Title

Narringsum() — Running sum of vector

Description

`runningsum(x)` returns a vector of the same dimension as `x` containing the running sum of `x`. Missing values are treated as contributing zero to the sum.

`runningsum(x, missing)` does the same but lets you specify how missing values are treated. `runningsum(x, 0)` is the same as `runningsum(x)`. `runningsum(x, 1)` specifies that missing values are to turn the sum to missing where they occur.

`quadrunningsum(x)` and `quadrunningsum(x, missing)` do the same but perform the accumulation in quad precision.

`_runningsum(y, x [, missing])` and `_quadrunningsum(y, x [, missing])` work the same way, except that rather than returning the running-sum vector, they store the result in `y`. This method is slightly more efficient when `y` is a view.

Syntax

```
numeric vector runningsum(numeric vector x [, missing])
numeric vector quadrunningsum(numeric vector x [, missing])
void _runningsum(y, numeric vector x [, missing])
void _quadrunningsum(y, numeric vector x [, missing])
```

where optional argument `missing` is a `real scalar` that determines how missing values in `x` are treated:

1. Specifying `missing` as 0 is equivalent to not specifying the argument; missing values in `x` are treated as contributing 0 to the sum.
2. Specifying `missing` as 1 specifies that missing values in `x` are to be treated as missing values and turn the sum to missing.

Remarks and examples

The running sum of (1, 2, 3) is (1, 3, 6).

All functions return the same type as the argument, real if argument is real, complex if complex.
Conformability

\(\text{runningsum}(x, \text{missing}), \text{quadrunningsum}(x, \text{missing}): \)

\[
\begin{align*}
x: & \quad r \times 1 \text{ or } 1 \times c \\
\text{missing:} & \quad 1 \times 1 \\
\text{result:} & \quad r \times 1 \text{ or } 1 \times c
\end{align*}
\]

\(_\text{runningsum}(y, x, \text{missing}), _\text{quadrunningsum}(y, x, \text{missing}): \)

\[
\begin{align*}
\text{input:} \\
\quad x: & \quad r \times 1 \text{ or } 1 \times c \\
\quad y: & \quad r \times 1 \text{ or } 1 \times c \\
\quad \text{missing:} & \quad 1 \times 1
\end{align*}
\]

\[
\begin{align*}
\text{output:} \\
\quad y: & \quad r \times 1 \text{ or } 1 \times c
\end{align*}
\]

Diagnostics

If \(\text{missing} = 0 \), missing values are treated as contributing zero to the sum; they do not turn the sum to missing. Otherwise, missing values turn the sum to missing.

\(_\text{runningsum}(y, x, \text{missing}) \) and \(_\text{quadrunningsum}(y, x, \text{missing}) \) abort with error if \(y \) is not \(p \)-conformable with \(x \) and of the same \textit{eltype}. The contents of \(y \) are irrelevant.

Also see

[M-5] \texttt{sum()} — Sums

[M-4] \texttt{mathematical} — Important mathematical functions

[M-4] \texttt{utility} — Matrix utility functions