). \(c_2 - c_1 + 1 \) must evaluate to a number greater than or equal to 0. In general, \(c_1 \) and \(c_2 \) must be between 1 and \(\text{st_nobs()} \), but if \(c_2 - c_1 + 1 = 0 \), then \(c_1 \) may be between 1 and \(\text{st_nobs()} \) + 1 and \(c_2 \) may be between 0 and \(\text{st_nobs()} \). Regardless, \(c_1 == . \) or \(c_2 == . \) is interpreted as \(\text{st_nobs()} \).

5. \(i \) may be specified as a \(k \times 2 \) matrix: \(((1,5) \backslash (7,7) \backslash (20,30))\) specifies observations 1 through 5, 7, and 20 through 30.

Conformability

\[
\begin{align*}
_\text{st_data}(i, j), _\text{st_sdata}(i, j): \\
i: & \quad 1 \times 1 \\
j: & \quad 1 \times 1 \\
result: & \quad 1 \times 1 \\
\text{st_data}(i, j), \text{st_sdata}(i, j): \\
i: & \quad n \times 1 \text{ or } n_2 \times 2 \\
j: & \quad 1 \times k \text{ or } 1 \times 1 \text{ containing } k \text{ elements when expanded} \\
result: & \quad n \times k \\
\text{st_data}(i, j, \text{selectvar}), \text{st_sdata}(i, j, \text{selectvar}): \\
i: & \quad n \times 1 \text{ or } n_2 \times 2 \\
j: & \quad 1 \times k \text{ or } 1 \times 1 \text{ containing } k \text{ elements when expanded} \\
selectvar: & \quad 1 \times 1 \\
result: & \quad (n - e) \times k, \text{ where } e \text{ is number of observations excluded by } selectvar
\end{align*}
\]

Diagnostics

_\text{st_data}(i, j) returns missing (.) if \(i \) or \(j \) is out of range; it does not abort with error.

_\text{st_sdata}(i, j) returns "" if \(i \) or \(j \) is out of range; it does not abort with error.

\text{st_data}(i, j) and \text{st_sdata}(i, j) abort with error if any element of \(i \) or \(j \) is out of range. \(j \) may be specified as variable names or variable indices. If names are specified, abbreviations are allowed. If you do not want this and no factor variables nor time-series–operated variables are specified, use \text{st_varindex()} (see \([M-5]\) \text{st_varindex()}) to translate variable names into variable indices.
Also see

[M-5] `st_view()` — Make matrix that is a view onto current Stata dataset

[M-5] `st_store()` — Modify values stored in current Stata dataset

[M-4] `Stata` — Stata interface functions

[D] `putmata` — Put Stata variables into Mata and vice versa