moptimize() — Model optimization

Description Syntax Remarks and examples Conformability
Diagnostics References Also see
Description
Themoptimize () functions find coefficients (b;, b,, . . ., b,,,) that maximize or minimize f (py, po, - - - Pon)s
where p; = X, x b/, a linear combination of b, and the data. The user of moptimize () writes a Mata
function or Stata program to evaluate /' (py, s, - - - , P,,,)- The data can be in Mata matrices or in the Stata

dataset currently residing in memory.

moptimize () is especially useful for obtaining solutions for maximum likelihood models, minimum 2
models, minimum squared-residual models, and the like.

Syntax

Ifyou are reading this entry for the first time, skip down to Description and to Remarks and examples, and
more especially, to Mathematical statement of the moptimize() problem under Remarks and examples.

Syntax is presented under the following headings:

Step 1: Initialization

Step 2: Definition of maximization or minimization problem

Step 3: Perform optimization or perform a single function evaluation
Step 4: Post, display, or obtain results

Utility functions for use in all steps

Definition of M

Setting the sample

Specifying dependent variables

Specifying independent variables

Specifying constraints

Specifying weights or survey data

Specifying clusters and panels

Specifying optimization technique

Specifying initial values

Performing one evaluation of the objective function
Performing optimization of the objective function
Tracing optimization

Specifying convergence criteria

Accessing results

Stata evaluators

Advanced functions

Syntax of evaluators

Syntax of type If evaluators

Syntax of type d evaluators

Syntax of type If* evaluators

Syntax of type gf evaluators

Syntax of type q evaluators

Passing extra information to evaluators

Utility functions

https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Description
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Remarksandexamples
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()RemarksandexamplesMathematicalstatementofthemoptimize()problem

moptimize() — Model optimization 2

Step 1: Initialization

M =moptimize_init()

Step 2: Definition of maximization or minimization problem

In each of the functions, the last argument is optional. If specified, the function sets the value
and returns void. If not specified, no change is made, and instead what is currently set is re-

turned.

(varies)

(varies)
(varies)
(varies)

(varies)

(varies)

(varies)

(varies)

(varies)
(varies)
(varies)
(varies)
(varies)
(varies)
(varies)
(varies)
(varies)

(varies)

(varies)
(varies)
(varies)
(varies)

(varies)

moptimize_init_which(M, {"max"|"min" })

moptimize_init_evaluator (M, &functionname())
moptimize_init_evaluator (M, "programname")
moptimize_init_evaluatortype (M, evaluatortype)

moptimize_init_negH(M, { "off"|"on" })
moptimize_init_touse(M, "tousevarname")

moptimize_init_ndepvars(M, D)

moptimize_init_depvar (M, j, y)

moptimize_init_eq-n(M, m)
moptimize_init_eq_indepvars(M, i, X)
moptimize_init_eq_cons(M, i, {"on"|"off" })
moptimize_init_eq_offset (M, i, 0)
moptimize_init_eq_exposure(M, i, t)
moptimize_init_eq_name (M, i, name)
moptimize_init_eq_colnames (M, i, names)
moptimize_init_eq_freeparm(M, i, { "on" |"off" })
moptimize_init_eq_coefs(M, i, b0)

moptimize_init_constraints(M, Cc)

moptimize_init_search(M, {"on" |"off" })
moptimize_init_search_random(M, { "off"|"on" })
moptimize_init_search_repeat (M, nr)
moptimize_init_search_bounds (M, i, minmax)

moptimize_init_search_rescale(M, {"on"|"off" })

https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxinit_which
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxinit_evaluator
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxinit_evaluator
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxinit_evaluatortype
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxinit_negH
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxinit_touse
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxinit_ndepvars
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxinit_depvar
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxinit_eq_n
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxinit_eq_indepvars
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxinit_eq_cons
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxinit_eq_offset
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxinit_eq_exposure
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxinit_eq_name
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxinit_eq_colnames
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxinit_eq_freeparm
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxinit_eq_coefs
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxinit_constraints
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxinit_search
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxinit_search_random
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxinit_search_repeat
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxinit_search_bounds
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxinit_search_rescale

moptimize() — Model optimization 3

(varies) moptimize_init_weight (M, w)

(varies) moptimize_init_weighttype (M, weighttype)

(varies) moptimize_init_cluster(M, c¢)

(varies) moptimize_init_svy(M, {"off"|"on"})
(varies) moptimize_init_by (M, by)

(varies) moptimize_init_nuserinfo(M, n_user)

(varies) moptimize_init_userinfo(M, [, Z)

(varies) moptimize_init_technique (M, fechnique)
(varies) moptimize_init_vcetype(M, vcetype)
(varies) moptimize_init_nmsimplexdeltas (M, delta)
(varies) moptimize_init_gnweightmatrix(M, W)

(varies) moptimize_init_singularHmethod (M , singularHmethod)

(varies) moptimize_init_conv_maxiter (M , maxiter)

(varies) moptimize_init_conv_warning(M, {"on"|"off" })
(varies) moptimize_init_conv_ptol (M, ptol)

(varies) moptimize_init_conv_vtol (M, viol)

(varies) moptimize_init_conv_nrtol (M, nrtol)

(varies) moptimize_init_conv_ignorenrtol(M, { "off"|"on" })

(varies) moptimize_init_iterid(M, id)

(varies) moptimize_init_valueid(M, id)

(varies) moptimize_init_tracelevel (M, tracelevel)

(varies) moptimize_init_trace_ado(M, {"off"|"on" })
(varies) moptimize_init_trace_dots(M, {"off"|"on" })
(varies) moptimize_init_trace_value(M, {"on"|"off" })
(varies) moptimize_init_trace_tol(M, {"off"|"on"})
(varies) moptimize_init_trace_step(M, {"off"|"on"})
(varies) moptimize_init_trace_coefdiffs(M, {"off"|"on" })
(varies) moptimize_init_trace_coefs(M, {"off"|"on" })
(varies) moptimize_init_trace_gradient(M, { "off"|"on" })

(varies) moptimize_init_trace_Hessian(M, {"off"|"on" })

https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxinit_weight
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxinit_weighttype
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxinit_cluster
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxinit_svy
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxinit_by
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxinit_nuserinfo
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxinit_userinfo
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxinit_technique
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxinit_vcetype
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxinit_nmsimplexdeltas
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxinit_gnweightmatrix
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxinit_singularHmethod
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxinit_conv_maxiter
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxinit_conv_warning
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxinit_conv_ptol
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxinit_conv_vtol
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxinit_conv_nrtol
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxinit_conv_ignorenrtol
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxinit_iterid
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxinit_valueid
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxinit_tracelevel
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxinit_trace_ado
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxinit_trace_dots
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxinit_trace_value
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxinit_trace_tol
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxinit_trace_step
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxinit_trace_coefdiffs
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxinit_trace_coefs
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxinit_trace_gradient
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxinit_trace_Hessian

moptimize() — Model optimization 4

(varies) moptimize_init_evaluations(M, {"off"|"on" })
(varies) moptimize_init_verbose(M, {"on"|"off"})

(varies) moptimize_init_deriv_usemin(M, {"off"|"on"})

(varies) moptimize_init_deriv_min(M [, real rowvector min|)

Step 3: Perform optimization or perform a single function evaluation

void moptimize (M)
real scalar_moptimize (M)
void moptimize_evaluate (M)

real scalar_moptimize_evaluate (M)

Step 4: Post, display, or obtain results

void moptimize_result_post (M [, veetype])

void moptimize_result_display([M [, vcetype]])
real scalar moptimize_result_value (M)

real scalar moptimize_result_valueO(M)

real rowvector moptimize_result_eq_coefs(M |, i])
real rowvector moptimize_result_coefs (M)

string matrix ~moptimize_result_colstripe(M [, i])

real matrix moptimize_result_scores (M)

real rowvector moptimize_result_gradient(M [, i])

real matrix moptimize_result_Hessian(M [, i])
real matrix moptimize_result_V(M [, i])

string scalar moptimize_result_Vtype (M)

real matrix moptimize_result_V_oim(M [, i])
real matrix ~ moptimize_result_V_opg(M [, i])

real matrix moptimize_result_V_robust(M [, i])

https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxinit_evaluations
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxinit_verbose
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxinit_deriv_usemin
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxinit_deriv_min
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxmoptimize
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxmoptimize
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxevaluate
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxevaluate
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxresult_post
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxresult_display
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxresult_value
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxresult_value0
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxresult_eq_coefs
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxresult_coefs
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxresult_colstripe
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxresult_scores
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxresult_gradient
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxresult_Hessian
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxresult_V
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxresult_Vtype
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxresult_V_oim
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxresult_V_opg
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxresult_V_robust

moptimize() — Model optimization 5

real scalar
real scalar
real colvector
real rowvector
real scalar
string scalar
real scalar

void

moptimize_result_iterations (M)
moptimize_result_converged (M)
moptimize_result_iterationlog(M)
moptimize_result_evaluations (M)
moptimize_result_errorcode (M)
moptimize_result_errortext (M)
moptimize_result_returncode (M)

moptimize_ado_cleanup (M)

Utility functions for use in all steps

void

real matrix

(varies)

moptimize_query (M)
moptimize_util_eq_indices(M, i [, i2])

moptimize_util_depvar (M, j)

returns y set by moptimize_init_depvar (M, j, y), which is usually a real

colvector

real colvector

real scalar

real rowvector

real matrix

real matrix

real matrix

pointer scalar

Definition of M

moptimize_util_xb(M, b, i)

moptimize_util_sum(M , real colvector v)

moptimize_util_vecsum(M, i, real colvector s, real scalar value)

moptimize_util_matsum(M, i, i2, real colvectors,
real scalar value)

moptimize_util_matbysum(M, i, real colvector a, real colvector b,
real scalar value)

moptimize_util_matbysum(M, i, i2, real colvector a,
real colvector b, real colvector c, real scalar value)

moptimize_util_by (M)

M, if it is declared, should be declared transmorphic. M is obtained from moptimize_init () and then
passed as an argument to the other moptimize () functions.

moptimize_init () returns M, called an moptimize () problem handle. The function takes no argu-
ments. M holds the information about the optimization problem.

https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxresult_iterations
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxresult_converged
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxresult_iterationlog
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxresult_evaluations
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxresult_errorcode
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxresult_errortext
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxresult_returncode
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxado_cleanup
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxquery
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxutil_eq_indices
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxutil_depvar
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxutil_xb
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxutil_sum
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxutil_vecsum
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxutil_matsum
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxutil_matsum
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxutil_matbysum
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxutil_matsum
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxutil_matbysum
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxutil_matsum
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxutil_by

moptimize() — Model optimization 6

Setting the sample

Various moptimize_init_*() functions set values for dependent variables, independent variables, etc.
When you set those values, you do that either by specifying Stata variable names or by specifying Mata
matrices containing the data themselves. Function moptimize_init_touse() specifies the sample to
be used when you specify Stata variable names.

moptimize_init_touse(M, "“tousevarname") specifies the name of the variable in the Stata
dataset that marks the observations to be included. Observations for which the Stata variable is
nonzero are included. The default is "", meaning all observations are to be used.

You need to specify tousevarname only if you specify Stata variable names in the other
moptimize_init_*() functions, and even then it is not required. Setting tousevar when you
specify the data themselves via Mata matrices, whether views or not, has no effect.

Specifying dependent variables

D andj index dependent variables:

index Description
D number of dependent variables, D > 0
J dependent variable index, 1 <j <D

D and are real scalars.

You set the dependent variables one at a time. In a particular optimization problem, you may have no
dependent variables or have more dependent variables than equations.

moptimize_init_depvar (M, j, y) sets the jth dependent variable to be y. y may be a string scalar
containing a Stata variable name that in turn contains the values of the jth dependent variable, or
y may be a real colvector directly containing the values.

moptimize_init_ndepvars(M, D) sets the total number of dependent variables. You can set D
before defining dependent variables, and that speeds execution slightly, but it is not necessary
because D is automatically set to the maximum j.

Specifying independent variables

Independent variables are defined within parameters or, equivalently, equations. The words parameter
and equation mean the same thing. m, i, and i2 index parameters:

index Description

m number of parameters (equations), m > 1
i equation index, 1 <i<m

i2 equation index, 1 <i2 <m

m, i, and i2 are real scalars.

The function to be optimized is f (p,, p,,; - - -, p,). The ith parameter (equation) is defined as

pi = Xi X bi’ + oi + In(#) :+ b0i

https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxSpecifyingindependentvariables
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM

moptimize() — Model optimization 7

where
pi: Ni x 1 (ith parameter)
Xi: Ni x ki (Ni observations on ki independent variables)
bi: 1 X ki (coefficients to be fit)
oi: Ni x 1 (exposure/offset in offset form, optional)
ti: Ni x 1 (exposure/offset in exposure form, optional)
b0i: 1 x1 (constant or intercept, optional)

Any of the terms may be omitted. The most common forms for a parameter are pi = Xi X bi’ + b0i
(standard model), pi = Xi x bi’ (no-constant model), and pi = b0i (constant-only model).

In addition, define b: 1 x K as the entire coefficient vector, which is to say,
b= (bl,[b01,] b2,[p02,] ...)

That is, because biis 1 x ki fori = 1,2,...,m, then bis 1 x K, where K = ZZ ki + ci, where ci is
1 if equation i contains an intercept and is 0 otherwise. Note that bi does not contain the constant or
intercept, if there is one, but b contains all the coefficients, including the intercepts. b is called the full
set of coefficients.

Parameters are defined one at a time by using the following functions:

moptimize_init_eq-n(M, m) sets the number of parameters. Use of this function is optional; m
will be automatically determined from the other moptimize_init_eq_*() functions you issue.

moptimize_init_eq_indepvars(M, i, X) sets X to be the data (independent variables) for the ith
parameter. X may be a 1 X ki string rowvector containing Stata variable names, or X may be a
string scalar containing the same names in space-separated format, or X may be an Ni x ki real
matrix containing the data for the independent variables. Specify X as "" to omit term Xi x bi’,
for instance, as when fitting a constant-only model. The default is "".

moptimize_init_eq_cons(M, i, {"on" |"off" }) specifies whether the equation for the ith pa-
rameter includes b0i, a constant or intercept. Specify "on" to include b0i, "off" to exclude it.
The default is "on".

moptimize_init_eq_offset (M, i, o) specifies oi in the equation for the ith parameter. o may be
a string scalar containing a Stata variable name, or 0 may be an N7 X 1 real colvector containing
the offsets. The default is "", meaning term oi is omitted. Parameters may not have both oi and
In(#) terms.

moptimize_init_eq_exposure(M, i, t) specifies ti in term In(#) of the equation for the ith pa-
rameter. ¢ may be a string scalar containing a Stata variable name, or # may be an Ni X 1 real
colvector containing the exposure values. The default is " ", meaning term In(#) is omitted.

moptimize_init_eq_name (M, i, name) specifies a string scalar, name, to be used in the output to
label the ith parameter. The default is to use an automatically generated name.

moptimize_init_eq—_colnames (M, i, names) specifies a 1 x ki string rowvector, names, to be
used in the output to label the coefficients for the ith parameter. The default is to use automatically
generated names.

https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxSpecifyingindependentvariables
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxSpecifyingindependentvariables
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxSpecifyingindependentvariables
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxSpecifyingindependentvariables
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxSpecifyingindependentvariables
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxSpecifyingindependentvariables
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxSpecifyingindependentvariables

moptimize() — Model optimization 8

moptimize_init_eq_freeparm(M, i, { "on" |"off" }) specifies whether the equation for the ith
parameter is to be treated as a free parameter. This setting is ignored if there are independent
variables or an offset attached to the ith parameter. Free parameters have a shortcut notation that
distinguishes them from constant linear equations. The free parameter notation for an equation
labeled name is /name. The corresponding notation for a constant linear equation is name: _cons.

Specifying constraints

Linear constraints may be placed on the coefficients, b, which may be either within equation or between
equations.

moptimize_init_constraints (M, Cc) specifies an R x K + 1 real matrix, Cc, that places R linear
restrictions on the 1 x K full set of coefficients, . Think of Cc as being (C,c), C: RxK andc: Rx 1.
Optimization will be performed subject to the constraint Ch* = ¢. The default is no constraints.

Specifying weights or survey data

You may specify weights, and once you do, everything is automatic, assuming you implement your
evaluator by using the provided utility functions.

moptimize_init_weight (M, w) specifies the weighting variable or data. w may be a string scalar
containing a Stata variable name, or w may be a real colvector directly containing the weight
values. The default is "", meaning no weights.

moptimize_init_weighttype (M, weighttype) specifies how w is to be treated. weighttype may
be "fweight", "aweight", "pweight", or "iweight". You may set w first and then weighttype,
or the reverse. If you set w without setting weighttype, then "fweight" is assumed. If you set
weighttype without setting w, then weighttype is ignored. The default weighttype is "fweight".

Alternatively, you may inherit the full set of survey settings from Stata by usingmoptimize_init_svy().
Ifyou do this, donotuse moptimize_init_weight (), moptimize_init_weighttype (), ormoptimize_ir
When you use the survey settings, everything is nearly automatic, assuming you use the provided utility
functions to implement your evaluator. The proviso is that your evaluator must be of evaluatortype 1f,

1f*, gf, orq.

moptimize_init_svy(M, {"off"|"on" }) specifies whether Stata’s survey settings should be
used. The default is "off". Using the survey settings changes the default vcetype to "svy",
which is equivalent to "robust".

Specifying clusters and panels

Clustering refers to possible nonindependence of the observations within groups called clusters. A cluster
variable takes on the same value within a cluster and different values across clusters. After setting the
cluster variable, there is nothing special you have to do, but be aware that clustering is allowed only if
you use a type 1f, 1f*, gf, or q evaluator. moptimize_init_cluster () allows you to set a cluster
variable.

https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxSpecifyingindependentvariables
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxdef_b
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxSyntaxofevaluators
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxUtilityfunctions
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM
https://www.stata.com/manuals/svysvyset.pdf#svysvyset
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxinit_cluster
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxUtilityfunctions
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxUtilityfunctions
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxSyntaxofevaluators
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxSyntaxofevaluators
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxdef_vcetype
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxSyntaxofevaluators

moptimize() — Model optimization 9

Panels refer to likelihood functions or other objective functions that can only be calculated at the panel
level, for which there is no observation-by-observation decomposition. Unlike clusters, these panel like-
lihood functions are difficult to calculate and require the use of type d or gf evaluator. A panel variable
takes on the same value within a panel and different values across panels. moptimize_init_by() al-
lows you to set a panel variable.

You may set both a cluster variable and a panel variable, but be careful because, for most likelihood
functions, panels are mathematically required to be nested within cluster.

moptimize_init_cluster (M, c) specifies a cluster variable. ¢ may be a string scalar containing a
Stata variable name, or ¢ may be a real colvector directly containing the cluster values. The default
is "", meaning no clustering. If clustering is specified, the default vcetype becomes "robust".

moptimize_init_by (M, by) specifies a panel variable and specifies that only panel-level calcula-
tions are meaningful. by may be a string scalar containing a Stata variable name, or by may be
a real colvector directly containing the panel ID values. The default is "", meaning no panels. If
panels are specified, the default vcetype remains unchanged, but if the opg variance estimator is
used, the opg calculation is modified so that it is clustered at the panel level.

Specifying optimization technique

Technique refers to the numerical methods used to solve the optimization problem. The default is New-
ton—Raphson maximization.

moptimize_init_which(M, { "max"|"min" }) sets whether the maximum or minimum of the ob-
jective function is to be found. The default is "max".

moptimize_init_technique (M, fechnique) specifies the technique to be used to find the coeffi-
cient vector b that maximizes or minimizes the objective function. Allowed values are

technique Description

"nr" modified Newton—Raphson

"dfp" Davidon—Fletcher—Powell

"bfgs" Broyden—Fletcher—Goldfarb—Shanno
"bhhh" Berndt—Hall-Hall-Hausman

"nm" Nelder—Mead

"gn" Gauss—Newton (quadratic optimization)

The default is "nr".

You can switch between "nr", "dfp", "bfgs", and "bhhh" by specifying two or more of them in
a space-separated list. By default, moptimize () will use an algorithm for five iterations before
switching to the next algorithm. To specify a different number of iterations, include the number
after the technique. For example, specifying moptimize_init_technique (M, "bhhh 10 nr
1000") requests that moptimize () perform 10 iterations using the Berndt—Hall-Hall-Hausman
algorithm, followed by 1,000 iterations using the modified Newton—Raphson algorithm, and then
switch back to Berndt—Hall-Hall-Hausman for 10 iterations, and so on. The process continues
until convergence or until maxiter is exceeded.

https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxSyntaxofevaluators
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxdef_vcetype
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxdef_vcetype
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxdef_b
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxSpecifyingconvergencecriteria
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxSpecifyingconvergencecriteria

moptimize() — Model optimization 10

moptimize_init_singularHmethod (M, singularHmethod) specifies the action to be taken during
optimization if the Hessian is found to be singular and the technique requires the Hessian be of full
rank. Allowed values are

singularHmethod — Description

"m-marquardt" modified Marquardt algorithm
"hybrid" mixture of steepest descent and Newton

The default is "m-marquardt".
"hybrid" is equivalent toml’s difficult option; see [R] ml.

moptimize_init_nmsimplexdeltas (M, delta) is for use with Nelder—Mead, also known as tech-
nique nm. This function sets the values of delta to be used, along with the initial parameters, to build
the simplex required by Nelder—Mead. Use of this function is required only in the Nelder—Mead
case. The values in delta must be at least 10 times larger than prol. The initial simplex will be
{p,p+(d,0,...,0),p+(0,d5,0,...,0),...,p+(0,0,...,0,dx)}.

Specifying initial values

Initial values are values you optionally specify that via a search procedure result in starting values that
are then used for the first iteration of the optimization technique. That is,
(optimization
(searching) technique)
initial values ——— starting values ——— final results

Initial values are specified parameter by parameter.

moptimize_init_eq_coefs (M, i, b0) sets the initial values of the coefficients for the ith param-
eter to be b0: 1 x (ki + ci). The default is (0, 0, ..., 0).

The following functions control whether searching is used to improve on the initial values to produce
better starting values. In addition to searching a predetermined set of hardcoded starting values, there are
two other methods that can be used to improve on the initial values: random and rescaling. By default,
random is off and rescaling is on. You can use one, the other, or both.

moptimize_init_search(M, {"on"|"off" }) determines whether any attempts are to be made
to improve on the initial values via a search technique. The default is "on". If you specify "off",
the initial values become the starting values.

moptimize_init_search_random(M, { "off"|"on" }) determines whether the random method
of improving initial values is to be attempted. The default is "of£". Use of the random method is
recommended when the initial values are or might be infeasible. Infeasible means that the function
cannot be evaluated, which mechanically corresponds to the user-written evaluator returning a
missing value. The random method is seldom able to improve on feasible initial values. It works
well when the initial values are or might be infeasible.

moptimize_init_search_repeat (M, nr) controls how many times random values are tried if the
random method is turned on. The default is 10.

moptimize_init_search_bounds (M, i, minmax) specifies the bounds for the random search.
minmax is a 1 x 2 real rowvector containing the minimum and maximum values for the ith param-
eter (equation). The default is (., .), meaning no lower and no upper bounds.

https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM
https://www.stata.com/manuals/rml.pdf#rml
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxSpecifyingconvergencecriteria
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxdef_parameter
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxSpecifyingindependentvariables
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxSpecifyingindependentvariables

moptimize() — Model optimization 11

moptimize_init_search_rescale(M, {"on"|"off" }) determines whether rescaling is attempted.
The default is "on". Rescaling is a deterministic (not random) method. It also usually improves
initial values, and usually reduces the number of subsequent iterations required by the optimization
technique.

Performing one evaluation of the objective function

moptimize_evaluate (M) and _moptimize_evaluate (M) perform one evaluation of the function
evaluated at the initial values. Results can be accessed by using moptimize_result_*(), including
first- and second-derivative-based results.

moptimize_evaluate() and _moptimize_evaluate() do the same thing, differing only in that
moptimize_evaluate () aborts with a nonzero return code if things go badly, whereas _moptimize_evaluat
returns the real scalar error code. An infeasible initial value is an error.

The evaluation is performed at the initial values, not the starting values, and this is true even if search is
turned on. If you want to perform an evaluation at the starting values, then perform optimization with
maxiter set to 0.

Performing optimization of the objective function

moptimize (M) and _moptimize (M) perform optimization. Both routines do the same thing; they
differ only in their behavior when things go badly. moptimize () returns nothing and aborts with er-
ror. _moptimize () returns a real scalar error code. moptimize () is best for interactive use and often
adequate for use in programs that do not want to consider the possibility that optimization might fail.

The optimization process is as follows:

1. The initial values are used to create starting values. The value of the function at the starting
values is calculated. Ifthat results in a missing value, the starting values are declared infeasible.
moptimize () aborts with return code 430; _moptimize () returns a nonzero error code, which
maps to 430 via moptimize_result_returncode (). This step is called iteration 0.

2. The starting values are passed to the technique to produce better values. Usually this involves
the technique calculating first and second derivatives, numerically or analytically, and then
stepping multiple times in the appropriate direction, but techniques can vary on this. In general,
the technique performs what it calls one iteration, the result of which is to produce better values.
Those new values then become the starting values and the process repeats.

An iteration is said to fail if the new coefficient vector is infeasible (results in a missing value).
Then attempts are made to recover and, if those attempts are successful, optimization continues.
If they fail, moptimize () aborts with error and _moptimize () returns a nonzero error code.

Other problems may arise, such as singular Hessians or the inability to find better values. Var-
ious fix-ups are made and optimization continues. These are not failures.

This step is called iterations 1, 2, and so on.

3. Step 2 continues either until the process converges or until the maximum number of iterations
(maxiter) is exceeded. Stopping due to maxiter is not considered an error. Upon completion,
programmers should check moptimize_result_converged().

https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxSpecifyinginitialvalues
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxAccessingresults
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxresult_errorcode
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxSpecifyinginitialvalues
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxSpecifyinginitialvalues
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxPerformingoptimizationoftheobjectivefunction
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxSpecifyingconvergencecriteria
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxresult_errorcode
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxSpecifyinginitialvalues
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxSpecifyinginitialvalues
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxresult_returncode
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxSpecifyingoptimizationtechnique
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxSpecifyingconvergencecriteria
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxSpecifyingconvergencecriteria
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxresult_converged

moptimize() — Model optimization 12

If optimization succeeds, which is to say, if moptimize () does not abort or _moptimize () returns 0,
you can use the moptimize_result_*() functions to access results.

Tracing optimization

moptimize () and _moptimize () will produce output like

Iteration 0: f(p)
Iteration 1: £(p) =

You can change the f (p) to be “Log likelihood” or whatever else you want. You can also change “Itera-
tion”.

moptimize_init_iterid (M, id) sets the string to be used to label the iterations in the iteration log.
id is a string scalar. The default is "Iteration".

moptimize_init_valueid (M, id) sets the string to be used to label the objective function value in
the iteration log. id is a string scalar. The default is "f (p)".

Additional results can be displayed during optimization, which can be useful when you are debugging
your evaluator. This is called tracing the execution.

moptimize_init_tracelevel (M, tracelevel) specifies the output to be displayed during the opti-
mization process. Allowed values are

tracelevel To be displayed each iteration
"none" nothing

"value" function value

"tolerance" previous + convergence values
"step" previous + stepping information
"coefdiffs" previous + parameter relative differences
"paramdiffs" same as "coefdiffs"

"coefs" previous + parameter values
"params" same as "coefs"

"gradient" previous + gradient vector
"hessian" previous + Hessian matrix

The default is "value" when set iterlog is on and "none" when
set iterlog is off; see [R] set iter.

Setting tracelevel is a shortcut. The other trace functions allow you to turn on and off individual features.
In what follows, the documented defaults are the defaults when tracelevel is "value".

moptimize_init_trace_ado(M, {"off"|"on" }) traces the execution of evaluators written as
ado-files. This topic is not discussed in this manual entry. The default is "of£f".

moptimize_init_trace_dots(M, {"off"|"on" }) displays a dot each time your evaluator is
called. The default is "off".

moptimize_init_trace_value(M, {"on" |"off" }) displays the function value at the start of
each iteration. The default is "on".

https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxAccessingresults
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxSyntaxofevaluators
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM
https://www.stata.com/manuals/rsetiter.pdf#rsetiter
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM

moptimize() — Model optimization 13

moptimize_init_trace_tol(M, {"off"|"on" }) displays the value of the calculated result that
is compared with the effective convergence criterion at the end of each iteration. The default is
n Off n .

moptimize_init_trace_step(M, {"off"|"on" }) displays the steps within iteration. Listed are
the value of objective function along with the word forward or backward. The default is "off".

moptimize_init_trace_coefdiffs(M, {"off"|"on" }) displays the coefficient relative differ-
ences from the previous iteration that are greater than the coefficient tolerance pfol. The default is
"off".

moptimize_init_trace_coefs(M, {"off"|"on" }) displays the coefficients at the start of each
iteration. The default is "off".

moptimize_init_trace_gradient (M, {"off"|"on" }) displays the gradient vector at the start
of each iteration. The default is "off".

moptimize_init_trace_Hessian(M, { "off"|"on" }) displays the Hessian matrix at the start of
each iteration. The default is "off".

Specifying convergence criteria

Convergence is based on several rules controlled by four parameters: maxiter, ptol, vtol, and nrtol. The
first rule is not a convergence rule, but a stopping rule, and it is controlled by maxiter.

moptimize_init_conv_maxiter (M, maxiter) specifies the maximum number of iterations. If
this number is exceeded, optimization stops and results are posted where they are accessible
by using the moptimize_result_*() functions, just as if convergence had been achieved.
moptimize_result_converged (), however, is set to O rather than 1. The default maxiter is
Stata’s c (maxiter), which is 300 by default.

moptimize_init_conv_warning(M, { "on"|"off" }) specifies whether the warning message
“convergence not achieved” is to be displayed when this stopping rule is invoked. The default
is "on".

Usually, convergence occurs before the stopping rule comes into effect. The convergence criterion is a
function of three real scalar values: ptol, vtol, and nrtol. Let

b = full set of coefficients
b_prior = value of b from prior iteration
v = value of objective function
v_prior = value of v from prior iteration
g = gradient vector from this iteration
H = Hessian matrix from this iteration

https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxSpecifyingconvergencecriteria
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM
https://www.stata.com/manuals/pcreturn.pdf#pcreturn
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxdef_b

moptimize() — Model optimization 14

Define, for maximization,

C_ptol: mreldif (b, b_prior) < ptol

C_vtol: reldif (v, v_prior) < vtol
C_nrtol: g X invsym(— H) x ¢’ < nrtol
C_concave: —H is positive semidefinite

For minimization, think in terms of maximization of —f'(p). Convergence is declared when
(C_ptol| C_vtol) & C_nrtol & C_concave

The above applies in cases of derivative-based optimization, which currently is all techniques except
"nm" (Nelder—Mead). In the Nelder—Mead case, the criterion is

C_ptol: mreldif (vertices of R) < ptol
C_vtol: reldif (R) < wvrol

where R is the minimum and maximum values on the simplex. Convergence is declared when
C_ptol | C_vtol.

The values of ptol, vtol, and nrtol are set by the following functions:
moptimize_init_conv_ptol (M, ptol) sets ptol. The default is 1e-6.
moptimize_init_conv_vtol (M, vtol) sets vtol. The defaultis 1e-7.
moptimize_init_conv_nrtol (M, nrtol) sets nrtol. The default is 1e-5.

moptimize_init_conv_ignorenrtol (M, { "off"|"on" }) sets whether C_nrtol should always
be treated as true, which in effect removes the nrfol criterion from the convergence rule. The
default is "off".

Accessing results

Once you have successfully performed optimization, or you have successfully performed a single func-
tion evaluation, you may display results, post results to Stata, or access individual results.

To display results, use moptimize_result_display().

moptimize_result_display (M) displays estimation results. Standard errors are shown using the
default veetype.

moptimize_result_display (M, vcetype) displays estimation results. Standard errors are shown
using the specified veetype.

Also there is a third syntax for use after results have been posted to Stata, which we will discuss below.

moptimize_result_display () without arguments (not even M) displays the estimation results cur-
rently posted in Stata.

https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxSpecifyingoptimizationtechnique
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxPerformingoptimizationoftheobjectivefunction
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxPerformingoptimizationoftheobjectivefunction
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxPerformingoptimizationoftheobjectivefunction
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxdef_vcetype
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxdef_vcetype

moptimize() — Model optimization 15

veetype specifies how the variance—covariance matrix of the estimators (VCE) is to be calculated. Al-
lowed values are

vcetype Description

" use default for technique

"oim" observed information matrix

"opg" outer product of gradients

"robust" Huber/White/sandwich estimator
"svy" survey estimator; equivalent to robust

The default veetype is oim except for technique bhhh, where it is opg.
If survey, pweights, or clusters are used, the default becomes
robust or svy.

As an aside, if you set moptimize_init_vcetype () during initialization, that changes the default.
moptimize_init_vcetype (M, vecetype), veetype being a string scalar, resets the default veetype.
To post results to Stata, use moptimize_result_post().

moptimize_result_post (M) posts estimation results to Stata where they can be displayed
with Mata function moptimize_result_post () (without arguments) or with Stata command
ereturn display (see [P] ereturn). The posted VCE will be of the default vcerype.

moptimize_result_post (M, vcetype) does the same thing, except the VCE will be of the specified
veetype.

The remaining moptimize_result_*() functions simply return the requested result. It does not matter
whether results have been posted or previously displayed.

moptimize_result_value (M) returns the real scalar value of the objective function.

moptimize_result_valueO (M) returns the real scalar value of the objective function at the starting
values.

moptimize_result_eq_coefs(M [, i]) returns the 1 x (ki + ci) coefficient rowvector for the ith
equation. If i > . or argument i is omitted, the 1 x K full set of coefficients is returned.

moptimize_result_coefs (M) returns the 1 x K full set of coefficients.

moptimize_result_colstripe(M |, i]) returns a (ki + ci) X 2 string matrix containing, for the
ith equation, the equation names in the first column and the coefficient names in the second. If
i > . or argument i is omitted, the result is K x 2.

moptimize_result_scores (M) returns an N X m (evaluator types 1f and 1£*), oran N x K (evalu-
ator type gf), or an L x K (evaluator type q) real matrix containing the observation-by-observation
scores. For all other evaluator types, J(0,0,.) is returned. For evaluator types 1f and 1f*,
scores are defined as the derivative of the objective function with respect to the parameters. For
evaluator type gf, scores are defined as the derivative of the objective function with respect to
the coefficients. For evaluator type g, scores are defined as the derivatives of the L independent
elements with respect to the coefficients.

https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxSpecifyingoptimizationtechnique
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxdef_vcetype
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM
https://www.stata.com/manuals/pereturn.pdf#pereturn
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxdef_vcetype
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxdef_vcetype
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxSpecifyinginitialvalues
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxSpecifyinginitialvalues
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxSpecifyingindependentvariables
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxdef_b
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxdef_b
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxSpecifyingindependentvariables
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxdef_b
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxSpecifyingindependentvariables
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxSyntaxofevaluators
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxdef_b
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxdef_parameter
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxdef_b
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxSyntaxoftypeqevaluators
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxSyntaxoftypeqevaluators

moptimize() — Model optimization 16

moptimize_result_gradient(M [, i|) returns the 1 X (ki + ci) gradient rowvector for the ith
equation. If i > . or argument 7 is omitted, the 1 x K gradient corresponding to the full set of
coefficients is returned. Gradient is defined as the derivative of the objective function with respect
to the coefficients.

moptimize_result_Hessian(M [, i]) returns the (ki + ci) x (ki + ci) Hessian matrix for the ith
equation. If i > . or argument i is omitted, the K x K Hessian corresponding to the full set of
coefficients is returned. The Hessian is defined as the second derivative of the objective function
with respect to the coefficients.

moptimize_result_V(M |, i|) returns the appropriate (ki 4+ ci) x (ki + ci) submatrix of the full
% pprop
variance matrix calculated according to the default vcetype. If i > . or argument i is omitted, the
full K x K variance matrix corresponding to the full set of coefficients is returned.

moptimize_result_Vtype (M) returns a string scalar containing the default vcetype.

moptimize_result_V_oim(M [, i]) returns the appropriate (ki-+ci) x (ki+ci) submatrix of the full
variance matrix calculated as the inverse of the negative Hessian matrix (the observed information
matrix). If i > . or argument i is omitted, the full K x K variance matrix corresponding to the full
set of coefficients is returned.

moptimize_result_V_opg(M [, i|) returns the appropriate (ki-+ci) x (ki+ci) submatrix of the full
variance matrix calculated as the inverse of the outer product of the gradients. Ifi > . or argument
i is omitted, the full K x K variance matrix corresponding to the full full set of coefficients is
returned. If moptimize_result_V_opg() is used with evaluator types other than 1f, 1f*, gf, or
q, an appropriately dimensioned matrix of zeros is returned.

moptimize_result_V_robust (M [, i]) returns the appropriate (ki + ci) x (ki + ci) submatrix of
the full variance matrix calculated via the sandwich estimator. If i > . or argument i is omit-
ted, the full K x K variance matrix corresponding to the full set of coefficients is returned. If
moptimize_result_V_robust () is used with evaluator types other than 1£f, 1f*, gf, or q, an
appropriately dimensioned matrix of zeros is returned.

moptimize_result_iterations (M) returns a real scalar containing the number of iterations per-
formed.

moptimize_result_converged (M) returns a real scalar containing 1 if convergence was achieved
and 0 otherwise.

moptimize_result_iterationlog(M) returns a real colvector containing the values of the objec-
tive function at the end of each iteration. Up to the last 20 iterations are returned, one to a row.

moptimize_result_errorcode (M) returns the real scalar containing the error code from the most
recently run optimization or function evaluation. The error code is 0 if there are no errors. This
function is useful only after _moptimize () or _moptimize_evaluate () because the nonunder-
score versions aborted with error if there were problems.

moptimize_result_errortext (M) returns a string scalar containing the error text corresponding
to moptimize_result_errorcode().

moptimize_result_returncode (M) returns a real scalar containing the Stata return code corre-
sponding to moptimize_result_errorcode().

https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxSpecifyingindependentvariables
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxdef_b
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxdef_b
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxdef_b
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxSpecifyingindependentvariables
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxdef_b
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxdef_b
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxdef_b
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxSpecifyingindependentvariables
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxdef_vcetype
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxdef_b
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxdef_vcetype
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxSpecifyingindependentvariables
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxdef_b
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxdef_b
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxSpecifyingindependentvariables
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxdef_b
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxSyntaxofevaluators
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxSpecifyingindependentvariables
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxdef_b
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxSyntaxofevaluators
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxSpecifyingconvergencecriteria
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM

moptimize() — Model optimization 17

The following error codes and their corresponding Stata return codes are for moptimize () only. To see
other error codes and their corresponding Stata return codes, see [M-5] optimize().

Error Return
code code Error text
400 1400 could not find feasible values

401 491 Stata program evaluator returned an error
402 198 views are required when the evaluator is a
Stata program
403 198 Stata program evaluators require a touse variable

Stata evaluators

The following function is useful only when your evaluator is a Stata program instead of a Mata function.

moptimize_ado_cleanup (M) removes all the global macros with the ML_ prefix. A temporary
weight variable is also dropped if weights were specified.

Advanced functions

These functions are not really advanced, they are just seldomly used.

moptimize_init_verbose(M, {"on" |"off" }) specifies whether error messages are to be dis-
played. The default is "on".

moptimize_init_deriv_usemin(M, { "off"|"on" }) specifies whether to use the minimum val-
ues of step sizes for computing numerical derivatives. The default is "off", meaning minimum
values will not be used. If you specify "on", minimum values will be used; when minimum val-
ues are not specified by moptimize_init_deriv_min(), default minimum values are 1e-6 and
1e-4 for first- and second-order derivatives, respectively.

moptimize_init_deriv_min(M , min) specifies the minimum values of step sizes used for com-
puting numerical derivatives. min is a 1 x 2 real row vector; the first column specifies the
minimum for first-order derivatives, and the second column specifies the minimum for second-
order derivatives. If there is a missing value in the row vector, the default values of 1e-6 for
first-order derivatives and 1e-4 for second-order derivatives are used. If this function is used,
moptimize_init_deriv_usemin() is automatically set to "on".

moptimize_init_deriv_min(M) returns a 1 x 2 real row vector containing the user-specified min
values.

moptimize_init_evaluations(M, { "off"|"on" }) specifies whether the system is to count the
number of times the evaluator is called. The default is "off".

moptimize_result_evaluations (M) returns a 1 x 3 real rowvector containing the number of times
the evaluator was called, assuming moptimize_init_evaluations() was set on. Contents are
the number of times called for the purposes of 1) calculating the objective function, 2) calculating
the objective function and its first derivative, and 3) calculating the objective function and its first
and second derivatives. [f moptimize_init_evaluations() was set off, returned is (0,0,0).

https://www.stata.com/manuals/m-5optimize.pdf#m-5optimize()Remarksandexampleserrcodes
https://www.stata.com/manuals/m-5optimize.pdf#m-5optimize()
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxSyntaxofevaluators
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxSyntaxofevaluators

moptimize() — Model optimization 18

Syntax of evaluators

An evaluator is a program you write that calculates the value of the function being optimized and op-
tionally calculates the function’s first and second derivatives. The evaluator you write is called by the
moptimize () functions.

There are five styles in which the evaluator can be written, known as types 1£f, d, 1£*, gf, and q. evalu-
atortype, optionally specified in moptimize_init_evaluatortype (), specifies the style in which the
evaluator is written. Allowed values are

evaluatortype Description

"1f" function () returns N x 1 colvector value

"do" function () returns scalar value

"di" same as "d0" and returns gradient rowvector
"g2" same as "d1" and returns Hessian matrix
"d1ldebug" same as "d1" but checks gradient

"d2debug" same as "d2" but checks gradient and Hessian
"1f0o" Sfunction() returns N X 1 colvector value

"1f1n same as "1f0" and return equation-level score matrix
"1f2" same as "1f1" and returns Hessian matrix
"1f1debug" same as "1£1" but checks gradient
"1f2debug" same as "1£2" but checks gradient and Hessian
"gfo" Sfunction () returns N x 1 colvector value

"gf1" same as "gf0" and returns score matrix

"gf2" same as "gf1" and returns Hessian matrix
"gfldebug" same as "gf1" but checks gradient
"gf2debug" same as "gf2" but checks gradient and Hessian
"qo" function () returns colvector value

"gi" same as "qO0" and returns score matrix
"qldebug" same as "q1" but checks gradient

The default is "1£" if not set.

"q" evaluators are used with technique "gn".
Returned gradients are 1 x K rowvectors.
Returned Hessians are K x K matrices.

Examples of each of the evaluator types are outlined below.

You must tell moptimize() the identity and type of your evaluator, which you do by using the
moptimize_init_evaluator() and moptimize_init_evaluatortype() functions.

moptimize_init_evaluator (M, &functionname()) sets the identity of the evaluator function that
you write in Mata.

moptimize_init_evaluator (M, "programname") sets the identity of the evaluator program that
you write in Stata.

https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxdef_b
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxdef_b
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxdef_b
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM

moptimize() — Model optimization 19

moptimize_init_evaluatortype (M, evaluatortype) informs moptimize () of the style of eval-
uator you have written. evaluatortype is a string scalar from the table above. The default is "1£".

moptimize_init_negH(M, {"off"|"on" }) sets whether the evaluator you have written returns A
or —H, the Hessian or the negative of the Hessian, if it returns a Hessian at all. This is for backward
compatibility with prior versions of Stata’s m1 command (see [R] ml). Modern evaluators return
H. The default is "off".

Syntax of type If evaluators

lfeval(M, b, fv):
inputs:
M: problem definition
b: coefficient vector

outputs:
fv: N x 1, N = # of observations

Notes:
1. The objective function is /() = colsum(fv).

2. In the case where /() is a log-likelihood function, the values of the log likelihood must be
summable over the observations.

3. For use with any technique except gn.
4. May be used with robust, clustering, and survey.

5. Returns fv containing missing (fv = .) if evaluation is not possible.

Syntax of type d evaluators
deval(M , todo, b, fv, g, H):

inputs:
M: problem definition
todo: real scalar containing 0, 1, or 2
b: coefficient vector
outputs:
fu: real scalar
g: 1 x K, gradients, K = # of coefficients
H: K x K, Hessian
Notes:

1. The objective function is () = fv.
2. For use with any log-likelihood function, or any function.
3. For use with any technique except gn and bhhh.

4. Cannot be used with robust, clustering, or survey.

https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxSyntaxofevaluators
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM
https://www.stata.com/manuals/rml.pdf#rml
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxSpecifyingoptimizationtechnique
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxSpecifyingoptimizationtechnique

moptimize() — Model optimization 20

5. deval () must always fill in fv, and fill in g if todo > 1, and fill in H if fodo = 2. For type d0,
todo will always be 0. For type d1 and d1debug, todo will be 0 or 1. For type d2 and d2debug,
todo will be 0, 1, or 2.

6. Returns fv = .

if evaluation is not possible.

Syntax of type If* evaluators
lfeval(M , todo, b, fv, S, H):

inputs:

M:
todo:
b:

outputs:
fv
S:
H.

Notes:

problem definition
real scalar containing 0, 1, or 2
coefficient vector

N x 1, N = # of observations
N x m, scores, m = # of equations (parameters)
K x K, Hessian, K = # of coefficients

1. The objective function is /() = colsum(f).

2. Type 1f* is a variation of type 1£ that allows the user to supply analytic derivatives. Although
1£* could be used with an arbitrary function, it is intended for use when () is a log-likelihood
function and the log-likelihood values are summable over the observations.

3. For use with any technique except gn.

4. May be used with robust, clustering, and survey.

5. Always returns fv, returns S if todo > 1, and returns H if todo = 2. For type 1£0, todo will
always be 0. For type 1f1 and 1f1debug, fodo will be 0 or 1. For type 1£2 and 1f2debug,
todo will be 0, 1, or 2.

6. Returns fv containing missing (fv = .) if evaluation is not possible.

Syntax of type gf evaluators
gfeval(M , todo, b, fv, S, H):

inputs:
M:
todo:
b:
outputs:

fv
S:
H.

problem definition
real scalar containing 0, 1, or 2
coefficient vector

L x 1, values, L = # of independent elements
L x K, scores, K = # of coefficients
K x K, Hessian

https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxSpecifyingoptimizationtechnique

moptimize() — Model optimization 21

Notes:

. The objective function is f() = colsum(fi).

Type gf is a variation on type 1£f* that relaxes the requirement that the log-likelihood function
be summable over the observations. gf is especially useful for fitting panel-data models with
technique bhhh. Then L is the number of panels.

For use with any gf is especially useful for fitting panel-data models with except gn.
May be used with robust, clustering, and survey.

Always returns fv, returns S if fodo > 1, and returns H if todo = 2. For type gf0, fodo will
always be 0. For type gf1 and gf1debug, todo will be 0 or 1. For type gf2 and gf2debug,
todo will be 0, 1, or 2.

Returns fv = . if evaluation is not possible.

Syntax of type q evaluators

geval(M, todo, b, r, S)

inputs:
M: problem definition
todo: real scalar containing 0 or 1

b: coefficient vector

outputs:
r: L x 1 of independent elements
S: L x K, scores, K = # of coefficients

Notes:
1. Type q is for quadratic optimization. The objective function is () = »’ Wr, where r is returned

4.

by geval() and W has been previously set by using moptimize_init_gnweightmatrix(),
described below.

For use only with techniques gn and nm.

Always returns r and returns S if todo = 1. For type q0, todo will always be 0. For type g1
and qldebug, fodo will be 0 or 1. There is no type g2.

Returns r containing missing, or » = . if evaluation is not possible.

Use moptimize_init_gnweightmatrix () during initialization to set matrix .

moptimize_init_gnweightmatrix (M, W) sets real matrix W: L x L, which is used only by type
q evaluators. The objective function is 7’ Wr. If W is not set and if observation weights w are set
by using moptimize_init_weight (), then W = diag(w). If w is not set, then W is the identity
matrix.

moptimize () does not produce a robust VCE when you set /' with
moptimize_init_gnweight ().

https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxSpecifyingoptimizationtechnique
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxSpecifyingoptimizationtechnique
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxSyntaxoftypeqevaluators
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxinit_weight

moptimize() — Model optimization 22

Passing extra information to evaluators

In addition to the arguments the evaluator receives, you may arrange that extra information be sent to the
evaluator. Specify the extra information to be sent by using moptimize_init_userinfo().

moptimize_init_userinfo(M, /, Z) specifies that the /th piece of extra information is Z. / is a
real scalar. The first piece of extra information should be 1; the second piece, 2; and so on. Z can
be anything. No copy of Z is made.

moptimize_init_nuserinfo(M, n_user) specifies the total number of extra pieces of infor-
mation to be sent. Setting n_user is optional; it will be automatically determined from the
moptimize_init_userinfo() calls you issue.

Inside your evaluator, you access the information by using moptimize_util_userinfo().

moptimize_util_userinfo (M, /) returns the Z set by moptimize_init_userinfo().

Utility functions

There are various utility functions that are helpful in writing evaluators and in processing results returned
by the moptimize_result_*() functions.

The first set of utility functions are useful in writing evaluators, and the first set return results that all
evaluators need.

moptimize_util_depvar (M, ;) returns an Nj x 1 colvector containing the values of the jth depen-
dent variable, the values set by moptimize_init_depvar(M, j, ...).

moptimize_util_xb(M, b, i) returns the Vi x 1 colvector containing the value of the ith parameter,
which is usually Xi x bi" :+ b0i, but might be as complicated as Xi x bi’ + oi + In(ti) :+ bOi.

Once the inputs of an evaluator have been processed, the following functions assist in making the calcu-
lations required of evaluators.

moptimize_util_sum (M, v) returns the “sum” of colvector v. This function is for use in eval-
uators that require you to return an overall objective function value rather than observation-by-
observation results. Usually, moptimize_util_sum() returns sum(v), but in cases where you
have specified a weight by using moptimize_init_weight () or there is an implied weight
due to use of moptimize_init_svy(), the appropriately weighted sum is returned. Use
moptimize_util_sum() to sum log-likelihood values.

moptimize_util_vecsum(M, i, s, value) is like moptimize_util_sum(), but for use with gra-
dients. The gradient is defined as the vector of partial derivatives of /() with respect to the coeffi-
cients bi. Some evaluator types require that your evaluator be able to return this vector. Nonethe-
less, it is usually easier to write your evaluator in terms of parameters rather than coefficients, and
this function handles the mapping of parameter gradients to the required coefficient gradients.

Input s is an Nix 1 colvector containing df'/dpi for each observation. df /dpi is the partial derivative
of the objective function, but with respect to the ith parameter rather than the ith set of coefficients.
moptimize_util_vecsum() takes s and returns the 1 x (ki+ ci) summed gradient. Also weights,
if any, are factored into the calculation.

https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxSyntaxofevaluators
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxAccessingresults
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxSpecifyingdependentvariables
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxdef_b
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxSpecifyingindependentvariables
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxSpecifyingindependentvariables
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxinit_weight
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxinit_svy
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxSpecifyingindependentvariables

moptimize() — Model optimization 23

If you have more than one equation, you will need to call moptimize_util_vecsum() m times,
once for each equation, and then concatenate the individual results into one vector.

value plays no role in moptimize_util_vecsum()’s calculations. value, however, should be
specified as the result obtained frommoptimize_util_sum(). Ifthatis inconvenient, make value
any nonmissing value. Ifthe calculation from parameter space to vector space cannot be performed,
or if your original parameter space derivatives have any missing values, value will be changed to
missing. Remember, when a calculation cannot be made, the evaluator is to return a missing value
for the objective function. Thus storing the value of the objective function in value ensures that
your evaluator will return missing if it is supposed to.

moptimize_util_matsum(M, i, i2, s, value) is similar to moptimize_util_vecsum(), but for
Hessians (matrix of second derivatives).

Input s is an Ni X 1 colvector containing d2f/dpidpi2 for each observation.
moptimize_util_matsum() returns the (ki + ci) x (ki2 + c¢i2) summed Hessian. Also
weights, if any, are factored into the calculation.

If you have m > 1 equations, you will need to call moptimize_util _matsum() m X (m + 1)/2
times and then join the results into one symmetric matrix.

value plays no role in the calculation and works the same way it does in
moptimize_util_vecsum().

moptimize_util_matbysum() is an added helper for making moptimize_util_matsum() calcu-
lations in cases where you have panel data and the log-likelihood function’s values exists only at
the panel level. moptimize_util_matbysum(M, i, a, b, value) is for making diagonal calcu-
lations and moptimize_util_matbysum(M, i, i2, a, b, ¢, value) is for making off-diagonal
calculations.

This is an advanced topic; see Pitblado, Poi, and Gould (2024, 156-158) for a full descrip-
tion of it. In applying the chain rule to translate results from parameter space to coeffi-
cient space, moptimize_util_matsum() can be used to make some of the calculations, and
moptimize_util_matbysum() can be used to make the rest. value plays no role and works just as
it did in the other helper functions. moptimize_util_matbysum() is for use sometimes when by
has been set, which is done via moptimize_init_by (M, by). moptimize_util_matbysum()
is never required unless by has been set.

The formula implemented in moptimize_util_matbysum(M, i, a, b, value) is

N T; T; T;
Z(ajt) (ijtxlljt) (ijtxljt>
=1 \t=1 t=1 =1

The formula implemented in moptimize_util_matbysum(M, i, i2, a, b, ¢, value) is
N T T T;
Do D | ([Do baxi | | D ciXase
j=1 \t=1 =1 t=1

moptimize_util_by() returns a pointer to the vector of group identifiers that were set using
moptimize_init_by(). This vector can be used with panelsetup() to perform panel level
calculations.

https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxSpecifyingindependentvariables
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxSpecifyingindependentvariables
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxSpecifyingindependentvariables
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxSpecifyingindependentvariables
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxSpecifyingindependentvariables
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxSpecifyingclustersandpanels
https://www.stata.com/manuals/m-5panelsetup.pdf#m-5panelsetup()

moptimize() — Model optimization 24

The other utility functions are useful inside or outside of evaluators. One of the more useful is
moptimize_util_eq_indices (), which allows two or three arguments.

moptimize_util_eq_indices (M, i) returns a 1 x 2 vector that can be used with range subscripts
to extract the portion relevant for the ith equation from any 1 x K vector, that is, from any vector
conformable with the full coefficient vector.

moptimize_util_eq_indices(M, i, i2) returns a 2 x 2 matrix that can be used with range sub-
scripts to exact the portion relevant for the ith and i2th equations from any K x K matrix, that is,
from any matrix with rows and columns conformable with the full variance matrix.

For instance, let b be the 1 x K full coefficient vector, perhaps obtained by being passed
into an evaluator, or perhaps obtained from b = moptimize_result_coefs(M). Then
b[lmoptimize_util_eq_indices(M, i) |] isthe 1 X (ki + ci) vector of coefficients for the ith equa-
tion.

Let V be the K x K full variance matrix obtained by V = moptimize_result_V(M). Then
V[Imoptimize util_eq_indices(M, i, i) |] is the (ki + ci) x (ki + ci) variance matrix for the
ith equation. V[|moptimize_util_eq_indices(M, i, j)|] is the (ki + ci) x (kj + ¢j) covariance
matrix between the ith and jth equations.

Finally, there is one more utility function that may help when you become -confused:
moptimize_query().

moptimize_query (M) displays in readable form everything you have set via the
moptimize_init_*() functions, along with the status of the system.

Remarks and examples

Remarks are presented under the following headings:

Relationship of moptimize() to Stata’s ml and to Mata’s optimize()
Mathematical statement of the moptimize() problem

Filling in moptimize() from the mathematical statement

The type If evaluator

The type d, If*, gf, and q evaluators

Example using type d

Example using type If*

Relationship of moptimize() to Stata’s ml and to Mata’s optimize()

moptimize () is Mata’s and Stata’s premier optimization routine. This is the routine used by most of the
official optimization-based estimators implemented in Stata.

That said, Stata’s m1 command—see [R] ml—provides most of the capabilities of Mata’s moptimize (),
and m1 is easier to use. In fact, m1 uses moptimize () to perform the optimization, and m1 amounts to
little more than a shell providing a friendlier interface. If you have a maximum likelihood model you
wish to fit, we recommend you use m1 instead of moptimize (). Use moptimize () when you need or
want to work in the Mata environment, or when you wish to implement a specialized system for fitting
a class of models.

https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxSpecifyingindependentvariables
https://www.stata.com/manuals/m-2subscripts.pdf#m-2Subscripts
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxdef_K
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxdef_K
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM
https://www.stata.com/manuals/m-2subscripts.pdf#m-2Subscripts
https://www.stata.com/manuals/m-2subscripts.pdf#m-2Subscripts
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxdef_K
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntaxdef_K
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxDefinitionofM
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxStep2Definitionofmaximizationorminimizationproblem
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()RemarksandexamplesRelationshipofmoptimize()toStatasmlandtoMatasoptimize()
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()RemarksandexamplesMathematicalstatementofthemoptimize()problem
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()RemarksandexamplesFillinginmoptimize()fromthemathematicalstatement
https://www.stata.com/manuals/rml.pdf#rml

moptimize() — Model optimization 25

Also make note of Mata’s optimize () function; see [M-5] optimize(). moptimize () finds coefficients
(b, by, ..., b,,) that maximize or minimize f(p;, Py, - - -, P,,), Where p, = X; x b,. optimize()
handles a simplified form of the problem, namely, finding constant (p,, p,, . ..,p,) that maximizes or
minimizes /(). moptimize () is the appropriate routine for fitting a Weibull model, but if all you need
to estimate are the fixed parameters of the Weibull distribution for some population, moptimize () is
overkill and optimize () will prove easier to use.

These three routines are all related. Stata’s ml uses moptimize() to do the numerical work.
moptimize (), in turn, uses optimize () to perform certain calculations, including the search for pa-
rameters. There is nothing inferior about optimize () except that it cannot efficiently deal with models
in which parameters are given by linear combinations of coefficients and data.

Mathematical statement of the moptimize() problem

‘We mathematically describe the problem moptimize () solves not merely to fix notation and ease com-
munication, but also because there is a one-to-one correspondence between the mathematical notation
and the moptimize*() functions. Simply writing your problem in the following notation makes obvious
the moptimize*() functions you need and what their arguments should be.

In what follows, we are going to simplify the mathematics a little. For instance, we are about to claim
p; = X; X b; :+ ¢;, when in the syntax section, you will see that p, = X, x b, + 0, + In(t;) :+ ¢,. Here
we omit o, and In(t;) because they are seldom used. We will omit some other details, too. The statement
of the problem under Syntax, above, is the full and accurate statement. We will also use typefaces a little
differently. In the syntax section, we use italics following programming convention. In what follows,
we will use boldface for matrices and vectors, and italics for scalars so that you can follow the math
more easily. So in this section, we will write b,, whereas under syntax we would write bi; regardless of
typeface, they mean the same thing.

Function moptimize () finds coefficients

b= ((blvcl)’ (b2,C2), SRR (bm’cm))

where

by 1 xky, by: 1 X ky, RN b,.:1xk,
ci 1 x1, cyi 1 x 1, RN eyt 1 x 1

that maximize or minimize function

S(P15P2s - Pmi Y1:¥2,--+5 YD)
where
p; =X; X b :+¢y, X, : Ny xky
Py =X, x b i+ ¢y, Xy : Ny X ky

pm:XmXb'/m tce Xm'Nkam

m>o

and where y,, ¥, ..., yp are of arbitrary dimension.

https://www.stata.com/manuals/m-5optimize.pdf#m-5optimize()
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntax

moptimize() — Model optimization 26

Usually, Ny = N, = --- = N,,, and the model is said to be fit on data of N observations. Similarly,
column vectors y,,y,, . . .,y p are usually called dependent variables, and each is also of N observations.

As an example, let’s write the maximum likelihood estimator for linear regression in the above notation.
We begin by stating the problem in the usual way, but in Mata-ish notation:

Given datay: N x 1 and X: N x k, obtain ((b, c),s?) to fit
y=Xxb' :+c+u
where the elements of u are distributed N (0, s2). The log-likelihood function is

InL = Z 1n(normalden(y; — (Xj x b’ :+¢), 0, sqrt(s2)))
J

where normalden (x, mean, sd) returns the density at x of the Gaussian normal with the specified mean
and standard deviation; see [M-5] normal().

The above is a two-parameter or, equivalently, two-equation model in moptimize () jargon. There may
be many coefficients, but the likelihood function can be written in terms of two parameters, namely
p; = X x b’ :+ cand p, = s2. Here is the problem stated in the moptimize () notation:

Find coefficients
b= ((by,c;),(c2))

where

b: 1 xk
ct 1 x 1, eyt 1 x 1

that maximize

f(p1,ps y) = Z ln(normalden(y — p;,0,sqrt (p,))

where

p; =X xb] :+cq, X:Nxk

P2 = ¢

and where yis N x 1.

https://www.stata.com/manuals/m-5normal.pdf#m-5normal()

moptimize() — Model optimization 27

Notice that, in this notation, the regression coefficients (b;, ¢;) play a secondary role, namely, to deter-
mine p,. That is, the function, (), to be optimized—a log-likelihood function here—is written in terms
of p; and p,. The program you will write to evaluate /() will be written in terms of p; and p, thus
abstracting from the particular regression model being fit. Whether the regression is mpg on weight or
log income on age, education, and experience, your program to calculate () will remain unchanged. All
that will change are the definitions of y and X, which you will communicate to moptimize () separately.

There is another advantage to this arrangement. We can trivially generalize linear regression without
writing new code. Note that the variance s? is given by p,, and currently, we have p, = c,, that is,
a constant. moptimize () allows parameters to be constant, but it equally allows them to be given by
a linear combination. Thus rather than defining p, = ¢,, we could define p, = X, x b} :+ ¢y If
we did that, we would have a second linear equation that allowed the variance to vary observation by
observation. As far as moptimize () is concerned, that problem is the same as the original problem.

Filling in moptimize() from the mathematical statement

The mathematical statement of our sample problem is the following:

Find coefficients
b = ((by,¢1),(ca))

b,: 1 xk
ci 1 x1, eyl x1

that maximize
/(P1p2:¥) = 3 In(normalden(y — p;,0,5qrt (p,))

where

p; =X Xxb] t+cq, X:Nxk

P2 =C2

and where yis N x 1.

moptimize() — Model optimization 28

The corresponding code to perform the optimization is

. sysuse auto
(1978 automobile data)

. mata:

mata (type emd to exit) ——

: function linregeval (transmorphic M, real rowvector b, real colvector 1lnf)

: M = moptimize_init()

> {

> real colvector pl, p2

> real colvector yl

>

> pl = moptimize_util_xb(M, b, 1)

> p2 = moptimize_util_xb(M, b, 2)

> y1 = moptimize_util_depvar(M, 1)

>

> Inf = In(normalden(yl:-pi, 0, sqrt(p2)))
>}

: moptimize_init_evaluator(M, &linregeval())

: moptimize_init_depvar(M, 1, "mpg")

: moptimize_init_eq_indepvars(M,
: moptimize_init_eq_indepvars(M,

: moptimize (M)

Initial: f(p) = -<inf>
Feasible: f(p) = -12949.708
Rescale: f(p) = -243.04355

Rescale eq: f(p) = -236.58999

Iteration 0: f£(p) = -236.58999
Iteration 1: f(p) = -227.46735
Iteration 2: f(p) = -205.73129
Iteration 3: f(p) = -195.72223
Iteration 4: f(p) = -194.20864
Iteration 5: f(p) = -194.18313
Iteration 6: f(p) = -194.18306

Iteration 7: f£(p) = -194.18306
: moptimize_result_display(M)

1, "weight foreign")
2’ Il||)

(could not be evaluated)

(not concave)

(backed up)

Number of obs = 74

mpg | Coefficient Std. err. z P>|z]| [95% conf. intervall

eql
weight -.0065879 .0006241 -10.56 0.000 -.007811 -.0053647
foreign -1.650029 1.053958 -1.57 0.117 -3.715749 .4156903
_cons 41.6797 2.121197 19.65 0.000 37.52223 45.83717

eq2
_cons 11.13746 1.830987 6.08 0.000 7.54879 14.72613

moptimize() — Model optimization 29

The type If evaluator

Let’s now interpret the code we wrote, which was

: function linregeval(transmorphic M, real rowvector b,
real colvector 1lnf)

{

real colvector pl, p2

real colvector yi

pl = moptimize_util_xb(M, b, 1)

p2 = moptimize_util_xb(M, b, 2)

y1 = moptimize_util_depvar(M, 1)

1nf = ln(normalden(yl:-pl, 0, sqrt(p2)))
}

: M = moptimize_init()

: moptimize_init_evaluator(M, &linregeval())

: moptimize_init_depvar(M, 1, "mpg")

: moptimize_init_eq_indepvars(M, 1, "weight foreign")
: moptimize_init_eq_indepvars(M, 2, "")

: moptimize (M)

: moptimize_result_display(M)

We first defined the function to evaluate our likelihood function—we named the function
linregeval(). The name was of our choosing. After that, we began an optimization problem by typing
M =moptimize_init (), described the problem with moptimize_init_*() functions, performed the
optimization by typing moptimize (), and displayed results by using moptimize_result_display().

Function linregeval () is an example of a type 1f evaluator. There are several different evaluator
types, including d0, d1, d2, through q1. Of all of them, type 1f is the easiest to use and is the one
moptimize () uses unless we tell it differently. What makes 1f easy is that we need only calculate the
likelihood function; we are not required to calculate its derivatives. A description of 1f appears under
the heading Syntax of type If evaluators under Syntax above.

In the syntax diagrams, you will see that type 1f evaluators receive three arguments, M, b, and fv, al-
though in linregeval (), we decided to call them M, b, and 1nf. The first two arguments are inputs,
and your evaluator is expected to fill in the third argument with observation-by-observation values of the
log-likelihood function.

The input arguments are M and b. M is the problem handle, which we have not explained yet. Basically, all
evaluators receive M as the first argument and are expected to pass M to any moptimize*() subroutines
that they call. M in fact contains all the details of the optimization problem. The second argument, b, is the
entire coefficient vector, which in the linregeval () case will be all the coefficients of our regression,
the constant (intercept), and the variance of the residual. Those details are unimportant. Instead, your
evaluator will pass M and b to moptimize () utility programs that will give you back what you need.

Using one of those utilities is the first action our linregeval () evaluator performs:

pl =moptimize_util_xb(M, b, 1)

https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()SyntaxSyntaxoftypelfevaluators

moptimize() — Model optimization 30

That returns observation-by-observation values of the first parameter, namely, X x b; :+ c;.
moptimize_util_xb(x, b, 1) returns the first parameter because the last argument specified is 1. We
obtained the second parameter similarly:

p2 =moptimize_util_xb(M, b, 2)

To evaluate the likelihood function, we also need the dependent variable. Another moptimize*() utility
returns that to us:

y1 =moptimize_util_depvar (M, 1)
Having p1, p2, and y1, we are ready to fill in the log-likelihood values:
1nf = In(normalden(yl:-p1, 0, sqrt(p2)))

For a type 1f evaluator, you are to return observation-by-observation values of the log-likelihood func-
tion; moptimize () itself will sum them to obtain the overall log likelihood. That is exactly what the
line 1nf = In(normalden(yl:-pl, O, sqrt(p2))) did. Note that y1 is N x 1,plis N x 1, and p2 is
N x 1, so the 1nf result we calculate is also N x 1. Some of the other evaluator types are expected to
return a scalar equal to the overall value of the function.

With the evaluator defined, we can estimate a linear regression by typing

: M = moptimize_init()

: moptimize_init_evaluator(M, &linregeval())

: moptimize_init_depvar(M, 1, "mpg")

: moptimize_init_eq_indepvars(M, 1, "weight foreign")
: moptimize_init_eq_indepvars(M, 2, "")

: moptimize (M)

: moptimize_result_display(M)

All estimation problems begin with
M =moptimize_init()

The returned value M is called a problem handle, and from that point on, you will pass M to every other
moptimize () function you call. M contains the details of your problem. If you were to list M, you would
see something like

|
0x15369a

0x15369a is in fact the address where all those details are stored. Exactly how M works does not matter,
but it is important that you understand what M is. M is your problem. In a more complicated problem,
you might need to perform nested optimizations. You might have one optimization problem, and right
in the middle of it, even right in the middle of evaluating its log-likelihood function, you might need
to set up and solve another optimization problem. You can do that. The first problem you would set
up as M1 = moptimize_init (). The second problem you would set up as M2 = moptimize_init ().
moptimize () would not confuse the two problems because it would know to which problem you were
referring by whether you used M1 or M2 as the argument of the moptimize () functions. As another
example, you might have one optimization problem, M = moptimize_init (), and halfway through it,
decide you want to try something wild. You could code M2 = M, thus making a copy of the problem, use
the moptimize*() functions with M2, and all the while your original problem would remain undisturbed.

moptimize() — Model optimization 31

Having obtained a problem handle, that is, having coded M = moptimize_init (), you now need to fill
in the details of your problem. You do that with the moptimize_init_*() functions. The order in which
you do this does not matter. We first informed moptimize () of the identity of the evaluator function:

: moptimize_init_evaluator(M, &linregeval())

We must also inform moptimize() as to the type of evaluator function linregeval() is, which we
could do by coding

: moptimize_init_evaluatortype(M, "1f")

We did not bother, however, because type 1f is the default.

After that, we need to inform moptimize () as to the identity of the dependent variables:

: moptimize_init_depvar(M, 1, "mpg")

Dependent variables play no special role in moptimize (); they are merely something that are remem-
bered so that they can be passed to the evaluator function that we write. One problem might have no
dependent variables and another might have lots of them. moptimize_init_depvar(M, i, y)’s sec-
ond argument specifies which dependent variable is being set. There is no requirement that the number of
dependent variables match the number of equations. In the linear regression case, we have one dependent
variable and two equations.

Next we set the independent variables, or equivalently, the mapping of coefficients, into parameters.
When we code

: moptimize_init_eq_indepvars(M, 1, "weight foreign")

we are stating that there is a parameter, p; = X; xb; :+ ¢;, and that X; = (weight, foreign). Thus b,
contains two coefficients, thatis, p; = (weight, foreign) X (b;;,b15)" :+ ¢;. Actually, we have not yet
specified whether there is a constant, ¢, , on the end, but if we do not specify otherwise, the constant will
be included. If we want to suppress the constant, after coding moptimize_init_eq_indepvars(M,
1, "weight foreign"), we would code moptimize_init_eq_cons(M, 1, "off"). The 1 says first
equation, and the "off" says to turn the constant off.

As an aside, we coded moptimize_init_eq_indepvars(M, 1, "weight foreign") and so specified
that the independent variables were the Stata variables weight and foreign, but the independent vari-
ables do not have to be in Stata. If we had a 74 x 2 matrix named data in Mata that we wanted to use,
we would have coded moptimize_init_eq_indepvars(M, 1, data).

To define the second parameter, we code

: moptimize_init_eq_indepvars(M, 2, "")

Thus we are stating that there is a parameter, p, = X, X b, :+ ¢, and that X, does not exist, leaving
P, = ¢y, meaning that the second parameter is a constant.

moptimize() — Model optimization 32

Our problem defined, we code

: moptimize (M)

to obtain the solution, and we code

: moptimize_result_display(M)

to see the results. There are many moptimize_result_*() functions for use after the solution is ob-
tained.

The type d, If*, gf, and q evaluators

Above we wrote our evaluator function in the style of type 1f. moptimize () provides four other eval-
uator types—called types d, 1£*, gf, and g—and each have their uses.

Using type 1f above, we were required to calculate the observation-by-observation log likelihoods and
that was all. Using another type of evaluator, say, type d, we are required to calculate the overall log
likelihood, and optionally, its first derivatives, and optionally, its second derivatives. The corresponding
evaluator types are called d0, d1, and d2. Type d is better than type 1f because if we do calculate the
derivatives, then moptimize () can execute more quickly and it can produce a slightly more accurate
result (more accurate because numerical derivatives are not involved). These speed and accuracy gains
justify type d1 and d2, but what about type d0? For many optimization problems, type d0 is redundant
and amounts to nothing more than a slight variation on type 1£. In these cases, type d0’s justification is
that if we want to write a type d1 or type d2 evaluator, then it is usually easiest to start by writing a type
do evaluator. Make that work, and then add to the code to convert our type d0 evaluator into a type d1
evaluator; make that work, and then, if we are going all the way to type d2, add the code to convert our
type d1 evaluator into a type d2 evaluator.

For other optimization problems, however, there is a substantive reason for type d0’s existence. Type
1f requires observation-by-observation values of the log-likelihood function, and for some likelihood
functions, those simply do not exist. Think of a panel-data model. There may be observations within
each of the panels, but there is no corresponding log-likelihood value for each of them. The log-likelihood
function is defined only across the entire panel. Type 1f cannot handle problems like that. Type d0 can.

That makes type d0 seem to be a strict improvement on type 1f. Type d0 can handle any problem that type
1f can handle, and it can handle other problems to boot. Where both can handle the problem, the only
extra work to use type dO is that we must sum the individual values we produce, and that is not difficult.
Type 1£, however, has other advantages. If you write a type 1f evaluator, then without writing another
line of code, you can obtain the robust estimates of variance, adjust for clustering, account for survey
design effects, and more. moptimize () can do all that because it has the results of an observation-by-
observation calculation. moptimize () can break into the assembly of those observation-by-observation
results and modify how that is done. moptimize () cannot do that for d0.

So there are advantages both ways.

Another provided evaluator type is type 1f*. Type 1f* is a variation on type 1£f. It also comes in the
subflavors 1£0, 1f1, and 1£2. Type 1f* allows you to make observation-level derivative calculations,
which means that results can be obtained more quickly and more accurately. Type 1f* is designed to
always work where 1f is appropriate, which means panel-data estimators are excluded. In return, it

moptimize() — Model optimization 33

provides all the ancillary features provided by type 1f, meaning that robust standard errors, clustering,
and survey-data adjustments are available. You write the evaluator function in a slightly different style
when you use type 1£* rather than type d.

Type gf is a variation on type 1f#* that relaxes the requirement that the log-likelihood function be
summable over the observations. Thus type gf can work with panel-data models and resurrect the fea-
tures of robust standard errors, clustering, and survey-data adjustments. Type gf evaluators, however,
are more difficult to write than type 1£* evaluators.

Type q is for the special case of quadratic optimization. You either need it, and then only type q will do,
or you do not.

Example using type d

Let’s return to our linear regression maximum-likelihood estimator. To remind you, this is a two-
parameter model, and the log-likelihood function is

f(P1,P2;y) =) 1n(normalden(y — p;,0,5qrt (p,))

This time, however, we are going to parameterize the variance parameter p, as the log of the standard
deviation, so we will write

f(P1,Po;y) = Y In(normalden(y — p; ,0,exp(p,))

It does not make any conceptual difference which parameterization we use, but the log parameterization
converges a little more quickly, and the derivatives are easier, too. We are going to implement a type d2
evaluator for this function. To save you from pulling out pencil and paper, let’s tell you the derivatives:

df /dp, = z:/s
df /dpy = 2:72:-1
d?*f/dp? = —1:/s:72

d?*f/dp2? = —2xz:2
d*f /dpdpy, = —2 X z:/s
where
2= (y:—py):/s
s = exp(py)

The d2 evaluator function for this problem is

function linregevald2(transmorphic M, real scalar todo,
real rowvector b, fv, g, H)

{
y1 = moptimize_calc_depvar(M, 1)
pl = moptimize_calc_xb(M, b, 1)
p2 = moptimize_calc_xb(M, b, 2)
s = exp(p2)
z = (yl:-pl):/s
fv = moptimize_util_sum(M, ln(normalden(yl:-pl, 0, s)))

moptimize() — Model optimization 34

if (todo>=1) {

sl = z:/s

s2 =2z:72 :- 1

gl = moptimize_util_vecsum(M, 1, si1, fv)

g2 = moptimize_util_vecsum(M, 2, s2, fv)

g = (g1, g2)

if (todo==2) {
hil = -1:/s:72
h22 = -2xz:72
hi12 = -2%z:/s
H11l = moptimize_util_matsum(M, 1,1, hill, fv)
H22 = moptimize_util_matsum(M, 2,2, h22, fv)
H12 = moptimize_util_matsum(M, 1,2, h12, fv)
H = (H11, H12 \ H12’, H22)

}

}

The code to fit a model of mpg on weight and foreign reads

: M = moptimize_init()

: moptimize_init_evaluator(M, &linregevald2())

: moptimize_init_evaluatortype(M, "d2")

: moptimize_init_depvar(M, 1, "mpg")

: moptimize_init_eq_indepvars(M, 1, "weight foreign")
: moptimize_init_eq_indepvars(M, 2, "")

: moptimize (M)

: moptimize_result_display(M)

By the way, function 1inregevald2() will work not only with type d2, but also with types d1 and d0.
Our function has the code to calculate first and second derivatives, but if we use type d1, todo will never
be 2 and the second derivative part of our code will be ignored. If we use type d0, todo will never be
1 or 2 and so the first and second derivative parts of our code will be ignored. You could delete the
unnecessary blocks if you wanted.

It is also worth trying the above code with types d1debug and d2debug. Type didebug is like d1; the
second derivative code will not be used. Also type didebug will almost ignore the first derivative code.
Our program will be asked to make the calculation, but moptimize () will not use the results except to
report a comparison of the derivatives we calculate with numerically calculated derivatives. That way,
we can check that our program is right. Once we have done that, we move to type d2debug, which will
check our second-derivative calculation.

Example using type If*

The 1£2 evaluator function for the linear-regression problem is almost identical to the type d2 evaluator.
It differs in that rather than return the summed log likelihood, we return the observation-level log like-
lihoods. And rather than return the gradient vector, we return the equation-level scores that when used
with the chain-rule can be summed to produce the gradient. The conversion from d2 to 1£2 was possible
because of the observation-by-observation nature of the linear-regression problem; if the evaluator was
not going to be implemented as 1f£, it always should have been implemented as 1f1 or 1£2 instead of d1
or d2. In the d2 evaluator above, we went to extra work—summing the scores—the result of which was
to eliminate moptimize () features such as being able to automatically adjust for clusters and survey
data. In a more appropriate type d problem—a problem for which a type 1£* evaluator could not have
been implemented—those scores never would have been available in the first place.

moptimize() — Model optimization 35

The 1£2 evaluator is

function linregevallf2(transmorphic M, real scalar todo,
real rowvector b, fv, S, H)

moptimize_calc_depvar(M, 1)
moptimize_calc_xb(M, b, 1)
moptimize_calc_xb(M, b, 2)

= exp(p2)

(yl:-pl):/s

1n(normalden(yl:-pl, 0, s))

if (todo>=1) {

{
yt =
pl =
p2 =
S
s =
fv =
ks

¥

sl = z:/s
s2 =2z:72

hit
h22
hi2
mis
H11

H22 =

H12
H

=1

S = (s1, s2)

if (todo==2) {
=-1:/8:72

-2%z:72

-2%z:/s

0

moptimize_util_matsum(M, 1,1, hill, mis)
moptimize_util_matsum(M, 2,2, h22, mis)
moptimize_util_matsum(M, 1,2, h12, mis)

= (H11, H12 \ H12’, H22)

The code to fit a model of mpg on weight and foreign reads nearly identically to the code we used in the
type d2 case. We must specify the name of our type 1£2 evaluator and specify that it is type 1£2:

: M = moptimize_init()
: moptimize_init_evaluator(M, &linregevallf2())

: moptimize_init_evaluatortype(M, "1f2")

: moptimize_init_depvar(M, 1, "mpg")

: moptimize_init_eq_indepvars(M, 1, "weight foreign")
: moptimize_init_eq_indepvars(M, 2, "")

: moptimize (M)

: moptimize_result_display(M)

Conformability

See Syntax above.

Diagnostics

All functions abort with error when used incorrectly.

moptimize () aborts with error if it runs into numerical difficulties. _moptimize () does not; it instead
returns a nonzero error code.

Themoptimize_result*() functions abort with error if they run into numerical difficulties when called
after moptimize () or moptimize_evaluate(). They do not abort when run after _moptimize ()

or _moptimize_evaluate().

They instead return a properly dimensioned missing result and set

moptimize_result_errorcode() and moptimize_result_errortext().

https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Remarksandexamplesd2code
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()Syntax

moptimize() — Model optimization 36

Ludwig Otto Hesse (1811-1874) was born in K6nigsberg, Prussia, which is now Kaliningrad, Rus-
sia. He obtained a PhD from the University of Kénigsberg in 1840. His many contributions are
reflected in the mathematical terms named after him, including the Hessian matrix, Hessian group,
and Hesse configuration. His doctoral work was supervised by Carl Gustav Jacob Jacobi, for whom
the Jacobian matrix and Jacobi transform are named. Hesse worked heavily on algebraic functions
and invariants and published a lot of his work in Crelles Journal. One of his notable works was the
principle of transfer, which was later generalized by Wilhelm Meyer and Elie Cartan.

Hesse supervised the doctoral work of several well-known mathematicians, including Jacob Liiroth
and Max Noether. He was a member of three science academies and was granted the Steiner prize
by the Berlin Academy of Sciences. The Bavarian Academy of Sciences, who granted Hesse mem-
bership in 1869, published his collected works in 1897.

Donald Wesley Marquardt (1929-1997) was born in New York and obtained degrees in physics,
mathematics, and statistics from Columbia and the University of Delaware. For 39 years, he worked
at DuPont as a statistician and founding manager of the company’s Quality Management and Tech-
nology Center. In retirement, Marquardt set up his own consultancy and remained an international
leader in establishing standards for quality management and quality assurance. His work on non-
linear estimation is highly cited. Marquardt also made major contributions to ridge and generalized
inverse regression, mixture designs, and analysis of unequally spaced time series.

References

Haas, K. 1972. “Ludwig Otto Hesse”. In Dictionary of Scientific Biography, edited by C. C. Gillispie, vol. 6: 356-358.
New York: Charles Scribner’s Sons.

Hahn, G. J. 1995. A conversation with Donald Marquardt. Statistical Science 10: 377-393. https://doi.org/10.1214/ss/
1177009871.

Pitblado, J. S., B. P. Poi, and W. W. Gould. 2024. Maximum Likelihood Estimation with Stata. 5th ed. College Station,
TX: Stata Press.

Also see
[M-5] optimize() — Function optimization
[M-5] Quadrature() — Numerical integration
[M-4] Mathematical — Important mathematical functions
[M-4] Statistical — Statistical functions

[R] set iter — Control iteration settings

Stata, Stata Press, and Mata are registered trademarks of StataCorp LLC. Stata and Stata

Press are registered trademarks with the World Intellectual Property Organization of the ¢~ ©
United Nations. StataNow and NetCourseNow are trademarks of StataCorp LLC. Other 74 \\l
brand and product names are registered trademarks or trademarks of their respective com- ¢ !“ (Jf‘} 7
panies. Copyright © 1985-2025 StataCorp LLC, College Station, TX, USA. All rights :

reserved.

For suggested citations, see the FAQ on citing Stata documentation.

https://www.stata.com/manuals/m-5deriv.pdf#m-5deriv()Methodsandformulasv_jacobi
https://doi.org/10.1214/ss/1177009871
https://doi.org/10.1214/ss/1177009871
https://www.stata-press.com/books/maximum-likelihood-estimation-stata/
https://www.stata.com/manuals/m-5optimize.pdf#m-5optimize()
https://www.stata.com/manuals/m-5quadrature.pdf#m-5Quadrature()
https://www.stata.com/manuals/m-4mathematical.pdf#m-4Mathematical
https://www.stata.com/manuals/m-4statistical.pdf#m-4Statistical
https://www.stata.com/manuals/rsetiter.pdf#rsetiter
https://www.stata.com/support/faqs/resources/citing-software-documentation-faqs/

