
solvelower() — Solve AX=B for X, A triangular

Description Syntax Remarks and examples Conformability Diagnostics Also see

Description
These functions are used in the implementation of the other solve functions; see [M-5] lusolve(),

[M-5] qrsolve(), and [M-5] svsolve().

solvelower(A, B, . . .) and solvelower(A, B, . . .) solve lower-triangular systems.

solveupper(A, B, . . .) and solveupper(A, B, . . .) solve upper-triangular systems.

Functions without a leading underscore—solvelower() and solveupper()—return the solution; A

and B are unchanged.

Functions with a leading underscore— solvelower() and solveupper()—return the solution in B.

All four functions produce a generalized solution if A is singular. The functions without an underscore

place the rank of A in rank, if the argument is specified. The underscore functions return the rank.

Determination of singularity is made via tol. tol is interpreted in the standard way—as a multiplier for

the default if tol > 0 is specified and as an absolute quantity to use in place of the default if tol ≤ 0 is

specified.

All four functions allow d to be optionally specified. Specifying d = . is equivalent to not specifying d.

If d ≠ . is specified, that value is used as if it appeared on the diagonal of A. The four functions do not

in fact require that A be triangular; they merely look at the lower or upper triangle and pretend that the

opposite triangle contains zeros. This feature is useful when a decomposition utility has stored both the

lower and upper triangles in one matrix, because one need not take apart the combined matrix. In such

cases, it sometimes happens that the diagonal of the matrix corresponds to one matrix but not the other,

and that for the other matrix, one merely knows that the diagonal elements are, say, 1. Then you can

specify d = 1.

solvelowerlapacke(A, B, . . .) and solvelowerlapacke(A, B, . . .) solve lower-triangular sys-

tems using LAPACK routines. If A is not full rank, these functions produce a solution filled with missing

values.

solveupperlapacke(A, B, . . .) and solveupperlapacke(A, B, . . .) solve upper-triangular sys-

tems using LAPACK routines. If A is not full rank, these functions produce a solution filled with missing

values.

Because these functions produce solutions filled with missing values when A is not full rank, they do not

need the rank argument.

1

https://www.stata.com/manuals/m-5lusolve.pdf#m-5lusolve()
https://www.stata.com/manuals/m-5qrsolve.pdf#m-5qrsolve()
https://www.stata.com/manuals/m-5svsolve.pdf#m-5svsolve()

solvelower() — Solve AX=B for X, A triangular 2

Syntax
numeric matrix solvelower(A, B [, rank [, tol [, d]]])

numeric matrix solveupper(A, B [, rank [, tol [, d]]])

real scalar solvelower(A, B [, tol [, d]])

real scalar solveupper(A, B [, tol [, d]])

numeric matrix solvelowerlapacke(A, B [, tol [, d]])

numeric matrix solveupperlapacke(A, B [, tol [, d]])

void solvelowerlapacke(A, B [, tol [, d]])

void solveupperlapacke(A, B [, tol [, d]])

where
A: numeric matrix

B: numeric matrix

rank: irrelevant; real scalar returned

tol: real scalar

d: numeric scalar

Remarks and examples
The triangular-solve functions solvelower(), solvelower(), solveupper(), and
solveupper() exploit the triangular structure in A and solve for X by recursive substitution.

The solvelowerlapacke(), solvelowerlapacke(), solveupperlapacke(), and
solveupperlapacke() functions solve full-rank triangular matrix systems using underlying built-in

LAPACK routines.

When A is of full rank, these functions provide the same solution as the other solve functions, such as

[M-5] lusolve(), [M-5] qrsolve(), and [M-5] svsolve(). The solvelower() and solveupper() func-

tions, however, will produce the answer more quickly because of the large computational savings.

When A is singular, however, you may wish to consider whether you want to use these triangular-solve

functions. The triangular-solve functions documented here reach a generalized solution by setting B𝑖𝑗
= 0, for all j, when A𝑖𝑗 is zero or too small (as determined by tol). The method produces a generalized

inverse, but there are many generalized inverses, and this one may not have the other properties you

want.

Remarks are presented under the following headings:

Derivation
Tolerance

https://www.stata.com/manuals/m-5lusolve.pdf#m-5lusolve()
https://www.stata.com/manuals/m-5qrsolve.pdf#m-5qrsolve()
https://www.stata.com/manuals/m-5svsolve.pdf#m-5svsolve()

solvelower() — Solve AX=B for X, A triangular 3

Derivation

We wish to solve

AX = B (1)

when A is triangular. Let us consider the lower-triangular case first. solvelower() is up to handling

full matrices for B and X , but let us assume X : n × 1 and B: m × 1:

⎡
⎢⎢
⎣

𝑎11 0 0 . . . 0
𝑎21 0 0 . . . 0

⋮ ⋮ ⋱ ⋮
𝑎𝑚1 𝑎𝑚2 𝑎𝑚3 𝑎𝑚𝑛

⎤
⎥⎥
⎦

⎡
⎢⎢
⎣

𝑥1
𝑥2
⋮

𝑥𝑛

⎤
⎥⎥
⎦

=
⎡
⎢⎢
⎣

𝑏1
𝑏2
⋮

𝑏𝑚

⎤
⎥⎥
⎦

The first equation to be solved is

a11x1 = b1

and the solution is simply

x1 = b1
a11

(2)

The second equation to be solved is

a21x1 + a22x2 = b2

and because we have already solved for x1, the solution is simply

x2 = b2 − a21x1
a22

(3)

We proceed similarly for the remaining rows of A. If there are additional columns in B and X , we can

then proceed to handling each remaining column just as we handled the first column above.

In the upper-triangular case, the formulas are similar except that you start with the last row of A.

These formulas apply only to the solvelower(), solvelower(), solveupper(), and

solveupper() functions.

Tolerance

In (2) and (3), we divide by the diagonal elements of A. If element a𝑖𝑖 is less than eta in absolute value,

the corresponding x𝑖 is set to zero. eta is given by

eta = 1e-13 * trace(abs(A))/rows(A)

If you specify tol > 0, the value you specify is used to multiply eta. You may instead specify tol ≤ 0,

and then the negative of the value you specify is used in place of eta; see [M-1] Tolerance.

solvelowerlapacke(), solvelowerlapacke(), solveupperlapacke(), and
solveupperlapacke() share the same definitions of eta and tol. If element a𝑖𝑖 is less than eta in

absolute value, these functions produce a solution filled with missing values.

https://www.stata.com/manuals/m-5solvelower.pdf#m-5solvelower()Remarksandexampleseq2
https://www.stata.com/manuals/m-5solvelower.pdf#m-5solvelower()Remarksandexampleseq3
https://www.stata.com/manuals/m-1tolerance.pdf#m-1Tolerance

solvelower() — Solve AX=B for X, A triangular 4

Conformability
solvelower(A, B, rank, tol, d), solveupper(A, B, rank, tol, d):

input:

A: n × n

B: n × k

tol: 1 × 1 (optional)

d: 1 × 1 (optional)

output:

rank: 1 × 1 (optional)

result: n × k

solvelower(A, B, tol, d), solveupper(A, B, tol, d):
input:

A: n × n

B: n × k

tol: 1 × 1 (optional)

d: 1 × 1 (optional)

output:

B: n × k

result: 1 × 1 (contains rank)

solvelowerlapacke(A, B, tol, d), solveupperlapacke(A, B, tol, d):
input:

A: n × n

B: n × k

tol: 1 × 1 (optional)

d: 1 × 1 (optional)

output:

result: n × k

solvelowerlapacke(A, B, tol, d), solveupperlapacke(A, B, tol, d):
input:

A: n × n

B: n × k

tol: 1 × 1 (optional)

d: 1 × 1 (optional)

output:

B: n × k

Diagnostics
solvelower(A, B, . . .), solvelower(A, B, . . .), solveupper(A, B, . . .), and
solveupper(A, B, . . .) do not verify that the upper (lower) triangle of A contains zeros; they just use

the lower (upper) triangle of A.

solvelower(A, B, . . .) and solveupper(A, B, . . .) do not abort with error if B is a view but can

produce results subject to considerable roundoff error.

solvelower() — Solve AX=B for X, A triangular 5

solvelowerlapacke(A, B, . . .), solvelowerlapacke(A, B, . . .), solveupperlapacke(A, B,
. . .), and solveupperlapacke(A, B, . . .) do not verify that the upper (lower) triangle of A contains

zeros; they just use the lower (upper) triangle of A.

Also see
[M-5] cholsolve() — Solve AX=B for X using Cholesky decomposition

[M-5] lusolve() — Solve AX=B for X using LU decomposition

[M-5] qrsolve() — Solve AX=B for X using QR decomposition

[M-5] solve tol() — Tolerance used by solvers and inverters

[M-5] svsolve() — Solve AX=B for X using singular value decomposition

[M-4]Matrix — Matrix functions

Stata, Stata Press, and Mata are registered trademarks of StataCorp LLC. Stata and Stata
Press are registered trademarks with the World Intellectual Property Organization of the
United Nations. StataNow and NetCourseNow are trademarks of StataCorp LLC. Other
brand and product names are registered trademarks or trademarks of their respective com-
panies. Copyright © 1985–2025 StataCorp LLC, College Station, TX, USA. All rights
reserved.

®

For suggested citations, see the FAQ on citing Stata documentation.

https://www.stata.com/manuals/m-5cholsolve.pdf#m-5cholsolve()
https://www.stata.com/manuals/m-5lusolve.pdf#m-5lusolve()
https://www.stata.com/manuals/m-5qrsolve.pdf#m-5qrsolve()
https://www.stata.com/manuals/m-5solve_tol.pdf#m-5solve_tol()
https://www.stata.com/manuals/m-5svsolve.pdf#m-5svsolve()
https://www.stata.com/manuals/m-4matrix.pdf#m-4Matrix
https://www.stata.com/support/faqs/resources/citing-software-documentation-faqs/

