printf() — Format output

Description Syntax Remarks and examples Conformability Diagnostics Also see

Description

printf () displays output at the terminal.

sprintf () returns a string that can then be displayed at the terminal, written to a file, or used in any
other way a string might be used.

Syntax

void printf (string scalar fmt, rl, r2, ..., rN)
string scalar sprintf (string scalar fint, vl, r2, ..., rN)

where fint may contain a mix of text and % fints, such as

printf ("The result is %9.2f, adjusted\n", result)
printf("%s =%9.0g\n", name, value)

There must be a one-to-one correspondence between the 7 fints in fint and the number of results to be
displayed.

Along with the usual % fimts that Stata provides (see [D] format), also provided are

Format Meaning

% %11.0f, compressed

hg %11.0g, compressed

he %11.8e, compressed

%s % #s, # = whatever necessary
%us % #us, # = whatever necessary
%uds % #uds, # = whatever necessary

Compressed means that, after the indicated format is applied, all leading and trailing blanks are removed.

C programmers, be warned: %d is Stata’s (old) calendar date format (equivalent to modern Stata’s %td
format) and not an integer format; use %f for formatting integers.

https://www.stata.com/manuals/dformat.pdf#dformat

printf() — Format output 2

The following character sequences are given a special meaning when contained within fint:

Character sequence Meaning

%o one %

\n newline

\r carriage return
\t tab

A\ one \

Remarks and examples

Both printf () and sprintf () respect the formatting specified with set dp. To convert numeric values
to strings while ignoring the formatting specified with set dp, use strofreal ().
Remarks are presented under the following headings:

printf()

sprintf()

The %us and %uds formats

printf()

printf () displays output at the terminal. A program might contain the line
printf("the result is %f\n", result)

and display the output

the result is 5.213

or it might contain the lines

printf ("{txt}{space 13}{c |} Coefficient Std. err.\n")
printf("{hline 13}{c +}{hline 24}\n")
printf ("{txt}%12s {c |} {res}%10.0g 7%10.0g\n",

varname [i], coef[i], sel[il)

and so display the output

‘ Coefficient Std. err.

mpg ‘ -.0059541 .0005921

Do not forget to include \n at the end of lines. When \n is not included, the line continues. For instance,
the code

printf ("{txt}{space 13}{c |} Coefficient Std. err.\n")
printf ("{hline 13}{c +}{hline 24}\n")

printf ("{txt}%12s {c |} {res}", varname([i])
printf("%10.0g", coef[i])

printf(" ")

printf("%10.0g", selil)

printf ("\n")

produces the same output as shown above.

https://www.stata.com/manuals/dformat.pdf#dformat
https://www.stata.com/manuals/m-5strofreal.pdf#m-5strofreal()
https://www.stata.com/manuals/m-5printf.pdf#m-5printf()Remarksandexamplesprintf()
https://www.stata.com/manuals/m-5printf.pdf#m-5printf()Remarksandexamplessprintf()
https://www.stata.com/manuals/m-5printf.pdf#m-5printf()RemarksandexamplesTheusandudsformats

printf() — Format output 3

Although users are unaware of it, Stata buffers output. This makes Stata faster. A side effect of the
buffering, however, is that output may not appear when you want it to appear. Consider the code fragment
for (n=1; !converged(b, b0); n++) {
printf("iteration %f: diff = %12.0g\n", n, b-b0)
b0 = b
... new calculation of b . . .

}

One of the purposes of the iteration output is to keep the user informed that the code is indeed working,
yet as the above code is written, the user probably will not see the iteration messages as they occur.
Instead, nothing will appear for a while, and then, unexpectedly, many iteration messages will appear as
Stata, buffers full, decides to send to the terminal the waiting output.

To force output to be displayed, use [M-5] displayflush():

for (n=1; !converged(b, b0); n++) {
printf("iteration %f: diff = %12.0g\n", n, b-b0)
displayflush()
b0 = b
... new calculation of b . . .

}

It is only in situations like the above that use of displayflush() is necessary. In other cases, it is better
to let Stata decide when output buffers should be flushed. (Ado-file programmers: you have never had
to worry about this because, at the ado-level, all output is flushed as it is created. Mata, however, is
designed to be fast and so printf () does not force output to be flushed until it is efficient to do so.)

sprintf()

The difference between sprintf () and printf () is that, whereas printf () sends the resulting string
to the terminal, sprintf () returns it. Since Mata displays the results of expressions that are not assigned
to variables, sprintf () used by itself also displays output:

: sprintf("the result is %f\n", result)
the result is 5.2130a

The outcome is a little different from that produced by printf () because the output-the-unassigned-
expression routine indents results by 2 and displays all the characters in the string (the Oa at the end
is the \n newline character). Also, the output-the-unassigned-expression routine does not honor SMCL,
electing instead to display the codes:

: sprintf ("{txt}the result is {res}%f", result)
{txt}the result is {res}5.213

The purpose of sprintf () is to create strings that will then be used with printf (), with [M-5] display(),
with fput () (see [M-5] fopen()), or with some other function.

https://www.stata.com/manuals/m-5displayflush.pdf#m-5displayflush()
https://www.stata.com/manuals/m-5display.pdf#m-5display()
https://www.stata.com/manuals/m-5fopen.pdf#m-5fopen()

printf() — Format output 4

Pretend that we are creating a dynamically formatted table. One of the columns in the table contains
integers, and we want to create a % fmt that is exactly the width required. That is, if the integers to appear
in the table are 2, 9, and 20, we want to create a %2.0f format for the column. We assume the integers
are in the column vector dof in what follows:
max = 0
for (i=1; i<=rows(dof); i++) {
len = strlen(sprintf("}f", dof[il)
if (len>max) max = len

}
fmt = sprintf ("%%%f.0f", max)

We used sprintf () twice in the above. We first used sprintf () to produce the string representation
of the integer dof [1], and we used the %f format so that the length would be whatever was necessary,
and no more. We obtained in max the maximum length. If dof contained 2, 9, and 20, by the end of
our loop, max will contain 2. We finally used sprintf () to create the %#.0f format that we wanted:
%2.01.

The format string %%%£ . Of in the final sprintf () is a little difficult to read. The first two percent signs
amount to one real percent sign, so in the output we now have % and we are left with %f.0f. The %f is a
format—it is how we are to format max—and so in the output we now have %2, and we are left with . 0f.
.0f is just a string, so the final output is %2.0f.

The %us and %uds formats

The %wus and %wuds formats are similar to % ws. These formats display a string in a right-justified field
of width w. %-wus and %-wuds display the string in a left-justified field. %~wus and %~wuds display
the string center-justified.

The difference between %ws, %wus, and %wuds is how the number of padding spaces is calculated. %ws
pads the number of spaces to the left of s to make the total number of bytes to be w. %wus pads the
number of spaces to the left of s to make the total number of Unicode characters to be w. %wuds pads
the number of spaces to the left of s to make the total number of display columns to be w.

Note that s is returned without change if the number of Unicode characters is greater than or equal to w
in %wus or if the number of display columns is greater than or equal to w in %wuds.

Conformability
printf(fint, ry, ro, ..., ¥n)
fmt: I x1
e 1 x1
Ty I x1
Ty I x1

result: void

https://www.stata.com/manuals/u12.pdf#u12.4.2.2DisplayingUnicodecharacters

printf() — Format output 5

sprintf (fint, ry, ry, ..., 'y)

fmt: I x1

o I x1

Ty I x1
r

result: 1 x1
Diagnostics

printf () and sprintf () abort with error if a % fint is misspecified, if a numeric % fint corresponds to a
string result or a string % fint to a numeric result, or there are too few or too many % fits in fint relative to
the number of results specified.

Also see
[M-5] displayas() — Set display level
[M-5] displayflush() — Flush terminal-output buffer

[M-5] errprintf() — Format output and display as error message

[M-4] I0 — I/O functions

Stata, Stata Press, and Mata are registered trademarks of StataCorp LLC. Stata and Stata

Press are registered trademarks with the World Intellectual Property Organization of the ¢~
United Nations. StataNow and NetCourseNow are trademarks of StataCorp LLC. Other 74 \\l
brand and product names are registered trademarks or trademarks of their respective com- ¢ !“ (Jf‘} 7
panies. Copyright © 1985-2025 StataCorp LLC, College Station, TX, USA. All rights :
reserved.

For suggested citations, see the FAQ on citing Stata documentation.

https://www.stata.com/manuals/m-5displayas.pdf#m-5displayas()
https://www.stata.com/manuals/m-5displayflush.pdf#m-5displayflush()
https://www.stata.com/manuals/m-5errprintf.pdf#m-5errprintf()
https://www.stata.com/manuals/m-4io.pdf#m-4IO
https://www.stata.com/support/faqs/resources/citing-software-documentation-faqs/

