qrinv() — Generalized inverse of matrix via QR decomposition

Description

qrinv(A, ...) returns the inverse or generalized inverse of real or complex matrix \(A: m \times n, m \geq n \). If optional argument \(\text{rank} \) is specified, the rank of \(A \) is returned there.

_qrinv(A, ...) does the same thing except that, rather than returning the result, it overwrites the original matrix \(A \) with the result. _qrinv() returns the rank of \(A \).

In both cases, optional argument \(\text{tol} \) specifies the tolerance for determining singularity; see Remarks and examples below.

Syntax

\[\text{numeric matrix} \quad \text{qrinv(numeric matrix } A) \]

\[\text{numeric matrix} \quad \text{qrinv(numeric matrix } A, \text{ rank}) \]

\[\text{numeric matrix} \quad \text{qrinv(numeric matrix } A, \text{ rank, real scalar } \text{tol}) \]

\[\text{real scalar} \quad _\text{qrinv(numeric matrix } A) \]

\[\text{real scalar} \quad _\text{qrinv(numeric matrix } A, \text{ real scalar } \text{tol}) \]

where the type of \(\text{rank} \) is irrelevant; the rank of \(A \) is returned there.

Remarks and examples

qrinv() and _qrinv() are most often used on square and possibly rank-deficient matrices but may be used on nonsquare matrices that have more rows than columns. Also see [M-5] pinv() for an alternative. See [M-5] luinv() for a more efficient way to obtain the inverse of full-rank, square matrices, and see [M-5] invsym() for inversion of real, symmetric matrices.

When \(A \) is of full rank, the inverse calculated by qrinv() is essentially the same as that computed by the faster luinv(). When \(A \) is singular, qrinv() and _qrinv() compute a generalized inverse, \(A^* \), which satisfies

\[A(A^*)A = A \]

\[(A^*)A(A^*) = A^* \]

This generalized inverse is also calculated for nonsquare matrices that have more rows than columns and, then returned is a least-squares solution. If \(A \) is \(m \times n, m \geq n \), and if the rank of \(A \) is equal to \(n \), then \((A^*)A = I\), ignoring roundoff error.

qrinv(A) is implemented as qrsolve(A, I(rows(A))); see [M-5] qrsolve() for details and for use of the optional \text{tol} argument.
Conformability

\texttt{qrinv}(A, \textit{rank}, \textit{tol}): \\
input: \\
A: \ m \times n, \ m \geq n \\
\textit{tol}: \ 1 \times 1 \ (optional) \\
output: \\
\textit{rank}: \ 1 \times 1 \ (optional) \\
result: \ n \times m \\

\texttt{qrinv}(A, \textit{tol}): \\
input: \\
A: \ m \times n, \ m \geq n \\
\textit{tol}: \ 1 \times 1 \ (optional) \\
output: \\
A: \ n \times m \\
result: \ 1 \times 1 \ (containing \ rank) \\

Diagnostics

The inverse returned by these functions is real if \(A \) is real and is complex if \(A \) is complex.

\texttt{qrinv}(A, \ldots) \ and \ \texttt{qrinv}(A, \ldots) \ return \ a \ result \ containing \ missing \ values \ if \ A \ contains \ missing \ values.

\texttt{qrinv}(A, \ldots) \ aborts \ with \ error \ if \ A \ is \ a \ view.

See \[M-5\] \texttt{qrsolve()} \ and \ [M-1] \textbf{Tolerance} \ for \ information \ on \ the \ optional \ \textit{tol} \ argument.

Also see

[M-5] \texttt{cholinv()} — Symmetric, positive-definite matrix inversion

[M-5] \texttt{invsym()} — Symmetric real matrix inversion

[M-5] \texttt{luinv()} — Square matrix inversion

[M-5] \texttt{pinv()} — Moore–Penrose pseudoinverse

[M-5] \texttt{qrsolve()} — Solve AX=B for X using QR decomposition

[M-5] \texttt{solve_tol()} — Tolerance used by solvers and inverters

[M-4] \textbf{Matrix} — Matrix functions

[M-4] \textbf{Solvers} — Functions to solve AX=B and to obtain A inverse