qrsolve() — Solve AX=B for X using QR decomposition

Description

qrsolve(A, B, ...) uses QR decomposition to solve AX = B and returns X. When A is singular or nonsquare, qrsolve() computes a least-squares generalized solution. When rank is specified, it is placed the rank of A.

_qrsolve(A, B, ...), does the same thing, except that it destroys the contents of A and it overwrites B with the solution. Returned is the rank of A.

In both cases, tol specifies the tolerance for determining whether A is of full rank. tol is interpreted in the standard way—as a multiplier for the default if tol > 0 is specified and as an absolute quantity to use in place of the default if tol ≤ 0 is specified; see [M-1] Tolerance.

Syntax

numeric matrix qrsolve(A, B)
numeric matrix qrsolve(A, B, rank)
numeric matrix qrsolve(A, B, rank, tol)
real scalar _qrsolve(A, B)
real scalar _qrsolve(A, B, tol)

where

A: numeric matrix
B: numeric matrix
rank: irrelevant; real scalar returned
tol: real scalar

Remarks and examples

qrsolve(A, B, ...) is suitable for use with square and possibly rank-deficient matrix A, or when A has more rows than columns. When A is square and full rank, qrsolve() returns the same solution as lusolve() (see [M-5] lusolve()), up to roundoff error. When A is singular, qrsolve() returns a generalized (least-squares) solution.

Remarks are presented under the following headings:

Derivation
Relationship to inversion
Tolerance
Derivation

We wish to solve for X

$$AX = B$$ \hspace{1cm} (1)

Perform QR decomposition on A so that we have $A = QRP'$. Then (1) can be rewritten as

$$QRP'X = B$$

Premultiplying by Q' and remembering that $Q'Q = QQ' = I$, we have

$$RP'X = Q'B$$ \hspace{1cm} (2)

Define

$$Z = P'X$$ \hspace{1cm} (3)

Then (2) can be rewritten as

$$RZ = Q'B$$ \hspace{1cm} (4)

It is easy to solve (4) for Z because R is upper triangular. Having Z, we can obtain X via (3), because $Z = P'X$, premultiplied by P (and if we remember that $PP' = I$), yields

$$X = PZ$$

For more information on QR decomposition, see [M-5] qrd().

Relationship to inversion

For a general discussion, see Relationship to inversion in [M-5] lusolve().

For an inverse based on QR decomposition, see [M-5] qrinv(). qrinv(A) amounts to qrsolve(A, I(rows(A))), although it is not actually implemented that way.

Tolerance

The default tolerance used is

$$\text{eta} = 1e-13 \times \text{trace(abs}(R)) / \text{rows}(R)$$

where R is the upper-triangular matrix of the QR decomposition; see Derivation above. When A is less than full rank, by, say, d degrees of freedom, then R is also rank deficient by d degrees of freedom and the bottom d rows of R are essentially zero. If the ith diagonal element of R is less than or equal to eta, then the ith row of Z is set to zero. Thus if the matrix is singular, qrsolve() provides a generalized solution.

If you specify $tol > 0$, the value you specify is used to multiply eta. You may instead specify $tol \leq 0$, and then the negative of the value you specify is used in place of eta; see [M-1] Tolerance.
Conformability

qrsolve\((A, B, \text{rank, tol}) \):

\textbf{input:}

\begin{align*}
A & : m \times n, \quad m \geq n \\
B & : m \times k \\
tol & : 1 \times 1 \quad \text{(optional)}
\end{align*}

\textbf{output:}

\begin{align*}
\text{rank} & : 1 \times 1 \quad \text{(optional)} \\
\text{result} & : n \times k
\end{align*}

_qrsolve\((A, B, \text{tol}) \):

\textbf{input:}

\begin{align*}
A & : m \times n, \quad m \geq n \\
B & : m \times k \\
tol & : 1 \times 1 \quad \text{(optional)}
\end{align*}

\textbf{output:}

\begin{align*}
A & : 0 \times 0 \\
B & : n \times k \\
\text{result} & : 1 \times 1
\end{align*}

Diagnostics

qrsolve\((A, B, \ldots) \) and _qrsolve\((A, B, \ldots) \) return a result containing missing if \(A \) or \(B \) contain missing values.

_qrsolve\((A, B, \ldots) \) aborts with error if \(A \) or \(B \) are views.

Also see

[M-5] cholsolve() — Solve AX=B for X using Cholesky decomposition

[M-5] lusolve() — Solve AX=B for X using LU decomposition

[M-5] qrd() — QR decomposition

[M-5] qrinv() — Generalized inverse of matrix via QR decomposition

[M-5] solvelower() — Solve AX=B for X, A triangular

[M-5] solve_tol() — Tolerance used by solvers and inverters

[M-5] svsolve() — Solve AX=B for X using singular value decomposition

[M-4] Solvers — Functions to solve AX=B and to obtain A inverse