

Description

qrsolve(A, B, ...) uses QR decomposition to solve \(AX = B \) and returns \(X \). When \(A \) is singular or nonsquare, qrsolve() computes a least-squares generalized solution. When rank is specified, it is placed the rank of \(A \).

\(_\text{qrsolve}(A, B, ...) \), does the same thing, except that it destroys the contents of \(A \) and it overwrites \(B \) with the solution. Returned is the rank of \(A \).

In both cases, tol specifies the tolerance for determining whether \(A \) is of full rank. tol is interpreted in the standard way—as a multiplier for the default if \(tol > 0 \) is specified and as an absolute quantity to use in place of the default if \(tol \leq 0 \) is specified; see [M-1] tolerance.

Syntax

```
numeric matrix qrsolve(A, B)
numeric matrix qrsolve(A, B, rank)
numeric matrix qrsolve(A, B, rank, tol)
real scalar \_qrsolve(A, B)
real scalar \_qrsolve(A, B, tol)
```

where

- \(A \): numeric matrix
- \(B \): numeric matrix
- rank: irrelevant; real scalar returned
- tol: real scalar

Remarks and examples

qrsolve(A, B, ...) is suitable for use with square and possibly rank-deficient matrix \(A \), or when \(A \) has more rows than columns. When \(A \) is square and full rank, qrsolve() returns the same solution as lusolve() (see [M-5] lusolve()), up to roundoff error. When \(A \) is singular, qrsolve() returns a generalized (least-squares) solution.

Remarks are presented under the following headings:

- Derivation
- Relationship to inversion
- Tolerance
Derivation

We wish to solve for \(X \)

\[AX = B \] \hspace{1cm} (1)

Perform QR decomposition on \(A \) so that we have \(A = QRP' \). Then (1) can be rewritten as

\[QRP'X = B \]

Premultiplying by \(Q' \) and remembering that \(Q'Q = QQ' = I \), we have

\[RP'X = Q'B \] \hspace{1cm} (2)

Define

\[Z = P'X \] \hspace{1cm} (3)

Then (2) can be rewritten as

\[RZ = Q'B \] \hspace{1cm} (4)

It is easy to solve (4) for \(Z \) because \(R \) is upper triangular. Having \(Z \), we can obtain \(X \) via (3), because \(Z = P'X \), premultiplied by \(P \) (and if we remember that \(PP' = I \)), yields

\[X = PZ \]

For more information on QR decomposition, see [M-5] qrd().

Relationship to inversion

For a general discussion, see Relationship to inversion in [M-5] lusolve().

For an inverse based on QR decomposition, see [M-5] qrinv(). qrinv(\(A \)) amounts to qrsolve(\(A, I(\text{rows}(A)) \)), although it is not actually implemented that way.

Tolerance

The default tolerance used is

\[\text{eta} = 1e-13 \times \text{trace(abs(R))} / \text{rows(R)} \]

where \(R \) is the upper-triangular matrix of the QR decomposition; see Derivation above. When \(A \) is less than full rank, by, say, \(d \) degrees of freedom, then \(R \) is also rank deficient by \(d \) degrees of freedom and the bottom \(d \) rows of \(R \) are essentially zero. If the \(i \)th diagonal element of \(R \) is less than or equal to \(\text{eta} \), then the \(i \)th row of \(Z \) is set to zero. Thus if the matrix is singular, qrsolve() provides a generalized solution.

If you specify \(tol > 0 \), the value you specify is used to multiply \(\text{eta} \). You may instead specify \(tol \leq 0 \), and then the negative of the value you specify is used in place of \(\text{eta} \); see [M-1] tolerance.
Conformability

\texttt{qrsolve}(A, B, rank, tol):

\textbf{input}:

\begin{align*}
A &: \quad m \times n, \quad m \geq n \\
B &: \quad m \times k \\
tol &: \quad 1 \times 1 \quad \text{(optional)}
\end{align*}

\textbf{output}:

\begin{align*}
\text{rank} &: \quad 1 \times 1 \quad \text{(optional)} \\
\text{result} &: \quad n \times k
\end{align*}

\texttt{-qrsolve}(A, B, tol):

\textbf{input}:

\begin{align*}
A &: \quad m \times n, \quad m \geq n \\
B &: \quad m \times k \\
tol &: \quad 1 \times 1 \quad \text{(optional)}
\end{align*}

\textbf{output}:

\begin{align*}
A &: \quad 0 \times 0 \\
B &: \quad n \times k \\
\text{result} &: \quad 1 \times 1
\end{align*}

Diagnostics

\texttt{qrsolve}(A, B, \ldots) \text{ and } \texttt{-qrsolve}(A, B, \ldots) \text{ return a result containing missing if } A \text{ or } B \text{ contain missing values.}

\texttt{-qrsolve}(A, B, \ldots) \text{ aborts with error if } A \text{ or } B \text{ are views.}

Also see

[M-5] \texttt{qrinv()} — Generalized inverse of matrix via QR decomposition

[M-5] \texttt{qrdf()} — QR decomposition

[M-5] \texttt{solvelower()} — Solve AX=B for X, A triangular

[M-5] \texttt{cholsolve()} — Solve AX=B for X using Cholesky decomposition

[M-5] \texttt{lusolve()} — Solve AX=B for X using LU decomposition

[M-5] \texttt{svsolve()} — Solve AX=B for X using singular value decomposition

[M-5] \texttt{solve_tol()} — Tolerance used by solvers and inverters

[M-4] \texttt{matrix} — Matrix functions

[M-4] \texttt{solvers} — Functions to solve AX=B and to obtain A inverse