
moptimize() — Model optimization

Description Syntax Remarks and examples Conformability
Diagnostics References Also see

Description
The moptimize() functions find coefficients (b1,b2, . . . ,b𝑚) thatmaximize orminimize f (p1,p2, . . . ,p𝑚),

where p𝑖 = X𝑖 × b′
𝑖, a linear combination of b𝑖 and the data. The user of moptimize() writes a Mata

function or Stata program to evaluate f (p1,p2, . . . ,p𝑚). The data can be in Mata matrices or in the Stata

dataset currently residing in memory.

moptimize() is especially useful for obtaining solutions for maximum likelihood models, minimum 𝜒2

models, minimum squared-residual models, and the like.

Syntax
If you are reading this entry for the first time, skip down to Description and to Remarks and examples, and

more especially, to Mathematical statement of the moptimize() problem under Remarks and examples.

Syntax is presented under the following headings:

Step 1: Initialization
Step 2: Definition of maximization or minimization problem
Step 3: Perform optimization or perform a single function evaluation
Step 4: Post, display, or obtain results

Utility functions for use in all steps

Definition of M
Setting the sample
Specifying dependent variables
Specifying independent variables
Specifying constraints
Specifying weights or survey data
Specifying clusters and panels
Specifying optimization technique
Specifying initial values
Performing one evaluation of the objective function
Performing optimization of the objective function
Tracing optimization
Specifying convergence criteria
Accessing results
Stata evaluators
Advanced functions

Syntax of evaluators
Syntax of type lf evaluators
Syntax of type d evaluators
Syntax of type lf* evaluators
Syntax of type gf evaluators
Syntax of type q evaluators
Passing extra information to evaluators

Utility functions

1

https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Description
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Remarksandexamples
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()RemarksandexamplesMathematicalstatementofthemoptimize()problem

moptimize() — Model optimization 2

Step 1: Initialization

M = moptimize init()

Step 2: Definition of maximization or minimization problem

In each of the functions, the last argument is optional. If specified, the function sets the value

and returns void. If not specified, no change is made, and instead what is currently set is re-

turned.

(varies) moptimize init which(M, { ”max” | ”min” })

(varies) moptimize init evaluator(M, &functionname())

(varies) moptimize init evaluator(M, ”programname”)

(varies) moptimize init evaluatortype(M, evaluatortype)

(varies) moptimize init negH(M, { ”off” | ”on” })

(varies) moptimize init touse(M, ”tousevarname”)

(varies) moptimize init ndepvars(M, D)

(varies) moptimize init depvar(M, j, y)

(varies) moptimize init eq n(M, m)

(varies) moptimize init eq indepvars(M, i, X)

(varies) moptimize init eq cons(M, i, { ”on” | ”off” })

(varies) moptimize init eq offset(M, i, o)

(varies) moptimize init eq exposure(M, i, t)

(varies) moptimize init eq name(M, i, name)

(varies) moptimize init eq colnames(M, i, names)

(varies) moptimize init eq freeparm(M, i, { ”on” | ”off” })

(varies) moptimize init eq coefs(M, i, b0)

(varies) moptimize init constraints(M, Cc)

(varies) moptimize init search(M, { ”on” | ”off” })

(varies) moptimize init search random(M, { ”off” | ”on” })

(varies) moptimize init search repeat(M, nr)

(varies) moptimize init search bounds(M, i, minmax)

(varies) moptimize init search rescale(M, { ”on” | ”off” })

https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxinit_which
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxinit_evaluator
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxinit_evaluator
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxinit_evaluatortype
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxinit_negH
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxinit_touse
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxinit_ndepvars
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxinit_depvar
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxinit_eq_n
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxinit_eq_indepvars
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxinit_eq_cons
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxinit_eq_offset
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxinit_eq_exposure
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxinit_eq_name
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxinit_eq_colnames
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxinit_eq_freeparm
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxinit_eq_coefs
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxinit_constraints
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxinit_search
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxinit_search_random
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxinit_search_repeat
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxinit_search_bounds
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxinit_search_rescale

moptimize() — Model optimization 3

(varies) moptimize init weight(M, w)

(varies) moptimize init weighttype(M, weighttype)

(varies) moptimize init cluster(M, c)

(varies) moptimize init svy(M, { ”off” | ”on” })

(varies) moptimize init by(M, by)

(varies) moptimize init nuserinfo(M, n user)

(varies) moptimize init userinfo(M, l, Z)

(varies) moptimize init technique(M, technique)

(varies) moptimize init vcetype(M, vcetype)

(varies) moptimize init nmsimplexdeltas(M, delta)

(varies) moptimize init gnweightmatrix(M, W)

(varies) moptimize init singularHmethod(M, singularHmethod)

(varies) moptimize init conv maxiter(M, maxiter)

(varies) moptimize init conv warning(M, { ”on” | ”off” })

(varies) moptimize init conv ptol(M, ptol)

(varies) moptimize init conv vtol(M, vtol)

(varies) moptimize init conv nrtol(M, nrtol)

(varies) moptimize init conv ignorenrtol(M, { ”off” | ”on” })

(varies) moptimize init iterid(M, id)

(varies) moptimize init valueid(M, id)

(varies) moptimize init tracelevel(M, tracelevel)

(varies) moptimize init trace ado(M, { ”off” | ”on” })

(varies) moptimize init trace dots(M, { ”off” | ”on” })

(varies) moptimize init trace value(M, { ”on” | ”off” })

(varies) moptimize init trace tol(M, { ”off” | ”on” })

(varies) moptimize init trace step(M, { ”off” | ”on” })

(varies) moptimize init trace coefdiffs(M, { ”off” | ”on” })

(varies) moptimize init trace coefs(M, { ”off” | ”on” })

(varies) moptimize init trace gradient(M, { ”off” | ”on” })

(varies) moptimize init trace Hessian(M, { ”off” | ”on” })

https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxinit_weight
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxinit_weighttype
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxinit_cluster
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxinit_svy
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxinit_by
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxinit_nuserinfo
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxinit_userinfo
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxinit_technique
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxinit_vcetype
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxinit_nmsimplexdeltas
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxinit_gnweightmatrix
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxinit_singularHmethod
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxinit_conv_maxiter
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxinit_conv_warning
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxinit_conv_ptol
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxinit_conv_vtol
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxinit_conv_nrtol
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxinit_conv_ignorenrtol
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxinit_iterid
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxinit_valueid
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxinit_tracelevel
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxinit_trace_ado
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxinit_trace_dots
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxinit_trace_value
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxinit_trace_tol
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxinit_trace_step
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxinit_trace_coefdiffs
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxinit_trace_coefs
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxinit_trace_gradient
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxinit_trace_Hessian

moptimize() — Model optimization 4

(varies) moptimize init evaluations(M, { ”off” | ”on” })

(varies) moptimize init verbose(M, { ”on” | ”off” })

(varies) moptimize init deriv usemin(M, { ”off” | ”on” })

(varies) moptimize init deriv min(M [, real rowvector min])

Step 3: Perform optimization or perform a single function evaluation

void moptimize(M)

real scalar moptimize(M)

void moptimize evaluate(M)

real scalar moptimize evaluate(M)

Step 4: Post, display, or obtain results

void moptimize result post(M [, vcetype])

void moptimize result display([M [, vcetype]])

real scalar moptimize result value(M)

real scalar moptimize result value0(M)

real rowvector moptimize result eq coefs(M [, i])

real rowvector moptimize result coefs(M)

string matrix moptimize result colstripe(M [, i])

real matrix moptimize result scores(M)

real rowvector moptimize result gradient(M [, i])

real matrix moptimize result Hessian(M [, i])

real matrix moptimize result V(M [, i])

string scalar moptimize result Vtype(M)

real matrix moptimize result V oim(M [, i])

real matrix moptimize result V opg(M [, i])

real matrix moptimize result V robust(M [, i])

https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxinit_evaluations
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxinit_verbose
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxinit_deriv_usemin
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxinit_deriv_min
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxmoptimize
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxmoptimize
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxevaluate
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxevaluate
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxresult_post
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxresult_display
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxresult_value
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxresult_value0
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxresult_eq_coefs
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxresult_coefs
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxresult_colstripe
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxresult_scores
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxresult_gradient
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxresult_Hessian
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxresult_V
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxresult_Vtype
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxresult_V_oim
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxresult_V_opg
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxresult_V_robust

moptimize() — Model optimization 5

real scalar moptimize result iterations(M)

real scalar moptimize result converged(M)

real colvector moptimize result iterationlog(M)

real rowvector moptimize result evaluations(M)

real scalar moptimize result errorcode(M)

string scalar moptimize result errortext(M)

real scalar moptimize result returncode(M)

void moptimize ado cleanup(M)

Utility functions for use in all steps

void moptimize query(M)

real matrix moptimize util eq indices(M, i [, i2])

(varies) moptimize util depvar(M, j)
returns y set by moptimize init depvar(M, j, y), which is usually a real

colvector

real colvector moptimize util xb(M, b, i)

real scalar moptimize util sum(M, real colvector v)

real rowvector moptimize util vecsum(M, i, real colvector s, real scalar value)

real matrix moptimize util matsum(M, i, i2, real colvector s,
real scalar value)

real matrix moptimize util matbysum(M, i, real colvector a, real colvector b,
real scalar value)

real matrix moptimize util matbysum(M, i, i2, real colvector a,
real colvector b, real colvector c, real scalar value)

pointer scalar moptimize util by(M)

Definition of M

M, if it is declared, should be declared transmorphic. M is obtained from moptimize init() and then

passed as an argument to the other moptimize() functions.

moptimize init() returnsM, called an moptimize() problem handle. The function takes no argu-

ments. M holds the information about the optimization problem.

https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxresult_iterations
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxresult_converged
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxresult_iterationlog
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxresult_evaluations
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxresult_errorcode
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxresult_errortext
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxresult_returncode
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxado_cleanup
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxquery
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxutil_eq_indices
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxutil_depvar
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxutil_xb
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxutil_sum
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxutil_vecsum
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxutil_matsum
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxutil_matsum
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxutil_matbysum
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxutil_matsum
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxutil_matbysum
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxutil_matsum
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxutil_by

moptimize() — Model optimization 6

Setting the sample

Various moptimize init *() functions set values for dependent variables, independent variables, etc.

When you set those values, you do that either by specifying Stata variable names or by specifying Mata

matrices containing the data themselves. Function moptimize init touse() specifies the sample to

be used when you specify Stata variable names.

moptimize init touse(M, ”tousevarname”) specifies the name of the variable in the Stata

dataset that marks the observations to be included. Observations for which the Stata variable is

nonzero are included. The default is ””, meaning all observations are to be used.

You need to specify tousevarname only if you specify Stata variable names in the other

moptimize init *() functions, and even then it is not required. Setting tousevar when you

specify the data themselves via Mata matrices, whether views or not, has no effect.

Specifying dependent variables

D and j index dependent variables:

index Description

D number of dependent variables, D ≥ 0

j dependent variable index, 1 ≤ j ≤ D

D and j are real scalars.

You set the dependent variables one at a time. In a particular optimization problem, you may have no

dependent variables or have more dependent variables than equations.

moptimize init depvar(M, j, y) sets the jth dependent variable to be y. y may be a string scalar

containing a Stata variable name that in turn contains the values of the jth dependent variable, or

y may be a real colvector directly containing the values.

moptimize init ndepvars(M, D) sets the total number of dependent variables. You can set D

before defining dependent variables, and that speeds execution slightly, but it is not necessary

because D is automatically set to the maximum j.

Specifying independent variables

Independent variables are defined within parameters or, equivalently, equations. The words parameter

and equation mean the same thing. m, i, and i2 index parameters:

index Description

m number of parameters (equations), m ≥ 1

i equation index, 1 ≤ i ≤ m

i2 equation index, 1 ≤ i2 ≤ m

m, i, and i2 are real scalars.

The function to be optimized is f (p1, p2, . . . , p𝑚). The 𝑖th parameter (equation) is defined as

pi = Xi × bi ′ + oi + ln(ti) :+ b0i

https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxSpecifyingindependentvariables
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM

moptimize() — Model optimization 7

where
pi: Ni × 1 (ith parameter)

Xi: Ni × ki (Ni observations on ki independent variables)

bi: 1 × ki (coefficients to be fit)

oi: Ni × 1 (exposure/offset in offset form, optional)

ti: Ni × 1 (exposure/offset in exposure form, optional)

b0i: 1 × 1 (constant or intercept, optional)

Any of the terms may be omitted. The most common forms for a parameter are pi = Xi × bi ′ + b0i
(standard model), pi = Xi × bi ′ (no-constant model), and pi = b0i (constant-only model).

In addition, define b: 1 × K as the entire coefficient vector, which is to say,

b = (b1, [b01,] b2, [b02,] . . .)

That is, because bi is 1 × ki for i = 1, 2, . . . ,m, then b is 1 × K, where K = ∑𝑖 ki + ci, where ci is

1 if equation i contains an intercept and is 0 otherwise. Note that bi does not contain the constant or

intercept, if there is one, but b contains all the coefficients, including the intercepts. b is called the full

set of coefficients.

Parameters are defined one at a time by using the following functions:

moptimize init eq n(M, m) sets the number of parameters. Use of this function is optional; m

will be automatically determined from the other moptimize init eq *() functions you issue.

moptimize init eq indepvars(M, i, X) sets X to be the data (independent variables) for the ith

parameter. X may be a 1 × ki string rowvector containing Stata variable names, or X may be a

string scalar containing the same names in space-separated format, or X may be an Ni × ki real

matrix containing the data for the independent variables. Specify X as ”” to omit term Xi × bi′,

for instance, as when fitting a constant-only model. The default is ””.

moptimize init eq cons(M, i, { ”on” | ”off” }) specifies whether the equation for the ith pa-

rameter includes b0i, a constant or intercept. Specify ”on” to include b0i, ”off” to exclude it.

The default is ”on”.

moptimize init eq offset(M, i, o) specifies oi in the equation for the ith parameter. o may be

a string scalar containing a Stata variable name, or o may be an 𝑁𝑖 × 1 real colvector containing

the offsets. The default is ””, meaning term oi is omitted. Parameters may not have both oi and

ln(ti) terms.

moptimize init eq exposure(M, i, t) specifies ti in term ln(ti) of the equation for the ith pa-

rameter. t may be a string scalar containing a Stata variable name, or t may be an 𝑁𝑖 × 1 real

colvector containing the exposure values. The default is ””, meaning term ln(ti) is omitted.

moptimize init eq name(M, i, name) specifies a string scalar, name, to be used in the output to

label the ith parameter. The default is to use an automatically generated name.

moptimize init eq colnames(M, i, names) specifies a 1 × ki string rowvector, names, to be

used in the output to label the coefficients for the ith parameter. The default is to use automatically

generated names.

https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxSpecifyingindependentvariables
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxSpecifyingindependentvariables
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxSpecifyingindependentvariables
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxSpecifyingindependentvariables
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxSpecifyingindependentvariables
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxSpecifyingindependentvariables
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxSpecifyingindependentvariables

moptimize() — Model optimization 8

moptimize init eq freeparm(M, i, { ”on” | ”off” }) specifies whether the equation for the ith

parameter is to be treated as a free parameter. This setting is ignored if there are independent

variables or an offset attached to the ith parameter. Free parameters have a shortcut notation that

distinguishes them from constant linear equations. The free parameter notation for an equation

labeled name is /name. The corresponding notation for a constant linear equation is name: cons.

Specifying constraints

Linear constraints may be placed on the coefficients, b, which may be either within equation or between

equations.

moptimize init constraints(M, Cc) specifies an R×K+1 real matrix, Cc, that places R linear

restrictions on the 1×K full set of coefficients, b. Think ofCc as being (C,c),C: R×K and c: R×1.

Optimization will be performed subject to the constraint Cb′ = c. The default is no constraints.

Specifying weights or survey data

You may specify weights, and once you do, everything is automatic, assuming you implement your

evaluator by using the provided utility functions.

moptimize init weight(M, w) specifies the weighting variable or data. w may be a string scalar

containing a Stata variable name, or w may be a real colvector directly containing the weight

values. The default is ””, meaning no weights.

moptimize init weighttype(M, weighttype) specifies how w is to be treated. weighttype may

be ”fweight”, ”aweight”, ”pweight”, or ”iweight”. You may set w first and then weighttype,

or the reverse. If you set w without setting weighttype, then ”fweight” is assumed. If you set

weighttype without setting w, then weighttype is ignored. The default weighttype is ”fweight”.

Alternatively, youmay inherit the full set of survey settings fromStata by using moptimize init svy().
If you do this, do not use moptimize init weight(), moptimize init weighttype(), or moptimize init cluster().
When you use the survey settings, everything is nearly automatic, assuming you use the provided utility

functions to implement your evaluator. The proviso is that your evaluator must be of evaluatortype lf,
lf*, gf, or q.

moptimize init svy(M, { ”off” | ”on” }) specifies whether Stata’s survey settings should be

used. The default is ”off”. Using the survey settings changes the default vcetype to ”svy”,
which is equivalent to ”robust”.

Specifying clusters and panels

Clustering refers to possible nonindependence of the observations within groups called clusters. Acluster

variable takes on the same value within a cluster and different values across clusters. After setting the

cluster variable, there is nothing special you have to do, but be aware that clustering is allowed only if

you use a type lf, lf*, gf, or q evaluator. moptimize init cluster() allows you to set a cluster

variable.

https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxSpecifyingindependentvariables
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxdef_b
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxSyntaxofevaluators
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxUtilityfunctions
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM
https://www.stata.com/manuals/svysvyset.pdf#svysvyset
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxinit_cluster
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxUtilityfunctions
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxUtilityfunctions
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxSyntaxofevaluators
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxSyntaxofevaluators
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxdef_vcetype
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxSyntaxofevaluators

moptimize() — Model optimization 9

Panels refer to likelihood functions or other objective functions that can only be calculated at the panel

level, for which there is no observation-by-observation decomposition. Unlike clusters, these panel like-

lihood functions are difficult to calculate and require the use of type d or gf evaluator. A panel variable

takes on the same value within a panel and different values across panels. moptimize init by() al-

lows you to set a panel variable.

You may set both a cluster variable and a panel variable, but be careful because, for most likelihood

functions, panels are mathematically required to be nested within cluster.

moptimize init cluster(M, c) specifies a cluster variable. cmay be a string scalar containing a

Stata variable name, or cmay be a real colvector directly containing the cluster values. The default

is ””, meaning no clustering. If clustering is specified, the default vcetype becomes ”robust”.

moptimize init by(M, by) specifies a panel variable and specifies that only panel-level calcula-

tions are meaningful. by may be a string scalar containing a Stata variable name, or by may be

a real colvector directly containing the panel ID values. The default is ””, meaning no panels. If
panels are specified, the default vcetype remains unchanged, but if the opg variance estimator is

used, the opg calculation is modified so that it is clustered at the panel level.

Specifying optimization technique

Technique refers to the numerical methods used to solve the optimization problem. The default is New-

ton–Raphson maximization.

moptimize init which(M, { ”max” | ”min” }) sets whether the maximum or minimum of the ob-

jective function is to be found. The default is ”max”.

moptimize init technique(M, technique) specifies the technique to be used to find the coeffi-

cient vector b that maximizes or minimizes the objective function. Allowed values are

technique Description

”nr” modified Newton–Raphson

”dfp” Davidon–Fletcher–Powell

”bfgs” Broyden–Fletcher–Goldfarb–Shanno

”bhhh” Berndt–Hall–Hall–Hausman

”nm” Nelder–Mead

”gn” Gauss–Newton (quadratic optimization)

The default is ”nr”.

You can switch between ”nr”, ”dfp”, ”bfgs”, and ”bhhh” by specifying two or more of them in

a space-separated list. By default, moptimize() will use an algorithm for five iterations before

switching to the next algorithm. To specify a different number of iterations, include the number

after the technique. For example, specifying moptimize init technique(M, ”bhhh 10 nr
1000”) requests that moptimize() perform 10 iterations using the Berndt–Hall–Hall–Hausman

algorithm, followed by 1,000 iterations using the modified Newton–Raphson algorithm, and then

switch back to Berndt–Hall–Hall–Hausman for 10 iterations, and so on. The process continues

until convergence or until maxiter is exceeded.

https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxSyntaxofevaluators
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxdef_vcetype
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxdef_vcetype
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxdef_b
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxSpecifyingconvergencecriteria
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxSpecifyingconvergencecriteria

moptimize() — Model optimization 10

moptimize init singularHmethod(M, singularHmethod) specifies the action to be taken during
optimization if the Hessian is found to be singular and the technique requires the Hessian be of full

rank. Allowed values are

singularHmethod Description

”m-marquardt” modified Marquardt algorithm

”hybrid” mixture of steepest descent and Newton

The default is ”m-marquardt”.
”hybrid” is equivalent to ml’s difficult option; see [R] ml.

moptimize init nmsimplexdeltas(M, delta) is for use with Nelder–Mead, also known as tech-

nique nm. This function sets the values of delta to be used, alongwith the initial parameters, to build
the simplex required by Nelder–Mead. Use of this function is required only in the Nelder–Mead

case. The values in delta must be at least 10 times larger than ptol. The initial simplex will be

{p, p + (d1, 0, . . . , 0), p + (0, d2, 0, . . . , 0), . . . , p + (0, 0, . . . , 0, d𝐾)}.

Specifying initial values

Initial values are values you optionally specify that via a search procedure result in starting values that

are then used for the first iteration of the optimization technique. That is,

(optimization

(searching) technique)

initial values−−−−−−−−→ starting values −−−−−−−−→ final results

Initial values are specified parameter by parameter.

moptimize init eq coefs(M, i, b0) sets the initial values of the coefficients for the ith param-

eter to be b0: 1 × (ki + ci). The default is (0, 0, . . . , 0).

The following functions control whether searching is used to improve on the initial values to produce

better starting values. In addition to searching a predetermined set of hardcoded starting values, there are

two other methods that can be used to improve on the initial values: random and rescaling. By default,

random is off and rescaling is on. You can use one, the other, or both.

moptimize init search(M, { ”on” | ”off” }) determines whether any attempts are to be made

to improve on the initial values via a search technique. The default is ”on”. If you specify ”off”,
the initial values become the starting values.

moptimize init search random(M, { ”off” | ”on” }) determines whether the random method

of improving initial values is to be attempted. The default is ”off”. Use of the random method is

recommended when the initial values are or might be infeasible. Infeasible means that the function

cannot be evaluated, which mechanically corresponds to the user-written evaluator returning a

missing value. The random method is seldom able to improve on feasible initial values. It works

well when the initial values are or might be infeasible.

moptimize init search repeat(M, nr) controls how many times random values are tried if the

random method is turned on. The default is 10.

moptimize init search bounds(M, i, minmax) specifies the bounds for the random search.

minmax is a 1×2 real rowvector containing the minimum and maximum values for the ith param-

eter (equation). The default is (., .), meaning no lower and no upper bounds.

https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM
https://www.stata.com/manuals/rml.pdf#rml
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxSpecifyingconvergencecriteria
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxdef_parameter
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxSpecifyingindependentvariables
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxSpecifyingindependentvariables

moptimize() — Model optimization 11

moptimize init search rescale(M, { ”on” | ”off” }) determineswhether rescaling is attempted.
The default is ”on”. Rescaling is a deterministic (not random) method. It also usually improves
initial values, and usually reduces the number of subsequent iterations required by the optimization

technique.

Performing one evaluation of the objective function

moptimize evaluate(M) and moptimize evaluate(M) perform one evaluation of the function

evaluated at the initial values. Results can be accessed by using moptimize result *(), including
first- and second-derivative-based results.

moptimize evaluate() and moptimize evaluate() do the same thing, differing only in that

moptimize evaluate() aborts with a nonzero return code if things go badly, whereas moptimize evaluate()
returns the real scalar error code. An infeasible initial value is an error.

The evaluation is performed at the initial values, not the starting values, and this is true even if search is

turned on. If you want to perform an evaluation at the starting values, then perform optimization with

maxiter set to 0.

Performing optimization of the objective function

moptimize(M) and moptimize(M) perform optimization. Both routines do the same thing; they

differ only in their behavior when things go badly. moptimize() returns nothing and aborts with er-

ror. moptimize() returns a real scalar error code. moptimize() is best for interactive use and often

adequate for use in programs that do not want to consider the possibility that optimization might fail.

The optimization process is as follows:

1. The initial values are used to create starting values. The value of the function at the starting

values is calculated. If that results in a missing value, the starting values are declared infeasible.

moptimize() aborts with return code 430; moptimize() returns a nonzero error code, which
maps to 430 via moptimize result returncode(). This step is called iteration 0.

2. The starting values are passed to the technique to produce better values. Usually this involves

the technique calculating first and second derivatives, numerically or analytically, and then

stepping multiple times in the appropriate direction, but techniques can vary on this. In general,

the technique performs what it calls one iteration, the result of which is to produce better values.

Those new values then become the starting values and the process repeats.

An iteration is said to fail if the new coefficient vector is infeasible (results in a missing value).

Then attempts are made to recover and, if those attempts are successful, optimization continues.

If they fail, moptimize() aborts with error and moptimize() returns a nonzero error code.

Other problems may arise, such as singular Hessians or the inability to find better values. Var-

ious fix-ups are made and optimization continues. These are not failures.

This step is called iterations 1, 2, and so on.

3. Step 2 continues either until the process converges or until the maximum number of iterations

(maxiter) is exceeded. Stopping due to maxiter is not considered an error. Upon completion,

programmers should check moptimize result converged().

https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxSpecifyinginitialvalues
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxAccessingresults
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxresult_errorcode
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxSpecifyinginitialvalues
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxSpecifyinginitialvalues
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxPerformingoptimizationoftheobjectivefunction
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxSpecifyingconvergencecriteria
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxresult_errorcode
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxSpecifyinginitialvalues
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxSpecifyinginitialvalues
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxresult_returncode
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxSpecifyingoptimizationtechnique
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxSpecifyingconvergencecriteria
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxSpecifyingconvergencecriteria
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxresult_converged

moptimize() — Model optimization 12

If optimization succeeds, which is to say, if moptimize() does not abort or moptimize() returns 0,

you can use the moptimize result *() functions to access results.

Tracing optimization

moptimize() and moptimize() will produce output like

Iteration 0: f(p) =
Iteration 1: f(p) =

You can change the 𝑓 (𝑝) to be “Log likelihood” or whatever else you want. You can also change “Itera-
tion”.

moptimize init iterid(M, id) sets the string to be used to label the iterations in the iteration log.
id is a string scalar. The default is ”Iteration”.

moptimize init valueid(M, id) sets the string to be used to label the objective function value in

the iteration log. id is a string scalar. The default is ”f(p)”.

Additional results can be displayed during optimization, which can be useful when you are debugging

your evaluator. This is called tracing the execution.

moptimize init tracelevel(M, tracelevel) specifies the output to be displayed during the opti-

mization process. Allowed values are

tracelevel To be displayed each iteration

”none” nothing

”value” function value

”tolerance” previous + convergence values

”step” previous + stepping information

”coefdiffs” previous + parameter relative differences

”paramdiffs” same as ”coefdiffs”
”coefs” previous + parameter values

”params” same as ”coefs”
”gradient” previous + gradient vector

”hessian” previous + Hessian matrix

The default is ”value” when set iterlog is on and ”none” when

set iterlog is off; see [R] set iter.

Setting tracelevel is a shortcut. The other trace functions allow you to turn on and off individual features.

In what follows, the documented defaults are the defaults when tracelevel is ”value”.

moptimize init trace ado(M, { ”off” | ”on” }) traces the execution of evaluators written as

ado-files. This topic is not discussed in this manual entry. The default is ”off”.

moptimize init trace dots(M, { ”off” | ”on” }) displays a dot each time your evaluator is

called. The default is ”off”.

moptimize init trace value(M, { ”on” | ”off” }) displays the function value at the start of

each iteration. The default is ”on”.

https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxAccessingresults
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxSyntaxofevaluators
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM
https://www.stata.com/manuals/rsetiter.pdf#rsetiter
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM

moptimize() — Model optimization 13

moptimize init trace tol(M, { ”off” | ”on” }) displays the value of the calculated result that

is compared with the effective convergence criterion at the end of each iteration. The default is

”off”.

moptimize init trace step(M, { ”off” | ”on” }) displays the steps within iteration. Listed are

the value of objective function along with the word forward or backward. The default is ”off”.

moptimize init trace coefdiffs(M, { ”off” | ”on” }) displays the coefficient relative differ-

ences from the previous iteration that are greater than the coefficient tolerance ptol. The default is

”off”.

moptimize init trace coefs(M, { ”off” | ”on” }) displays the coefficients at the start of each

iteration. The default is ”off”.

moptimize init trace gradient(M, { ”off” | ”on” }) displays the gradient vector at the start

of each iteration. The default is ”off”.

moptimize init trace Hessian(M, { ”off” | ”on” }) displays the Hessian matrix at the start of
each iteration. The default is ”off”.

Specifying convergence criteria

Convergence is based on several rules controlled by four parameters: maxiter, ptol, vtol, and nrtol. The

first rule is not a convergence rule, but a stopping rule, and it is controlled by maxiter.

moptimize init conv maxiter(M, maxiter) specifies the maximum number of iterations. If

this number is exceeded, optimization stops and results are posted where they are accessible

by using the moptimize result *() functions, just as if convergence had been achieved.

moptimize result converged(), however, is set to 0 rather than 1. The default maxiter is

Stata’s c(maxiter), which is 300 by default.

moptimize init conv warning(M, { ”on” | ”off” }) specifies whether the warning message

“convergence not achieved” is to be displayed when this stopping rule is invoked. The default

is ”on”.

Usually, convergence occurs before the stopping rule comes into effect. The convergence criterion is a

function of three real scalar values: ptol, vtol, and nrtol. Let

b = full set of coefficients

b prior = value of b from prior iteration

v = value of objective function

v prior = value of v from prior iteration

g = gradient vector from this iteration

H = Hessian matrix from this iteration

https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxSpecifyingconvergencecriteria
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM
https://www.stata.com/manuals/pcreturn.pdf#pcreturn
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxdef_b

moptimize() — Model optimization 14

Define, for maximization,

C ptol: mreldif(b, b prior) ≤ ptol

C vtol: reldif(v, v prior) ≤ vtol

C nrtol: 𝑔 × invsym(− H) × 𝑔′ < nrtol

C concave: −H is positive semidefinite

For minimization, think in terms of maximization of −f (p). Convergence is declared when

(C ptol |C vtol) & C nrtol & C concave

The above applies in cases of derivative-based optimization, which currently is all techniques except

”nm” (Nelder–Mead). In the Nelder–Mead case, the criterion is

C ptol: mreldif(vertices of R) ≤ ptol

C vtol: reldif(R) ≤ vtol

where R is the minimum and maximum values on the simplex. Convergence is declared when

C ptol |C vtol.

The values of ptol, vtol, and nrtol are set by the following functions:

moptimize init conv ptol(M, ptol) sets ptol. The default is 1e-6.

moptimize init conv vtol(M, vtol) sets vtol. The default is 1e-7.

moptimize init conv nrtol(M, nrtol) sets nrtol. The default is 1e-5.

moptimize init conv ignorenrtol(M, { ”off” | ”on” }) sets whether C nrtol should always

be treated as true, which in effect removes the nrtol criterion from the convergence rule. The

default is ”off”.

Accessing results

Once you have successfully performed optimization, or you have successfully performed a single func-

tion evaluation, you may display results, post results to Stata, or access individual results.

To display results, use moptimize result display().

moptimize result display(M) displays estimation results. Standard errors are shown using the

default vcetype.

moptimize result display(M, vcetype) displays estimation results. Standard errors are shown

using the specified vcetype.

Also there is a third syntax for use after results have been posted to Stata, which we will discuss below.

moptimize result display()without arguments (not evenM) displays the estimation results cur-

rently posted in Stata.

https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxSpecifyingoptimizationtechnique
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxPerformingoptimizationoftheobjectivefunction
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxPerformingoptimizationoftheobjectivefunction
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxPerformingoptimizationoftheobjectivefunction
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxdef_vcetype
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxdef_vcetype

moptimize() — Model optimization 15

vcetype specifies how the variance–covariance matrix of the estimators (VCE) is to be calculated. Al-

lowed values are

vcetype Description

”” use default for technique

”oim” observed information matrix

”opg” outer product of gradients

”robust” Huber/White/sandwich estimator

”svy” survey estimator; equivalent to robust

The default vcetype is oim except for technique bhhh, where it is opg.
If survey, pweights, or clusters are used, the default becomes
robust or svy.

As an aside, if you set moptimize init vcetype() during initialization, that changes the default.

moptimize init vcetype(M, vcetype), vcetype being a string scalar, resets the default vcetype.

To post results to Stata, use moptimize result post().

moptimize result post(M) posts estimation results to Stata where they can be displayed

with Mata function moptimize result post() (without arguments) or with Stata command

ereturn display (see [P] ereturn). The posted VCE will be of the default vcetype.

moptimize result post(M, vcetype) does the same thing, except the VCE will be of the specified

vcetype.

The remaining moptimize result *() functions simply return the requested result. It does not matter

whether results have been posted or previously displayed.

moptimize result value(M) returns the real scalar value of the objective function.

moptimize result value0(M) returns the real scalar value of the objective function at the starting
values.

moptimize result eq coefs(M [, i]) returns the 1 × (ki + ci) coefficient rowvector for the ith
equation. If i ≥ . or argument i is omitted, the 1 × K full set of coefficients is returned.

moptimize result coefs(M) returns the 1 × K full set of coefficients.

moptimize result colstripe(M [, i]) returns a (ki + ci) × 2 string matrix containing, for the

ith equation, the equation names in the first column and the coefficient names in the second. If

i ≥ . or argument i is omitted, the result is K × 2.

moptimize result scores(M) returns anN×m (evaluator types lf and lf*), or anN×K (evalu-

ator type gf), or an L×K (evaluator type q) real matrix containing the observation-by-observation
scores. For all other evaluator types, J(0,0,.) is returned. For evaluator types lf and lf*,
scores are defined as the derivative of the objective function with respect to the parameters. For

evaluator type gf, scores are defined as the derivative of the objective function with respect to

the coefficients. For evaluator type q, scores are defined as the derivatives of the L independent

elements with respect to the coefficients.

https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxSpecifyingoptimizationtechnique
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxdef_vcetype
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM
https://www.stata.com/manuals/pereturn.pdf#pereturn
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxdef_vcetype
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxdef_vcetype
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxSpecifyinginitialvalues
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxSpecifyinginitialvalues
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxSpecifyingindependentvariables
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxdef_b
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxdef_b
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxSpecifyingindependentvariables
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxdef_b
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxSpecifyingindependentvariables
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxSyntaxofevaluators
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxdef_b
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxdef_parameter
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxdef_b
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxSyntaxoftypeqevaluators
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxSyntaxoftypeqevaluators

moptimize() — Model optimization 16

moptimize result gradient(M [, i]) returns the 1 × (ki + ci) gradient rowvector for the ith

equation. If i ≥ . or argument i is omitted, the 1 × K gradient corresponding to the full set of

coefficients is returned. Gradient is defined as the derivative of the objective function with respect

to the coefficients.

moptimize result Hessian(M [, i]) returns the (ki + ci) × (ki + ci) Hessian matrix for the ith
equation. If i ≥ . or argument i is omitted, the K × K Hessian corresponding to the full set of

coefficients is returned. The Hessian is defined as the second derivative of the objective function

with respect to the coefficients.

moptimize result V(M [, i]) returns the appropriate (ki + ci) × (ki + ci) submatrix of the full

variance matrix calculated according to the default vcetype. If i ≥ . or argument i is omitted, the

full K × K variance matrix corresponding to the full set of coefficients is returned.

moptimize result Vtype(M) returns a string scalar containing the default vcetype.

moptimize result V oim(M [, i]) returns the appropriate (ki+ci)×(ki+ci) submatrix of the full
variance matrix calculated as the inverse of the negative Hessian matrix (the observed information

matrix). If i ≥ . or argument i is omitted, the full K ×K variance matrix corresponding to the full

set of coefficients is returned.

moptimize result V opg(M [, i]) returns the appropriate (ki+ci)×(ki+ci) submatrix of the full
variance matrix calculated as the inverse of the outer product of the gradients. If i ≥ . or argument

i is omitted, the full K × K variance matrix corresponding to the full full set of coefficients is

returned. If moptimize result V opg() is used with evaluator types other than lf, lf*, gf, or
q, an appropriately dimensioned matrix of zeros is returned.

moptimize result V robust(M [, i]) returns the appropriate (ki + ci) × (ki + ci) submatrix of
the full variance matrix calculated via the sandwich estimator. If i ≥ . or argument i is omit-

ted, the full K × K variance matrix corresponding to the full set of coefficients is returned. If

moptimize result V robust() is used with evaluator types other than lf, lf*, gf, or q, an
appropriately dimensioned matrix of zeros is returned.

moptimize result iterations(M) returns a real scalar containing the number of iterations per-

formed.

moptimize result converged(M) returns a real scalar containing 1 if convergence was achieved

and 0 otherwise.

moptimize result iterationlog(M) returns a real colvector containing the values of the objec-

tive function at the end of each iteration. Up to the last 20 iterations are returned, one to a row.

moptimize result errorcode(M) returns the real scalar containing the error code from the most

recently run optimization or function evaluation. The error code is 0 if there are no errors. This

function is useful only after moptimize() or moptimize evaluate() because the nonunder-

score versions aborted with error if there were problems.

moptimize result errortext(M) returns a string scalar containing the error text corresponding

to moptimize result errorcode().

moptimize result returncode(M) returns a real scalar containing the Stata return code corre-

sponding to moptimize result errorcode().

https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxSpecifyingindependentvariables
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxdef_b
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxdef_b
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxdef_b
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxSpecifyingindependentvariables
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxdef_b
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxdef_b
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxdef_b
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxSpecifyingindependentvariables
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxdef_vcetype
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxdef_b
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxdef_vcetype
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxSpecifyingindependentvariables
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxdef_b
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxdef_b
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxSpecifyingindependentvariables
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxdef_b
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxSyntaxofevaluators
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxSpecifyingindependentvariables
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxdef_b
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxSyntaxofevaluators
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxSpecifyingconvergencecriteria
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM

moptimize() — Model optimization 17

The following error codes and their corresponding Stata return codes are for moptimize() only. To see

other error codes and their corresponding Stata return codes, see [M-5] optimize().

Error Return

code code Error text

400 1400 could not find feasible values

401 491 Stata program evaluator returned an error

402 198 views are required when the evaluator is a

Stata program

403 198 Stata program evaluators require a touse variable

Stata evaluators

The following function is useful only when your evaluator is a Stata program instead of a Mata function.

moptimize ado cleanup(M) removes all the global macros with the ML prefix. A temporary

weight variable is also dropped if weights were specified.

Advanced functions

These functions are not really advanced, they are just seldomly used.

moptimize init verbose(M, { ”on” | ”off” }) specifies whether error messages are to be dis-

played. The default is ”on”.

moptimize init deriv usemin(M, { ”off” | ”on” }) specifies whether to use the minimum val-

ues of step sizes for computing numerical derivatives. The default is ”off”, meaning minimum

values will not be used. If you specify ”on”, minimum values will be used; when minimum val-

ues are not specified by moptimize init deriv min(), default minimum values are 1e-6 and

1e-4 for first- and second-order derivatives, respectively.

moptimize init deriv min(M, min) specifies the minimum values of step sizes used for com-

puting numerical derivatives. min is a 1 × 2 real row vector; the first column specifies the

minimum for first-order derivatives, and the second column specifies the minimum for second-

order derivatives. If there is a missing value in the row vector, the default values of 1e-6 for

first-order derivatives and 1e-4 for second-order derivatives are used. If this function is used,

moptimize init deriv usemin() is automatically set to ”on”.

moptimize init deriv min(M) returns a 1× 2 real row vector containing the user-specified min

values.

moptimize init evaluations(M, { ”off” | ”on” }) specifies whether the system is to count the

number of times the evaluator is called. The default is ”off”.

moptimize result evaluations(M) returns a 1×3 real rowvector containing the number of times

the evaluator was called, assuming moptimize init evaluations() was set on. Contents are

the number of times called for the purposes of 1) calculating the objective function, 2) calculating

the objective function and its first derivative, and 3) calculating the objective function and its first

and second derivatives. If moptimize init evaluations() was set off, returned is (0,0,0).

https://www.stata.com/manuals/m-5optimize.pdf#m-5optimize()Remarksandexampleserrcodes
https://www.stata.com/manuals/m-5optimize.pdf#m-5optimize()
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxSyntaxofevaluators
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxSyntaxofevaluators

moptimize() — Model optimization 18

Syntax of evaluators

An evaluator is a program you write that calculates the value of the function being optimized and op-

tionally calculates the function’s first and second derivatives. The evaluator you write is called by the

moptimize() functions.

There are five styles in which the evaluator can be written, known as types lf, d, lf*, gf, and q. evalu-
atortype, optionally specified in moptimize init evaluatortype(), specifies the style in which the
evaluator is written. Allowed values are

evaluatortype Description

”lf” function() returns N × 1 colvector value

”d0” function() returns scalar value

”d1” same as ”d0” and returns gradient rowvector

”d2” same as ”d1” and returns Hessian matrix

”d1debug” same as ”d1” but checks gradient

”d2debug” same as ”d2” but checks gradient and Hessian

”lf0” function() returns N × 1 colvector value

”lf1” same as ”lf0” and return equation-level score matrix

”lf2” same as ”lf1” and returns Hessian matrix

”lf1debug” same as ”lf1” but checks gradient

”lf2debug” same as ”lf2” but checks gradient and Hessian

”gf0” function() returns N × 1 colvector value

”gf1” same as ”gf0” and returns score matrix

”gf2” same as ”gf1” and returns Hessian matrix

”gf1debug” same as ”gf1” but checks gradient

”gf2debug” same as ”gf2” but checks gradient and Hessian

”q0” function() returns colvector value

”q1” same as ”q0” and returns score matrix

”q1debug” same as ”q1” but checks gradient

The default is ”lf” if not set.

”q” evaluators are used with technique ”gn”.
Returned gradients are 1 × K rowvectors.

Returned Hessians are K × K matrices.

Examples of each of the evaluator types are outlined below.

You must tell moptimize() the identity and type of your evaluator, which you do by using the

moptimize init evaluator() and moptimize init evaluatortype() functions.

moptimize init evaluator(M, &functionname()) sets the identity of the evaluator function that

you write in Mata.

moptimize init evaluator(M, ”programname”) sets the identity of the evaluator program that

you write in Stata.

https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxdef_b
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxdef_b
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxdef_b
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM

moptimize() — Model optimization 19

moptimize init evaluatortype(M, evaluatortype) informs moptimize() of the style of eval-

uator you have written. evaluatortype is a string scalar from the table above. The default is ”lf”.

moptimize init negH(M, { ”off” | ”on” }) sets whether the evaluator you have written returnsH
or−H , the Hessian or the negative of the Hessian, if it returns a Hessian at all. This is for backward

compatibility with prior versions of Stata’s ml command (see [R] ml). Modern evaluators return

H. The default is ”off”.

Syntax of type lf evaluators
lfeval(M, b, fv):

inputs:

M : problem definition

b: coefficient vector

outputs:

fv: N × 1, N = # of observations

Notes:

1. The objective function is f () = colsum(fv).

2. In the case where f () is a log-likelihood function, the values of the log likelihood must be

summable over the observations.

3. For use with any technique except gn.

4. May be used with robust, clustering, and survey.

5. Returns fv containing missing (fv = .) if evaluation is not possible.

Syntax of type d evaluators
deval(M, todo, b, fv, g, H):

inputs:

M : problem definition

todo: real scalar containing 0, 1, or 2

b: coefficient vector

outputs:

fv: real scalar

g: 1 × K, gradients, K = # of coefficients

H : K × K, Hessian

Notes:

1. The objective function is f () = fv.

2. For use with any log-likelihood function, or any function.

3. For use with any technique except gn and bhhh.

4. Cannot be used with robust, clustering, or survey.

https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxSyntaxofevaluators
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM
https://www.stata.com/manuals/rml.pdf#rml
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxSpecifyingoptimizationtechnique
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxSpecifyingoptimizationtechnique

moptimize() — Model optimization 20

5. deval() must always fill in fv, and fill in g if todo ≥ 1, and fill in H if todo = 2. For type d0,
todowill always be 0. For type d1 and d1debug, todowill be 0 or 1. For type d2 and d2debug,
todo will be 0, 1, or 2.

6. Returns fv = . if evaluation is not possible.

Syntax of type lf* evaluators
lfeval(M, todo, b, fv, S, H):

inputs:

M : problem definition

todo: real scalar containing 0, 1, or 2

b: coefficient vector

outputs:

fv: N × 1, N = # of observations

S: N × m, scores, m = # of equations (parameters)

H : K × K, Hessian, K = # of coefficients

Notes:

1. The objective function is f () = colsum(fv).

2. Type lf* is a variation of type lf that allows the user to supply analytic derivatives. Although

lf* could be used with an arbitrary function, it is intended for use when f () is a log-likelihood
function and the log-likelihood values are summable over the observations.

3. For use with any technique except gn.

4. May be used with robust, clustering, and survey.

5. Always returns fv, returns S if todo ≥ 1, and returns H if todo = 2. For type lf0, todo will

always be 0. For type lf1 and lf1debug, todo will be 0 or 1. For type lf2 and lf2debug,
todo will be 0, 1, or 2.

6. Returns fv containing missing (fv = .) if evaluation is not possible.

Syntax of type gf evaluators
gfeval(M, todo, b, fv, S, H):

inputs:

M : problem definition

todo: real scalar containing 0, 1, or 2

b: coefficient vector

outputs:

fv: L × 1, values, L = # of independent elements

S: L × K, scores, K = # of coefficients

H : K × K, Hessian

https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxSpecifyingoptimizationtechnique

moptimize() — Model optimization 21

Notes:

1. The objective function is f () = colsum(fv).

2. Type gf is a variation on type lf* that relaxes the requirement that the log-likelihood function

be summable over the observations. gf is especially useful for fitting panel-data models with

technique bhhh. Then L is the number of panels.

3. For use with any gf is especially useful for fitting panel-data models with except gn.

4. May be used with robust, clustering, and survey.

5. Always returns fv, returns S if todo ≥ 1, and returns H if todo = 2. For type gf0, todo will

always be 0. For type gf1 and gf1debug, todo will be 0 or 1. For type gf2 and gf2debug,
todo will be 0, 1, or 2.

6. Returns fv = . if evaluation is not possible.

Syntax of type q evaluators

qeval(M, todo, b, r, S)

inputs:

M : problem definition

todo: real scalar containing 0 or 1

b: coefficient vector

outputs:

r: L × 1 of independent elements

S: L × K, scores, K = # of coefficients

Notes:

1. Type q is for quadratic optimization. The objective function is f () = r ′Wr, where r is returned

by qeval() and W has been previously set by using moptimize init gnweightmatrix(),
described below.

2. For use only with techniques gn and nm.

3. Always returns r and returns S if todo = 1. For type q0, todo will always be 0. For type q1
and q1debug, todo will be 0 or 1. There is no type q2.

4. Returns r containing missing, or r = . if evaluation is not possible.

Use moptimize init gnweightmatrix() during initialization to set matrix W.

moptimize init gnweightmatrix(M, W) sets real matrixW : L × L, which is used only by type

q evaluators. The objective function is r ′W r. If W is not set and if observation weights w are set

by using moptimize init weight(), then W = diag(w). If w is not set, then W is the identity

matrix.

moptimize() does not produce a robust VCE when you set W with

moptimize init gnweight().

https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxSpecifyingoptimizationtechnique
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxSpecifyingoptimizationtechnique
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxSyntaxoftypeqevaluators
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxinit_weight

moptimize() — Model optimization 22

Passing extra information to evaluators

In addition to the arguments the evaluator receives, you may arrange that extra information be sent to the

evaluator. Specify the extra information to be sent by using moptimize init userinfo().

moptimize init userinfo(M, l, Z) specifies that the lth piece of extra information is Z. l is a

real scalar. The first piece of extra information should be 1; the second piece, 2; and so on. Z can

be anything. No copy of Z is made.

moptimize init nuserinfo(M, n user) specifies the total number of extra pieces of infor-

mation to be sent. Setting n user is optional; it will be automatically determined from the

moptimize init userinfo() calls you issue.

Inside your evaluator, you access the information by using moptimize util userinfo().

moptimize util userinfo(M, l) returns the Z set by moptimize init userinfo().

Utility functions

There are various utility functions that are helpful in writing evaluators and in processing results returned

by the moptimize result *() functions.

The first set of utility functions are useful in writing evaluators, and the first set return results that all

evaluators need.

moptimize util depvar(M, j) returns an Nj× 1 colvector containing the values of the jth depen-

dent variable, the values set by moptimize init depvar(M, j, ...).

moptimize util xb(M, b, i) returns theNi×1 colvector containing the value of the ith parameter,

which is usually Xi × bi′ :+ b0i, but might be as complicated as Xi × bi′ + oi + ln(ti) :+ b0i.

Once the inputs of an evaluator have been processed, the following functions assist in making the calcu-

lations required of evaluators.

moptimize util sum(M, v) returns the “sum” of colvector v. This function is for use in eval-

uators that require you to return an overall objective function value rather than observation-by-

observation results. Usually, moptimize util sum() returns sum(v), but in cases where you

have specified a weight by using moptimize init weight() or there is an implied weight

due to use of moptimize init svy(), the appropriately weighted sum is returned. Use

moptimize util sum() to sum log-likelihood values.

moptimize util vecsum(M, i, s, value) is like moptimize util sum(), but for use with gra-
dients. The gradient is defined as the vector of partial derivatives of f () with respect to the coeffi-
cients bi. Some evaluator types require that your evaluator be able to return this vector. Nonethe-

less, it is usually easier to write your evaluator in terms of parameters rather than coefficients, and

this function handles the mapping of parameter gradients to the required coefficient gradients.

Input s is anNi×1 colvector containing 𝑑f /𝑑pi for each observation. 𝑑f /𝑑pi is the partial derivative
of the objective function, but with respect to the ith parameter rather than the ith set of coefficients.

moptimize util vecsum() takes s and returns the 1×(ki+ci) summed gradient. Also weights,
if any, are factored into the calculation.

https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxSyntaxofevaluators
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxAccessingresults
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxSpecifyingdependentvariables
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxdef_b
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxSpecifyingindependentvariables
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxSpecifyingindependentvariables
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxinit_weight
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxinit_svy
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxSpecifyingindependentvariables

moptimize() — Model optimization 23

If you have more than one equation, you will need to call moptimize util vecsum() m times,

once for each equation, and then concatenate the individual results into one vector.

value plays no role in moptimize util vecsum()’s calculations. value, however, should be

specified as the result obtained from moptimize util sum(). If that is inconvenient, make value
any nonmissing value. If the calculation from parameter space to vector space cannot be performed,

or if your original parameter space derivatives have any missing values, value will be changed to

missing. Remember, when a calculation cannot be made, the evaluator is to return a missing value

for the objective function. Thus storing the value of the objective function in value ensures that

your evaluator will return missing if it is supposed to.

moptimize util matsum(M, i, i2, s, value) is similar to moptimize util vecsum(), but for
Hessians (matrix of second derivatives).

Input s is an Ni × 1 colvector containing 𝑑2f /𝑑pi𝑑pi2 for each observation.

moptimize util matsum() returns the (ki + ci) × (ki2 + ci2) summed Hessian. Also

weights, if any, are factored into the calculation.

If you have m > 1 equations, you will need to call moptimize util matsum() m × (m + 1)/2
times and then join the results into one symmetric matrix.

value plays no role in the calculation and works the same way it does in

moptimize util vecsum().

moptimize util matbysum() is an added helper for making moptimize util matsum() calcu-

lations in cases where you have panel data and the log-likelihood function’s values exists only at

the panel level. moptimize util matbysum(M, i, a, b, value) is for making diagonal calcu-

lations and moptimize util matbysum(M, i, i2, a, b, c, value) is for making off-diagonal

calculations.

This is an advanced topic; see Pitblado, Poi, and Gould (2024, 156–158) for a full descrip-

tion of it. In applying the chain rule to translate results from parameter space to coeffi-

cient space, moptimize util matsum() can be used to make some of the calculations, and

moptimize util matbysum() can be used tomake the rest. value plays no role andworks just as
it did in the other helper functions. moptimize util matbysum() is for use sometimes when by

has been set, which is done via moptimize init by(M, by). moptimize util matbysum()
is never required unless by has been set.

The formula implemented in moptimize util matbysum(M, i, a, b, value) is

𝑁
∑
𝑗=1

(
𝑇𝑗

∑
𝑡=1

𝑎𝑗𝑡) (
𝑇𝑗

∑
𝑡=1

𝑏𝑗𝑡x
′
1𝑗𝑡) (

𝑇𝑗

∑
𝑡=1

𝑏𝑗𝑡x1𝑗𝑡)

The formula implemented in moptimize util matbysum(M, i, i2, a, b, c, value) is

𝑁
∑
𝑗=1

(
𝑇𝑗

∑
𝑡=1

𝑎𝑗𝑡) (
𝑇𝑗

∑
𝑡=1

𝑏𝑗𝑡x
′
1𝑗𝑡) (

𝑇𝑗

∑
𝑡=1

𝑐𝑗𝑡x2𝑗𝑡)

moptimize util by() returns a pointer to the vector of group identifiers that were set using

moptimize init by(). This vector can be used with panelsetup() to perform panel level

calculations.

https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxSpecifyingindependentvariables
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxSpecifyingindependentvariables
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxSpecifyingindependentvariables
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxSpecifyingindependentvariables
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxSpecifyingindependentvariables
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxSpecifyingclustersandpanels
https://www.stata.com/manuals/m-5panelsetup.pdf#m-5panelsetup()

moptimize() — Model optimization 24

The other utility functions are useful inside or outside of evaluators. One of the more useful is

moptimize util eq indices(), which allows two or three arguments.

moptimize util eq indices(M, i) returns a 1 × 2 vector that can be used with range subscripts

to extract the portion relevant for the ith equation from any 1 × K vector, that is, from any vector

conformable with the full coefficient vector.

moptimize util eq indices(M, i, i2) returns a 2 × 2 matrix that can be used with range sub-

scripts to exact the portion relevant for the ith and i2th equations from any K × K matrix, that is,

from any matrix with rows and columns conformable with the full variance matrix.

For instance, let b be the 1 × K full coefficient vector, perhaps obtained by being passed

into an evaluator, or perhaps obtained from b = moptimize result coefs(M). Then

b[|moptimize util eq indices(M, i)|] is the 1× (ki+ ci) vector of coefficients for the ith equa-
tion.

Let V be the K × K full variance matrix obtained by V = moptimize result V(M). Then

V[|moptimize util eq indices(M, i, i)|] is the (ki + ci) × (ki + ci) variance matrix for the

ith equation. V[|moptimize util eq indices(M, i, j)|] is the (ki + ci) × (kj + cj) covariance
matrix between the ith and jth equations.

Finally, there is one more utility function that may help when you become confused:

moptimize query().

moptimize query(M) displays in readable form everything you have set via the

moptimize init *() functions, along with the status of the system.

Remarks and examples
Remarks are presented under the following headings:

Relationship of moptimize() to Stata’s ml and to Mata’s optimize()
Mathematical statement of the moptimize() problem
Filling in moptimize() from the mathematical statement
The type lf evaluator
The type d, lf*, gf, and q evaluators
Example using type d
Example using type lf*

Relationship of moptimize() to Stata’s ml and to Mata’s optimize()

moptimize() is Mata’s and Stata’s premier optimization routine. This is the routine used by most of the

official optimization-based estimators implemented in Stata.

That said, Stata’s ml command—see [R]ml—provides most of the capabilities of Mata’s moptimize(),
and ml is easier to use. In fact, ml uses moptimize() to perform the optimization, and ml amounts to

little more than a shell providing a friendlier interface. If you have a maximum likelihood model you

wish to fit, we recommend you use ml instead of moptimize(). Use moptimize() when you need or

want to work in the Mata environment, or when you wish to implement a specialized system for fitting

a class of models.

https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxSpecifyingindependentvariables
https://www.stata.com/manuals/m-2subscripts.pdf#m-2Subscripts
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxdef_K
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxdef_K
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM
https://www.stata.com/manuals/m-2subscripts.pdf#m-2Subscripts
https://www.stata.com/manuals/m-2subscripts.pdf#m-2Subscripts
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxdef_K
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxdef_K
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxStep2Definitionofmaximizationorminimizationproblem
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()RemarksandexamplesRelationshipofmoptimize()toStatasmlandtoMatasoptimize()
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()RemarksandexamplesMathematicalstatementofthemoptimize()problem
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()RemarksandexamplesFillinginmoptimize()fromthemathematicalstatement
https://www.stata.com/manuals/rml.pdf#rml

moptimize() — Model optimization 25

Also make note of Mata’s optimize() function; see [M-5] optimize(). moptimize() finds coefficients

(b1,b2, . . . ,b𝑚) that maximize or minimize f (p1,p2, . . . ,p𝑚), where p𝑖 = X𝑖 × b𝑖. optimize()
handles a simplified form of the problem, namely, finding constant (p1, p2, . . . , p𝑚) that maximizes or

minimizes f (). moptimize() is the appropriate routine for fitting a Weibull model, but if all you need

to estimate are the fixed parameters of the Weibull distribution for some population, moptimize() is

overkill and optimize() will prove easier to use.

These three routines are all related. Stata’s ml uses moptimize() to do the numerical work.

moptimize(), in turn, uses optimize() to perform certain calculations, including the search for pa-

rameters. There is nothing inferior about optimize() except that it cannot efficiently deal with models

in which parameters are given by linear combinations of coefficients and data.

Mathematical statement of the moptimize() problem

We mathematically describe the problem moptimize() solves not merely to fix notation and ease com-

munication, but also because there is a one-to-one correspondence between the mathematical notation

and the moptimize*() functions. Simply writing your problem in the following notation makes obvious

the moptimize*() functions you need and what their arguments should be.

In what follows, we are going to simplify the mathematics a little. For instance, we are about to claim

p𝑖 = X𝑖 × b𝑖 :+ c𝑖, when in the syntax section, you will see that p𝑖 = X𝑖 × b𝑖 + o𝑖 + ln(t𝑖) :+ c𝑖. Here

we omit o𝑖 and ln(t𝑖) because they are seldom used. We will omit some other details, too. The statement

of the problem under Syntax, above, is the full and accurate statement. We will also use typefaces a little

differently. In the syntax section, we use italics following programming convention. In what follows,

we will use boldface for matrices and vectors, and italics for scalars so that you can follow the math

more easily. So in this section, we will write b𝑖, whereas under syntax we would write bi; regardless of

typeface, they mean the same thing.

Function moptimize() finds coefficients

b = ((b1, c1), (b2, c2), . . . , (b𝑚, c𝑚))

where

b1: 1 × k1, b2: 1 × k2, . . . , b𝑚: 1 × k𝑚

c1: 1 × 1, c2: 1 × 1, . . . , c𝑚: 1 × 1

that maximize or minimize function

f (p1,p2, . . . ,p𝑚; y1, y2, . . . , y𝐷)

where
p1 = X1 × b′

1 :+ c1, X1 ∶ N1 × k1

p2 = X2 × b′
2 :+ c2, X2 ∶ N2 × k2

.

.

p𝑚 = X𝑚 × b′
𝑚 :+ c𝑚, X𝑚 ∶ N𝑚 × k𝑚

and where y1, y2, . . . , y𝐷 are of arbitrary dimension.

https://www.stata.com/manuals/m-5optimize.pdf#m-5optimize()
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntax

moptimize() — Model optimization 26

Usually, N1 = N2 = · · · = N𝑚, and the model is said to be fit on data of N observations. Similarly,

column vectors y1, y2, . . . , y𝐷 are usually called dependent variables, and each is also of N observations.

As an example, let’s write the maximum likelihood estimator for linear regression in the above notation.

We begin by stating the problem in the usual way, but in Mata-ish notation:

Given data y: N × 1 and X: N × k, obtain ((b, c), s2) to fit

y = X × b′ :+ c + u

where the elements of u are distributed N(0, s2). The log-likelihood function is

ln𝐿 = ∑
𝑗

ln(normalden(y𝑗 − (X𝑗 × b′ :+ c), 0, sqrt(s2)))

where normalden(x, mean, sd) returns the density at x of the Gaussian normal with the specified mean
and standard deviation; see [M-5] normal().

The above is a two-parameter or, equivalently, two-equation model in moptimize() jargon. There may

be many coefficients, but the likelihood function can be written in terms of two parameters, namely

p1 = X × b′ :+ c and p2 = s2. Here is the problem stated in the moptimize() notation:

Find coefficients

b = ((b1, c1), (c2))

where

b1: 1 × k

c1: 1 × 1, c2: 1 × 1

that maximize

f (p1,p2; y) = ∑ ln(normalden(y − p1,0,sqrt(p2))

where

p1 = X × b′
1 :+ c1, X ∶ N × k

p2 = c2

and where y is N × 1.

https://www.stata.com/manuals/m-5normal.pdf#m-5normal()

moptimize() — Model optimization 27

Notice that, in this notation, the regression coefficients (b1, c1) play a secondary role, namely, to deter-

mine p1. That is, the function, f (), to be optimized—a log-likelihood function here—is written in terms

of p1 and p2. The program you will write to evaluate f () will be written in terms of p1 and p2, thus

abstracting from the particular regression model being fit. Whether the regression is mpg on weight or

log income on age, education, and experience, your program to calculate f () will remain unchanged. All
that will change are the definitions of y andX, which you will communicate to moptimize() separately.

There is another advantage to this arrangement. We can trivially generalize linear regression without

writing new code. Note that the variance s2 is given by p2, and currently, we have p2 = c2, that is,

a constant. moptimize() allows parameters to be constant, but it equally allows them to be given by

a linear combination. Thus rather than defining p2 = c2, we could define p2 = X2 × b′
2 :+ c2. If

we did that, we would have a second linear equation that allowed the variance to vary observation by

observation. As far as moptimize() is concerned, that problem is the same as the original problem.

Filling in moptimize() from the mathematical statement

The mathematical statement of our sample problem is the following:

Find coefficients

b = ((b1, c1), (c2))

b1: 1 × k

c1: 1 × 1, c2 ∶ 1 × 1

that maximize

f (p1,p2; y) = ∑ ln(normalden(y − p1,0,sqrt(p2))

where

p1 = X × b′
1 :+ c1, X ∶ N × k

p2 = c2

and where y is N × 1.

moptimize() — Model optimization 28

The corresponding code to perform the optimization is

. sysuse auto
(1978 automobile data)
. mata:

mata (type end to exit)
: function linregeval(transmorphic M, real rowvector b, real colvector lnf)
> {
> real colvector p1, p2
> real colvector y1
>
> p1 = moptimize_util_xb(M, b, 1)
> p2 = moptimize_util_xb(M, b, 2)
> y1 = moptimize_util_depvar(M, 1)
>
> lnf = ln(normalden(y1:-p1, 0, sqrt(p2)))
> }
: M = moptimize_init()
: moptimize_init_evaluator(M, &linregeval())
: moptimize_init_depvar(M, 1, ”mpg”)
: moptimize_init_eq_indepvars(M, 1, ”weight foreign”)
: moptimize_init_eq_indepvars(M, 2, ””)
: moptimize(M)
Initial: f(p) = -<inf> (could not be evaluated)
Feasible: f(p) = -12949.708
Rescale: f(p) = -243.04355
Rescale eq: f(p) = -236.58999
Iteration 0: f(p) = -236.58999 (not concave)
Iteration 1: f(p) = -227.46735
Iteration 2: f(p) = -205.73129 (backed up)
Iteration 3: f(p) = -195.72223
Iteration 4: f(p) = -194.20864
Iteration 5: f(p) = -194.18313
Iteration 6: f(p) = -194.18306
Iteration 7: f(p) = -194.18306
: moptimize_result_display(M)

Number of obs = 74

mpg Coefficient Std. err. z P>|z| [95% conf. interval]

eq1
weight -.0065879 .0006241 -10.56 0.000 -.007811 -.0053647

foreign -1.650029 1.053958 -1.57 0.117 -3.715749 .4156903
_cons 41.6797 2.121197 19.65 0.000 37.52223 45.83717

eq2
_cons 11.13746 1.830987 6.08 0.000 7.54879 14.72613

moptimize() — Model optimization 29

The type lf evaluator

Let’s now interpret the code we wrote, which was

: function linregeval(transmorphic M, real rowvector b,
real colvector lnf)

{
real colvector p1, p2
real colvector y1
p1 = moptimize_util_xb(M, b, 1)
p2 = moptimize_util_xb(M, b, 2)
y1 = moptimize_util_depvar(M, 1)
lnf = ln(normalden(y1:-p1, 0, sqrt(p2)))

}
: M = moptimize_init()
: moptimize_init_evaluator(M, &linregeval())
: moptimize_init_depvar(M, 1, ”mpg”)
: moptimize_init_eq_indepvars(M, 1, ”weight foreign”)
: moptimize_init_eq_indepvars(M, 2, ””)
: moptimize(M)
: moptimize_result_display(M)

We first defined the function to evaluate our likelihood function—we named the function

linregeval(). The name was of our choosing. After that, we began an optimization problem by typing

M = moptimize init(), described the problem with moptimize init *() functions, performed the

optimization by typing moptimize(), and displayed results by using moptimize result display().

Function linregeval() is an example of a type lf evaluator. There are several different evaluator

types, including d0, d1, d2, through q1. Of all of them, type lf is the easiest to use and is the one

moptimize() uses unless we tell it differently. What makes lf easy is that we need only calculate the

likelihood function; we are not required to calculate its derivatives. A description of lf appears under

the heading Syntax of type lf evaluators under Syntax above.

In the syntax diagrams, you will see that type lf evaluators receive three arguments, M , b, and fv, al-

though in linregeval(), we decided to call them M, b, and lnf. The first two arguments are inputs,

and your evaluator is expected to fill in the third argument with observation-by-observation values of the

log-likelihood function.

The input arguments are M and b. M is the problem handle, which we have not explained yet. Basically, all

evaluators receive M as the first argument and are expected to pass M to any moptimize*() subroutines

that they call. M in fact contains all the details of the optimization problem. The second argument, b, is the
entire coefficient vector, which in the linregeval() case will be all the coefficients of our regression,

the constant (intercept), and the variance of the residual. Those details are unimportant. Instead, your

evaluator will pass M and b to moptimize() utility programs that will give you back what you need.

Using one of those utilities is the first action our linregeval() evaluator performs:

p1 = moptimize util xb(M, b, 1)

https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxSyntaxoftypelfevaluators

moptimize() — Model optimization 30

That returns observation-by-observation values of the first parameter, namely, X × b1 :+ c1.

moptimize util xb(x, b, 1) returns the first parameter because the last argument specified is 1. We

obtained the second parameter similarly:

p2 = moptimize util xb(M, b, 2)

To evaluate the likelihood function, we also need the dependent variable. Another moptimize*() utility

returns that to us:

y1 = moptimize util depvar(M, 1)

Having p1, p2, and y1, we are ready to fill in the log-likelihood values:

lnf = ln(normalden(y1:-p1, 0, sqrt(p2)))

For a type lf evaluator, you are to return observation-by-observation values of the log-likelihood func-

tion; moptimize() itself will sum them to obtain the overall log likelihood. That is exactly what the

line lnf = ln(normalden(y1:-p1, 0, sqrt(p2))) did. Note that y1 is N × 1, p1 is N × 1, and p2 is

N × 1, so the lnf result we calculate is also N × 1. Some of the other evaluator types are expected to

return a scalar equal to the overall value of the function.

With the evaluator defined, we can estimate a linear regression by typing

: M = moptimize_init()
: moptimize_init_evaluator(M, &linregeval())
: moptimize_init_depvar(M, 1, ”mpg”)
: moptimize_init_eq_indepvars(M, 1, ”weight foreign”)
: moptimize_init_eq_indepvars(M, 2, ””)
: moptimize(M)
: moptimize_result_display(M)

All estimation problems begin with

M = moptimize init()

The returned value M is called a problem handle, and from that point on, you will pass M to every other

moptimize() function you call. M contains the details of your problem. If you were to listM, you would

see something like

: M
0x15369a

0×15369a is in fact the address where all those details are stored. Exactly how M works does not matter,

but it is important that you understand what M is. M is your problem. In a more complicated problem,

you might need to perform nested optimizations. You might have one optimization problem, and right

in the middle of it, even right in the middle of evaluating its log-likelihood function, you might need

to set up and solve another optimization problem. You can do that. The first problem you would set

up as M1 = moptimize init(). The second problem you would set up as M2 = moptimize init().
moptimize() would not confuse the two problems because it would know to which problem you were

referring by whether you used M1 or M2 as the argument of the moptimize() functions. As another

example, you might have one optimization problem, M = moptimize init(), and halfway through it,
decide you want to try something wild. You could code M2 = M, thus making a copy of the problem, use
the moptimize*() functions with M2, and all the while your original problemwould remain undisturbed.

moptimize() — Model optimization 31

Having obtained a problem handle, that is, having coded M = moptimize init(), you now need to fill

in the details of your problem. You do that with the moptimize init *() functions. The order in which
you do this does not matter. We first informed moptimize() of the identity of the evaluator function:

: moptimize_init_evaluator(M, &linregeval())

We must also inform moptimize() as to the type of evaluator function linregeval() is, which we

could do by coding

: moptimize_init_evaluatortype(M, ”lf”)

We did not bother, however, because type lf is the default.

After that, we need to inform moptimize() as to the identity of the dependent variables:

: moptimize_init_depvar(M, 1, ”mpg”)

Dependent variables play no special role in moptimize(); they are merely something that are remem-
bered so that they can be passed to the evaluator function that we write. One problem might have no

dependent variables and another might have lots of them. moptimize init depvar(M, i, y)’s sec-
ond argument specifies which dependent variable is being set. There is no requirement that the number of

dependent variables match the number of equations. In the linear regression case, we have one dependent

variable and two equations.

Next we set the independent variables, or equivalently, the mapping of coefficients, into parameters.

When we code

: moptimize_init_eq_indepvars(M, 1, ”weight foreign”)

we are stating that there is a parameter, p1 = X1 ×b1 :+ c1, and thatX1 = (weight, foreign). Thus b1
contains two coefficients, that is, p1 = (weight, foreign)×(b11, b12)′ :+ c1. Actually, we have not yet

specified whether there is a constant, c1, on the end, but if we do not specify otherwise, the constant will

be included. If we want to suppress the constant, after coding moptimize init eq indepvars(M,
1, ”weight foreign”), we would code moptimize init eq cons(M, 1, ”off”). The 1 says first

equation, and the ”off” says to turn the constant off.

As an aside, we coded moptimize init eq indepvars(M, 1, ”weight foreign”) and so specified

that the independent variables were the Stata variables weight and foreign, but the independent vari-
ables do not have to be in Stata. If we had a 74 × 2 matrix named data in Mata that we wanted to use,

we would have coded moptimize init eq indepvars(M, 1, data).

To define the second parameter, we code

: moptimize_init_eq_indepvars(M, 2, ””)

Thus we are stating that there is a parameter, p2 = X2 × b2 :+ c2, and that X2 does not exist, leaving

p2 = c2, meaning that the second parameter is a constant.

moptimize() — Model optimization 32

Our problem defined, we code

: moptimize(M)

to obtain the solution, and we code

: moptimize_result_display(M)

to see the results. There are many moptimize result *() functions for use after the solution is ob-

tained.

The type d, lf*, gf, and q evaluators

Above we wrote our evaluator function in the style of type lf. moptimize() provides four other eval-

uator types—called types d, lf*, gf, and q—and each have their uses.

Using type lf above, we were required to calculate the observation-by-observation log likelihoods and

that was all. Using another type of evaluator, say, type d, we are required to calculate the overall log

likelihood, and optionally, its first derivatives, and optionally, its second derivatives. The corresponding

evaluator types are called d0, d1, and d2. Type d is better than type lf because if we do calculate the

derivatives, then moptimize() can execute more quickly and it can produce a slightly more accurate

result (more accurate because numerical derivatives are not involved). These speed and accuracy gains

justify type d1 and d2, but what about type d0? For many optimization problems, type d0 is redundant

and amounts to nothing more than a slight variation on type lf. In these cases, type d0’s justification is
that if we want to write a type d1 or type d2 evaluator, then it is usually easiest to start by writing a type

d0 evaluator. Make that work, and then add to the code to convert our type d0 evaluator into a type d1
evaluator; make that work, and then, if we are going all the way to type d2, add the code to convert our
type d1 evaluator into a type d2 evaluator.

For other optimization problems, however, there is a substantive reason for type d0’s existence. Type
lf requires observation-by-observation values of the log-likelihood function, and for some likelihood

functions, those simply do not exist. Think of a panel-data model. There may be observations within

each of the panels, but there is no corresponding log-likelihood value for each of them. The log-likelihood

function is defined only across the entire panel. Type lf cannot handle problems like that. Type d0 can.

That makes type d0 seem to be a strict improvement on type lf. Type d0 can handle any problem that type

lf can handle, and it can handle other problems to boot. Where both can handle the problem, the only

extra work to use type d0 is that we must sum the individual values we produce, and that is not difficult.

Type lf, however, has other advantages. If you write a type lf evaluator, then without writing another

line of code, you can obtain the robust estimates of variance, adjust for clustering, account for survey

design effects, and more. moptimize() can do all that because it has the results of an observation-by-

observation calculation. moptimize() can break into the assembly of those observation-by-observation

results and modify how that is done. moptimize() cannot do that for d0.

So there are advantages both ways.

Another provided evaluator type is type lf*. Type lf* is a variation on type lf. It also comes in the

subflavors lf0, lf1, and lf2. Type lf* allows you to make observation-level derivative calculations,

which means that results can be obtained more quickly and more accurately. Type lf* is designed to

always work where lf is appropriate, which means panel-data estimators are excluded. In return, it

moptimize() — Model optimization 33

provides all the ancillary features provided by type lf, meaning that robust standard errors, clustering,
and survey-data adjustments are available. You write the evaluator function in a slightly different style

when you use type lf* rather than type d.

Type gf is a variation on type lf* that relaxes the requirement that the log-likelihood function be

summable over the observations. Thus type gf can work with panel-data models and resurrect the fea-

tures of robust standard errors, clustering, and survey-data adjustments. Type gf evaluators, however,

are more difficult to write than type lf* evaluators.

Type q is for the special case of quadratic optimization. You either need it, and then only type q will do,

or you do not.

Example using type d

Let’s return to our linear regression maximum-likelihood estimator. To remind you, this is a two-

parameter model, and the log-likelihood function is

f (p1,p2; y) = ∑ ln(normalden(y − p1,0,sqrt(p2))

This time, however, we are going to parameterize the variance parameter p2 as the log of the standard

deviation, so we will write

f (p1,p2; y) = ∑ ln(normalden(y − p1,0,exp(p2))

It does not make any conceptual difference which parameterization we use, but the log parameterization

converges a little more quickly, and the derivatives are easier, too. We are going to implement a type d2
evaluator for this function. To save you from pulling out pencil and paper, let’s tell you the derivatives:

𝑑f /𝑑p1 = z:/s
𝑑f /𝑑p2 = z:^2:-1

𝑑2f /𝑑p2
1 = −1:/s:^2

𝑑2f /𝑑p22 = −2 × z:^2
𝑑2f /𝑑p𝑑p2 = −2 × z:/s

where
z = (y ∶ −p1):/s

s = exp(p2)

The d2 evaluator function for this problem is

function linregevald2(transmorphic M, real scalar todo,
real rowvector b, fv, g, H)

{
y1 = moptimize_calc_depvar(M, 1)
p1 = moptimize_calc_xb(M, b, 1)
p2 = moptimize_calc_xb(M, b, 2)

s = exp(p2)
z = (y1:-p1):/s

fv = moptimize_util_sum(M, ln(normalden(y1:-p1, 0, s)))

moptimize() — Model optimization 34

if (todo>=1) {
s1 = z:/s
s2 = z:^2 :- 1
g1 = moptimize_util_vecsum(M, 1, s1, fv)
g2 = moptimize_util_vecsum(M, 2, s2, fv)
g = (g1, g2)
if (todo==2) {

h11 = -1:/s:^2
h22 = -2*z:^2
h12 = -2*z:/s
H11 = moptimize_util_matsum(M, 1,1, h11, fv)
H22 = moptimize_util_matsum(M, 2,2, h22, fv)
H12 = moptimize_util_matsum(M, 1,2, h12, fv)
H = (H11, H12 \ H12’, H22)

}
}

}

The code to fit a model of mpg on weight and foreign reads

: M = moptimize_init()
: moptimize_init_evaluator(M, &linregevald2())
: moptimize_init_evaluatortype(M, ”d2”)
: moptimize_init_depvar(M, 1, ”mpg”)
: moptimize_init_eq_indepvars(M, 1, ”weight foreign”)
: moptimize_init_eq_indepvars(M, 2, ””)
: moptimize(M)
: moptimize_result_display(M)

By the way, function linregevald2() will work not only with type d2, but also with types d1 and d0.
Our function has the code to calculate first and second derivatives, but if we use type d1, todo will never

be 2 and the second derivative part of our code will be ignored. If we use type d0, todo will never be

1 or 2 and so the first and second derivative parts of our code will be ignored. You could delete the

unnecessary blocks if you wanted.

It is also worth trying the above code with types d1debug and d2debug. Type d1debug is like d1; the
second derivative code will not be used. Also type d1debug will almost ignore the first derivative code.

Our program will be asked to make the calculation, but moptimize() will not use the results except to

report a comparison of the derivatives we calculate with numerically calculated derivatives. That way,

we can check that our program is right. Once we have done that, we move to type d2debug, which will
check our second-derivative calculation.

Example using type lf*

The lf2 evaluator function for the linear-regression problem is almost identical to the type d2 evaluator.

It differs in that rather than return the summed log likelihood, we return the observation-level log like-

lihoods. And rather than return the gradient vector, we return the equation-level scores that when used

with the chain-rule can be summed to produce the gradient. The conversion from d2 to lf2 was possible

because of the observation-by-observation nature of the linear-regression problem; if the evaluator was

not going to be implemented as lf, it always should have been implemented as lf1 or lf2 instead of d1
or d2. In the d2 evaluator above, we went to extra work—summing the scores—the result of which was

to eliminate moptimize() features such as being able to automatically adjust for clusters and survey

data. In a more appropriate type d problem—a problem for which a type lf* evaluator could not have

been implemented—those scores never would have been available in the first place.

moptimize() — Model optimization 35

The lf2 evaluator is

function linregevallf2(transmorphic M, real scalar todo,
real rowvector b, fv, S, H)

{
y1 = moptimize_calc_depvar(M, 1)
p1 = moptimize_calc_xb(M, b, 1)
p2 = moptimize_calc_xb(M, b, 2)
s = exp(p2)
z = (y1:-p1):/s
fv = ln(normalden(y1:-p1, 0, s))
if (todo>=1) {

s1 = z:/s
s2 = z:^2 :- 1
S = (s1, s2)
if (todo==2) {

h11 = -1:/s:^2
h22 = -2*z:^2
h12 = -2*z:/s
mis = 0
H11 = moptimize_util_matsum(M, 1,1, h11, mis)
H22 = moptimize_util_matsum(M, 2,2, h22, mis)
H12 = moptimize_util_matsum(M, 1,2, h12, mis)
H = (H11, H12 \ H12’, H22)

}
}

}

The code to fit a model of mpg on weight and foreign reads nearly identically to the code we used in the

type d2 case. We must specify the name of our type lf2 evaluator and specify that it is type lf2:

: M = moptimize_init()
: moptimize_init_evaluator(M, &linregevallf2())
: moptimize_init_evaluatortype(M, ”lf2”)
: moptimize_init_depvar(M, 1, ”mpg”)
: moptimize_init_eq_indepvars(M, 1, ”weight foreign”)
: moptimize_init_eq_indepvars(M, 2, ””)
: moptimize(M)
: moptimize_result_display(M)

Conformability
See Syntax above.

Diagnostics
All functions abort with error when used incorrectly.

moptimize() aborts with error if it runs into numerical difficulties. moptimize() does not; it instead

returns a nonzero error code.

The moptimize result*() functions abort with error if they run into numerical difficulties when called
after moptimize() or moptimize evaluate(). They do not abort when run after moptimize()
or moptimize evaluate(). They instead return a properly dimensioned missing result and set

moptimize result errorcode() and moptimize result errortext().

https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Remarksandexamplesd2code
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntax

moptimize() — Model optimization 36

� �
Ludwig Otto Hesse (1811–1874) was born in Königsberg, Prussia, which is now Kaliningrad, Rus-

sia. He obtained a PhD from the University of Königsberg in 1840. His many contributions are

reflected in the mathematical terms named after him, including the Hessian matrix, Hessian group,

and Hesse configuration. His doctoral work was supervised by Carl Gustav Jacob Jacobi, for whom

the Jacobian matrix and Jacobi transform are named. Hesse worked heavily on algebraic functions

and invariants and published a lot of his work in Crelles Journal. One of his notable works was the

principle of transfer, which was later generalized by Wilhelm Meyer and Élie Cartan.

Hesse supervised the doctoral work of several well-known mathematicians, including Jacob Lüroth

and Max Noether. He was a member of three science academies and was granted the Steiner prize

by the Berlin Academy of Sciences. The Bavarian Academy of Sciences, who granted Hesse mem-

bership in 1869, published his collected works in 1897.� �� �
Donald Wesley Marquardt (1929–1997) was born in New York and obtained degrees in physics,

mathematics, and statistics from Columbia and the University of Delaware. For 39 years, he worked

at DuPont as a statistician and founding manager of the company’s Quality Management and Tech-

nology Center. In retirement, Marquardt set up his own consultancy and remained an international

leader in establishing standards for quality management and quality assurance. His work on non-

linear estimation is highly cited. Marquardt also made major contributions to ridge and generalized

inverse regression, mixture designs, and analysis of unequally spaced time series.� �
References
Haas, K. 1972. “Ludwig Otto Hesse”. In Dictionary of Scientific Biography, edited by C. C. Gillispie, vol. 6: 356–358.

New York: Charles Scribner’s Sons.

Hahn, G. J. 1995. A conversation with Donald Marquardt. Statistical Science 10: 377–393. https://doi.org/10.1214/ss/

1177009871.

Pitblado, J. S., B. P. Poi, and W. W. Gould. 2024. Maximum Likelihood Estimation with Stata. 5th ed. College Station,

TX: Stata Press.

Also see
[M-5] optimize() — Function optimization

[M-5] Quadrature() — Numerical integration

[M-4]Mathematical — Important mathematical functions

[M-4] Statistical — Statistical functions

[R] set iter — Control iteration settings

Stata, Stata Press, and Mata are registered trademarks of StataCorp LLC. Stata and Stata
Press are registered trademarks with the World Intellectual Property Organization of the
United Nations. StataNow and NetCourseNow are trademarks of StataCorp LLC. Other
brand and product names are registered trademarks or trademarks of their respective com-
panies. Copyright © 1985–2025 StataCorp LLC, College Station, TX, USA. All rights
reserved.

®

For suggested citations, see the FAQ on citing Stata documentation.

https://www.stata.com/manuals/m-5deriv.pdf#m-5deriv()Methodsandformulasv_jacobi
https://doi.org/10.1214/ss/1177009871
https://doi.org/10.1214/ss/1177009871
https://www.stata-press.com/books/maximum-likelihood-estimation-stata/
https://www.stata.com/manuals/m-5optimize.pdf#m-5optimize()
https://www.stata.com/manuals/m-5quadrature.pdf#m-5Quadrature()
https://www.stata.com/manuals/m-4mathematical.pdf#m-4Mathematical
https://www.stata.com/manuals/m-4statistical.pdf#m-4Statistical
https://www.stata.com/manuals/rsetiter.pdf#rsetiter
https://www.stata.com/support/faqs/resources/citing-software-documentation-faqs/

