Description

`polyeval(c, x)` evaluates polynomial c at each value recorded in x, returning the results in a p-conformable-with-x vector. For instance, `polyeval((4,2,1), (3\5))` returns $(4+2*3+3^2 \ 4+2*5+5^2) = (19\39)$.

`polysolve(y, x)` returns the minimal-degree polynomial c fitting $y = polyeval(c, x)$. Solution is via Lagrange’s interpolation formula.

`polytrim(c)` returns polynomial c with trailing zeros removed. For instance, `polytrim((1,2,3,0))` returns $(1,2,3)$ and `polytrim((0,0,0,0))` returns (0). Thus if $n = 	ext{cols(polytrim(c))}$, then c records an $(n-1)$th degree polynomial.

`polyderiv(c, i)` returns the polynomial that is the ith derivative of polynomial c. For instance, `polyderiv((4,2,1), 1)` returns $(2,2)$ (the derivative of $4 + 2x + x^2$ is $2 + 2x$). The value of the first derivative of polynomial c at x is `polyeval(polyderiv(c,1),x)`.

`polyinteg(c, i)` returns the polynomial that is the ith integral of polynomial c. For instance, `polyinteg((4,2,1), 1)` returns $(0,4,1,.3333)$ (the integral of $4+2x+x^2$ is $0+4x+x^2+.3333x^3$). The value of the integral of polynomial c at x is `polyeval(polyinteg(c,1),x)`.

`polyadd(c_1, c_2)` returns the polynomial that is the sum of the polynomials c_1 and c_2. For instance, `polyadd((2,1), (3,5,1))` is $(5,6,1)$ (the sum of $2 + x$ and $3 + 5x + x^2$ is $5 + 6x + x^2$).

`polymult(c_1, c_2)` returns the polynomial that is the product of the polynomials c_1 and c_2. For instance, `polymult((2,1), (3,5,1))` is $(6,13,7,1)$ (the product of $2 + x$ and $3 + 5x + x^2$ is $6 + 13x + 7x^2 + x^3$).

`polydiv(c_1, c_2, c_q, c_r)` calculates polynomial c_1/c_2, storing the quotient polynomial in c_q and the remainder polynomial in c_r. For instance, `polydiv((3,5,1), (2,1), c_q, c_r)` returns $c_q=(3,1)$ and $c_r=(-3)$; that is,

$$\frac{3 + 5x + x^2}{2 + x} = 3 + x \text{ with a remainder of } -3$$

or

$$3 + 5x + x^2 = (3 + x)(2 + x) - 3$$

`polyroots(c)` find the roots of polynomial c and returns them in complex row vector (complex even if c is real). For instance, `polyroots((3,5,1))` returns $(-4.303+0i, -.697+0i)$ (the roots of $3 + 5x + x^2$ are -4.303 and $-.697$).
Syntax

```
numeric vector  polyeval(numeric rowvector c, numeric vector x)
numeric rowvector polysolve(numeric vector y, numeric vector x)
numeric rowvector polytrim(numeric vector c)
numeric rowvector polyderiv(numeric rowvector c, real scalar i)
numeric rowvector polyinteg(numeric rowvector c, real scalar i)
numeric rowvector polyadd(numeric rowvector c1, numeric rowvector c2)
numeric rowvector polymult(numeric rowvector c1, numeric rowvector c2)
void polydiv(numeric rowvector c1, numeric rowvector c2, c q, c r)
complex rowvector polyroots(numeric rowvector c)
```

In the above, row vector c contains the coefficients for a \(\text{cols}(c) - 1 \) degree polynomial. For instance,

\[
c = (4, 2, 1)
\]

records the polynomial

\[
4 + 2x + x^2
\]

Remarks and examples

Given the real or complex coefficients c that define an \(n - 1 \) degree polynomial in x, \text{polyroots}(c) returns the \(n - 1 \) roots for which

\[
0 = c_1 + c_2x^1 + c_3x^2 + \cdots + c_nx^{n-1}
\]

\text{polyroots}(c) obtains the roots by calculating the eigenvalues of the companion matrix. The \((n-1) \times (n-1) \) companion matrix for the polynomial defined by c is

\[
C = \begin{bmatrix}
-c_{n-1}s & -c_{n-2}s & \cdots & -c_2s & -c_1s \\
1 & 0 & \cdots & 0 & 0 \\
0 & 1 & \cdots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & 1 & 0 \\
0 & 0 & \cdots & 0 & 1 \\
\end{bmatrix}
\]

where \(s = 1/c_n \) if c is real and

\[
s = C \left(\frac{\text{Re}(c_n)}{\text{Re}(c_n)^2 + \text{Im}(c_n)^2}, \frac{-\text{Im}(c_n)}{\text{Re}(c_n)^2 + \text{Im}(c_n)^2} \right)
\]

otherwise.
As in all nonsymmetric eigenvalue problems, the returned roots are complex and sorted from largest
to smallest, see \texttt{[M-5]} \texttt{eigensystem()}.

Conformability

\texttt{polyeval}(c, x):
\begin{align*}
c & : 1 \times n, \ n > 0
x & : r \times 1 \quad \text{or} \quad 1 \times c
\text{result} & : r \times 1 \quad \text{or} \quad 1 \times c
\end{align*}

\texttt{polysolve}(y, x):
\begin{align*}
y & : n \times 1 \quad \text{or} \quad 1 \times n, \ n \geq 1
x & : n \times 1 \quad \text{or} \quad 1 \times n
\text{result} & : 1 \times k, \quad 1 \leq k \leq n
\end{align*}

\texttt{polytrim}(c):
\begin{align*}
c & : 1 \times n
\text{result} & : 1 \times k, \quad 1 \leq k \leq n
\end{align*}

\texttt{polyderiv}(c, i):
\begin{align*}
c & : 1 \times n, \ n > 0
i & : 1 \times 1, \ i \text{ may be negative}
\text{result} & : 1 \times \max(1, n - i)
\end{align*}

\texttt{polyinteg}(c, i):
\begin{align*}
c & : 1 \times n, \ n > 0
i & : 1 \times 1, \ i \text{ may be negative}
\text{result} & : 1 \times \max(1, n + i)
\end{align*}

\texttt{polyadd}(c_1, c_2):
\begin{align*}
c_1 & : 1 \times n_1, \ n_1 > 0
c_2 & : 1 \times n_2, \ n_2 > 0
\text{result} & : 1 \times \max(n_1, \ n_2)
\end{align*}

\texttt{polymult}(c_1, c_2):
\begin{align*}
c_1 & : 1 \times n_1, \ n_1 > 0
c_2 & : 1 \times n_2, \ n_2 > 0
\text{result} & : 1 \times n_1 + n_2 - 1
\end{align*}

\texttt{polydiv}(c_1, c_2, c_q, c_r):
\begin{align*}
\text{input}:
c_1 & : 1 \times n_1, \ n_1 > 0
c_2 & : 1 \times n_2, \ n_2 > 0
\text{output}:
c_q & : 1 \times k_1, \ 1 \leq k_1 \leq \max(n_1 - n_2 + 1, 1)
c_r & : 1 \times k_2, \ 1 \leq k_2 \leq \max(n_1 - n_2, 1)
\end{align*}

\texttt{polyroots}(c):
\begin{align*}
c & : 1 \times n_i, \ n > 0
\text{result} & : 1 \times k - 1, \ k = \text{cols(polytrim}(c))
\end{align*}
Diagnostics

All functions abort with an error if a polynomial coefficient row vector is void, but they do not necessarily give indicative error messages as to the problem. Polynomial coefficient row vectors may contain missing values.

polyderiv(c, i) returns c when \(i = 0 \). It returns polyinteg(c, \(-i\)) when \(i < 0 \). It returns (0) when \(i \) is missing (think of missing as positive infinity).

polyinteg(c, i) returns c when \(i = 0 \). It returns polyderiv(c, \(-i\)) when \(i < 0 \). It aborts with error if \(i \) is missing (think of missing as positive infinity).

polyroots(c) returns a vector of missing values if any element of \(c \) equals missing.

Also see

[M-4] Mathematical — Important mathematical functions