
qrsolve( ) — Solve AX=B for X using QR decomposition

Description Syntax Remarks and examples Conformability Diagnostics Also see

Description
qrsolve(A, B, . . .) uses QR decomposition to solve AX = B and returns X . When A is singular or

nonsquare, qrsolve() computes a least-squares generalized solution. When rank is specified, in it is

placed the rank of A.

qrsolve(A, B, . . .), does the same thing, except that it destroys the contents of A and it overwrites B

with the solution. Returned is the rank of A.

In both cases, tol specifies the tolerance for determining whether A is of full rank. tol is interpreted in

the standard way—as a multiplier for the default if tol > 0 is specified and as an absolute quantity to use

in place of the default if tol ≤ 0 is specified; see [M-1] Tolerance.

Syntax
numeric matrix qrsolve(A, B)

numeric matrix qrsolve(A, B, rank)

numeric matrix qrsolve(A, B, rank, tol)

real scalar qrsolve(A, B)

real scalar qrsolve(A, B, tol)

where
A: numeric matrix

B: numeric matrix

rank: irrelevant; real scalar returned

tol: real scalar

Remarks and examples
qrsolve(A, B, . . .) is suitable for use with square and possibly rank-deficient matrix A, or when A

has more rows than columns. When A is square and full rank, qrsolve() returns the same solution

as lusolve() (see [M-5] lusolve( )), up to roundoff error. When A is singular, qrsolve() returns a

generalized (least-squares) solution.

Remarks are presented under the following headings:

Derivation
Relationship to inversion
Tolerance
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Derivation

We wish to solve for X

AX = B (1)

Perform QR decomposition on A so that we have A = QRP′. Then (1) can be rewritten as

QRP′X = B

Premultiplying by Q′ and remembering that Q′Q = QQ′ = I , we have

RP′X = Q′B (2)

Define

Z = P′X (3)

Then (2) can be rewritten as

RZ = Q′B (4)

It is easy to solve (4) for Z because R is upper triangular. Having Z, we can obtain X via (3), because Z

= P′X , premultiplied by P (and if we remember that PP′ = I), yields

X = PZ

For more information on QR decomposition, see [M-5] qrd( ).

Relationship to inversion

For a general discussion, see Relationship to inversion in [M-5] lusolve( ).

For an inverse based on QR decomposition, see [M-5] qrinv( ). qrinv(A) amounts to qrsolve(A,
I(rows(A))), although it is not actually implemented that way.

Tolerance

The default tolerance used is

eta = 1e-13 * trace(abs(R))/rows(R)

where R is the upper-triangular matrix of the QR decomposition; see Derivation above. When A is less

than full rank, by, say, d degrees of freedom, then R is also rank deficient by d degrees of freedom and

the bottom d rows of R are essentially zero. If the ith diagonal element of R is less than or equal to eta,

then the ith row of Z is set to zero. Thus if the matrix is singular, qrsolve() provides a generalized

solution.

If you specify tol > 0, the value you specify is used to multiply eta. You may instead specify tol ≤ 0,

and then the negative of the value you specify is used in place of eta; see [M-1] Tolerance.
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Conformability
qrsolve(A, B, rank, tol):

input:

A: m × n, m ≥ n

B: m × k

tol: 1 × 1 (optional)

output:

rank: 1 × 1 (optional)

result: n × k

qrsolve(A, B, tol):
input:

A: m × n, m ≥ n

B: m × k

tol: 1 × 1 (optional)

output:

A: 0 × 0

B: n × k

result: 1 × 1

Diagnostics
qrsolve(A, B, . . .) and qrsolve(A, B, . . .) return a result containing missing if A or B contain

missing values.

qrsolve(A, B, . . .) aborts with error if A or B are views.

Also see
[M-5] cholsolve( ) — Solve AX=B for X using Cholesky decomposition

[M-5] lusolve( ) — Solve AX=B for X using LU decomposition

[M-5] qrd( ) — QR decomposition

[M-5] qrinv( ) — Generalized inverse of matrix via QR decomposition

[M-5] solvelower( ) — Solve AX=B for X, A triangular

[M-5] solvemat( ) — Solve AX=B for X

[M-5] solve tol( ) — Tolerance used by solvers and inverters

[M-5] svsolve( ) — Solve AX=B for X using singular value decomposition

[M-4]Matrix — Matrix functions

[M-4] Solvers — Functions to solve AX=B and to obtain A inverse
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