select() — Select rows, columns, or indices

Description

select(X, v) returns X

1. omitting the rows for which v[i]==0 (v a column vector) or
2. omitting the columns for which v[j]==0 (v a row vector).

st_select(A, X, v) does the same thing, except that the result is placed in A and, if X is a view, A will be a view.

selectindex(v) returns

1. a row vector of column indices j for which v[j]!=0 (v a row vector) or
2. a column vector of row indices i for which v[i]!=0 (v a column vector).

Syntax

transmorphic matrix select(transmorphic matrix X, real vector v)
void st_select(A, transmorphic matrix X, real vector v)
real vector selectindex(real vector v)

Remarks and examples

Remarks are presented under the following headings:

Examples
Using st_select()

Examples

1. To select rows 1, 2, and 4 of 5 × c matrix X,

 submat = select(X, (1\1\0\1\0))

 See [M-2] Subscripts for another solution, submat = X[(1\2\4), .].

2. To select columns 1, 2, and 4 of r × 5 matrix X,

 submat = select(X, (1,1,0,1,0))

 See [M-2] Subscripts for another solution, submat = X[., (1,2,4)].
3. To select rows of X for which the first element is positive,
 \[
 \text{submat} = \text{select}(X, X[.,1] > 0)
 \]

4. To select columns of X for which the first element is positive,
 \[
 \text{submat} = \text{select}(X, X[1,.] > 0)
 \]

5. To select rows of X for which there are no missing values,
 \[
 \text{submat} = \text{select}(X, \text{rowmissing}(X) == 0)
 \]

6. To select rows and columns of square matrix X for which the diagonal elements are positive,
 \[
 \text{pos} = \text{diagonal}(X) > 0
 \]
 \[
 \text{submat} = \text{select}(X, \text{pos})
 \]
 \[
 \text{submat} = \text{select}(\text{submat}, \text{pos}')
 \]
 or, equivalently,
 \[
 \text{pos} = \text{diagonal}(X) > 0
 \]
 \[
 \text{submat} = \text{select}(\text{select}(X, \text{pos}), \text{pos}')
 \]

7. To select column indices for which $v[j] \neq 0$,
 \[
 \begin{array}{c}
 v \hline
 1 & 2 & 3 & 4 & 5 \\
 \hline
 1 & 6 & 0 & 7 & 0 & 8
 \end{array}
 \]
 \[
 \text{: selectindex}(v)
 \]
 \[
 \begin{array}{c}
 1 & 2 & 3 \\
 \hline
 1 & 3 & 5
 \end{array}
 \]

8. To select row indices for which $v[i] \neq 0$,
 \[
 \begin{array}{c}
 w \hline
 1 \hline
 1 & 0 \\
 2 & 3 \\
 3 & 0 \\
 4 & 2 \\
 5 & 1
 \end{array}
 \]
 \[
 \text{: selectindex}(w)
 \]
 \[
 \begin{array}{c}
 1 \hline
 1 & 2 \\
 2 & 4 \\
 3 & 5
 \end{array}
 \]
Using st_select()

Coding

\[\text{st_select(submat, X, v)} \] \hspace{1cm} (1)

produces the same result as coding

\[\text{submat = st_select(X, v)} \] \hspace{1cm} (2)

The difference is in how the result is stored. If \(X \) is a view (it need not be), then (1) will produce \(\text{submat} \) as a view or, if you will, a subview, whereas in (2), \(\text{submat} \) will always be a regular (nonview) matrix.

When \(X \) is a view, (1) executes more quickly than (2) and produces a result that consumes less memory.

See [M-5] st_view() for a description of views.

Conformability

\[\text{select}(X, v) : \]

\[X: \quad r_1 \times c_1 \]
\[v: \quad r_1 \times 1 \quad \text{or} \quad 1 \times 1 \]
\[\text{result:} \quad r_2 \times c_1 \quad \text{or} \quad r_1 \times c_2, \quad r_2 \leq r_1, \quad c_2 \leq c_1 \]

\[\text{st_select}(A, X, v) : \]

input:

\[X: \quad r_1 \times c_1 \]
\[v: \quad r_1 \times 1 \quad \text{or} \quad 1 \times 1 \]

output:

\[A: \quad r_2 \times c_1 \quad \text{or} \quad r_1 \times c_2, \quad r_2 \leq r_1, \quad c_2 \leq c_1 \]

\[\text{selectindex}(v) : \]

\[v: \quad r_1 \times 1 \quad \text{or} \quad 1 \times 1 \]
\[\text{result:} \quad r_2 \times 1 \quad \text{or} \quad 1 \times c_2, \quad r_2 \leq r_1, \quad c_2 \leq c_1 \]

Diagnostics

None.

Also see

[M-5] st_subview() — Make view from view

[M-2] op_colon — Colon operators

[M-2] Subscripts — Use of subscripts

[M-4] Utility — Matrix utility functions